1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 // A lightweight X64 Assembler.
36 
37 #ifndef V8_X64_ASSEMBLER_X64_H_
38 #define V8_X64_ASSEMBLER_X64_H_
39 
40 #include <deque>
41 
42 #include "src/assembler.h"
43 #include "src/x64/sse-instr.h"
44 
45 namespace v8 {
46 namespace internal {
47 
48 // Utility functions
49 
50 #define GENERAL_REGISTERS(V) \
51   V(rax)                     \
52   V(rcx)                     \
53   V(rdx)                     \
54   V(rbx)                     \
55   V(rsp)                     \
56   V(rbp)                     \
57   V(rsi)                     \
58   V(rdi)                     \
59   V(r8)                      \
60   V(r9)                      \
61   V(r10)                     \
62   V(r11)                     \
63   V(r12)                     \
64   V(r13)                     \
65   V(r14)                     \
66   V(r15)
67 
68 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
69   V(rax)                                 \
70   V(rbx)                                 \
71   V(rdx)                                 \
72   V(rcx)                                 \
73   V(rsi)                                 \
74   V(rdi)                                 \
75   V(r8)                                  \
76   V(r9)                                  \
77   V(r11)                                 \
78   V(r12)                                 \
79   V(r14)                                 \
80   V(r15)
81 
82 
83 // CPU Registers.
84 //
85 // 1) We would prefer to use an enum, but enum values are assignment-
86 // compatible with int, which has caused code-generation bugs.
87 //
88 // 2) We would prefer to use a class instead of a struct but we don't like
89 // the register initialization to depend on the particular initialization
90 // order (which appears to be different on OS X, Linux, and Windows for the
91 // installed versions of C++ we tried). Using a struct permits C-style
92 // "initialization". Also, the Register objects cannot be const as this
93 // forces initialization stubs in MSVC, making us dependent on initialization
94 // order.
95 //
96 // 3) By not using an enum, we are possibly preventing the compiler from
97 // doing certain constant folds, which may significantly reduce the
98 // code generated for some assembly instructions (because they boil down
99 // to a few constants). If this is a problem, we could change the code
100 // such that we use an enum in optimized mode, and the struct in debug
101 // mode. This way we get the compile-time error checking in debug mode
102 // and best performance in optimized code.
103 //
104 struct Register {
105   enum Code {
106 #define REGISTER_CODE(R) kCode_##R,
107     GENERAL_REGISTERS(REGISTER_CODE)
108 #undef REGISTER_CODE
109         kAfterLast,
110     kCode_no_reg = -1
111   };
112 
113   static const int kNumRegisters = Code::kAfterLast;
114 
from_codeRegister115   static Register from_code(int code) {
116     DCHECK(code >= 0);
117     DCHECK(code < kNumRegisters);
118     Register r = {code};
119     return r;
120   }
is_validRegister121   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister122   bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister123   int code() const {
124     DCHECK(is_valid());
125     return reg_code;
126   }
bitRegister127   int bit() const {
128     DCHECK(is_valid());
129     return 1 << reg_code;
130   }
131 
is_byte_registerRegister132   bool is_byte_register() const { return reg_code <= 3; }
133   // Return the high bit of the register code as a 0 or 1.  Used often
134   // when constructing the REX prefix byte.
high_bitRegister135   int high_bit() const { return reg_code >> 3; }
136   // Return the 3 low bits of the register code.  Used when encoding registers
137   // in modR/M, SIB, and opcode bytes.
low_bitsRegister138   int low_bits() const { return reg_code & 0x7; }
139 
140   // Unfortunately we can't make this private in a struct when initializing
141   // by assignment.
142   int reg_code;
143 };
144 
145 
146 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
147 GENERAL_REGISTERS(DECLARE_REGISTER)
148 #undef DECLARE_REGISTER
149 const Register no_reg = {Register::kCode_no_reg};
150 
151 
152 #ifdef _WIN64
153   // Windows calling convention
154 const Register arg_reg_1 = {Register::kCode_rcx};
155 const Register arg_reg_2 = {Register::kCode_rdx};
156 const Register arg_reg_3 = {Register::kCode_r8};
157 const Register arg_reg_4 = {Register::kCode_r9};
158 #else
159   // AMD64 calling convention
160 const Register arg_reg_1 = {Register::kCode_rdi};
161 const Register arg_reg_2 = {Register::kCode_rsi};
162 const Register arg_reg_3 = {Register::kCode_rdx};
163 const Register arg_reg_4 = {Register::kCode_rcx};
164 #endif  // _WIN64
165 
166 
167 #define DOUBLE_REGISTERS(V) \
168   V(xmm0)                   \
169   V(xmm1)                   \
170   V(xmm2)                   \
171   V(xmm3)                   \
172   V(xmm4)                   \
173   V(xmm5)                   \
174   V(xmm6)                   \
175   V(xmm7)                   \
176   V(xmm8)                   \
177   V(xmm9)                   \
178   V(xmm10)                  \
179   V(xmm11)                  \
180   V(xmm12)                  \
181   V(xmm13)                  \
182   V(xmm14)                  \
183   V(xmm15)
184 
185 #define FLOAT_REGISTERS DOUBLE_REGISTERS
186 #define SIMD128_REGISTERS DOUBLE_REGISTERS
187 
188 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \
189   V(xmm0)                               \
190   V(xmm1)                               \
191   V(xmm2)                               \
192   V(xmm3)                               \
193   V(xmm4)                               \
194   V(xmm5)                               \
195   V(xmm6)                               \
196   V(xmm7)                               \
197   V(xmm8)                               \
198   V(xmm9)                               \
199   V(xmm10)                              \
200   V(xmm11)                              \
201   V(xmm12)                              \
202   V(xmm13)                              \
203   V(xmm14)
204 
205 static const bool kSimpleFPAliasing = true;
206 
207 struct XMMRegister {
208   enum Code {
209 #define REGISTER_CODE(R) kCode_##R,
210     DOUBLE_REGISTERS(REGISTER_CODE)
211 #undef REGISTER_CODE
212         kAfterLast,
213     kCode_no_reg = -1
214   };
215 
216   static const int kMaxNumRegisters = Code::kAfterLast;
217 
from_codeXMMRegister218   static XMMRegister from_code(int code) {
219     XMMRegister result = {code};
220     return result;
221   }
222 
is_validXMMRegister223   bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
isXMMRegister224   bool is(XMMRegister reg) const { return reg_code == reg.reg_code; }
codeXMMRegister225   int code() const {
226     DCHECK(is_valid());
227     return reg_code;
228   }
229 
230   // Return the high bit of the register code as a 0 or 1.  Used often
231   // when constructing the REX prefix byte.
high_bitXMMRegister232   int high_bit() const { return reg_code >> 3; }
233   // Return the 3 low bits of the register code.  Used when encoding registers
234   // in modR/M, SIB, and opcode bytes.
low_bitsXMMRegister235   int low_bits() const { return reg_code & 0x7; }
236 
237   // Unfortunately we can't make this private in a struct when initializing
238   // by assignment.
239   int reg_code;
240 };
241 
242 typedef XMMRegister FloatRegister;
243 
244 typedef XMMRegister DoubleRegister;
245 
246 typedef XMMRegister Simd128Register;
247 
248 #define DECLARE_REGISTER(R) \
249   const DoubleRegister R = {DoubleRegister::kCode_##R};
250 DOUBLE_REGISTERS(DECLARE_REGISTER)
251 #undef DECLARE_REGISTER
252 const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};
253 
254 enum Condition {
255   // any value < 0 is considered no_condition
256   no_condition  = -1,
257 
258   overflow      =  0,
259   no_overflow   =  1,
260   below         =  2,
261   above_equal   =  3,
262   equal         =  4,
263   not_equal     =  5,
264   below_equal   =  6,
265   above         =  7,
266   negative      =  8,
267   positive      =  9,
268   parity_even   = 10,
269   parity_odd    = 11,
270   less          = 12,
271   greater_equal = 13,
272   less_equal    = 14,
273   greater       = 15,
274 
275   // Fake conditions that are handled by the
276   // opcodes using them.
277   always        = 16,
278   never         = 17,
279   // aliases
280   carry         = below,
281   not_carry     = above_equal,
282   zero          = equal,
283   not_zero      = not_equal,
284   sign          = negative,
285   not_sign      = positive,
286   last_condition = greater
287 };
288 
289 
290 // Returns the equivalent of !cc.
291 // Negation of the default no_condition (-1) results in a non-default
292 // no_condition value (-2). As long as tests for no_condition check
293 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)294 inline Condition NegateCondition(Condition cc) {
295   return static_cast<Condition>(cc ^ 1);
296 }
297 
298 
299 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)300 inline Condition CommuteCondition(Condition cc) {
301   switch (cc) {
302     case below:
303       return above;
304     case above:
305       return below;
306     case above_equal:
307       return below_equal;
308     case below_equal:
309       return above_equal;
310     case less:
311       return greater;
312     case greater:
313       return less;
314     case greater_equal:
315       return less_equal;
316     case less_equal:
317       return greater_equal;
318     default:
319       return cc;
320   }
321 }
322 
323 
324 enum RoundingMode {
325   kRoundToNearest = 0x0,
326   kRoundDown = 0x1,
327   kRoundUp = 0x2,
328   kRoundToZero = 0x3
329 };
330 
331 
332 // -----------------------------------------------------------------------------
333 // Machine instruction Immediates
334 
335 class Immediate BASE_EMBEDDED {
336  public:
Immediate(int32_t value)337   explicit Immediate(int32_t value) : value_(value) {}
Immediate(int32_t value,RelocInfo::Mode rmode)338   explicit Immediate(int32_t value, RelocInfo::Mode rmode)
339       : value_(value), rmode_(rmode) {}
Immediate(Smi * value)340   explicit Immediate(Smi* value) {
341     DCHECK(SmiValuesAre31Bits());  // Only available for 31-bit SMI.
342     value_ = static_cast<int32_t>(reinterpret_cast<intptr_t>(value));
343   }
344 
345  private:
346   int32_t value_;
347   RelocInfo::Mode rmode_ = RelocInfo::NONE32;
348 
349   friend class Assembler;
350 };
351 
352 
353 // -----------------------------------------------------------------------------
354 // Machine instruction Operands
355 
356 enum ScaleFactor {
357   times_1 = 0,
358   times_2 = 1,
359   times_4 = 2,
360   times_8 = 3,
361   times_int_size = times_4,
362   times_pointer_size = (kPointerSize == 8) ? times_8 : times_4
363 };
364 
365 
366 class Operand BASE_EMBEDDED {
367  public:
368   // [base + disp/r]
369   Operand(Register base, int32_t disp);
370 
371   // [base + index*scale + disp/r]
372   Operand(Register base,
373           Register index,
374           ScaleFactor scale,
375           int32_t disp);
376 
377   // [index*scale + disp/r]
378   Operand(Register index,
379           ScaleFactor scale,
380           int32_t disp);
381 
382   // Offset from existing memory operand.
383   // Offset is added to existing displacement as 32-bit signed values and
384   // this must not overflow.
385   Operand(const Operand& base, int32_t offset);
386 
387   // [rip + disp/r]
388   explicit Operand(Label* label);
389 
390   // Checks whether either base or index register is the given register.
391   // Does not check the "reg" part of the Operand.
392   bool AddressUsesRegister(Register reg) const;
393 
394   // Queries related to the size of the generated instruction.
395   // Whether the generated instruction will have a REX prefix.
requires_rex()396   bool requires_rex() const { return rex_ != 0; }
397   // Size of the ModR/M, SIB and displacement parts of the generated
398   // instruction.
operand_size()399   int operand_size() const { return len_; }
400 
401  private:
402   byte rex_;
403   byte buf_[9];
404   // The number of bytes of buf_ in use.
405   byte len_;
406 
407   // Set the ModR/M byte without an encoded 'reg' register. The
408   // register is encoded later as part of the emit_operand operation.
409   // set_modrm can be called before or after set_sib and set_disp*.
410   inline void set_modrm(int mod, Register rm);
411 
412   // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
413   inline void set_sib(ScaleFactor scale, Register index, Register base);
414 
415   // Adds operand displacement fields (offsets added to the memory address).
416   // Needs to be called after set_sib, not before it.
417   inline void set_disp8(int disp);
418   inline void set_disp32(int disp);
419   inline void set_disp64(int64_t disp);  // for labels.
420 
421   friend class Assembler;
422 };
423 
424 #define ASSEMBLER_INSTRUCTION_LIST(V) \
425   V(add)                              \
426   V(and)                              \
427   V(cmp)                              \
428   V(cmpxchg)                          \
429   V(dec)                              \
430   V(idiv)                             \
431   V(div)                              \
432   V(imul)                             \
433   V(inc)                              \
434   V(lea)                              \
435   V(mov)                              \
436   V(movzxb)                           \
437   V(movzxw)                           \
438   V(neg)                              \
439   V(not)                              \
440   V(or)                               \
441   V(repmovs)                          \
442   V(sbb)                              \
443   V(sub)                              \
444   V(test)                             \
445   V(xchg)                             \
446   V(xor)
447 
448 // Shift instructions on operands/registers with kPointerSize, kInt32Size and
449 // kInt64Size.
450 #define SHIFT_INSTRUCTION_LIST(V)       \
451   V(rol, 0x0)                           \
452   V(ror, 0x1)                           \
453   V(rcl, 0x2)                           \
454   V(rcr, 0x3)                           \
455   V(shl, 0x4)                           \
456   V(shr, 0x5)                           \
457   V(sar, 0x7)                           \
458 
459 
460 class Assembler : public AssemblerBase {
461  private:
462   // We check before assembling an instruction that there is sufficient
463   // space to write an instruction and its relocation information.
