1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "VectorDrawableUtils.h"
18 
19 #include "PathParser.h"
20 
21 #include <math.h>
22 #include <utils/Log.h>
23 
24 namespace android {
25 namespace uirenderer {
26 
27 class PathResolver {
28 public:
29     float currentX = 0;
30     float currentY = 0;
31     float ctrlPointX = 0;
32     float ctrlPointY = 0;
33     float currentSegmentStartX = 0;
34     float currentSegmentStartY = 0;
35     void addCommand(SkPath* outPath, char previousCmd,
36             char cmd, const std::vector<float>* points, size_t start, size_t end);
37 };
38 
canMorph(const PathData & morphFrom,const PathData & morphTo)39 bool VectorDrawableUtils::canMorph(const PathData& morphFrom, const PathData& morphTo) {
40     if (morphFrom.verbs.size() != morphTo.verbs.size()) {
41         return false;
42     }
43 
44     for (unsigned int i = 0; i < morphFrom.verbs.size(); i++) {
45         if (morphFrom.verbs[i] != morphTo.verbs[i]
46                 ||  morphFrom.verbSizes[i] != morphTo.verbSizes[i]) {
47             return false;
48         }
49     }
50     return true;
51 }
52 
interpolatePathData(PathData * outData,const PathData & morphFrom,const PathData & morphTo,float fraction)53 bool VectorDrawableUtils::interpolatePathData(PathData* outData, const PathData& morphFrom,
54         const PathData& morphTo, float fraction) {
55     if (!canMorph(morphFrom, morphTo)) {
56         return false;
57     }
58     interpolatePaths(outData, morphFrom, morphTo, fraction);
59     return true;
60 }
61 
62  /**
63  * Convert an array of PathVerb to Path.
64  */
verbsToPath(SkPath * outPath,const PathData & data)65 void VectorDrawableUtils::verbsToPath(SkPath* outPath, const PathData& data) {
66     PathResolver resolver;
67     char previousCommand = 'm';
68     size_t start = 0;
69     outPath->reset();
70     for (unsigned int i = 0; i < data.verbs.size(); i++) {
71         size_t verbSize = data.verbSizes[i];
72         resolver.addCommand(outPath, previousCommand, data.verbs[i], &data.points, start,
73                 start + verbSize);
74         previousCommand = data.verbs[i];
75         start += verbSize;
76     }
77 }
78 
79 /**
80  * The current PathVerb will be interpolated between the
81  * <code>nodeFrom</code> and <code>nodeTo</code> according to the
82  * <code>fraction</code>.
83  *
84  * @param nodeFrom The start value as a PathVerb.
85  * @param nodeTo The end value as a PathVerb
86  * @param fraction The fraction to interpolate.
87  */
interpolatePaths(PathData * outData,const PathData & from,const PathData & to,float fraction)88 void VectorDrawableUtils::interpolatePaths(PathData* outData,
89         const PathData& from, const PathData& to, float fraction) {
90     outData->points.resize(from.points.size());
91     outData->verbSizes = from.verbSizes;
92     outData->verbs = from.verbs;
93 
94     for (size_t i = 0; i < from.points.size(); i++) {
95         outData->points[i] = from.points[i] * (1 - fraction) + to.points[i] * fraction;
96     }
97 }
98 
99 /**
100  * Converts an arc to cubic Bezier segments and records them in p.
