1 /*
2  *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <limits.h>
12 #include <math.h>
13 
14 #include "vpx_dsp/vpx_dsp_common.h"
15 #include "vpx_ports/system_state.h"
16 
17 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
18 
19 #include "vp9/common/vp9_seg_common.h"
20 
21 #include "vp9/encoder/vp9_ratectrl.h"
22 #include "vp9/encoder/vp9_segmentation.h"
23 
vp9_cyclic_refresh_alloc(int mi_rows,int mi_cols)24 CYCLIC_REFRESH *vp9_cyclic_refresh_alloc(int mi_rows, int mi_cols) {
25   size_t last_coded_q_map_size;
26   CYCLIC_REFRESH *const cr = vpx_calloc(1, sizeof(*cr));
27   if (cr == NULL) return NULL;
28 
29   cr->map = vpx_calloc(mi_rows * mi_cols, sizeof(*cr->map));
30   if (cr->map == NULL) {
31     vp9_cyclic_refresh_free(cr);
32     return NULL;
33   }
34   last_coded_q_map_size = mi_rows * mi_cols * sizeof(*cr->last_coded_q_map);
35   cr->last_coded_q_map = vpx_malloc(last_coded_q_map_size);
36   if (cr->last_coded_q_map == NULL) {
37     vp9_cyclic_refresh_free(cr);
38     return NULL;
39   }
40   assert(MAXQ <= 255);
41   memset(cr->last_coded_q_map, MAXQ, last_coded_q_map_size);
42   return cr;
43 }
44 
vp9_cyclic_refresh_free(CYCLIC_REFRESH * cr)45 void vp9_cyclic_refresh_free(CYCLIC_REFRESH *cr) {
46   vpx_free(cr->map);
47   vpx_free(cr->last_coded_q_map);
48   vpx_free(cr);
49 }
50 
51 // Check if this coding block, of size bsize, should be considered for refresh
52 // (lower-qp coding). Decision can be based on various factors, such as
53 // size of the coding block (i.e., below min_block size rejected), coding
54 // mode, and rate/distortion.
candidate_refresh_aq(const CYCLIC_REFRESH * cr,const MODE_INFO * mi,int64_t rate,int64_t dist,int bsize)55 static int candidate_refresh_aq(const CYCLIC_REFRESH *cr, const MODE_INFO *mi,
56                                 int64_t rate, int64_t dist, int bsize) {
57   MV mv = mi->mv[0].as_mv;
58   // Reject the block for lower-qp coding if projected distortion
59   // is above the threshold, and any of the following is true:
60   // 1) mode uses large mv
61   // 2) mode is an intra-mode
62   // Otherwise accept for refresh.
63   if (dist > cr->thresh_dist_sb &&
64       (mv.row > cr->motion_thresh || mv.row < -cr->motion_thresh ||
65        mv.col > cr->motion_thresh || mv.col < -cr->motion_thresh ||
66        !is_inter_block(mi)))
67     return CR_SEGMENT_ID_BASE;
68   else if (bsize >= BLOCK_16X16 && rate < cr->thresh_rate_sb &&
69            is_inter_block(mi) && mi->mv[0].as_int == 0 &&
70            cr->rate_boost_fac > 10)
71     // More aggressive delta-q for bigger blocks with zero motion.
72     return CR_SEGMENT_ID_BOOST2;
73   else
74     return CR_SEGMENT_ID_BOOST1;
75 }
76 
77 // Compute delta-q for the segment.
compute_deltaq(const VP9_COMP * cpi,int q,double rate_factor)78 static int compute_deltaq(const VP9_COMP *cpi, int q, double rate_factor) {
79   const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
80   const RATE_CONTROL *const rc = &cpi->rc;
81   int deltaq = vp9_compute_qdelta_by_rate(rc, cpi->common.frame_type, q,
82                                           rate_factor, cpi->common.bit_depth);
83   if ((-deltaq) > cr->max_qdelta_perc * q / 100) {
84     deltaq = -cr->max_qdelta_perc * q / 100;
85   }
86   return deltaq;
87 }
88 
89 // For the just encoded frame, estimate the bits, incorporating the delta-q
90 // from non-base segment. For now ignore effect of multiple segments
91 // (with different delta-q). Note this function is called in the postencode
92 // (called from rc_update_rate_correction_factors()).