464   // The relocation writer's position must be kGap bytes above the end of
465   // the generated instructions. This leaves enough space for the
466   // longest possible x64 instruction, 15 bytes, and the longest possible
467   // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
468   // (There is a 15 byte limit on x64 instruction length that rules out some
469   // otherwise valid instructions.)
470   // This allows for a single, fast space check per instruction.
471   static const int kGap = 32;
472 
473  public:
474   // Create an assembler. Instructions and relocation information are emitted
475   // into a buffer, with the instructions starting from the beginning and the
476   // relocation information starting from the end of the buffer. See CodeDesc
477   // for a detailed comment on the layout (globals.h).
478   //
479   // If the provided buffer is NULL, the assembler allocates and grows its own
480   // buffer, and buffer_size determines the initial buffer size. The buffer is
481   // owned by the assembler and deallocated upon destruction of the assembler.
482   //
483   // If the provided buffer is not NULL, the assembler uses the provided buffer
484   // for code generation and assumes its size to be buffer_size. If the buffer
485   // is too small, a fatal error occurs. No deallocation of the buffer is done
486   // upon destruction of the assembler.
487   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()488   virtual ~Assembler() { }
489 
490   // GetCode emits any pending (non-emitted) code and fills the descriptor
491   // desc. GetCode() is idempotent; it returns the same result if no other
492   // Assembler functions are invoked in between GetCode() calls.
493   void GetCode(CodeDesc* desc);
494 
495   // Read/Modify the code target in the relative branch/call instruction at pc.
496   // On the x64 architecture, we use relative jumps with a 32-bit displacement
497   // to jump to other Code objects in the Code space in the heap.
498   // Jumps to C functions are done indirectly through a 64-bit register holding
499   // the absolute address of the target.
500   // These functions convert between absolute Addresses of Code objects and
501   // the relative displacements stored in the code.
502   static inline Address target_address_at(Address pc, Address constant_pool);
503   static inline void set_target_address_at(
504       Isolate* isolate, Address pc, Address constant_pool, Address target,
505       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
target_address_at(Address pc,Code * code)506   static inline Address target_address_at(Address pc, Code* code) {
507     Address constant_pool = code ? code->constant_pool() : NULL;
508     return target_address_at(pc, constant_pool);
509   }
510   static inline void set_target_address_at(
511       Isolate* isolate, Address pc, Code* code, Address target,
512       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
513     Address constant_pool = code ? code->constant_pool() : NULL;
514     set_target_address_at(isolate, pc, constant_pool, target,
515                           icache_flush_mode);
516   }
517 
518   // Return the code target address at a call site from the return address
519   // of that call in the instruction stream.
520   static inline Address target_address_from_return_address(Address pc);
521 
522   // This sets the branch destination (which is in the instruction on x64).
523   // This is for calls and branches within generated code.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)524   inline static void deserialization_set_special_target_at(
525       Isolate* isolate, Address instruction_payload, Code* code,
526       Address target) {
527     set_target_address_at(isolate, instruction_payload, code, target);
528   }
529 
530   // This sets the internal reference at the pc.
531   inline static void deserialization_set_target_internal_reference_at(
532       Isolate* isolate, Address pc, Address target,
533       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
534 
RelocInfoNone()535   static inline RelocInfo::Mode RelocInfoNone() {
536     if (kPointerSize == kInt64Size) {
537       return RelocInfo::NONE64;
538     } else {
539       DCHECK(kPointerSize == kInt32Size);
540       return RelocInfo::NONE32;
541     }
542   }
543 
544   inline Handle<Object> code_target_object_handle_at(Address pc);
545   inline Address runtime_entry_at(Address pc);
546   // Number of bytes taken up by the branch target in the code.
547   static const int kSpecialTargetSize = 4;  // Use 32-bit displacement.
548   // Distance between the address of the code target in the call instruction
549   // and the return address pushed on the stack.
550   static const int kCallTargetAddressOffset = 4;  // Use 32-bit displacement.
551   // The length of call(kScratchRegister).
552   static const int kCallScratchRegisterInstructionLength = 3;
553   // The length of call(Immediate32).
554   static const int kShortCallInstructionLength = 5;
555   // The length of movq(kScratchRegister, address).
556   static const int kMoveAddressIntoScratchRegisterInstructionLength =
557       2 + kPointerSize;
558   // The length of movq(kScratchRegister, address) and call(kScratchRegister).
559   static const int kCallSequenceLength =
560       kMoveAddressIntoScratchRegisterInstructionLength +
561       kCallScratchRegisterInstructionLength;
562 
563   // The debug break slot must be able to contain an indirect call sequence.
564   static const int kDebugBreakSlotLength = kCallSequenceLength;
565   // Distance between start of patched debug break slot and the emitted address
566   // to jump to.
567   static const int kPatchDebugBreakSlotAddressOffset =
568       kMoveAddressIntoScratchRegisterInstructionLength - kPointerSize;
569 
570   // One byte opcode for test eax,0xXXXXXXXX.
571   static const byte kTestEaxByte = 0xA9;
572   // One byte opcode for test al, 0xXX.
573   static const byte kTestAlByte = 0xA8;
574   // One byte opcode for nop.
575   static const byte kNopByte = 0x90;
576 
577   // One byte prefix for a short conditional jump.
578   static const byte kJccShortPrefix = 0x70;
579   static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
580   static const byte kJcShortOpcode = kJccShortPrefix | carry;
581   static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
582   static const byte kJzShortOpcode = kJccShortPrefix | zero;
583 
584   // VEX prefix encodings.
585   enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
586   enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
587   enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
588   enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
589 
590   // ---------------------------------------------------------------------------
591   // Code generation
592   //
593   // Function names correspond one-to-one to x64 instruction mnemonics.
594   // Unless specified otherwise, instructions operate on 64-bit operands.
595   //
596   // If we need versions of an assembly instruction that operate on different
597   // width arguments, we add a single-letter suffix specifying the width.
598   // This is done for the following instructions: mov, cmp, inc, dec,
599   // add, sub, and test.
600   // There are no versions of these instructions without the suffix.
601   // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
602   // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
603   // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
604   // - Instructions on 64-bit (quadword) operands/registers use 'q'.
605   // - Instructions on operands/registers with pointer size use 'p'.
606 
607   STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size);
608 
609 #define DECLARE_INSTRUCTION(instruction)                \
610   template<class P1>                                    \
611   void instruction##p(P1 p1) {                          \
612     emit_##instruction(p1, kPointerSize);               \
613   }                                                     \
614                                                         \
615   template<class P1>                                    \
616   void instruction##l(P1 p1) {                          \
617     emit_##instruction(p1, kInt32Size);                 \
618   }                                                     \
619                                                         \
620   template<class P1>                                    \
621   void instruction##q(P1 p1) {                          \
622     emit_##instruction(p1, kInt64Size);                 \
623   }                                                     \
624                                                         \
625   template<class P1, class P2>                          \
626   void instruction##p(P1 p1, P2 p2) {                   \
627     emit_##instruction(p1, p2, kPointerSize);           \
628   }                                                     \
629                                                         \
630   template<class P1, class P2>                          \
631   void instruction##l(P1 p1, P2 p2) {                   \
632     emit_##instruction(p1, p2, kInt32Size);             \
633   }                                                     \
634                                                         \
635   template<class P1, class P2>                          \
636   void instruction##q(P1 p1, P2 p2) {                   \
637     emit_##instruction(p1, p2, kInt64Size);             \
638   }                                                     \
639                                                         \
640   template<class P1, class P2, class P3>                \
641   void instruction##p(P1 p1, P2 p2, P3 p3) {            \
642     emit_##instruction(p1, p2, p3, kPointerSize);       \
643   }                                                     \
644                                                         \
645   template<class P1, class P2, class P3>                \
646   void instruction##l(P1 p1, P2 p2, P3 p3) {            \
647     emit_##instruction(p1, p2, p3, kInt32Size);         \
648   }                                                     \
649                                                         \
650   template<class P1, class P2, class P3>                \
651   void instruction##q(P1 p1, P2 p2, P3 p3) {            \
652     emit_##instruction(p1, p2, p3, kInt64Size);         \
653   }
654   ASSEMBLER_INSTRUCTION_LIST(DECLARE_INSTRUCTION)
655 #undef DECLARE_INSTRUCTION
656 
657   // Insert the smallest number of nop instructions
658   // possible to align the pc offset to a multiple
659   // of m, where m must be a power of 2.
660   void Align(int m);
661   // Insert the smallest number of zero bytes possible to align the pc offset
662   // to a mulitple of m. m must be a power of 2 (>= 2).
663   void DataAlign(int m);
664   void Nop(int bytes = 1);
665   // Aligns code to something that's optimal for a jump target for the platform.
666   void CodeTargetAlign();
667 
668   // Stack
669   void pushfq();
670   void popfq();
671 
672   void pushq(Immediate value);
673   // Push a 32 bit integer, and guarantee that it is actually pushed as a
674   // 32 bit value, the normal push will optimize the 8 bit case.
675   void pushq_imm32(int32_t imm32);
676   void pushq(Register src);
677   void pushq(const Operand& src);
678 
679   void popq(Register dst);
680   void popq(const Operand& dst);
681 
682   void enter(Immediate size);
683   void leave();
684 
685   // Moves
686   void movb(Register dst, const Operand& src);
687   void movb(Register dst, Immediate imm);
688   void movb(const Operand& dst, Register src);
689   void movb(const Operand& dst, Immediate imm);
690 
691   // Move the low 16 bits of a 64-bit register value to a 16-bit
692   // memory location.
693   void movw(Register dst, const Operand& src);
694   void movw(const Operand& dst, Register src);
695   void movw(const Operand& dst, Immediate imm);
696 
697   // Move the offset of the label location relative to the current
698   // position (after the move) to the destination.
699   void movl(const Operand& dst, Label* src);
700 
701   // Loads a pointer into a register with a relocation mode.
702   void movp(Register dst, void* ptr, RelocInfo::Mode rmode);
703 
704   // Loads a 64-bit immediate into a register.
705   void movq(Register dst, int64_t value,
706             RelocInfo::Mode rmode = RelocInfo::NONE64);
707   void movq(Register dst, uint64_t value,
708             RelocInfo::Mode rmode = RelocInfo::NONE64);
709 
710   void movsxbl(Register dst, Register src);
711   void movsxbl(Register dst, const Operand& src);
712   void movsxbq(Register dst, Register src);
713   void movsxbq(Register dst, const Operand& src);
714   void movsxwl(Register dst, Register src);
715   void movsxwl(Register dst, const Operand& src);
716   void movsxwq(Register dst, Register src);
717   void movsxwq(Register dst, const Operand& src);
718   void movsxlq(Register dst, Register src);
719   void movsxlq(Register dst, const Operand& src);
720 
721   // Repeated moves.
722 
723   void repmovsb();
724   void repmovsw();
repmovsp()725   void repmovsp() { emit_repmovs(kPointerSize); }
repmovsl()726   void repmovsl() { emit_repmovs(kInt32Size); }
repmovsq()727   void repmovsq() { emit_repmovs(kInt64Size); }
728 
729   // Instruction to load from an immediate 64-bit pointer into RAX.
730   void load_rax(void* ptr, RelocInfo::Mode rmode);
731   void load_rax(ExternalReference ext);
732 
733   // Conditional moves.
734   void cmovq(Condition cc, Register dst, Register src);
735   void cmovq(Condition cc, Register dst, const Operand& src);
736   void cmovl(Condition cc, Register dst, Register src);
737   void cmovl(Condition cc, Register dst, const Operand& src);
738 
cmpb(Register dst,Immediate src)739   void cmpb(Register dst, Immediate src) {
740     immediate_arithmetic_op_8(0x7, dst, src);
741   }
742 
743   void cmpb_al(Immediate src);
744 
cmpb(Register dst,Register src)745   void cmpb(Register dst, Register src) {
746     arithmetic_op_8(0x3A, dst, src);
747   }
748 
cmpb(Register dst,const Operand & src)749   void cmpb(Register dst, const Operand& src) {
750     arithmetic_op_8(0x3A, dst, src);
751   }
752 
cmpb(const Operand & dst,Register src)753   void cmpb(const Operand& dst, Register src) {
754     arithmetic_op_8(0x38, src, dst);
755   }
756 
cmpb(const Operand & dst,Immediate src)757   void cmpb(const Operand& dst, Immediate src) {
758     immediate_arithmetic_op_8(0x7, dst, src);
759   }
760 
cmpw(const Operand & dst,Immediate src)761   void cmpw(const Operand& dst, Immediate src) {
762     immediate_arithmetic_op_16(0x7, dst, src);
763   }
764 
cmpw(Register dst,Immediate src)765   void cmpw(Register dst, Immediate src) {
766     immediate_arithmetic_op_16(0x7, dst, src);
767   }
768 
cmpw(Register dst,const Operand & src)769   void cmpw(Register dst, const Operand& src) {
770     arithmetic_op_16(0x3B, dst, src);
771   }
772 
cmpw(Register dst,Register src)773   void cmpw(Register dst, Register src) {
774     arithmetic_op_16(0x3B, dst, src);
775   }
776 
cmpw(const Operand & dst,Register src)777   void cmpw(const Operand& dst, Register src) {
778     arithmetic_op_16(0x39, src, dst);
779   }
780 
testb(Register reg,const Operand & op)781   void testb(Register reg, const Operand& op) { testb(op, reg); }
782 
testw(Register reg,const Operand & op)783   void testw(Register reg, const Operand& op) { testw(op, reg); }
784 
andb(Register dst,Immediate src)785   void andb(Register dst, Immediate src) {
786     immediate_arithmetic_op_8(0x4, dst, src);
787   }
788 
789   void decb(Register dst);
790   void decb(const Operand& dst);
791 
792   // Lock prefix.