101  *
102  * @param p The target for the cubic Bezier segments
103  * @param cx The x coordinate center of the ellipse
104  * @param cy The y coordinate center of the ellipse
105  * @param a The radius of the ellipse in the horizontal direction
106  * @param b The radius of the ellipse in the vertical direction
107  * @param e1x E(eta1) x coordinate of the starting point of the arc
108  * @param e1y E(eta2) y coordinate of the starting point of the arc
109  * @param theta The angle that the ellipse bounding rectangle makes with horizontal plane
110  * @param start The start angle of the arc on the ellipse
111  * @param sweep The angle (positive or negative) of the sweep of the arc on the ellipse
112  */
arcToBezier(SkPath * p,double cx,double cy,double a,double b,double e1x,double e1y,double theta,double start,double sweep)113 static void arcToBezier(SkPath* p,
114         double cx,
115         double cy,
116         double a,
117         double b,
118         double e1x,
119         double e1y,
120         double theta,
121         double start,
122         double sweep) {
123     // Taken from equations at: http://spaceroots.org/documents/ellipse/node8.html
124     // and http://www.spaceroots.org/documents/ellipse/node22.html
125 
126     // Maximum of 45 degrees per cubic Bezier segment
127     int numSegments = ceil(fabs(sweep * 4 / M_PI));
128 
129     double eta1 = start;
130     double cosTheta = cos(theta);
131     double sinTheta = sin(theta);
132     double cosEta1 = cos(eta1);
133     double sinEta1 = sin(eta1);
134     double ep1x = (-a * cosTheta * sinEta1) - (b * sinTheta * cosEta1);
135     double ep1y = (-a * sinTheta * sinEta1) + (b * cosTheta * cosEta1);
136 
137     double anglePerSegment = sweep / numSegments;
138     for (int i = 0; i < numSegments; i++) {
139         double eta2 = eta1 + anglePerSegment;
140         double sinEta2 = sin(eta2);
141         double cosEta2 = cos(eta2);
142         double e2x = cx + (a * cosTheta * cosEta2) - (b * sinTheta * sinEta2);
143         double e2y = cy + (a * sinTheta * cosEta2) + (b * cosTheta * sinEta2);
144         double ep2x = -a * cosTheta * sinEta2 - b * sinTheta * cosEta2;
145         double ep2y = -a * sinTheta * sinEta2 + b * cosTheta * cosEta2;
146         double tanDiff2 = tan((eta2 - eta1) / 2);
147         double alpha =
148                 sin(eta2 - eta1) * (sqrt(4 + (3 * tanDiff2 * tanDiff2)) - 1) / 3;
149         double q1x = e1x + alpha * ep1x;
150         double q1y = e1y + alpha * ep1y;
151         double q2x = e2x - alpha * ep2x;
152         double q2y = e2y - alpha * ep2y;
153 
154         p->cubicTo((float) q1x,
155                 (float) q1y,
156                 (float) q2x,
157                 (float) q2y,
158                 (float) e2x,
159                 (float) e2y);
160         eta1 = eta2;
161         e1x = e2x;
162         e1y = e2y;
163         ep1x = ep2x;
164         ep1y = ep2y;
165     }
166 }
167 
toRadians(float theta)168 inline double toRadians(float theta) { return theta * M_PI / 180;}
169 
drawArc(SkPath * p,float x0,float y0,float x1,float y1,float a,float b,float theta,bool isMoreThanHalf,bool isPositiveArc)170 static void drawArc(SkPath* p,
171         float x0,
172         float y0,
173         float x1,
174         float y1,
175         float a,
176         float b,
177         float theta,
178         bool isMoreThanHalf,
179         bool isPositiveArc) {
180 
181     /* Convert rotation angle from degrees to radians */
182     double thetaD = toRadians(theta);
183     /* Pre-compute rotation matrix entries */
184     double cosTheta = cos(thetaD);
185     double sinTheta = sin(thetaD);
186     /* Transform (x0, y0) and (x1, y1) into unit space */
187     /* using (inverse) rotation, followed by (inverse) scale */
188     double x0p = (x0 * cosTheta + y0 * sinTheta) / a;
