1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "verifier.h"
18
19 #include <errno.h>
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <string.h>
23
24 #include <algorithm>
25 #include <functional>
26 #include <memory>
27 #include <vector>
28
29 #include <android-base/logging.h>
30 #include <openssl/bn.h>
31 #include <openssl/ecdsa.h>
32 #include <openssl/obj_mac.h>
33
34 #include "asn1_decoder.h"
35 #include "print_sha1.h"
36
37 static constexpr size_t MiB = 1024 * 1024;
38
39 /*
40 * Simple version of PKCS#7 SignedData extraction. This extracts the
41 * signature OCTET STRING to be used for signature verification.
42 *
43 * For full details, see http://www.ietf.org/rfc/rfc3852.txt
44 *
45 * The PKCS#7 structure looks like:
46 *
47 * SEQUENCE (ContentInfo)
48 * OID (ContentType)
49 * [0] (content)
50 * SEQUENCE (SignedData)
51 * INTEGER (version CMSVersion)
52 * SET (DigestAlgorithmIdentifiers)
53 * SEQUENCE (EncapsulatedContentInfo)
54 * [0] (CertificateSet OPTIONAL)
55 * [1] (RevocationInfoChoices OPTIONAL)
56 * SET (SignerInfos)
57 * SEQUENCE (SignerInfo)
58 * INTEGER (CMSVersion)
59 * SEQUENCE (SignerIdentifier)
60 * SEQUENCE (DigestAlgorithmIdentifier)
61 * SEQUENCE (SignatureAlgorithmIdentifier)
62 * OCTET STRING (SignatureValue)
63 */
read_pkcs7(const uint8_t * pkcs7_der,size_t pkcs7_der_len,std::vector<uint8_t> * sig_der)64 static bool read_pkcs7(const uint8_t* pkcs7_der, size_t pkcs7_der_len,
65 std::vector<uint8_t>* sig_der) {
66 CHECK(sig_der != nullptr);
67 sig_der->clear();
68
69 asn1_context ctx(pkcs7_der, pkcs7_der_len);
70
71 std::unique_ptr<asn1_context> pkcs7_seq(ctx.asn1_sequence_get());
72 if (pkcs7_seq == nullptr || !pkcs7_seq->asn1_sequence_next()) {
73 return false;
74 }
75
76 std::unique_ptr<asn1_context> signed_data_app(pkcs7_seq->asn1_constructed_get());
77 if (signed_data_app == nullptr) {
78 return false;
79 }
80
81 std::unique_ptr<asn1_context> signed_data_seq(signed_data_app->asn1_sequence_get());
82 if (signed_data_seq == nullptr ||
83 !signed_data_seq->asn1_sequence_next() ||
84 !signed_data_seq->asn1_sequence_next() ||
85 !signed_data_seq->asn1_sequence_next() ||
86 !signed_data_seq->asn1_constructed_skip_all()) {
87 return false;
88 }
89
90 std::unique_ptr<asn1_context> sig_set(signed_data_seq->asn1_set_get());
91 if (sig_set == nullptr) {
92 return false;
93 }
94
95 std::unique_ptr<asn1_context> sig_seq(sig_set->asn1_sequence_get());
96 if (sig_seq == nullptr ||
97 !sig_seq->asn1_sequence_next() ||
98 !sig_seq->asn1_sequence_next() ||
99 !sig_seq->asn1_sequence_next() ||
100 !sig_seq->asn1_sequence_next()) {
101 return false;
102 }
103
104 const uint8_t* sig_der_ptr;
105 size_t sig_der_length;
106 if (!sig_seq->asn1_octet_string_get(&sig_der_ptr, &sig_der_length)) {
107 return false;
108 }
109
110 sig_der->resize(sig_der_length);
111 std::copy(sig_der_ptr, sig_der_ptr + sig_der_length, sig_der->begin());
112 return true;
113 }
114
115 /*
116 * Looks for an RSA signature embedded in the .ZIP file comment given the path to the zip. Verifies
117 * that it matches one of the given public keys. A callback function can be optionally provided for
118 * posting the progress.
119 *
120 * Returns VERIFY_SUCCESS or VERIFY_FAILURE (if any error is encountered or no key matches the
121 * signature).