vp9_cyclic_refresh_estimate_bits_at_q(const VP9_COMP * cpi,double correction_factor)93 int vp9_cyclic_refresh_estimate_bits_at_q(const VP9_COMP *cpi,
94                                           double correction_factor) {
95   const VP9_COMMON *const cm = &cpi->common;
96   const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
97   int estimated_bits;
98   int mbs = cm->MBs;
99   int num8x8bl = mbs << 2;
100   // Weight for non-base segments: use actual number of blocks refreshed in
101   // previous/just encoded frame. Note number of blocks here is in 8x8 units.
102   double weight_segment1 = (double)cr->actual_num_seg1_blocks / num8x8bl;
103   double weight_segment2 = (double)cr->actual_num_seg2_blocks / num8x8bl;
104   // Take segment weighted average for estimated bits.
105   estimated_bits =
106       (int)((1.0 - weight_segment1 - weight_segment2) *
107                 vp9_estimate_bits_at_q(cm->frame_type, cm->base_qindex, mbs,
108                                        correction_factor, cm->bit_depth) +
109             weight_segment1 *
110                 vp9_estimate_bits_at_q(cm->frame_type,
111                                        cm->base_qindex + cr->qindex_delta[1],
112                                        mbs, correction_factor, cm->bit_depth) +
113             weight_segment2 *
114                 vp9_estimate_bits_at_q(cm->frame_type,
115                                        cm->base_qindex + cr->qindex_delta[2],
116                                        mbs, correction_factor, cm->bit_depth));
117   return estimated_bits;
118 }
119 
120 // Prior to encoding the frame, estimate the bits per mb, for a given q = i and
121 // a corresponding delta-q (for segment 1). This function is called in the
122 // rc_regulate_q() to set the base qp index.
123 // Note: the segment map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or
124 // to 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock, prior to encoding.
vp9_cyclic_refresh_rc_bits_per_mb(const VP9_COMP * cpi,int i,double correction_factor)125 int vp9_cyclic_refresh_rc_bits_per_mb(const VP9_COMP *cpi, int i,
126                                       double correction_factor) {
127   const VP9_COMMON *const cm = &cpi->common;
128   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
129   int bits_per_mb;
130   int deltaq = 0;
131   if (cpi->oxcf.speed < 8)
132     deltaq = compute_deltaq(cpi, i, cr->rate_ratio_qdelta);
133   else
134     deltaq = -(cr->max_qdelta_perc * i) / 200;
135   // Take segment weighted average for bits per mb.
136   bits_per_mb = (int)((1.0 - cr->weight_segment) *
137                           vp9_rc_bits_per_mb(cm->frame_type, i,
138                                              correction_factor, cm->bit_depth) +
139                       cr->weight_segment *
140                           vp9_rc_bits_per_mb(cm->frame_type, i + deltaq,
141                                              correction_factor, cm->bit_depth));
142   return bits_per_mb;
143 }
144 
145 // Prior to coding a given prediction block, of size bsize at (mi_row, mi_col),
146 // check if we should reset the segment_id, and update the cyclic_refresh map
147 // and segmentation map.
vp9_cyclic_refresh_update_segment(VP9_COMP * const cpi,MODE_INFO * const mi,int mi_row,int mi_col,BLOCK_SIZE bsize,int64_t rate,int64_t dist,int skip,struct macroblock_plane * const p)148 void vp9_cyclic_refresh_update_segment(VP9_COMP *const cpi, MODE_INFO *const mi,
149                                        int mi_row, int mi_col, BLOCK_SIZE bsize,
150                                        int64_t rate, int64_t dist, int skip,
151                                        struct macroblock_plane *const p) {
152   const VP9_COMMON *const cm = &cpi->common;
153   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
154   const int bw = num_8x8_blocks_wide_lookup[bsize];
155   const int bh = num_8x8_blocks_high_lookup[bsize];
156   const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
157   const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
158   const int block_index = mi_row * cm->mi_cols + mi_col;
159   int refresh_this_block = candidate_refresh_aq(cr, mi, rate, dist, bsize);
160   // Default is to not update the refresh map.