189     double y0p = (-x0 * sinTheta + y0 * cosTheta) / b;
190     double x1p = (x1 * cosTheta + y1 * sinTheta) / a;
191     double y1p = (-x1 * sinTheta + y1 * cosTheta) / b;
192 
193     /* Compute differences and averages */
194     double dx = x0p - x1p;
195     double dy = y0p - y1p;
196     double xm = (x0p + x1p) / 2;
197     double ym = (y0p + y1p) / 2;
198     /* Solve for intersecting unit circles */
199     double dsq = dx * dx + dy * dy;
200     if (dsq == 0.0) {
201         VECTOR_DRAWABLE_LOGD("Points are coincident");
202         return; /* Points are coincident */
203     }
204     double disc = 1.0 / dsq - 1.0 / 4.0;
205     if (disc < 0.0) {
206         VECTOR_DRAWABLE_LOGD("Points are too far apart %f", dsq);
207         float adjust = (float) (sqrt(dsq) / 1.99999);
208         drawArc(p, x0, y0, x1, y1, a * adjust,
209                 b * adjust, theta, isMoreThanHalf, isPositiveArc);
210         return; /* Points are too far apart */
211     }
212     double s = sqrt(disc);
213     double sdx = s * dx;
214     double sdy = s * dy;
215     double cx;
216     double cy;
217     if (isMoreThanHalf == isPositiveArc) {
218         cx = xm - sdy;
219         cy = ym + sdx;
220     } else {
221         cx = xm + sdy;
222         cy = ym - sdx;
223     }
224 
225     double eta0 = atan2((y0p - cy), (x0p - cx));
226 
227     double eta1 = atan2((y1p - cy), (x1p - cx));
228 
229     double sweep = (eta1 - eta0);
230     if (isPositiveArc != (sweep >= 0)) {
231         if (sweep > 0) {
232             sweep -= 2 * M_PI;
233         } else {
234             sweep += 2 * M_PI;
235         }
236     }
237 
238     cx *= a;
239     cy *= b;
240     double tcx = cx;
241     cx = cx * cosTheta - cy * sinTheta;
242     cy = tcx * sinTheta + cy * cosTheta;
243 
244     arcToBezier(p, cx, cy, a, b, x0, y0, thetaD, eta0, sweep);
245 }
246 
247 
248 
249 // Use the given verb, and points in the range [start, end) to insert a command into the SkPath.
addCommand(SkPath * outPath,char previousCmd,char cmd,const std::vector<float> * points,size_t start,size_t end)250 void PathResolver::addCommand(SkPath* outPath, char previousCmd,
251         char cmd, const std::vector<float>* points, size_t start, size_t end) {
252 
253     int incr = 2;
254     float reflectiveCtrlPointX;
255     float reflectiveCtrlPointY;
256 
257     switch (cmd) {
258     case 'z':
259     case 'Z':
260         outPath->close();
261         // Path is closed here, but we need to move the pen to the
262         // closed position. So we cache the segment's starting position,
263         // and restore it here.
264         currentX = currentSegmentStartX;
265         currentY = currentSegmentStartY;
266         ctrlPointX = currentSegmentStartX;
267         ctrlPointY = currentSegmentStartY;
268         outPath->moveTo(currentX, currentY);
269         break;
270     case 'm':
271     case 'M':
272     case 'l':
273     case 'L':
274     case 't':
275     case 'T':
276         incr = 2;
277         break;
278     case 'h':
279     case 'H':
280     case 'v':
281     case 'V':
282         incr = 1;
283         break;
284     case 'c':
285     case 'C':
286         incr = 6;
287         break;
288     case 's':
289     case 'S':
290     case 'q':
291     case 'Q':
292         incr = 4;
293         break;
294     case 'a':
295     case 'A':
296         incr = 7;
297         break;
298     }
299 
300     for (unsigned int k = start; k < end; k += incr) {
301         switch (cmd) {
302         case 'm': // moveto - Start a new sub-path (relative)
303             currentX += points->at(k + 0);
304             currentY += points->at(k + 1);
305             if (k > start) {
306                 // According to the spec, if a moveto is followed by multiple
307                 // pairs of coordinates, the subsequent pairs are treated as
308                 // implicit lineto commands.