122 */
verify_file(const unsigned char * addr,size_t length,const std::vector<Certificate> & keys,const std::function<void (float)> & set_progress)123 int verify_file(const unsigned char* addr, size_t length, const std::vector<Certificate>& keys,
124 const std::function<void(float)>& set_progress) {
125 if (set_progress) {
126 set_progress(0.0);
127 }
128
129 // An archive with a whole-file signature will end in six bytes:
130 //
131 // (2-byte signature start) $ff $ff (2-byte comment size)
132 //
133 // (As far as the ZIP format is concerned, these are part of the archive comment.) We start by
134 // reading this footer, this tells us how far back from the end we have to start reading to find
135 // the whole comment.
136
137 #define FOOTER_SIZE 6
138
139 if (length < FOOTER_SIZE) {
140 LOG(ERROR) << "not big enough to contain footer";
141 return VERIFY_FAILURE;
142 }
143
144 const unsigned char* footer = addr + length - FOOTER_SIZE;
145
146 if (footer[2] != 0xff || footer[3] != 0xff) {
147 LOG(ERROR) << "footer is wrong";
148 return VERIFY_FAILURE;
149 }
150
151 size_t comment_size = footer[4] + (footer[5] << 8);
152 size_t signature_start = footer[0] + (footer[1] << 8);
153 LOG(INFO) << "comment is " << comment_size << " bytes; signature is " << signature_start
154 << " bytes from end";
155
156 if (signature_start > comment_size) {
157 LOG(ERROR) << "signature start: " << signature_start << " is larger than comment size: "
158 << comment_size;
159 return VERIFY_FAILURE;
160 }
161
162 if (signature_start <= FOOTER_SIZE) {
163 LOG(ERROR) << "Signature start is in the footer";
164 return VERIFY_FAILURE;
165 }
166
167 #define EOCD_HEADER_SIZE 22
168
169 // The end-of-central-directory record is 22 bytes plus any comment length.
170 size_t eocd_size = comment_size + EOCD_HEADER_SIZE;
171
172 if (length < eocd_size) {
173 LOG(ERROR) << "not big enough to contain EOCD";
174 return VERIFY_FAILURE;
175 }
176
177 // Determine how much of the file is covered by the signature. This is everything except the
178 // signature data and length, which includes all of the EOCD except for the comment length field
179 // (2 bytes) and the comment data.
180 size_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2;
181
182 const unsigned char* eocd = addr + length - eocd_size;
183
184 // If this is really is the EOCD record, it will begin with the magic number $50 $4b $05 $06.
185 if (eocd[0] != 0x50 || eocd[1] != 0x4b || eocd[2] != 0x05 || eocd[3] != 0x06) {
186 LOG(ERROR) << "signature length doesn't match EOCD marker";
187 return VERIFY_FAILURE;
188 }
189
190 for (size_t i = 4; i < eocd_size-3; ++i) {
191 if (eocd[i] == 0x50 && eocd[i+1] == 0x4b && eocd[i+2] == 0x05 && eocd[i+3] == 0x06) {
192 // If the sequence $50 $4b $05 $06 appears anywhere after the real one, libziparchive will
193 // find the later (wrong) one, which could be exploitable. Fail the verification if this
194 // sequence occurs anywhere after the real one.
195 LOG(ERROR) << "EOCD marker occurs after start of EOCD";
196 return VERIFY_FAILURE;
197 }
198 }
199
200 bool need_sha1 = false;
201 bool need_sha256 = false;
202 for (const auto& key : keys) {
203 switch (key.hash_len) {
204 case SHA_DIGEST_LENGTH: need_sha1 = true; break;
205 case SHA256_DIGEST_LENGTH: need_sha256 = true; break;
206 }
207 }
208
209 SHA_CTX sha1_ctx;
210 SHA256_CTX sha256_ctx;
211 SHA1_Init(&sha1_ctx);
212 SHA256_Init(&sha256_ctx);
213
214 double frac = -1.0;
215 size_t so_far = 0;
216 while (so_far < signed_len) {
217 // On a Nexus 5X, experiment showed 16MiB beat 1MiB by 6% faster for a
218 // 1196MiB full OTA and 60% for an 89MiB incremental OTA.
219 // http://b/28135231.