793   void lock();
794 
795   void xchgb(Register reg, const Operand& op);
796   void xchgw(Register reg, const Operand& op);
797 
798   void cmpxchgb(const Operand& dst, Register src);
799   void cmpxchgw(const Operand& dst, Register src);
800 
801   // Sign-extends rax into rdx:rax.
802   void cqo();
803   // Sign-extends eax into edx:eax.
804   void cdq();
805 
806   // Multiply eax by src, put the result in edx:eax.
807   void mull(Register src);
808   void mull(const Operand& src);
809   // Multiply rax by src, put the result in rdx:rax.
810   void mulq(Register src);
811 
812 #define DECLARE_SHIFT_INSTRUCTION(instruction, subcode)                       \
813   void instruction##p(Register dst, Immediate imm8) {                         \
814     shift(dst, imm8, subcode, kPointerSize);                                  \
815   }                                                                           \
816                                                                               \
817   void instruction##l(Register dst, Immediate imm8) {                         \
818     shift(dst, imm8, subcode, kInt32Size);                                    \
819   }                                                                           \
820                                                                               \
821   void instruction##q(Register dst, Immediate imm8) {                         \
822     shift(dst, imm8, subcode, kInt64Size);                                    \
823   }                                                                           \
824                                                                               \
825   void instruction##p(Operand dst, Immediate imm8) {                          \
826     shift(dst, imm8, subcode, kPointerSize);                                  \
827   }                                                                           \
828                                                                               \
829   void instruction##l(Operand dst, Immediate imm8) {                          \
830     shift(dst, imm8, subcode, kInt32Size);                                    \
831   }                                                                           \
832                                                                               \
833   void instruction##q(Operand dst, Immediate imm8) {                          \
834     shift(dst, imm8, subcode, kInt64Size);                                    \
835   }                                                                           \
836                                                                               \
837   void instruction##p_cl(Register dst) { shift(dst, subcode, kPointerSize); } \
838                                                                               \
839   void instruction##l_cl(Register dst) { shift(dst, subcode, kInt32Size); }   \
840                                                                               \
841   void instruction##q_cl(Register dst) { shift(dst, subcode, kInt64Size); }   \
842                                                                               \
843   void instruction##p_cl(Operand dst) { shift(dst, subcode, kPointerSize); }  \
844                                                                               \
845   void instruction##l_cl(Operand dst) { shift(dst, subcode, kInt32Size); }    \
846                                                                               \
847   void instruction##q_cl(Operand dst) { shift(dst, subcode, kInt64Size); }
848   SHIFT_INSTRUCTION_LIST(DECLARE_SHIFT_INSTRUCTION)
849 #undef DECLARE_SHIFT_INSTRUCTION
850 
851   // Shifts dst:src left by cl bits, affecting only dst.
852   void shld(Register dst, Register src);
853 
854   // Shifts src:dst right by cl bits, affecting only dst.
855   void shrd(Register dst, Register src);
856 
857   void store_rax(void* dst, RelocInfo::Mode mode);
858   void store_rax(ExternalReference ref);
859 
subb(Register dst,Immediate src)860   void subb(Register dst, Immediate src) {
861     immediate_arithmetic_op_8(0x5, dst, src);
862   }
863 
864   void testb(Register dst, Register src);
865   void testb(Register reg, Immediate mask);
866   void testb(const Operand& op, Immediate mask);
867   void testb(const Operand& op, Register reg);
868 
869   void testw(Register dst, Register src);
870   void testw(Register reg, Immediate mask);
871   void testw(const Operand& op, Immediate mask);
872   void testw(const Operand& op, Register reg);
873 
874   // Bit operations.
875   void bt(const Operand& dst, Register src);
876   void bts(const Operand& dst, Register src);
877   void bsrq(Register dst, Register src);
878   void bsrq(Register dst, const Operand& src);
879   void bsrl(Register dst, Register src);
880   void bsrl(Register dst, const Operand& src);
881   void bsfq(Register dst, Register src);
882   void bsfq(Register dst, const Operand& src);
883   void bsfl(Register dst, Register src);
884   void bsfl(Register dst, const Operand& src);
885 
886   // Miscellaneous
887   void clc();
888   void cld();
889   void cpuid();
890   void hlt();
891   void int3();
892   void nop();
893   void ret(int imm16);
894   void ud2();
895   void setcc(Condition cc, Register reg);
896 
897   // Label operations & relative jumps (PPUM Appendix D)
898   //
899   // Takes a branch opcode (cc) and a label (L) and generates
900   // either a backward branch or a forward branch and links it
901   // to the label fixup chain. Usage:
902   //
903   // Label L;    // unbound label
904   // j(cc, &L);  // forward branch to unbound label
905   // bind(&L);   // bind label to the current pc
906   // j(cc, &L);  // backward branch to bound label
907   // bind(&L);   // illegal: a label may be bound only once
908   //
909   // Note: The same Label can be used for forward and backward branches
910   // but it may be bound only once.
911 
912   void bind(Label* L);  // binds an unbound label L to the current code position
913 
914   // Calls
915   // Call near relative 32-bit displacement, relative to next instruction.
916   void call(Label* L);
917   void call(Address entry, RelocInfo::Mode rmode);
918   void call(Handle<Code> target,
919             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
920             TypeFeedbackId ast_id = TypeFeedbackId::None());
921 
922   // Calls directly to the given address using a relative offset.
923   // Should only ever be used in Code objects for calls within the
924   // same Code object. Should not be used when generating new code (use labels),
925   // but only when patching existing code.
926   void call(Address target);
927 
928   // Call near absolute indirect, address in register
929   void call(Register adr);
930 
931   // Jumps
932   // Jump short or near relative.
933   // Use a 32-bit signed displacement.
934   // Unconditional jump to L
935   void jmp(Label* L, Label::Distance distance = Label::kFar);
936   void jmp(Address entry, RelocInfo::Mode rmode);
937   void jmp(Handle<Code> target, RelocInfo::Mode rmode);
938 
939   // Jump near absolute indirect (r64)
940   void jmp(Register adr);
941   void jmp(const Operand& src);
942 
943   // Conditional jumps
944   void j(Condition cc,
945          Label* L,
946          Label::Distance distance = Label::kFar);
947   void j(Condition cc, Address entry, RelocInfo::Mode rmode);
948   void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
949 
950   // Floating-point operations
951   void fld(int i);
952 
953   void fld1();
954   void fldz();
955   void fldpi();
956   void fldln2();
957 
958   void fld_s(const Operand& adr);
959   void fld_d(const Operand& adr);
960 
961   void fstp_s(const Operand& adr);
962   void fstp_d(const Operand& adr);
963   void fstp(int index);
964 
965   void fild_s(const Operand& adr);
966   void fild_d(const Operand& adr);
967 
968   void fist_s(const Operand& adr);
969 
970   void fistp_s(const Operand& adr);
971   void fistp_d(const Operand& adr);
972 
973   void fisttp_s(const Operand& adr);
974   void fisttp_d(const Operand& adr);
975 
976   void fabs();
977   void fchs();
978 
979   void fadd(int i);
980   void fsub(int i);
981   void fmul(int i);
982   void fdiv(int i);
983 
984   void fisub_s(const Operand& adr);
985 
986   void faddp(int i = 1);
987   void fsubp(int i = 1);
988   void fsubrp(int i = 1);
989   void fmulp(int i = 1);
990   void fdivp(int i = 1);
991   void fprem();
992   void fprem1();
993 
994   void fxch(int i = 1);
995   void fincstp();
996   void ffree(int i = 0);
997 
998   void ftst();
999   void fucomp(int i);
1000   void fucompp();
1001   void fucomi(int i);
1002   void fucomip();
1003 
1004   void fcompp();
1005   void fnstsw_ax();
1006   void fwait();
1007   void fnclex();
1008 
1009   void fsin();
1010   void fcos();
1011   void fptan();
1012   void fyl2x();
1013   void f2xm1();
1014   void fscale();
1015   void fninit();
1016 
1017   void frndint();
1018 
1019   void sahf();
1020 
1021   // SSE instructions
1022   void addss(XMMRegister dst, XMMRegister src);
1023   void addss(XMMRegister dst, const Operand& src);
1024   void subss(XMMRegister dst, XMMRegister src);
1025   void subss(XMMRegister dst, const Operand& src);
1026   void mulss(XMMRegister dst, XMMRegister src);
1027   void mulss(XMMRegister dst, const Operand& src);
1028   void divss(XMMRegister dst, XMMRegister src);
1029   void divss(XMMRegister dst, const Operand& src);
1030 
1031   void maxss(XMMRegister dst, XMMRegister src);
1032   void maxss(XMMRegister dst, const Operand& src);
1033   void minss(XMMRegister dst, XMMRegister src);
1034   void minss(XMMRegister dst, const Operand& src);
1035 
1036   void sqrtss(XMMRegister dst, XMMRegister src);
1037   void sqrtss(XMMRegister dst, const Operand& src);
1038 
1039   void ucomiss(XMMRegister dst, XMMRegister src);
1040   void ucomiss(XMMRegister dst, const Operand& src);
1041   void movaps(XMMRegister dst, XMMRegister src);
1042 
1043   // Don't use this unless it's important to keep the
1044   // top half of the destination register unchanged.
1045   // Use movaps when moving float values and movd for integer
1046   // values in xmm registers.
1047   void movss(XMMRegister dst, XMMRegister src);
1048 
1049   void movss(XMMRegister dst, const Operand& src);
1050   void movss(const Operand& dst, XMMRegister src);
1051   void shufps(XMMRegister dst, XMMRegister src, byte imm8);
1052 
1053   void cvttss2si(Register dst, const Operand& src);
1054   void cvttss2si(Register dst, XMMRegister src);
1055   void cvtlsi2ss(XMMRegister dst, const Operand& src);
1056   void cvtlsi2ss(XMMRegister dst, Register src);
1057 
1058   void andps(XMMRegister dst, XMMRegister src);
1059   void andps(XMMRegister dst, const Operand& src);
1060   void orps(XMMRegister dst, XMMRegister src);
1061   void orps(XMMRegister dst, const Operand& src);
1062   void xorps(XMMRegister dst, XMMRegister src);
1063   void xorps(XMMRegister dst, const Operand& src);
1064 
1065   void addps(XMMRegister dst, XMMRegister src);
1066   void addps(XMMRegister dst, const Operand& src);
1067   void subps(XMMRegister dst, XMMRegister src);
1068   void subps(XMMRegister dst, const Operand& src);
1069   void mulps(XMMRegister dst, XMMRegister src);
1070   void mulps(XMMRegister dst, const Operand& src);
1071   void divps(XMMRegister dst, XMMRegister src);
1072   void divps(XMMRegister dst, const Operand& src);
1073 
1074   void movmskps(Register dst, XMMRegister src);
1075 
1076   void vinstr(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2,
1077               SIMDPrefix pp, LeadingOpcode m, VexW w);
1078   void vinstr(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2,
1079               SIMDPrefix pp, LeadingOpcode m, VexW w);
1080 
1081   // SSE2 instructions
1082   void sse2_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape,
1083                   byte opcode);
1084   void sse2_instr(XMMRegister dst, const Operand& src, byte prefix, byte escape,
1085                   byte opcode);
1086 #define DECLARE_SSE2_INSTRUCTION(instruction, prefix, escape, opcode) \
1087   void instruction(XMMRegister dst, XMMRegister src) {                \
1088     sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode);         \
1089   }                                                                   \
1090   void instruction(XMMRegister dst, const Operand& src) {             \
1091     sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode);         \
1092   }
1093 
1094   SSE2_INSTRUCTION_LIST(DECLARE_SSE2_INSTRUCTION)
1095 #undef DECLARE_SSE2_INSTRUCTION
1096 
1097 #define DECLARE_SSE2_AVX_INSTRUCTION(instruction, prefix, escape, opcode)    \
1098   void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
1099     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0);          \
1100   }                                                                          \
1101   void v##instruction(XMMRegister dst, XMMRegister src1,                     \
1102                       const Operand& src2) {                                 \
1103     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0);          \
1104   }
1105 
1106   SSE2_INSTRUCTION_LIST(DECLARE_SSE2_AVX_INSTRUCTION)
1107 #undef DECLARE_SSE2_AVX_INSTRUCTION
1108 
1109   // SSE3
1110   void lddqu(XMMRegister dst, const Operand& src);
1111 
1112   // SSSE3
1113   void ssse3_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
1114                    byte escape2, byte opcode);
1115   void ssse3_instr(XMMRegister dst, const Operand& src, byte prefix,
1116                    byte escape1, byte escape2, byte opcode);
1117 
1118 #define DECLARE_SSSE3_INSTRUCTION(instruction, prefix, escape1, escape2,     \
1119                                   opcode)                                    \
1120   void instruction(XMMRegister dst, XMMRegister src) {                       \
1121     ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
1122   }                                                                          \
1123   void instruction(XMMRegister dst, const Operand& src) {                    \
1124     ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
1125   }
1126 
1127   SSSE3_INSTRUCTION_LIST(DECLARE_SSSE3_INSTRUCTION)
1128 #undef DECLARE_SSSE3_INSTRUCTION
1129 
1130   // SSE4
1131   void sse4_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
1132                   byte escape2, byte opcode);
1133   void sse4_instr(XMMRegister dst, const Operand& src, byte prefix,
1134                   byte escape1, byte escape2, byte opcode);
1135 #define DECLARE_SSE4_INSTRUCTION(instruction, prefix, escape1, escape2,     \
1136                                  opcode)                                    \
1137   void instruction(XMMRegister dst, XMMRegister src) {                      \
1138     sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
1139   }                                                                         \
1140   void instruction(XMMRegister dst, const Operand& src) {                   \
1141     sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
1142   }
1143 
1144   SSE4_INSTRUCTION_LIST(DECLARE_SSE4_INSTRUCTION)
1145 #undef DECLARE_SSE4_INSTRUCTION
1146 
1147 #define DECLARE_SSE34_AVX_INSTRUCTION(instruction, prefix, escape1, escape2,  \
1148                                       opcode)                                 \
1149   void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) {  \
1150     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
1151   }                                                                           \
1152   void v##instruction(XMMRegister dst, XMMRegister src1,                      \
1153                       const Operand& src2) {                                  \
1154     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
1155   }
1156 
1157   SSSE3_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
1158   SSE4_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
1159 #undef DECLARE_SSE34_AVX_INSTRUCTION
1160 
1161   void movd(XMMRegister dst, Register src);
1162   void movd(XMMRegister dst, const Operand& src);
1163   void movd(Register dst, XMMRegister src);
1164   void movq(XMMRegister dst, Register src);
1165   void movq(Register dst, XMMRegister src);
1166   void movq(XMMRegister dst, XMMRegister src);
1167 
1168   // Don't use this unless it's important to keep the
1169   // top half of the destination register unchanged.