161   int new_map_value = cr->map[block_index];
162   int x = 0;
163   int y = 0;
164 
165   int is_skin = 0;
166   if (refresh_this_block == 0 && bsize <= BLOCK_16X16 &&
167       cpi->use_skin_detection) {
168     is_skin =
169         vp9_compute_skin_block(p[0].src.buf, p[1].src.buf, p[2].src.buf,
170                                p[0].src.stride, p[1].src.stride, bsize, 0, 0);
171     if (is_skin) refresh_this_block = 1;
172   }
173 
174   if (cpi->oxcf.rc_mode == VPX_VBR && mi->ref_frame[0] == GOLDEN_FRAME)
175     refresh_this_block = 0;
176 
177   // If this block is labeled for refresh, check if we should reset the
178   // segment_id.
179   if (cyclic_refresh_segment_id_boosted(mi->segment_id)) {
180     mi->segment_id = refresh_this_block;
181     // Reset segment_id if it will be skipped.
182     if (skip) mi->segment_id = CR_SEGMENT_ID_BASE;
183   }
184 
185   // Update the cyclic refresh map, to be used for setting segmentation map
186   // for the next frame. If the block  will be refreshed this frame, mark it
187   // as clean. The magnitude of the -ve influences how long before we consider
188   // it for refresh again.
189   if (cyclic_refresh_segment_id_boosted(mi->segment_id)) {
190     new_map_value = -cr->time_for_refresh;
191   } else if (refresh_this_block) {
192     // Else if it is accepted as candidate for refresh, and has not already
193     // been refreshed (marked as 1) then mark it as a candidate for cleanup
194     // for future time (marked as 0), otherwise don't update it.
195     if (cr->map[block_index] == 1) new_map_value = 0;
196   } else {
197     // Leave it marked as block that is not candidate for refresh.
198     new_map_value = 1;
199   }
200 
201   // Update entries in the cyclic refresh map with new_map_value, and
202   // copy mbmi->segment_id into global segmentation map.
203   for (y = 0; y < ymis; y++)
204     for (x = 0; x < xmis; x++) {
205       int map_offset = block_index + y * cm->mi_cols + x;
206       cr->map[map_offset] = new_map_value;
207       cpi->segmentation_map[map_offset] = mi->segment_id;
208     }
209 }
210 
vp9_cyclic_refresh_update_sb_postencode(VP9_COMP * const cpi,const MODE_INFO * const mi,int mi_row,int mi_col,BLOCK_SIZE bsize)211 void vp9_cyclic_refresh_update_sb_postencode(VP9_COMP *const cpi,
212                                              const MODE_INFO *const mi,
213                                              int mi_row, int mi_col,
214                                              BLOCK_SIZE bsize) {
215   const VP9_COMMON *const cm = &cpi->common;
216   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
217   const int bw = num_8x8_blocks_wide_lookup[bsize];
218   const int bh = num_8x8_blocks_high_lookup[bsize];
219   const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
220   const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
221   const int block_index = mi_row * cm->mi_cols + mi_col;
222   int x, y;
223   for (y = 0; y < ymis; y++)
224     for (x = 0; x < xmis; x++) {
225       int map_offset = block_index + y * cm->mi_cols + x;
226       // Inter skip blocks were clearly not coded at the current qindex, so
227       // don't update the map for them. For cases where motion is non-zero or
228       // the reference frame isn't the previous frame, the previous value in
229       // the map for this spatial location is not entirely correct.