220 size_t size = std::min(signed_len - so_far, 16 * MiB);
221
222 if (need_sha1) SHA1_Update(&sha1_ctx, addr + so_far, size);
223 if (need_sha256) SHA256_Update(&sha256_ctx, addr + so_far, size);
224 so_far += size;
225
226 if (set_progress) {
227 double f = so_far / (double)signed_len;
228 if (f > frac + 0.02 || size == so_far) {
229 set_progress(f);
230 frac = f;
231 }
232 }
233 }
234
235 uint8_t sha1[SHA_DIGEST_LENGTH];
236 SHA1_Final(sha1, &sha1_ctx);
237 uint8_t sha256[SHA256_DIGEST_LENGTH];
238 SHA256_Final(sha256, &sha256_ctx);
239
240 const uint8_t* signature = eocd + eocd_size - signature_start;
241 size_t signature_size = signature_start - FOOTER_SIZE;
242
243 LOG(INFO) << "signature (offset: " << std::hex << (length - signature_start) << ", length: "
244 << signature_size << "): " << print_hex(signature, signature_size);
245
246 std::vector<uint8_t> sig_der;
247 if (!read_pkcs7(signature, signature_size, &sig_der)) {
248 LOG(ERROR) << "Could not find signature DER block";
249 return VERIFY_FAILURE;
250 }
251
252 // Check to make sure at least one of the keys matches the signature. Since any key can match,
253 // we need to try each before determining a verification failure has happened.
254 size_t i = 0;
255 for (const auto& key : keys) {
256 const uint8_t* hash;
257 int hash_nid;
258 switch (key.hash_len) {
259 case SHA_DIGEST_LENGTH:
260 hash = sha1;
261 hash_nid = NID_sha1;
262 break;
263 case SHA256_DIGEST_LENGTH:
264 hash = sha256;
265 hash_nid = NID_sha256;
266 break;
267 default:
268 continue;
269 }
270
271 // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that the signing tool appends
272 // after the signature itself.
273 if (key.key_type == Certificate::KEY_TYPE_RSA) {
274 if (!RSA_verify(hash_nid, hash, key.hash_len, sig_der.data(), sig_der.size(),
275 key.rsa.get())) {
276 LOG(INFO) << "failed to verify against RSA key " << i;
277 continue;
278 }
279
280 LOG(INFO) << "whole-file signature verified against RSA key " << i;
281 return VERIFY_SUCCESS;
282 } else if (key.key_type == Certificate::KEY_TYPE_EC && key.hash_len == SHA256_DIGEST_LENGTH) {
283 if (!ECDSA_verify(0, hash, key.hash_len, sig_der.data(), sig_der.size(), key.ec.get())) {
284 LOG(INFO) << "failed to verify against EC key " << i;
285 continue;
286 }
287
288 LOG(INFO) << "whole-file signature verified against EC key " << i;
289 return VERIFY_SUCCESS;
290 } else {
291 LOG(INFO) << "Unknown key type " << key.key_type;
292 }
293 i++;
294 }
295
296 if (need_sha1) {
297 LOG(INFO) << "SHA-1 digest: " << print_hex(sha1, SHA_DIGEST_LENGTH);
298 }
299 if (need_sha256) {
300 LOG(INFO) << "SHA-256 digest: " << print_hex(sha256, SHA256_DIGEST_LENGTH);
301 }
302 LOG(ERROR) << "failed to verify whole-file signature";
303 return VERIFY_FAILURE;
304 }
305
parse_rsa_key(FILE * file,uint32_t exponent)306 std::unique_ptr<RSA, RSADeleter> parse_rsa_key(FILE* file, uint32_t exponent) {
307 // Read key length in words and n0inv. n0inv is a precomputed montgomery
308 // parameter derived from the modulus and can be used to speed up
309 // verification. n0inv is 32 bits wide here, assuming the verification logic
310 // uses 32 bit arithmetic. However, BoringSSL may use a word size of 64 bits
311 // internally, in which case we don't have a valid n0inv. Thus, we just
312 // ignore the montgomery parameters and have BoringSSL recompute them
313 // internally. If/When the speedup from using the montgomery parameters
314 // becomes relevant, we can add more sophisticated code here to obtain a
315 // 64-bit n0inv and initialize the montgomery parameters in the key object.
316 uint32_t key_len_words = 0;
317 uint32_t n0inv = 0;
318 if (fscanf(file, " %i , 0x%x", &key_len_words, &n0inv) != 2) {
319 return nullptr;
320 }
321
322 if (key_len_words > 8192 / 32) {
323 LOG(ERROR) << "key length (" << key_len_words << ") too large";
324 return nullptr;
325 }
326
327 // Read the modulus.