1170   // Use movapd when moving double values and movq for integer
1171   // values in xmm registers.
1172   void movsd(XMMRegister dst, XMMRegister src);
1173 
1174   void movsd(const Operand& dst, XMMRegister src);
1175   void movsd(XMMRegister dst, const Operand& src);
1176 
1177   void movdqa(const Operand& dst, XMMRegister src);
1178   void movdqa(XMMRegister dst, const Operand& src);
1179 
1180   void movdqu(const Operand& dst, XMMRegister src);
1181   void movdqu(XMMRegister dst, const Operand& src);
1182 
1183   void movapd(XMMRegister dst, XMMRegister src);
1184   void movupd(XMMRegister dst, const Operand& src);
1185   void movupd(const Operand& dst, XMMRegister src);
1186 
1187   void psllq(XMMRegister reg, byte imm8);
1188   void psrlq(XMMRegister reg, byte imm8);
1189   void psllw(XMMRegister reg, byte imm8);
1190   void pslld(XMMRegister reg, byte imm8);
1191   void psrlw(XMMRegister reg, byte imm8);
1192   void psrld(XMMRegister reg, byte imm8);
1193   void psraw(XMMRegister reg, byte imm8);
1194   void psrad(XMMRegister reg, byte imm8);
1195 
1196   void cvttsd2si(Register dst, const Operand& src);
1197   void cvttsd2si(Register dst, XMMRegister src);
1198   void cvttss2siq(Register dst, XMMRegister src);
1199   void cvttss2siq(Register dst, const Operand& src);
1200   void cvttsd2siq(Register dst, XMMRegister src);
1201   void cvttsd2siq(Register dst, const Operand& src);
1202 
1203   void cvtlsi2sd(XMMRegister dst, const Operand& src);
1204   void cvtlsi2sd(XMMRegister dst, Register src);
1205 
1206   void cvtqsi2ss(XMMRegister dst, const Operand& src);
1207   void cvtqsi2ss(XMMRegister dst, Register src);
1208 
1209   void cvtqsi2sd(XMMRegister dst, const Operand& src);
1210   void cvtqsi2sd(XMMRegister dst, Register src);
1211 
1212 
1213   void cvtss2sd(XMMRegister dst, XMMRegister src);
1214   void cvtss2sd(XMMRegister dst, const Operand& src);
1215   void cvtsd2ss(XMMRegister dst, XMMRegister src);
1216   void cvtsd2ss(XMMRegister dst, const Operand& src);
1217 
1218   void cvtsd2si(Register dst, XMMRegister src);
1219   void cvtsd2siq(Register dst, XMMRegister src);
1220 
1221   void addsd(XMMRegister dst, XMMRegister src);
1222   void addsd(XMMRegister dst, const Operand& src);
1223   void subsd(XMMRegister dst, XMMRegister src);
1224   void subsd(XMMRegister dst, const Operand& src);
1225   void mulsd(XMMRegister dst, XMMRegister src);
1226   void mulsd(XMMRegister dst, const Operand& src);
1227   void divsd(XMMRegister dst, XMMRegister src);
1228   void divsd(XMMRegister dst, const Operand& src);
1229 
1230   void maxsd(XMMRegister dst, XMMRegister src);
1231   void maxsd(XMMRegister dst, const Operand& src);
1232   void minsd(XMMRegister dst, XMMRegister src);
1233   void minsd(XMMRegister dst, const Operand& src);
1234 
1235   void andpd(XMMRegister dst, XMMRegister src);
1236   void andpd(XMMRegister dst, const Operand& src);
1237   void orpd(XMMRegister dst, XMMRegister src);
1238   void orpd(XMMRegister dst, const Operand& src);
1239   void xorpd(XMMRegister dst, XMMRegister src);
1240   void xorpd(XMMRegister dst, const Operand& src);
1241   void sqrtsd(XMMRegister dst, XMMRegister src);
1242   void sqrtsd(XMMRegister dst, const Operand& src);
1243 
1244   void ucomisd(XMMRegister dst, XMMRegister src);
1245   void ucomisd(XMMRegister dst, const Operand& src);
1246   void cmpltsd(XMMRegister dst, XMMRegister src);
1247 
1248   void movmskpd(Register dst, XMMRegister src);
1249 
1250   void punpckldq(XMMRegister dst, XMMRegister src);
1251   void punpckldq(XMMRegister dst, const Operand& src);
1252   void punpckhdq(XMMRegister dst, XMMRegister src);
1253 
1254   // SSE 4.1 instruction
1255   void insertps(XMMRegister dst, XMMRegister src, byte imm8);
1256   void extractps(Register dst, XMMRegister src, byte imm8);
1257   void pextrb(Register dst, XMMRegister src, int8_t imm8);
1258   void pextrb(const Operand& dst, XMMRegister src, int8_t imm8);
1259   void pextrw(Register dst, XMMRegister src, int8_t imm8);
1260   void pextrw(const Operand& dst, XMMRegister src, int8_t imm8);
1261   void pextrd(Register dst, XMMRegister src, int8_t imm8);
1262   void pextrd(const Operand& dst, XMMRegister src, int8_t imm8);
1263   void pinsrb(XMMRegister dst, Register src, int8_t imm8);
1264   void pinsrb(XMMRegister dst, const Operand& src, int8_t imm8);
1265   void pinsrw(XMMRegister dst, Register src, int8_t imm8);
1266   void pinsrw(XMMRegister dst, const Operand& src, int8_t imm8);
1267   void pinsrd(XMMRegister dst, Register src, int8_t imm8);
1268   void pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
1269 
1270   void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
1271   void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
1272 
1273   void cmpps(XMMRegister dst, XMMRegister src, int8_t cmp);
1274   void cmpps(XMMRegister dst, const Operand& src, int8_t cmp);
1275   void cmppd(XMMRegister dst, XMMRegister src, int8_t cmp);
1276   void cmppd(XMMRegister dst, const Operand& src, int8_t cmp);
1277 
1278 #define SSE_CMP_P(instr, imm8)                                                \
1279   void instr##ps(XMMRegister dst, XMMRegister src) { cmpps(dst, src, imm8); } \
1280   void instr##ps(XMMRegister dst, const Operand& src) {                       \
1281     cmpps(dst, src, imm8);                                                    \
1282   }                                                                           \
1283   void instr##pd(XMMRegister dst, XMMRegister src) { cmppd(dst, src, imm8); } \
1284   void instr##pd(XMMRegister dst, const Operand& src) { cmppd(dst, src, imm8); }
1285 
1286   SSE_CMP_P(cmpeq, 0x0);
1287   SSE_CMP_P(cmplt, 0x1);
1288   SSE_CMP_P(cmple, 0x2);
1289   SSE_CMP_P(cmpneq, 0x4);
1290   SSE_CMP_P(cmpnlt, 0x5);
1291   SSE_CMP_P(cmpnle, 0x6);
1292 
1293 #undef SSE_CMP_P
1294 
1295   void minps(XMMRegister dst, XMMRegister src);
1296   void minps(XMMRegister dst, const Operand& src);
1297   void maxps(XMMRegister dst, XMMRegister src);
1298   void maxps(XMMRegister dst, const Operand& src);
1299   void rcpps(XMMRegister dst, XMMRegister src);
1300   void rcpps(XMMRegister dst, const Operand& src);
1301   void rsqrtps(XMMRegister dst, XMMRegister src);
1302   void rsqrtps(XMMRegister dst, const Operand& src);
1303   void sqrtps(XMMRegister dst, XMMRegister src);
1304   void sqrtps(XMMRegister dst, const Operand& src);
1305   void movups(XMMRegister dst, XMMRegister src);
1306   void movups(XMMRegister dst, const Operand& src);
1307   void movups(const Operand& dst, XMMRegister src);
1308   void psrldq(XMMRegister dst, uint8_t shift);
1309   void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
1310   void pshufd(XMMRegister dst, const Operand& src, uint8_t shuffle);
1311   void cvtdq2ps(XMMRegister dst, XMMRegister src);
1312   void cvtdq2ps(XMMRegister dst, const Operand& src);
1313 
1314   // AVX instruction
vfmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1315   void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1316     vfmasd(0x99, dst, src1, src2);
1317   }
vfmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1318   void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1319     vfmasd(0xa9, dst, src1, src2);
1320   }
vfmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1321   void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1322     vfmasd(0xb9, dst, src1, src2);
1323   }
vfmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1324   void vfmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1325     vfmasd(0x99, dst, src1, src2);
1326   }
vfmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1327   void vfmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1328     vfmasd(0xa9, dst, src1, src2);
1329   }
vfmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1330   void vfmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1331     vfmasd(0xb9, dst, src1, src2);
1332   }
vfmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1333   void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1334     vfmasd(0x9b, dst, src1, src2);
1335   }
vfmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1336   void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1337     vfmasd(0xab, dst, src1, src2);
1338   }
vfmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1339   void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1340     vfmasd(0xbb, dst, src1, src2);
1341   }
vfmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1342   void vfmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1343     vfmasd(0x9b, dst, src1, src2);
1344   }
vfmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1345   void vfmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1346     vfmasd(0xab, dst, src1, src2);
1347   }
vfmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1348   void vfmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1349     vfmasd(0xbb, dst, src1, src2);
1350   }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1351   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1352     vfmasd(0x9d, dst, src1, src2);
1353   }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1354   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1355     vfmasd(0xad, dst, src1, src2);
1356   }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1357   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1358     vfmasd(0xbd, dst, src1, src2);
1359   }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1360   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1361     vfmasd(0x9d, dst, src1, src2);
1362   }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1363   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1364     vfmasd(0xad, dst, src1, src2);
1365   }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1366   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1367     vfmasd(0xbd, dst, src1, src2);
1368   }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1369   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1370     vfmasd(0x9f, dst, src1, src2);
1371   }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1372   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1373     vfmasd(0xaf, dst, src1, src2);
1374   }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1375   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1376     vfmasd(0xbf, dst, src1, src2);
1377   }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1378   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1379     vfmasd(0x9f, dst, src1, src2);
1380   }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1381   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1382     vfmasd(0xaf, dst, src1, src2);
1383   }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1384   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1385     vfmasd(0xbf, dst, src1, src2);
1386   }
1387   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1388   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1389 
vfmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1390   void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1391     vfmass(0x99, dst, src1, src2);
1392   }
vfmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1393   void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1394     vfmass(0xa9, dst, src1, src2);
1395   }
vfmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1396   void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1397     vfmass(0xb9, dst, src1, src2);
1398   }
vfmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1399   void vfmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1400     vfmass(0x99, dst, src1, src2);
1401   }
vfmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1402   void vfmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1403     vfmass(0xa9, dst, src1, src2);
1404   }
vfmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1405   void vfmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1406     vfmass(0xb9, dst, src1, src2);
1407   }
vfmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1408   void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1409     vfmass(0x9b, dst, src1, src2);
1410   }
vfmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1411   void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1412     vfmass(0xab, dst, src1, src2);
1413   }
vfmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1414   void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1415     vfmass(0xbb, dst, src1, src2);
1416   }
vfmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1417   void vfmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1418     vfmass(0x9b, dst, src1, src2);
1419   }
vfmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1420   void vfmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1421     vfmass(0xab, dst, src1, src2);
1422   }
vfmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1423   void vfmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1424     vfmass(0xbb, dst, src1, src2);
1425   }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1426   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1427     vfmass(0x9d, dst, src1, src2);
1428   }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1429   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1430     vfmass(0xad, dst, src1, src2);
1431   }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1432   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1433     vfmass(0xbd, dst, src1, src2);
1434   }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1435   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1436     vfmass(0x9d, dst, src1, src2);
1437   }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1438   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1439     vfmass(0xad, dst, src1, src2);