230       if ((!is_inter_block(mi) || !mi->skip) &&
231           mi->segment_id <= CR_SEGMENT_ID_BOOST2) {
232         cr->last_coded_q_map[map_offset] =
233             clamp(cm->base_qindex + cr->qindex_delta[mi->segment_id], 0, MAXQ);
234       } else if (is_inter_block(mi) && mi->skip &&
235                  mi->segment_id <= CR_SEGMENT_ID_BOOST2) {
236         cr->last_coded_q_map[map_offset] = VPXMIN(
237             clamp(cm->base_qindex + cr->qindex_delta[mi->segment_id], 0, MAXQ),
238             cr->last_coded_q_map[map_offset]);
239       }
240     }
241 }
242 
243 // From the just encoded frame: update the actual number of blocks that were
244 // applied the segment delta q, and the amount of low motion in the frame.
245 // Also check conditions for forcing golden update, or preventing golden
246 // update if the period is up.
vp9_cyclic_refresh_postencode(VP9_COMP * const cpi)247 void vp9_cyclic_refresh_postencode(VP9_COMP *const cpi) {
248   VP9_COMMON *const cm = &cpi->common;
249   MODE_INFO **mi = cm->mi_grid_visible;
250   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
251   RATE_CONTROL *const rc = &cpi->rc;
252   unsigned char *const seg_map = cpi->segmentation_map;
253   double fraction_low = 0.0;
254   int force_gf_refresh = 0;
255   int low_content_frame = 0;
256   int mi_row, mi_col;
257   cr->actual_num_seg1_blocks = 0;
258   cr->actual_num_seg2_blocks = 0;
259   for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
260     for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) {
261       MV mv = mi[0]->mv[0].as_mv;
262       int map_index = mi_row * cm->mi_cols + mi_col;
263       if (cyclic_refresh_segment_id(seg_map[map_index]) == CR_SEGMENT_ID_BOOST1)
264         cr->actual_num_seg1_blocks++;
265       else if (cyclic_refresh_segment_id(seg_map[map_index]) ==
266                CR_SEGMENT_ID_BOOST2)
267         cr->actual_num_seg2_blocks++;
268       // Accumulate low_content_frame.
269       if (is_inter_block(mi[0]) && abs(mv.row) < 16 && abs(mv.col) < 16)
270         low_content_frame++;
271       mi++;
272     }
273     mi += 8;
274   }
275   // Check for golden frame update: only for non-SVC and non-golden boost.
276   if (!cpi->use_svc && cpi->ext_refresh_frame_flags_pending == 0 &&
277       !cpi->oxcf.gf_cbr_boost_pct) {
278     // Force this frame as a golden update frame if this frame changes the
279     // resolution (resize_pending != 0).
280     if (cpi->resize_pending != 0) {
281       vp9_cyclic_refresh_set_golden_update(cpi);
282       rc->frames_till_gf_update_due = rc->baseline_gf_interval;
283       if (rc->frames_till_gf_update_due > rc->frames_to_key)
284         rc->frames_till_gf_update_due = rc->frames_to_key;
285       cpi->refresh_golden_frame = 1;
286       force_gf_refresh = 1;
287     }
288     // Update average of low content/motion in the frame.
289     fraction_low = (double)low_content_frame / (cm->mi_rows * cm->mi_cols);
290     cr->low_content_avg = (fraction_low + 3 * cr->low_content_avg) / 4;
291     if (!force_gf_refresh && cpi->refresh_golden_frame == 1 &&
292         rc->frames_since_key > rc->frames_since_golden + 1) {
293       // Don't update golden reference if the amount of low_content for the
294       // current encoded frame is small, or if the recursive average of the
295       // low_content over the update interval window falls below threshold.
296       if (fraction_low < 0.65 || cr->low_content_avg < 0.6) {
297         cpi->refresh_golden_frame = 0;
298       }
299       // Reset for next internal.
300       cr->low_content_avg = fraction_low;
301     }
302   }
303 }
304 
305 // Set golden frame update interval, for non-svc 1 pass CBR mode.
vp9_cyclic_refresh_set_golden_update(VP9_COMP * const cpi)306 void vp9_cyclic_refresh_set_golden_update(VP9_COMP *const cpi) {
307   RATE_CONTROL *const rc = &cpi->rc;
308   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
309   // Set minimum gf_interval for GF update to a multiple of the refresh period,
310   // with some max limit. Depending on past encoding stats, GF flag may be
311   // reset and update may not occur until next baseline_gf_interval.