328 std::unique_ptr<uint32_t[]> modulus(new uint32_t[key_len_words]);
329 if (fscanf(file, " , { %u", &modulus[0]) != 1) {
330 return nullptr;
331 }
332 for (uint32_t i = 1; i < key_len_words; ++i) {
333 if (fscanf(file, " , %u", &modulus[i]) != 1) {
334 return nullptr;
335 }
336 }
337
338 // Cconvert from little-endian array of little-endian words to big-endian
339 // byte array suitable as input for BN_bin2bn.
340 std::reverse((uint8_t*)modulus.get(),
341 (uint8_t*)(modulus.get() + key_len_words));
342
343 // The next sequence of values is the montgomery parameter R^2. Since we
344 // generally don't have a valid |n0inv|, we ignore this (see comment above).
345 uint32_t rr_value;
346 if (fscanf(file, " } , { %u", &rr_value) != 1) {
347 return nullptr;
348 }
349 for (uint32_t i = 1; i < key_len_words; ++i) {
350 if (fscanf(file, " , %u", &rr_value) != 1) {
351 return nullptr;
352 }
353 }
354 if (fscanf(file, " } } ") != 0) {
355 return nullptr;
356 }
357
358 // Initialize the key.
359 std::unique_ptr<RSA, RSADeleter> key(RSA_new());
360 if (!key) {
361 return nullptr;
362 }
363
364 key->n = BN_bin2bn((uint8_t*)modulus.get(),
365 key_len_words * sizeof(uint32_t), NULL);
366 if (!key->n) {
367 return nullptr;
368 }
369
370 key->e = BN_new();
371 if (!key->e || !BN_set_word(key->e, exponent)) {
372 return nullptr;
373 }
374
375 return key;
376 }
377
378 struct BNDeleter {
operator ()BNDeleter379 void operator()(BIGNUM* bn) const {
380 BN_free(bn);
381 }
382 };
383
parse_ec_key(FILE * file)384 std::unique_ptr<EC_KEY, ECKEYDeleter> parse_ec_key(FILE* file) {
385 uint32_t key_len_bytes = 0;
386 if (fscanf(file, " %i", &key_len_bytes) != 1) {
387 return nullptr;
388 }
389
390 std::unique_ptr<EC_GROUP, void (*)(EC_GROUP*)> group(
391 EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1), EC_GROUP_free);
392 if (!group) {
393 return nullptr;
394 }
395
396 // Verify that |key_len| matches the group order.
397 if (key_len_bytes != BN_num_bytes(EC_GROUP_get0_order(group.get()))) {
398 return nullptr;
399 }
400
401 // Read the public key coordinates. Note that the byte order in the file is
402 // little-endian, so we convert to big-endian here.
403 std::unique_ptr<uint8_t[]> bytes(new uint8_t[key_len_bytes]);
404 std::unique_ptr<BIGNUM, BNDeleter> point[2];
405 for (int i = 0; i < 2; ++i) {
406 unsigned int byte = 0;
407 if (fscanf(file, " , { %u", &byte) != 1) {
408 return nullptr;
409 }
410 bytes[key_len_bytes - 1] = byte;
411
412 for (size_t i = 1; i < key_len_bytes; ++i) {
413 if (fscanf(file, " , %u", &byte) != 1) {
414 return nullptr;
415 }
416 bytes[key_len_bytes - i - 1] = byte;
417 }
418
419 point[i].reset(BN_bin2bn(bytes.get(), key_len_bytes, nullptr));
420 if (!point[i]) {
421 return nullptr;
422 }
423
424 if (fscanf(file, " }") != 0) {
425 return nullptr;
426 }
427 }
428
429 if (fscanf(file, " } ") != 0) {
430 return nullptr;
431 }
432
433 // Create and initialize the key.