1440   }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1441   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1442     vfmass(0xbd, dst, src1, src2);
1443   }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1444   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1445     vfmass(0x9f, dst, src1, src2);
1446   }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1447   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1448     vfmass(0xaf, dst, src1, src2);
1449   }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1450   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1451     vfmass(0xbf, dst, src1, src2);
1452   }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1453   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1454     vfmass(0x9f, dst, src1, src2);
1455   }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1456   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1457     vfmass(0xaf, dst, src1, src2);
1458   }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1459   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1460     vfmass(0xbf, dst, src1, src2);
1461   }
1462   void vfmass(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1463   void vfmass(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1464 
1465   void vmovd(XMMRegister dst, Register src);
1466   void vmovd(XMMRegister dst, const Operand& src);
1467   void vmovd(Register dst, XMMRegister src);
1468   void vmovq(XMMRegister dst, Register src);
1469   void vmovq(XMMRegister dst, const Operand& src);
1470   void vmovq(Register dst, XMMRegister src);
1471 
vmovsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1472   void vmovsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1473     vsd(0x10, dst, src1, src2);
1474   }
vmovsd(XMMRegister dst,const Operand & src)1475   void vmovsd(XMMRegister dst, const Operand& src) {
1476     vsd(0x10, dst, xmm0, src);
1477   }
vmovsd(const Operand & dst,XMMRegister src)1478   void vmovsd(const Operand& dst, XMMRegister src) {
1479     vsd(0x11, src, xmm0, dst);
1480   }
1481 
1482 #define AVX_SP_3(instr, opcode) \
1483   AVX_S_3(instr, opcode)        \
1484   AVX_P_3(instr, opcode)
1485 
1486 #define AVX_S_3(instr, opcode)  \
1487   AVX_3(instr##ss, opcode, vss) \
1488   AVX_3(instr##sd, opcode, vsd)
1489 
1490 #define AVX_P_3(instr, opcode)  \
1491   AVX_3(instr##ps, opcode, vps) \
1492   AVX_3(instr##pd, opcode, vpd)
1493 
1494 #define AVX_3(instr, opcode, impl)                                     \
1495   void instr(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
1496     impl(opcode, dst, src1, src2);                                     \
1497   }                                                                    \
1498   void instr(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1499     impl(opcode, dst, src1, src2);                                     \
1500   }
1501 
1502   AVX_SP_3(vsqrt, 0x51);
1503   AVX_SP_3(vadd, 0x58);
1504   AVX_SP_3(vsub, 0x5c);
1505   AVX_SP_3(vmul, 0x59);
1506   AVX_SP_3(vdiv, 0x5e);
1507   AVX_SP_3(vmin, 0x5d);
1508   AVX_SP_3(vmax, 0x5f);
1509   AVX_P_3(vand, 0x54);
1510   AVX_P_3(vor, 0x56);
1511   AVX_P_3(vxor, 0x57);
1512   AVX_3(vcvtsd2ss, 0x5a, vsd);
1513 
1514 #undef AVX_3
1515 #undef AVX_S_3
1516 #undef AVX_P_3
1517 #undef AVX_SP_3
1518 
vpsrlq(XMMRegister dst,XMMRegister src,byte imm8)1519   void vpsrlq(XMMRegister dst, XMMRegister src, byte imm8) {
1520     XMMRegister iop = {2};
1521     vpd(0x73, iop, dst, src);
1522     emit(imm8);
1523   }
vpsllq(XMMRegister dst,XMMRegister src,byte imm8)1524   void vpsllq(XMMRegister dst, XMMRegister src, byte imm8) {
1525     XMMRegister iop = {6};
1526     vpd(0x73, iop, dst, src);
1527     emit(imm8);
1528   }
vcvtss2sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1529   void vcvtss2sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1530     vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
1531   }
vcvtss2sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1532   void vcvtss2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1533     vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
1534   }
vcvtlsi2sd(XMMRegister dst,XMMRegister src1,Register src2)1535   void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
1536     XMMRegister isrc2 = {src2.code()};
1537     vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW0);
1538   }
vcvtlsi2sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1539   void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1540     vinstr(0x2a, dst, src1, src2, kF2, k0F, kW0);
1541   }
vcvtlsi2ss(XMMRegister dst,XMMRegister src1,Register src2)1542   void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
1543     XMMRegister isrc2 = {src2.code()};
1544     vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW0);
1545   }
vcvtlsi2ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1546   void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1547     vinstr(0x2a, dst, src1, src2, kF3, k0F, kW0);
1548   }
vcvtqsi2ss(XMMRegister dst,XMMRegister src1,Register src2)1549   void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
1550     XMMRegister isrc2 = {src2.code()};
1551     vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW1);
1552   }
vcvtqsi2ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1553   void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1554     vinstr(0x2a, dst, src1, src2, kF3, k0F, kW1);
1555   }
vcvtqsi2sd(XMMRegister dst,XMMRegister src1,Register src2)1556   void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
1557     XMMRegister isrc2 = {src2.code()};
1558     vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW1);
1559   }
vcvtqsi2sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1560   void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1561     vinstr(0x2a, dst, src1, src2, kF2, k0F, kW1);
1562   }
vcvttss2si(Register dst,XMMRegister src)1563   void vcvttss2si(Register dst, XMMRegister src) {
1564     XMMRegister idst = {dst.code()};
1565     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
1566   }
vcvttss2si(Register dst,const Operand & src)1567   void vcvttss2si(Register dst, const Operand& src) {
1568     XMMRegister idst = {dst.code()};
1569     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
1570   }
vcvttsd2si(Register dst,XMMRegister src)1571   void vcvttsd2si(Register dst, XMMRegister src) {
1572     XMMRegister idst = {dst.code()};
1573     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
1574   }
vcvttsd2si(Register dst,const Operand & src)1575   void vcvttsd2si(Register dst, const Operand& src) {
1576     XMMRegister idst = {dst.code()};
1577     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
1578   }
vcvttss2siq(Register dst,XMMRegister src)1579   void vcvttss2siq(Register dst, XMMRegister src) {
1580     XMMRegister idst = {dst.code()};
1581     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
1582   }
vcvttss2siq(Register dst,const Operand & src)1583   void vcvttss2siq(Register dst, const Operand& src) {
1584     XMMRegister idst = {dst.code()};
1585     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
1586   }
vcvttsd2siq(Register dst,XMMRegister src)1587   void vcvttsd2siq(Register dst, XMMRegister src) {
1588     XMMRegister idst = {dst.code()};
1589     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
1590   }
vcvttsd2siq(Register dst,const Operand & src)1591   void vcvttsd2siq(Register dst, const Operand& src) {
1592     XMMRegister idst = {dst.code()};
1593     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
1594   }
vcvtsd2si(Register dst,XMMRegister src)1595   void vcvtsd2si(Register dst, XMMRegister src) {
1596     XMMRegister idst = {dst.code()};
1597     vinstr(0x2d, idst, xmm0, src, kF2, k0F, kW0);
1598   }
vucomisd(XMMRegister dst,XMMRegister src)1599   void vucomisd(XMMRegister dst, XMMRegister src) {
1600     vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
1601   }
vucomisd(XMMRegister dst,const Operand & src)1602   void vucomisd(XMMRegister dst, const Operand& src) {
1603     vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
1604   }
vroundss(XMMRegister dst,XMMRegister src1,XMMRegister src2,RoundingMode mode)1605   void vroundss(XMMRegister dst, XMMRegister src1, XMMRegister src2,
1606                 RoundingMode mode) {
1607     vinstr(0x0a, dst, src1, src2, k66, k0F3A, kWIG);
1608     emit(static_cast<byte>(mode) | 0x8);  // Mask precision exception.
1609   }
vroundsd(XMMRegister dst,XMMRegister src1,XMMRegister src2,RoundingMode mode)1610   void vroundsd(XMMRegister dst, XMMRegister src1, XMMRegister src2,
1611                 RoundingMode mode) {
1612     vinstr(0x0b, dst, src1, src2, k66, k0F3A, kWIG);
1613     emit(static_cast<byte>(mode) | 0x8);  // Mask precision exception.
1614   }
1615 
vsd(byte op,XMMRegister dst,XMMRegister src1,XMMRegister src2)1616   void vsd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1617     vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
1618   }
vsd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)1619   void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2) {
1620     vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
1621   }
1622 
vmovss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1623   void vmovss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1624     vss(0x10, dst, src1, src2);
1625   }
vmovss(XMMRegister dst,const Operand & src)1626   void vmovss(XMMRegister dst, const Operand& src) {
1627     vss(0x10, dst, xmm0, src);
1628   }
vmovss(const Operand & dst,XMMRegister src)1629   void vmovss(const Operand& dst, XMMRegister src) {
1630     vss(0x11, src, xmm0, dst);
1631   }
1632   void vucomiss(XMMRegister dst, XMMRegister src);
1633   void vucomiss(XMMRegister dst, const Operand& src);
1634   void vss(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1635   void vss(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1636 
vmovaps(XMMRegister dst,XMMRegister src)1637   void vmovaps(XMMRegister dst, XMMRegister src) { vps(0x28, dst, xmm0, src); }
vmovups(XMMRegister dst,XMMRegister src)1638   void vmovups(XMMRegister dst, XMMRegister src) { vps(0x10, dst, xmm0, src); }
vmovups(XMMRegister dst,const Operand & src)1639   void vmovups(XMMRegister dst, const Operand& src) {
1640     vps(0x10, dst, xmm0, src);
1641   }
vmovups(const Operand & dst,XMMRegister src)1642   void vmovups(const Operand& dst, XMMRegister src) {
1643     vps(0x11, src, xmm0, dst);
1644   }
vmovapd(XMMRegister dst,XMMRegister src)1645   void vmovapd(XMMRegister dst, XMMRegister src) { vpd(0x28, dst, xmm0, src); }
vmovupd(XMMRegister dst,const Operand & src)1646   void vmovupd(XMMRegister dst, const Operand& src) {
1647     vpd(0x10, dst, xmm0, src);
1648   }
vmovupd(const Operand & dst,XMMRegister src)1649   void vmovupd(const Operand& dst, XMMRegister src) {
1650     vpd(0x11, src, xmm0, dst);
1651   }
vmovmskps(Register dst,XMMRegister src)1652   void vmovmskps(Register dst, XMMRegister src) {
1653     XMMRegister idst = {dst.code()};
1654     vps(0x50, idst, xmm0, src);
1655   }
vmovmskpd(Register dst,XMMRegister src)1656   void vmovmskpd(Register dst, XMMRegister src) {
1657     XMMRegister idst = {dst.code()};
1658     vpd(0x50, idst, xmm0, src);
1659   }
vcmpps(XMMRegister dst,XMMRegister src1,XMMRegister src2,int8_t cmp)1660   void vcmpps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
1661     vps(0xC2, dst, src1, src2);
1662     emit(cmp);
1663   }
vcmpps(XMMRegister dst,XMMRegister src1,const Operand & src2,int8_t cmp)1664   void vcmpps(XMMRegister dst, XMMRegister src1, const Operand& src2,
1665               int8_t cmp) {
1666     vps(0xC2, dst, src1, src2);
1667     emit(cmp);
1668   }
vcmppd(XMMRegister dst,XMMRegister src1,XMMRegister src2,int8_t cmp)1669   void vcmppd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
1670     vpd(0xC2, dst, src1, src2);
1671     emit(cmp);
1672   }
vcmppd(XMMRegister dst,XMMRegister src1,const Operand & src2,int8_t cmp)1673   void vcmppd(XMMRegister dst, XMMRegister src1, const Operand& src2,
1674               int8_t cmp) {
1675     vpd(0xC2, dst, src1, src2);
1676     emit(cmp);
1677   }
1678 
1679 #define AVX_CMP_P(instr, imm8)                                             \
1680   void instr##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
1681     vcmpps(dst, src1, src2, imm8);                                         \
1682   }                                                                        \
1683   void instr##ps(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1684     vcmpps(dst, src1, src2, imm8);                                         \
1685   }                                                                        \
1686   void instr##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
1687     vcmppd(dst, src1, src2, imm8);                                         \
1688   }                                                                        \
1689   void instr##pd(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1690     vcmppd(dst, src1, src2, imm8);                                         \
1691   }
1692 
1693   AVX_CMP_P(vcmpeq, 0x0);
1694   AVX_CMP_P(vcmplt, 0x1);
1695   AVX_CMP_P(vcmple, 0x2);
1696   AVX_CMP_P(vcmpneq, 0x4);
1697   AVX_CMP_P(vcmpnlt, 0x5);
1698   AVX_CMP_P(vcmpnle, 0x6);
1699 
1700 #undef AVX_CMP_P
1701 
vlddqu(XMMRegister dst,const Operand & src)1702   void vlddqu(XMMRegister dst, const Operand& src) {
1703     vinstr(0xF0, dst, xmm0, src, kF2, k0F, kWIG);
1704   }
vpsllw(XMMRegister dst,XMMRegister src,int8_t imm8)1705   void vpsllw(XMMRegister dst, XMMRegister src, int8_t imm8) {
1706     XMMRegister iop = {6};
1707     vinstr(0x71, iop, dst, src, k66, k0F, kWIG);
1708     emit(imm8);
1709   }