309                 outPath->rLineTo(points->at(k + 0), points->at(k + 1));
310             } else {
311                 outPath->rMoveTo(points->at(k + 0), points->at(k + 1));
312                 currentSegmentStartX = currentX;
313                 currentSegmentStartY = currentY;
314             }
315             break;
316         case 'M': // moveto - Start a new sub-path
317             currentX = points->at(k + 0);
318             currentY = points->at(k + 1);
319             if (k > start) {
320                 // According to the spec, if a moveto is followed by multiple
321                 // pairs of coordinates, the subsequent pairs are treated as
322                 // implicit lineto commands.
323                 outPath->lineTo(points->at(k + 0), points->at(k + 1));
324             } else {
325                 outPath->moveTo(points->at(k + 0), points->at(k + 1));
326                 currentSegmentStartX = currentX;
327                 currentSegmentStartY = currentY;
328             }
329             break;
330         case 'l': // lineto - Draw a line from the current point (relative)
331             outPath->rLineTo(points->at(k + 0), points->at(k + 1));
332             currentX += points->at(k + 0);
333             currentY += points->at(k + 1);
334             break;
335         case 'L': // lineto - Draw a line from the current point
336             outPath->lineTo(points->at(k + 0), points->at(k + 1));
337             currentX = points->at(k + 0);
338             currentY = points->at(k + 1);
339             break;
340         case 'h': // horizontal lineto - Draws a horizontal line (relative)
341             outPath->rLineTo(points->at(k + 0), 0);
342             currentX += points->at(k + 0);
343             break;
344         case 'H': // horizontal lineto - Draws a horizontal line
345             outPath->lineTo(points->at(k + 0), currentY);
346             currentX = points->at(k + 0);
347             break;
348         case 'v': // vertical lineto - Draws a vertical line from the current point (r)
349             outPath->rLineTo(0, points->at(k + 0));
350             currentY += points->at(k + 0);
351             break;
352         case 'V': // vertical lineto - Draws a vertical line from the current point
353             outPath->lineTo(currentX, points->at(k + 0));
354             currentY = points->at(k + 0);
355             break;
356         case 'c': // curveto - Draws a cubic Bézier curve (relative)
357             outPath->rCubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3),
358                     points->at(k + 4), points->at(k + 5));
359 
360             ctrlPointX = currentX + points->at(k + 2);
361             ctrlPointY = currentY + points->at(k + 3);
362             currentX += points->at(k + 4);
363             currentY += points->at(k + 5);
364 
365             break;
366         case 'C': // curveto - Draws a cubic Bézier curve
367             outPath->cubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3),
368                     points->at(k + 4), points->at(k + 5));
369             currentX = points->at(k + 4);
370             currentY = points->at(k + 5);
371             ctrlPointX = points->at(k + 2);
372             ctrlPointY = points->at(k + 3);
373             break;
374         case 's': // smooth curveto - Draws a cubic Bézier curve (reflective cp)
375             reflectiveCtrlPointX = 0;
376             reflectiveCtrlPointY = 0;
377             if (previousCmd == 'c' || previousCmd == 's'
378                     || previousCmd == 'C' || previousCmd == 'S') {
379                 reflectiveCtrlPointX = currentX - ctrlPointX;
380                 reflectiveCtrlPointY = currentY - ctrlPointY;
381             }
382             outPath->rCubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
383                     points->at(k + 0), points->at(k + 1),
384                     points->at(k + 2), points->at(k + 3));
385             ctrlPointX = currentX + points->at(k + 0);
386             ctrlPointY = currentY + points->at(k + 1);
387             currentX += points->at(k + 2);
388             currentY += points->at(k + 3);
389             break;
390         case 'S': // shorthand/smooth curveto Draws a cubic Bézier curve(reflective cp)
391             reflectiveCtrlPointX = currentX;
392             reflectiveCtrlPointY = currentY;
393             if (previousCmd == 'c' || previousCmd == 's'
394                     || previousCmd == 'C' || previousCmd == 'S') {
395                 reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