312   if (cr->percent_refresh > 0)
313     rc->baseline_gf_interval = VPXMIN(4 * (100 / cr->percent_refresh), 40);
314   else
315     rc->baseline_gf_interval = 40;
316   if (cpi->oxcf.rc_mode == VPX_VBR) rc->baseline_gf_interval = 20;
317   if (rc->avg_frame_low_motion < 50 && rc->frames_since_key > 40)
318     rc->baseline_gf_interval = 10;
319 }
320 
321 // Update the segmentation map, and related quantities: cyclic refresh map,
322 // refresh sb_index, and target number of blocks to be refreshed.
323 // The map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or to
324 // 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock.
325 // Blocks labeled as BOOST1 may later get set to BOOST2 (during the
326 // encoding of the superblock).
cyclic_refresh_update_map(VP9_COMP * const cpi)327 static void cyclic_refresh_update_map(VP9_COMP *const cpi) {
328   VP9_COMMON *const cm = &cpi->common;
329   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
330   unsigned char *const seg_map = cpi->segmentation_map;
331   int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame;
332   int xmis, ymis, x, y;
333   int consec_zero_mv_thresh = 0;
334   int qindex_thresh = 0;
335   int count_sel = 0;
336   int count_tot = 0;
337   memset(seg_map, CR_SEGMENT_ID_BASE, cm->mi_rows * cm->mi_cols);
338   sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
339   sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
340   sbs_in_frame = sb_cols * sb_rows;
341   // Number of target blocks to get the q delta (segment 1).
342   block_count = cr->percent_refresh * cm->mi_rows * cm->mi_cols / 100;
343   // Set the segmentation map: cycle through the superblocks, starting at
344   // cr->mb_index, and stopping when either block_count blocks have been found
345   // to be refreshed, or we have passed through whole frame.
346   assert(cr->sb_index < sbs_in_frame);
347   i = cr->sb_index;
348   cr->target_num_seg_blocks = 0;
349   if (cpi->oxcf.content != VP9E_CONTENT_SCREEN) {
350     consec_zero_mv_thresh = 100;
351   }
352   qindex_thresh =
353       cpi->oxcf.content == VP9E_CONTENT_SCREEN
354           ? vp9_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST2, cm->base_qindex)
355           : vp9_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST1, cm->base_qindex);
356   // More aggressive settings for noisy content.
357   if (cpi->noise_estimate.enabled && cpi->noise_estimate.level >= kMedium) {
358     consec_zero_mv_thresh = 60;
359     qindex_thresh =
360         VPXMAX(vp9_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST1, cm->base_qindex),
361                cm->base_qindex);
362   }
363   do {
364     int sum_map = 0;
365     int consec_zero_mv_thresh_block = consec_zero_mv_thresh;
366     // Get the mi_row/mi_col corresponding to superblock index i.
367     int sb_row_index = (i / sb_cols);
368     int sb_col_index = i - sb_row_index * sb_cols;
369     int mi_row = sb_row_index * MI_BLOCK_SIZE;
370     int mi_col = sb_col_index * MI_BLOCK_SIZE;
371     assert(mi_row >= 0 && mi_row < cm->mi_rows);
372     assert(mi_col >= 0 && mi_col < cm->mi_cols);
373     bl_index = mi_row * cm->mi_cols + mi_col;
374     // Loop through all 8x8 blocks in superblock and update map.
375     xmis =
376         VPXMIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[BLOCK_64X64]);
377     ymis =
378         VPXMIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[BLOCK_64X64]);
379     if (cpi->noise_estimate.enabled && cpi->noise_estimate.level >= kMedium &&
380         (xmis <= 2 || ymis <= 2))
381       consec_zero_mv_thresh_block = 4;
382     for (y = 0; y < ymis; y++) {
383       for (x = 0; x < xmis; x++) {
384         const int bl_index2 = bl_index + y * cm->mi_cols + x;
385         // If the block is as a candidate for clean up then mark it
386         // for possible boost/refresh (segment 1). The segment id may get
387         // reset to 0 later depending on the coding mode.