vpsrlw(XMMRegister dst,XMMRegister src,int8_t imm8)1710   void vpsrlw(XMMRegister dst, XMMRegister src, int8_t imm8) {
1711     XMMRegister iop = {2};
1712     vinstr(0x71, iop, dst, src, k66, k0F, kWIG);
1713     emit(imm8);
1714   }
vpsraw(XMMRegister dst,XMMRegister src,int8_t imm8)1715   void vpsraw(XMMRegister dst, XMMRegister src, int8_t imm8) {
1716     XMMRegister iop = {4};
1717     vinstr(0x71, iop, dst, src, k66, k0F, kWIG);
1718     emit(imm8);
1719   }
vpslld(XMMRegister dst,XMMRegister src,int8_t imm8)1720   void vpslld(XMMRegister dst, XMMRegister src, int8_t imm8) {
1721     XMMRegister iop = {6};
1722     vinstr(0x72, iop, dst, src, k66, k0F, kWIG);
1723     emit(imm8);
1724   }
vpsrld(XMMRegister dst,XMMRegister src,int8_t imm8)1725   void vpsrld(XMMRegister dst, XMMRegister src, int8_t imm8) {
1726     XMMRegister iop = {2};
1727     vinstr(0x72, iop, dst, src, k66, k0F, kWIG);
1728     emit(imm8);
1729   }
vpsrad(XMMRegister dst,XMMRegister src,int8_t imm8)1730   void vpsrad(XMMRegister dst, XMMRegister src, int8_t imm8) {
1731     XMMRegister iop = {4};
1732     vinstr(0x72, iop, dst, src, k66, k0F, kWIG);
1733     emit(imm8);
1734   }
vpextrb(Register dst,XMMRegister src,int8_t imm8)1735   void vpextrb(Register dst, XMMRegister src, int8_t imm8) {
1736     XMMRegister idst = {dst.code()};
1737     vinstr(0x14, src, xmm0, idst, k66, k0F3A, kW0);
1738     emit(imm8);
1739   }
vpextrb(const Operand & dst,XMMRegister src,int8_t imm8)1740   void vpextrb(const Operand& dst, XMMRegister src, int8_t imm8) {
1741     vinstr(0x14, src, xmm0, dst, k66, k0F3A, kW0);
1742     emit(imm8);
1743   }
vpextrw(Register dst,XMMRegister src,int8_t imm8)1744   void vpextrw(Register dst, XMMRegister src, int8_t imm8) {
1745     XMMRegister idst = {dst.code()};
1746     vinstr(0xc5, idst, xmm0, src, k66, k0F, kW0);
1747     emit(imm8);
1748   }
vpextrw(const Operand & dst,XMMRegister src,int8_t imm8)1749   void vpextrw(const Operand& dst, XMMRegister src, int8_t imm8) {
1750     vinstr(0x15, src, xmm0, dst, k66, k0F3A, kW0);
1751     emit(imm8);
1752   }
vpextrd(Register dst,XMMRegister src,int8_t imm8)1753   void vpextrd(Register dst, XMMRegister src, int8_t imm8) {
1754     XMMRegister idst = {dst.code()};
1755     vinstr(0x16, src, xmm0, idst, k66, k0F3A, kW0);
1756     emit(imm8);
1757   }
vpextrd(const Operand & dst,XMMRegister src,int8_t imm8)1758   void vpextrd(const Operand& dst, XMMRegister src, int8_t imm8) {
1759     vinstr(0x16, src, xmm0, dst, k66, k0F3A, kW0);
1760     emit(imm8);
1761   }
vpinsrb(XMMRegister dst,XMMRegister src1,Register src2,int8_t imm8)1762   void vpinsrb(XMMRegister dst, XMMRegister src1, Register src2, int8_t imm8) {
1763     XMMRegister isrc = {src2.code()};
1764     vinstr(0x20, dst, src1, isrc, k66, k0F3A, kW0);
1765     emit(imm8);
1766   }
vpinsrb(XMMRegister dst,XMMRegister src1,const Operand & src2,int8_t imm8)1767   void vpinsrb(XMMRegister dst, XMMRegister src1, const Operand& src2,
1768                int8_t imm8) {
1769     vinstr(0x20, dst, src1, src2, k66, k0F3A, kW0);
1770     emit(imm8);
1771   }
vpinsrw(XMMRegister dst,XMMRegister src1,Register src2,int8_t imm8)1772   void vpinsrw(XMMRegister dst, XMMRegister src1, Register src2, int8_t imm8) {
1773     XMMRegister isrc = {src2.code()};
1774     vinstr(0xc4, dst, src1, isrc, k66, k0F, kW0);
1775     emit(imm8);
1776   }
vpinsrw(XMMRegister dst,XMMRegister src1,const Operand & src2,int8_t imm8)1777   void vpinsrw(XMMRegister dst, XMMRegister src1, const Operand& src2,
1778                int8_t imm8) {
1779     vinstr(0xc4, dst, src1, src2, k66, k0F, kW0);
1780     emit(imm8);
1781   }
vpinsrd(XMMRegister dst,XMMRegister src1,Register src2,int8_t imm8)1782   void vpinsrd(XMMRegister dst, XMMRegister src1, Register src2, int8_t imm8) {
1783     XMMRegister isrc = {src2.code()};
1784     vinstr(0x22, dst, src1, isrc, k66, k0F3A, kW0);
1785     emit(imm8);
1786   }
vpinsrd(XMMRegister dst,XMMRegister src1,const Operand & src2,int8_t imm8)1787   void vpinsrd(XMMRegister dst, XMMRegister src1, const Operand& src2,
1788                int8_t imm8) {
1789     vinstr(0x22, dst, src1, src2, k66, k0F3A, kW0);
1790     emit(imm8);
1791   }
vpshufd(XMMRegister dst,XMMRegister src,int8_t imm8)1792   void vpshufd(XMMRegister dst, XMMRegister src, int8_t imm8) {
1793     vinstr(0x70, dst, xmm0, src, k66, k0F, kWIG);
1794     emit(imm8);
1795   }
1796 
1797   void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1798   void vps(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1799   void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1800   void vpd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1801 
1802   // BMI instruction
andnq(Register dst,Register src1,Register src2)1803   void andnq(Register dst, Register src1, Register src2) {
1804     bmi1q(0xf2, dst, src1, src2);
1805   }
andnq(Register dst,Register src1,const Operand & src2)1806   void andnq(Register dst, Register src1, const Operand& src2) {
1807     bmi1q(0xf2, dst, src1, src2);
1808   }
andnl(Register dst,Register src1,Register src2)1809   void andnl(Register dst, Register src1, Register src2) {
1810     bmi1l(0xf2, dst, src1, src2);
1811   }
andnl(Register dst,Register src1,const Operand & src2)1812   void andnl(Register dst, Register src1, const Operand& src2) {
1813     bmi1l(0xf2, dst, src1, src2);
1814   }
bextrq(Register dst,Register src1,Register src2)1815   void bextrq(Register dst, Register src1, Register src2) {
1816     bmi1q(0xf7, dst, src2, src1);
1817   }
bextrq(Register dst,const Operand & src1,Register src2)1818   void bextrq(Register dst, const Operand& src1, Register src2) {
1819     bmi1q(0xf7, dst, src2, src1);
1820   }
bextrl(Register dst,Register src1,Register src2)1821   void bextrl(Register dst, Register src1, Register src2) {
1822     bmi1l(0xf7, dst, src2, src1);
1823   }
bextrl(Register dst,const Operand & src1,Register src2)1824   void bextrl(Register dst, const Operand& src1, Register src2) {
1825     bmi1l(0xf7, dst, src2, src1);
1826   }
blsiq(Register dst,Register src)1827   void blsiq(Register dst, Register src) {
1828     Register ireg = {3};
1829     bmi1q(0xf3, ireg, dst, src);
1830   }
blsiq(Register dst,const Operand & src)1831   void blsiq(Register dst, const Operand& src) {
1832     Register ireg = {3};
1833     bmi1q(0xf3, ireg, dst, src);
1834   }
blsil(Register dst,Register src)1835   void blsil(Register dst, Register src) {
1836     Register ireg = {3};
1837     bmi1l(0xf3, ireg, dst, src);
1838   }
blsil(Register dst,const Operand & src)1839   void blsil(Register dst, const Operand& src) {
1840     Register ireg = {3};
1841     bmi1l(0xf3, ireg, dst, src);
1842   }
blsmskq(Register dst,Register src)1843   void blsmskq(Register dst, Register src) {
1844     Register ireg = {2};
1845     bmi1q(0xf3, ireg, dst, src);
1846   }
blsmskq(Register dst,const Operand & src)1847   void blsmskq(Register dst, const Operand& src) {
1848     Register ireg = {2};
1849     bmi1q(0xf3, ireg, dst, src);
1850   }
blsmskl(Register dst,Register src)1851   void blsmskl(Register dst, Register src) {
1852     Register ireg = {2};
1853     bmi1l(0xf3, ireg, dst, src);
1854   }
blsmskl(Register dst,const Operand & src)1855   void blsmskl(Register dst, const Operand& src) {
1856     Register ireg = {2};
1857     bmi1l(0xf3, ireg, dst, src);
1858   }
blsrq(Register dst,Register src)1859   void blsrq(Register dst, Register src) {
1860     Register ireg = {1};
1861     bmi1q(0xf3, ireg, dst, src);
1862   }
blsrq(Register dst,const Operand & src)1863   void blsrq(Register dst, const Operand& src) {
1864     Register ireg = {1};
1865     bmi1q(0xf3, ireg, dst, src);
1866   }
blsrl(Register dst,Register src)1867   void blsrl(Register dst, Register src) {
1868     Register ireg = {1};
1869     bmi1l(0xf3, ireg, dst, src);
1870   }
blsrl(Register dst,const Operand & src)1871   void blsrl(Register dst, const Operand& src) {
1872     Register ireg = {1};
1873     bmi1l(0xf3, ireg, dst, src);
1874   }
1875   void tzcntq(Register dst, Register src);
1876   void tzcntq(Register dst, const Operand& src);
1877   void tzcntl(Register dst, Register src);
1878   void tzcntl(Register dst, const Operand& src);
1879 
1880   void lzcntq(Register dst, Register src);
1881   void lzcntq(Register dst, const Operand& src);
1882   void lzcntl(Register dst, Register src);
1883   void lzcntl(Register dst, const Operand& src);
1884 
1885   void popcntq(Register dst, Register src);
1886   void popcntq(Register dst, const Operand& src);
1887   void popcntl(Register dst, Register src);
1888   void popcntl(Register dst, const Operand& src);
1889 
bzhiq(Register dst,Register src1,Register src2)1890   void bzhiq(Register dst, Register src1, Register src2) {
1891     bmi2q(kNone, 0xf5, dst, src2, src1);
1892   }
bzhiq(Register dst,const Operand & src1,Register src2)1893   void bzhiq(Register dst, const Operand& src1, Register src2) {
1894     bmi2q(kNone, 0xf5, dst, src2, src1);
1895   }
bzhil(Register dst,Register src1,Register src2)1896   void bzhil(Register dst, Register src1, Register src2) {
1897     bmi2l(kNone, 0xf5, dst, src2, src1);
1898   }
bzhil(Register dst,const Operand & src1,Register src2)1899   void bzhil(Register dst, const Operand& src1, Register src2) {
1900     bmi2l(kNone, 0xf5, dst, src2, src1);
1901   }
mulxq(Register dst1,Register dst2,Register src)1902   void mulxq(Register dst1, Register dst2, Register src) {
1903     bmi2q(kF2, 0xf6, dst1, dst2, src);
1904   }
mulxq(Register dst1,Register dst2,const Operand & src)1905   void mulxq(Register dst1, Register dst2, const Operand& src) {
1906     bmi2q(kF2, 0xf6, dst1, dst2, src);
1907   }
mulxl(Register dst1,Register dst2,Register src)1908   void mulxl(Register dst1, Register dst2, Register src) {
1909     bmi2l(kF2, 0xf6, dst1, dst2, src);
1910   }
mulxl(Register dst1,Register dst2,const Operand & src)1911   void mulxl(Register dst1, Register dst2, const Operand& src) {
1912     bmi2l(kF2, 0xf6, dst1, dst2, src);
1913   }
pdepq(Register dst,Register src1,Register src2)1914   void pdepq(Register dst, Register src1, Register src2) {
1915     bmi2q(kF2, 0xf5, dst, src1, src2);
1916   }
pdepq(Register dst,Register src1,const Operand & src2)1917   void pdepq(Register dst, Register src1, const Operand& src2) {
1918     bmi2q(kF2, 0xf5, dst, src1, src2);
1919   }
pdepl(Register dst,Register src1,Register src2)1920   void pdepl(Register dst, Register src1, Register src2) {
1921     bmi2l(kF2, 0xf5, dst, src1, src2);
1922   }
pdepl(Register dst,Register src1,const Operand & src2)1923   void pdepl(Register dst, Register src1, const Operand& src2) {
1924     bmi2l(kF2, 0xf5, dst, src1, src2);
1925   }
pextq(Register dst,Register src1,Register src2)1926   void pextq(Register dst, Register src1, Register src2) {
1927     bmi2q(kF3, 0xf5, dst, src1, src2);
1928   }
pextq(Register dst,Register src1,const Operand & src2)1929   void pextq(Register dst, Register src1, const Operand& src2) {
1930     bmi2q(kF3, 0xf5, dst, src1, src2);
1931   }
pextl(Register dst,Register src1,Register src2)1932   void pextl(Register dst, Register src1, Register src2) {
1933     bmi2l(kF3, 0xf5, dst, src1, src2);
1934   }
pextl(Register dst,Register src1,const Operand & src2)1935   void pextl(Register dst, Register src1, const Operand& src2) {
1936     bmi2l(kF3, 0xf5, dst, src1, src2);
1937   }
sarxq(Register dst,Register src1,Register src2)1938   void sarxq(Register dst, Register src1, Register src2) {
1939     bmi2q(kF3, 0xf7, dst, src2, src1);
1940   }
sarxq(Register dst,const Operand & src1,Register src2)1941   void sarxq(Register dst, const Operand& src1, Register src2) {
1942     bmi2q(kF3, 0xf7, dst, src2, src1);
1943   }
sarxl(Register dst,Register src1,Register src2)1944   void sarxl(Register dst, Register src1, Register src2) {
1945     bmi2l(kF3, 0xf7, dst, src2, src1);
1946   }
sarxl(Register dst,const Operand & src1,Register src2)1947   void sarxl(Register dst, const Operand& src1, Register src2) {
1948     bmi2l(kF3, 0xf7, dst, src2, src1);
1949   }
shlxq(Register dst,Register src1,Register src2)1950   void shlxq(Register dst, Register src1, Register src2) {
1951     bmi2q(k66, 0xf7, dst, src2, src1);
1952   }
shlxq(Register dst,const Operand & src1,Register src2)1953   void shlxq(Register dst, const Operand& src1, Register src2) {
1954     bmi2q(k66, 0xf7, dst, src2, src1);
1955   }
shlxl(Register dst,Register src1,Register src2)1956   void shlxl(Register dst, Register src1, Register src2) {
1957     bmi2l(k66, 0xf7, dst, src2, src1);
1958   }
shlxl(Register dst,const Operand & src1,Register src2)1959   void shlxl(Register dst, const Operand& src1, Register src2) {
1960     bmi2l(k66, 0xf7, dst, src2, src1);
1961   }
shrxq(Register dst,Register src1,Register src2)1962   void shrxq(Register dst, Register src1, Register src2) {
1963     bmi2q(kF2, 0xf7, dst, src2, src1);
1964   }
shrxq(Register dst,const Operand & src1,Register src2)1965   void shrxq(Register dst, const Operand& src1, Register src2) {
1966     bmi2q(kF2, 0xf7, dst, src2, src1);
1967   }
shrxl(Register dst,Register src1,Register src2)1968   void shrxl(Register dst, Register src1, Register src2) {
1969     bmi2l(kF2, 0xf7, dst, src2, src1);
1970   }
shrxl(Register dst,const Operand & src1,Register src2)1971   void shrxl(Register dst, const Operand& src1, Register src2) {
1972     bmi2l(kF2, 0xf7, dst, src2, src1);
1973   }
1974   void rorxq(Register dst, Register src, byte imm8);
1975   void rorxq(Register dst, const Operand& src, byte imm8);
1976   void rorxl(Register dst, Register src, byte imm8);
1977   void rorxl(Register dst, const Operand& src, byte imm8);
1978 
1979   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1980   int SizeOfCodeGeneratedSince(Label* label) {
1981     return pc_offset() - label->pos();
1982   }
1983 
1984   // Mark generator continuation.