434 std::unique_ptr<EC_KEY, ECKEYDeleter> key(EC_KEY_new());
435 if (!key || !EC_KEY_set_group(key.get(), group.get()) ||
436 !EC_KEY_set_public_key_affine_coordinates(key.get(), point[0].get(),
437 point[1].get())) {
438 return nullptr;
439 }
440
441 return key;
442 }
443
444 // Reads a file containing one or more public keys as produced by
445 // DumpPublicKey: this is an RSAPublicKey struct as it would appear
446 // as a C source literal, eg:
447 //
448 // "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
449 //
450 // For key versions newer than the original 2048-bit e=3 keys
451 // supported by Android, the string is preceded by a version
452 // identifier, eg:
453 //
454 // "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
455 //
456 // (Note that the braces and commas in this example are actual
457 // characters the parser expects to find in the file; the ellipses
458 // indicate more numbers omitted from this example.)
459 //
460 // The file may contain multiple keys in this format, separated by
461 // commas. The last key must not be followed by a comma.
462 //
463 // A Certificate is a pair of an RSAPublicKey and a particular hash
464 // (we support SHA-1 and SHA-256; we store the hash length to signify
465 // which is being used). The hash used is implied by the version number.
466 //
467 // 1: 2048-bit RSA key with e=3 and SHA-1 hash
468 // 2: 2048-bit RSA key with e=65537 and SHA-1 hash
469 // 3: 2048-bit RSA key with e=3 and SHA-256 hash
470 // 4: 2048-bit RSA key with e=65537 and SHA-256 hash
471 // 5: 256-bit EC key using the NIST P-256 curve parameters and SHA-256 hash
472 //
473 // Returns true on success, and appends the found keys (at least one) to certs.
474 // Otherwise returns false if the file failed to parse, or if it contains zero
475 // keys. The contents in certs would be unspecified on failure.
load_keys(const char * filename,std::vector<Certificate> & certs)476 bool load_keys(const char* filename, std::vector<Certificate>& certs) {
477 std::unique_ptr<FILE, decltype(&fclose)> f(fopen(filename, "r"), fclose);
478 if (!f) {
479 PLOG(ERROR) << "error opening " << filename;
480 return false;
481 }
482
483 while (true) {
484 certs.emplace_back(0, Certificate::KEY_TYPE_RSA, nullptr, nullptr);
485 Certificate& cert = certs.back();
486 uint32_t exponent = 0;
487
488 char start_char;
489 if (fscanf(f.get(), " %c", &start_char) != 1) return false;
490 if (start_char == '{') {
491 // a version 1 key has no version specifier.
492 cert.key_type = Certificate::KEY_TYPE_RSA;
493 exponent = 3;
494 cert.hash_len = SHA_DIGEST_LENGTH;
495 } else if (start_char == 'v') {
496 int version;
497 if (fscanf(f.get(), "%d {", &version) != 1) return false;
498 switch (version) {
499 case 2:
500 cert.key_type = Certificate::KEY_TYPE_RSA;
501 exponent = 65537;
502 cert.hash_len = SHA_DIGEST_LENGTH;
503 break;
504 case 3:
505 cert.key_type = Certificate::KEY_TYPE_RSA;
506 exponent = 3;
507 cert.hash_len = SHA256_DIGEST_LENGTH;
508 break;
509 case 4:
510 cert.key_type = Certificate::KEY_TYPE_RSA;
511 exponent = 65537;
512 cert.hash_len = SHA256_DIGEST_LENGTH;
513 break;
514 case 5:
515 cert.key_type = Certificate::KEY_TYPE_EC;
516 cert.hash_len = SHA256_DIGEST_LENGTH;
517 break;
518 default:
519 return false;
520 }
521 }
522
523 if (cert.key_type == Certificate::KEY_TYPE_RSA) {
524 cert.rsa = parse_rsa_key(f.get(), exponent);
525 if (!cert.rsa) {
526 return false;
527 }
528
529 LOG(INFO) << "read key e=" << exponent << " hash=" << cert.hash_len;
530 } else if (cert.key_type == Certificate::KEY_TYPE_EC) {
531 cert.ec = parse_ec_key(f.get());
532 if (!cert.ec) {
533 return false;
534 }
535 } else {
536 LOG(ERROR) << "Unknown key type " << cert.key_type;
537 return false;
538 }
539
540 // if the line ends in a comma, this file has more keys.
541 int ch = fgetc(f.get());
542 if (ch == ',') {
543 // more keys to come.
544 continue;
545 } else if (ch == EOF) {
546 break;
547 } else {
548 LOG(ERROR) << "unexpected character between keys";
549 return false;
550 }
551 }
552
553 return true;
554 }
555