396                 reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
397             }
398             outPath->cubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
399                     points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3));
400             ctrlPointX = points->at(k + 0);
401             ctrlPointY = points->at(k + 1);
402             currentX = points->at(k + 2);
403             currentY = points->at(k + 3);
404             break;
405         case 'q': // Draws a quadratic Bézier (relative)
406             outPath->rQuadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3));
407             ctrlPointX = currentX + points->at(k + 0);
408             ctrlPointY = currentY + points->at(k + 1);
409             currentX += points->at(k + 2);
410             currentY += points->at(k + 3);
411             break;
412         case 'Q': // Draws a quadratic Bézier
413             outPath->quadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3));
414             ctrlPointX = points->at(k + 0);
415             ctrlPointY = points->at(k + 1);
416             currentX = points->at(k + 2);
417             currentY = points->at(k + 3);
418             break;
419         case 't': // Draws a quadratic Bézier curve(reflective control point)(relative)
420             reflectiveCtrlPointX = 0;
421             reflectiveCtrlPointY = 0;
422             if (previousCmd == 'q' || previousCmd == 't'
423                     || previousCmd == 'Q' || previousCmd == 'T') {
424                 reflectiveCtrlPointX = currentX - ctrlPointX;
425                 reflectiveCtrlPointY = currentY - ctrlPointY;
426             }
427             outPath->rQuadTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
428                     points->at(k + 0), points->at(k + 1));
429             ctrlPointX = currentX + reflectiveCtrlPointX;
430             ctrlPointY = currentY + reflectiveCtrlPointY;
431             currentX += points->at(k + 0);
432             currentY += points->at(k + 1);
433             break;
434         case 'T': // Draws a quadratic Bézier curve (reflective control point)
435             reflectiveCtrlPointX = currentX;
436             reflectiveCtrlPointY = currentY;
437             if (previousCmd == 'q' || previousCmd == 't'
438                     || previousCmd == 'Q' || previousCmd == 'T') {
439                 reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
440                 reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
441             }
442             outPath->quadTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
443                     points->at(k + 0), points->at(k + 1));
444             ctrlPointX = reflectiveCtrlPointX;
445             ctrlPointY = reflectiveCtrlPointY;
446             currentX = points->at(k + 0);
447             currentY = points->at(k + 1);
448             break;
449         case 'a': // Draws an elliptical arc
450             // (rx ry x-axis-rotation large-arc-flag sweep-flag x y)
451             drawArc(outPath,
452                     currentX,
453                     currentY,
454                     points->at(k + 5) + currentX,
455                     points->at(k + 6) + currentY,
456                     points->at(k + 0),
457                     points->at(k + 1),
458                     points->at(k + 2),
459                     points->at(k + 3) != 0,
460                     points->at(k + 4) != 0);
461             currentX += points->at(k + 5);
462             currentY += points->at(k + 6);
463             ctrlPointX = currentX;
464             ctrlPointY = currentY;
465             break;
466         case 'A': // Draws an elliptical arc
467             drawArc(outPath,
468                     currentX,
469                     currentY,
470                     points->at(k + 5),
471                     points->at(k + 6),
472                     points->at(k + 0),
473                     points->at(k + 1),
474                     points->at(k + 2),
475                     points->at(k + 3) != 0,
476                     points->at(k + 4) != 0);
477             currentX = points->at(k + 5);
478             currentY = points->at(k + 6);
479             ctrlPointX = currentX;
480             ctrlPointY = currentY;
481             break;
482         default:
483             LOG_ALWAYS_FATAL("Unsupported command: %c", cmd);
484             break;
485         }
486         previousCmd = cmd;
487     }
488 }
489 
490 } // namespace uirenderer
491 } // namespace android
492