1985   void RecordGeneratorContinuation();
1986 
1987   // Mark address of a debug break slot.
1988   void RecordDebugBreakSlot(RelocInfo::Mode mode);
1989 
1990   // Record a comment relocation entry that can be used by a disassembler.
1991   // Use --code-comments to enable.
1992   void RecordComment(const char* msg);
1993 
1994   // Record a deoptimization reason that can be used by a log or cpu profiler.
1995   // Use --trace-deopt to enable.
1996   void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
1997                          int id);
1998 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1999   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
2000                                           ConstantPoolEntry::Access access,
2001                                           ConstantPoolEntry::Type type) {
2002     // No embedded constant pool support.
2003     UNREACHABLE();
2004   }
2005 
2006   // Writes a single word of data in the code stream.
2007   // Used for inline tables, e.g., jump-tables.
2008   void db(uint8_t data);
2009   void dd(uint32_t data);
2010   void dq(uint64_t data);
dp(uintptr_t data)2011   void dp(uintptr_t data) { dq(data); }
2012   void dq(Label* label);
2013 
2014   // Check if there is less than kGap bytes available in the buffer.
2015   // If this is the case, we need to grow the buffer before emitting
2016   // an instruction or relocation information.
buffer_overflow()2017   inline bool buffer_overflow() const {
2018     return pc_ >= reloc_info_writer.pos() - kGap;
2019   }
2020 
2021   // Get the number of bytes available in the buffer.
available_space()2022   inline int available_space() const {
2023     return static_cast<int>(reloc_info_writer.pos() - pc_);
2024   }
2025 
2026   static bool IsNop(Address addr);
2027 
2028   // Avoid overflows for displacements etc.
2029   static const int kMaximalBufferSize = 512*MB;
2030 
byte_at(int pos)2031   byte byte_at(int pos)  { return buffer_[pos]; }
set_byte_at(int pos,byte value)2032   void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
2033 
pc()2034   Address pc() const { return pc_; }
2035 
2036  protected:
2037   // Call near indirect
2038   void call(const Operand& operand);
2039 
2040  private:
addr_at(int pos)2041   byte* addr_at(int pos)  { return buffer_ + pos; }
long_at(int pos)2042   uint32_t long_at(int pos)  {
2043     return *reinterpret_cast<uint32_t*>(addr_at(pos));
2044   }
long_at_put(int pos,uint32_t x)2045   void long_at_put(int pos, uint32_t x)  {
2046     *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
2047   }
2048 
2049   // code emission
2050   void GrowBuffer();
2051 
emit(byte x)2052   void emit(byte x) { *pc_++ = x; }
2053   inline void emitl(uint32_t x);
2054   inline void emitp(void* x, RelocInfo::Mode rmode);
2055   inline void emitq(uint64_t x);
2056   inline void emitw(uint16_t x);
2057   inline void emit_code_target(Handle<Code> target,
2058                                RelocInfo::Mode rmode,
2059                                TypeFeedbackId ast_id = TypeFeedbackId::None());
2060   inline void emit_runtime_entry(Address entry, RelocInfo::Mode rmode);
emit(Immediate x)2061   void emit(Immediate x) {
2062     if (!RelocInfo::IsNone(x.rmode_)) {
2063       RecordRelocInfo(x.rmode_);
2064     }
2065     emitl(x.value_);
2066   }
2067 
2068   // Emits a REX prefix that encodes a 64-bit operand size and
2069   // the top bit of both register codes.
2070   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
2071   // REX.W is set.
2072   inline void emit_rex_64(XMMRegister reg, Register rm_reg);
2073   inline void emit_rex_64(Register reg, XMMRegister rm_reg);
2074   inline void emit_rex_64(Register reg, Register rm_reg);
2075 
2076   // Emits a REX prefix that encodes a 64-bit operand size and
2077   // the top bit of the destination, index, and base register codes.
2078   // The high bit of reg is used for REX.R, the high bit of op's base
2079   // register is used for REX.B, and the high bit of op's index register
2080   // is used for REX.X.  REX.W is set.
2081   inline void emit_rex_64(Register reg, const Operand& op);
2082   inline void emit_rex_64(XMMRegister reg, const Operand& op);
2083 
2084   // Emits a REX prefix that encodes a 64-bit operand size and
2085   // the top bit of the register code.
2086   // The high bit of register is used for REX.B.
2087   // REX.W is set and REX.R and REX.X are clear.
2088   inline void emit_rex_64(Register rm_reg);
2089 
2090   // Emits a REX prefix that encodes a 64-bit operand size and
2091   // the top bit of the index and base register codes.
2092   // The high bit of op's base register is used for REX.B, and the high
2093   // bit of op's index register is used for REX.X.
2094   // REX.W is set and REX.R clear.
2095   inline void emit_rex_64(const Operand& op);
2096 
2097   // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
emit_rex_64()2098   void emit_rex_64() { emit(0x48); }
2099 
2100   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
2101   // REX.W is clear.
2102   inline void emit_rex_32(Register reg, Register rm_reg);
2103 
2104   // The high bit of reg is used for REX.R, the high bit of op's base
2105   // register is used for REX.B, and the high bit of op's index register
2106   // is used for REX.X.  REX.W is cleared.
2107   inline void emit_rex_32(Register reg, const Operand& op);
2108 
2109   // High bit of rm_reg goes to REX.B.
2110   // REX.W, REX.R and REX.X are clear.
2111   inline void emit_rex_32(Register rm_reg);
2112 
2113   // High bit of base goes to REX.B and high bit of index to REX.X.
2114   // REX.W and REX.R are clear.
2115   inline void emit_rex_32(const Operand& op);
2116 
2117   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
2118   // REX.W is cleared.  If no REX bits are set, no byte is emitted.
2119   inline void emit_optional_rex_32(Register reg, Register rm_reg);
2120 
2121   // The high bit of reg is used for REX.R, the high bit of op's base
2122   // register is used for REX.B, and the high bit of op's index register
2123   // is used for REX.X.  REX.W is cleared.  If no REX bits are set, nothing
2124   // is emitted.
2125   inline void emit_optional_rex_32(Register reg, const Operand& op);
2126 
2127   // As for emit_optional_rex_32(Register, Register), except that
2128   // the registers are XMM registers.
2129   inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
2130 
2131   // As for emit_optional_rex_32(Register, Register), except that
2132   // one of the registers is an XMM registers.
2133   inline void emit_optional_rex_32(XMMRegister reg, Register base);
2134 
2135   // As for emit_optional_rex_32(Register, Register), except that
2136   // one of the registers is an XMM registers.
2137   inline void emit_optional_rex_32(Register reg, XMMRegister base);
2138 
2139   // As for emit_optional_rex_32(Register, const Operand&), except that
2140   // the register is an XMM register.
2141   inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
2142 
2143   // Optionally do as emit_rex_32(Register) if the register number has
2144   // the high bit set.
2145   inline void emit_optional_rex_32(Register rm_reg);
2146   inline void emit_optional_rex_32(XMMRegister rm_reg);
2147 
2148   // Optionally do as emit_rex_32(const Operand&) if the operand register
2149   // numbers have a high bit set.
2150   inline void emit_optional_rex_32(const Operand& op);
2151 
emit_rex(int size)2152   void emit_rex(int size) {
2153     if (size == kInt64Size) {
2154       emit_rex_64();
2155     } else {
2156       DCHECK(size == kInt32Size);
2157     }
2158   }
2159 
2160   template<class P1>
emit_rex(P1 p1,int size)2161   void emit_rex(P1 p1, int size) {
2162     if (size == kInt64Size) {
2163       emit_rex_64(p1);
2164     } else {
2165       DCHECK(size == kInt32Size);
2166       emit_optional_rex_32(p1);
2167     }
2168   }
2169 
2170   template<class P1, class P2>
emit_rex(P1 p1,P2 p2,int size)2171   void emit_rex(P1 p1, P2 p2, int size) {
2172     if (size == kInt64Size) {
2173       emit_rex_64(p1, p2);
2174     } else {
2175       DCHECK(size == kInt32Size);
2176       emit_optional_rex_32(p1, p2);
2177     }
2178   }
2179 
2180   // Emit vex prefix
emit_vex2_byte0()2181   void emit_vex2_byte0() { emit(0xc5); }
2182   inline void emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
2183                               SIMDPrefix pp);
emit_vex3_byte0()2184   void emit_vex3_byte0() { emit(0xc4); }
2185   inline void emit_vex3_byte1(XMMRegister reg, XMMRegister rm, LeadingOpcode m);
2186   inline void emit_vex3_byte1(XMMRegister reg, const Operand& rm,
2187                               LeadingOpcode m);
2188   inline void emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
2189                               SIMDPrefix pp);
2190   inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, XMMRegister rm,
2191                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
2192                               VexW w);
2193   inline void emit_vex_prefix(Register reg, Register v, Register rm,
2194                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
2195                               VexW w);
2196   inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, const Operand& rm,
2197                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
2198                               VexW w);
2199   inline void emit_vex_prefix(Register reg, Register v, const Operand& rm,
2200                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
2201                               VexW w);
2202 
2203   // Emit the ModR/M byte, and optionally the SIB byte and
2204   // 1- or 4-byte offset for a memory operand.  Also encodes
2205   // the second operand of the operation, a register or operation
2206   // subcode, into the reg field of the ModR/M byte.
emit_operand(Register reg,const Operand & adr)2207   void emit_operand(Register reg, const Operand& adr) {
2208     emit_operand(reg.low_bits(), adr);
2209   }
2210 
2211   // Emit the ModR/M byte, and optionally the SIB byte and
2212   // 1- or 4-byte offset for a memory operand.  Also used to encode
2213   // a three-bit opcode extension into the ModR/M byte.
2214   void emit_operand(int rm, const Operand& adr);
2215 
2216   // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
emit_modrm(Register reg,Register rm_reg)2217   void emit_modrm(Register reg, Register rm_reg) {
2218     emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
2219   }
2220 
2221   // Emit a ModR/M byte with an operation subcode in the reg field and
2222   // a register in the rm_reg field.
emit_modrm(int code,Register rm_reg)2223   void emit_modrm(int code, Register rm_reg) {
2224     DCHECK(is_uint3(code));
2225     emit(0xC0 | code << 3 | rm_reg.low_bits());
2226   }
2227 
2228   // Emit the code-object-relative offset of the label's position
2229   inline void emit_code_relative_offset(Label* label);
2230 
2231   // The first argument is the reg field, the second argument is the r/m field.
2232   void emit_sse_operand(XMMRegister dst, XMMRegister src);
2233   void emit_sse_operand(XMMRegister reg, const Operand& adr);
2234   void emit_sse_operand(Register reg, const Operand& adr);
2235   void emit_sse_operand(XMMRegister dst, Register src);
2236   void emit_sse_operand(Register dst, XMMRegister src);
2237   void emit_sse_operand(XMMRegister dst);
2238 
2239   // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
2240   // AND, OR, XOR, or CMP.  The encodings of these operations are all
2241   // similar, differing just in the opcode or in the reg field of the
2242   // ModR/M byte.
2243   void arithmetic_op_8(byte opcode, Register reg, Register rm_reg);
2244   void arithmetic_op_8(byte opcode, Register reg, const Operand& rm_reg);
2245   void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
2246   void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
2247   // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
2248   void arithmetic_op(byte opcode, Register reg, Register rm_reg, int size);
2249   void arithmetic_op(byte opcode,
2250                      Register reg,
2251                      const Operand& rm_reg,
2252                      int size);
2253   // Operate on a byte in memory or register.
2254   void immediate_arithmetic_op_8(byte subcode,
2255                                  Register dst,
2256                                  Immediate src);
2257   void immediate_arithmetic_op_8(byte subcode,
2258                                  const Operand& dst,
2259                                  Immediate src);
2260   // Operate on a word in memory or register.
2261   void immediate_arithmetic_op_16(byte subcode,
2262                                   Register dst,
2263                                   Immediate src);
2264   void immediate_arithmetic_op_16(byte subcode,
2265                                   const Operand& dst,
2266                                   Immediate src);
2267   // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
2268   void immediate_arithmetic_op(byte subcode,
2269                                Register dst,
2270                                Immediate src,
2271                                int size);
2272   void immediate_arithmetic_op(byte subcode,
2273                                const Operand& dst,
2274                                Immediate src,
2275                                int size);
2276 
2277   // Emit machine code for a shift operation.
2278   void shift(Operand dst, Immediate shift_amount, int subcode, int size);
2279   void shift(Register dst, Immediate shift_amount, int subcode, int size);
2280   // Shift dst by cl % 64 bits.
2281   void shift(Register dst, int subcode, int size);
2282   void shift(Operand dst, int subcode, int size);
2283 
2284   void emit_farith(int b1, int b2, int i);
2285 
2286   // labels
2287   // void print(Label* L);
2288   void bind_to(Label* L, int pos);
2289 
2290   // record reloc info for current pc_
2291   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
2292 
2293   // Arithmetics
emit_add(Register dst,Register src,int size)2294   void emit_add(Register dst, Register src, int size) {
2295     arithmetic_op(0x03, dst, src, size);
2296   }
2297 
emit_add(Register dst,Immediate src,int size)2298   void emit_add(Register dst, Immediate src, int size) {
2299     immediate_arithmetic_op(0x0, dst, src, size);
2300   }
2301 
emit_add(Register dst,const Operand & src,int size)2302   void emit_add(Register dst, const Operand& src, int size) {
2303     arithmetic_op(0x03, dst, src, size);
2304   }
2305 
emit_add(const Operand & dst,Register src,int size)2306   void emit_add(const Operand& dst, Register src, int size) {
2307     arithmetic_op(0x1, src, dst, size);
2308   }
2309 
emit_add(const Operand & dst,Immediate src,int size)2310   void emit_add(const Operand& dst, Immediate src, int size) {
2311     immediate_arithmetic_op(0x0, dst, src, size);
2312   }
2313 
emit_and(Register dst,Register src,int size)2314   void emit_and(Register dst, Register src, int size) {
2315     arithmetic_op(0x23, dst, src, size);
2316   }
2317 
emit_and(Register dst,const Operand & src,int size)2318   void emit_and(Register dst, const Operand& src, int size) {
2319     arithmetic_op(0x23, dst, src, size);
2320   }
2321 
emit_and(const Operand & dst,Register src,int size)2322   void emit_and(const Operand& dst, Register src, int size) {
2323     arithmetic_op(0x21, src, dst, size);
2324   }
2325 
emit_and(Register dst,Immediate src,int size)2326   void emit_and(Register dst, Immediate src, int size) {
2327     immediate_arithmetic_op(0x4, dst, src, size);
2328   }
2329 
emit_and(const Operand & dst,Immediate src,int size)2330   void emit_and(const Operand& dst, Immediate src, int size) {
2331     immediate_arithmetic_op(0x4, dst, src, size);
2332   }
2333 
emit_cmp(Register dst,Register src,int size)2334   void emit_cmp(Register dst, Register src, int size) {
2335     arithmetic_op(0x3B, dst, src, size);
2336   }
2337 
emit_cmp(Register dst,const Operand & src,int size)2338   void emit_cmp(Register dst, const Operand& src, int size) {
2339     arithmetic_op(0x3B, dst, src, size);
2340   }
2341 
emit_cmp(const Operand & dst,Register src,int size)2342   void emit_cmp(const Operand& dst, Register src, int size) {
2343     arithmetic_op(0x39, src, dst, size);
2344   }
2345 
emit_cmp(Register dst,Immediate src,int size)2346   void emit_cmp(Register dst, Immediate src, int size) {
2347     immediate_arithmetic_op(0x7, dst, src, size);
2348   }
2349 
emit_cmp(const Operand & dst,Immediate src,int size)2350   void emit_cmp(const Operand& dst, Immediate src, int size) {
2351     immediate_arithmetic_op(0x7, dst, src, size);
2352   }
2353 
2354   // Compare {al,ax,eax,rax} with src.  If equal, set ZF and write dst into
2355   // src. Otherwise clear ZF and write src into {al,ax,eax,rax}.  This
2356   // operation is only atomic if prefixed by the lock instruction.
2357   void emit_cmpxchg(const Operand& dst, Register src, int size);
2358 
2359   void emit_dec(Register dst, int size);
2360   void emit_dec(const Operand& dst, int size);
2361 
2362   // Divide rdx:rax by src.  Quotient in rax, remainder in rdx when size is 64.
2363   // Divide edx:eax by lower 32 bits of src.  Quotient in eax, remainder in edx
2364   // when size is 32.
2365   void emit_idiv(Register src, int size);
2366   void emit_div(Register src, int size);
2367 
2368   // Signed multiply instructions.
2369   // rdx:rax = rax * src when size is 64 or edx:eax = eax * src when size is 32.
2370   void emit_imul(Register src, int size);
2371   void emit_imul(const Operand& src, int size);
2372   void emit_imul(Register dst, Register src, int size);
2373   void emit_imul(Register dst, const Operand& src, int size);
2374   void emit_imul(Register dst, Register src, Immediate imm, int size);
2375   void emit_imul(Register dst, const Operand& src, Immediate imm, int size);
2376 
2377   void emit_inc(Register dst, int size);
2378   void emit_inc(const Operand& dst, int size);
2379 
2380   void emit_lea(Register dst, const Operand& src, int size);
2381 
2382   void emit_mov(Register dst, const Operand& src, int size);
2383   void emit_mov(Register dst, Register src, int size);
2384   void emit_mov(const Operand& dst, Register src, int size);
2385   void emit_mov(Register dst, Immediate value, int size);
2386   void emit_mov(const Operand& dst, Immediate value, int size);
2387 
2388   void emit_movzxb(Register dst, const Operand& src, int size);
2389   void emit_movzxb(Register dst, Register src, int size);
2390   void emit_movzxw(Register dst, const Operand& src, int size);
2391   void emit_movzxw(Register dst, Register src, int size);
2392 
2393   void emit_neg(Register dst, int size);
2394   void emit_neg(const Operand& dst, int size);
2395 
2396   void emit_not(Register dst, int size);
2397   void emit_not(const Operand& dst, int size);
2398 
emit_or(Register dst,Register src,int size)2399   void emit_or(Register dst, Register src, int size) {
2400     arithmetic_op(0x0B, dst, src, size);
2401   }
2402 
emit_or(Register dst,const Operand & src,int size)2403   void emit_or(Register dst, const Operand& src, int size) {
2404     arithmetic_op(0x0B, dst, src, size);
2405   }
2406 
emit_or(const Operand & dst,Register src,int size)2407   void emit_or(const Operand& dst, Register src, int size) {
2408     arithmetic_op(0x9, src, dst, size);
2409   }
2410 
emit_or(Register dst,Immediate src,int size)2411   void emit_or(Register dst, Immediate src, int size) {
2412     immediate_arithmetic_op(0x1, dst, src, size);
2413   }
2414 
emit_or(const Operand & dst,Immediate src,int size)2415   void emit_or(const Operand& dst, Immediate src, int size) {
2416     immediate_arithmetic_op(0x1, dst, src, size);
2417   }
2418 
2419   void emit_repmovs(int size);
2420 
emit_sbb(Register dst,Register src,int size)2421   void emit_sbb(Register dst, Register src, int size) {
2422     arithmetic_op(0x1b, dst, src, size);
2423   }
2424 
emit_sub(Register dst,Register src,int size)2425   void emit_sub(Register dst, Register src, int size) {
2426     arithmetic_op(0x2B, dst, src, size);
2427   }
2428 
emit_sub(Register dst,Immediate src,int size)2429   void emit_sub(Register dst, Immediate src, int size) {
2430     immediate_arithmetic_op(0x5, dst, src, size);
2431   }
2432 
emit_sub(Register dst,const Operand & src,int size)2433   void emit_sub(Register dst, const Operand& src, int size) {
2434     arithmetic_op(0x2B, dst, src, size);
2435   }
2436 
emit_sub(const Operand & dst,Register src,int size)2437   void emit_sub(const Operand& dst, Register src, int size) {
2438     arithmetic_op(0x29, src, dst, size);
2439   }
2440 
emit_sub(const Operand & dst,Immediate src,int size)2441   void emit_sub(const Operand& dst, Immediate src, int size) {
2442     immediate_arithmetic_op(0x5, dst, src, size);
2443   }
2444 
2445   void emit_test(Register dst, Register src, int size);
2446   void emit_test(Register reg, Immediate mask, int size);
2447   void emit_test(const Operand& op, Register reg, int size);
2448   void emit_test(const Operand& op, Immediate mask, int size);
emit_test(Register reg,const Operand & op,int size)2449   void emit_test(Register reg, const Operand& op, int size) {
2450     return emit_test(op, reg, size);
2451   }
2452 
2453   void emit_xchg(Register dst, Register src, int size);
2454   void emit_xchg(Register dst, const Operand& src, int size);
2455 
emit_xor(Register dst,Register src,int size)2456   void emit_xor(Register dst, Register src, int size) {
2457     if (size == kInt64Size && dst.code() == src.code()) {
2458     // 32 bit operations zero the top 32 bits of 64 bit registers. Therefore
2459     // there is no need to make this a 64 bit operation.
2460       arithmetic_op(0x33, dst, src, kInt32Size);
2461     } else {
2462       arithmetic_op(0x33, dst, src, size);
2463     }
2464   }
2465 
emit_xor(Register dst,const Operand & src,int size)2466   void emit_xor(Register dst, const Operand& src, int size) {
2467     arithmetic_op(0x33, dst, src, size);
2468   }
2469 
emit_xor(Register dst,Immediate src,int size)2470   void emit_xor(Register dst, Immediate src, int size) {
2471     immediate_arithmetic_op(0x6, dst, src, size);
2472   }
2473 
emit_xor(const Operand & dst,Immediate src,int size)2474   void emit_xor(const Operand& dst, Immediate src, int size) {
2475     immediate_arithmetic_op(0x6, dst, src, size);
2476   }
2477 
emit_xor(const Operand & dst,Register src,int size)2478   void emit_xor(const Operand& dst, Register src, int size) {
2479     arithmetic_op(0x31, src, dst, size);
2480   }
2481 
2482   // Most BMI instructions are similiar.
2483   void bmi1q(byte op, Register reg, Register vreg, Register rm);
2484   void bmi1q(byte op, Register reg, Register vreg, const Operand& rm);
2485   void bmi1l(byte op, Register reg, Register vreg, Register rm);
2486   void bmi1l(byte op, Register reg, Register vreg, const Operand& rm);
2487   void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
2488   void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg,
2489              const Operand& rm);
2490   void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
2491   void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg,
2492              const Operand& rm);
2493 
2494   friend class CodePatcher;
2495   friend class EnsureSpace;
2496   friend class RegExpMacroAssemblerX64;
2497 
2498   // code generation
2499   RelocInfoWriter reloc_info_writer;
2500 
2501   // Internal reference positions, required for (potential) patching in
2502   // GrowBuffer(); contains only those internal references whose labels
2503   // are already bound.
2504   std::deque<int> internal_reference_positions_;
2505 
2506   List< Handle<Code> > code_targets_;
2507 };
2508 
2509 
2510 // Helper class that ensures that there is enough space for generating
2511 // instructions and relocation information.  The constructor makes
2512 // sure that there is enough space and (in debug mode) the destructor
2513 // checks that we did not generate too much.
2514 class EnsureSpace BASE_EMBEDDED {
2515  public:
EnsureSpace(Assembler * assembler)2516   explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
2517     if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
2518 #ifdef DEBUG
2519     space_before_ = assembler_->available_space();
2520 #endif
2521   }
2522 
2523 #ifdef DEBUG
~EnsureSpace()2524   ~EnsureSpace() {
2525     int bytes_generated = space_before_ - assembler_->available_space();
2526     DCHECK(bytes_generated < assembler_->kGap);
2527   }
2528 #endif
2529 
2530  private:
2531   Assembler* assembler_;
2532 #ifdef DEBUG
2533   int space_before_;
2534 #endif
2535 };
2536 
2537 }  // namespace internal
2538 }  // namespace v8
2539 
2540 #endif  // V8_X64_ASSEMBLER_X64_H_
2541