388         if (cr->map[bl_index2] == 0) {
389           count_tot++;
390           if (cr->last_coded_q_map[bl_index2] > qindex_thresh ||
391               cpi->consec_zero_mv[bl_index2] < consec_zero_mv_thresh_block) {
392             sum_map++;
393             count_sel++;
394           }
395         } else if (cr->map[bl_index2] < 0) {
396           cr->map[bl_index2]++;
397         }
398       }
399     }
400     // Enforce constant segment over superblock.
401     // If segment is at least half of superblock, set to 1.
402     if (sum_map >= xmis * ymis / 2) {
403       for (y = 0; y < ymis; y++)
404         for (x = 0; x < xmis; x++) {
405           seg_map[bl_index + y * cm->mi_cols + x] = CR_SEGMENT_ID_BOOST1;
406         }
407       cr->target_num_seg_blocks += xmis * ymis;
408     }
409     i++;
410     if (i == sbs_in_frame) {
411       i = 0;
412     }
413   } while (cr->target_num_seg_blocks < block_count && i != cr->sb_index);
414   cr->sb_index = i;
415   cr->reduce_refresh = 0;
416   if (count_sel<(3 * count_tot)>> 2) cr->reduce_refresh = 1;
417 }
418 
419 // Set cyclic refresh parameters.
vp9_cyclic_refresh_update_parameters(VP9_COMP * const cpi)420 void vp9_cyclic_refresh_update_parameters(VP9_COMP *const cpi) {
421   const RATE_CONTROL *const rc = &cpi->rc;
422   const VP9_COMMON *const cm = &cpi->common;
423   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
424   int num8x8bl = cm->MBs << 2;
425   int target_refresh = 0;
426   double weight_segment_target = 0;
427   double weight_segment = 0;
428   cr->apply_cyclic_refresh = 1;
429   if (cm->frame_type == KEY_FRAME || cpi->svc.temporal_layer_id > 0 ||
430       (!cpi->use_svc && rc->avg_frame_low_motion < 55 &&
431        rc->frames_since_key > 40)) {
432     cr->apply_cyclic_refresh = 0;
433     return;
434   }
435   cr->percent_refresh = 10;
436   if (cr->reduce_refresh) cr->percent_refresh = 5;
437   cr->max_qdelta_perc = 60;
438   cr->time_for_refresh = 0;
439   cr->motion_thresh = 32;
440   cr->rate_boost_fac = 15;
441   // Use larger delta-qp (increase rate_ratio_qdelta) for first few (~4)
442   // periods of the refresh cycle, after a key frame.
443   // Account for larger interval on base layer for temporal layers.
444   if (cr->percent_refresh > 0 &&
445       rc->frames_since_key <
446           (4 * cpi->svc.number_temporal_layers) * (100 / cr->percent_refresh)) {
447     cr->rate_ratio_qdelta = 3.0;
448   } else {
449     cr->rate_ratio_qdelta = 2.0;
450     if (cpi->noise_estimate.enabled && cpi->noise_estimate.level >= kMedium) {
451       // Reduce the delta-qp if the estimated source noise is above threshold.
452       cr->rate_ratio_qdelta = 1.7;
453       cr->rate_boost_fac = 13;
454     }
455   }
456   // Adjust some parameters for low resolutions.
457   if (cm->width <= 352 && cm->height <= 288) {
458     if (rc->avg_frame_bandwidth < 3000) {
459       cr->motion_thresh = 16;
460       cr->rate_boost_fac = 13;
461     } else {
462       cr->max_qdelta_perc = 70;
463       cr->rate_ratio_qdelta = VPXMAX(cr->rate_ratio_qdelta, 2.5);
464     }
465   }
466   if (cpi->svc.spatial_layer_id > 0) {
467     cr->motion_thresh = 4;
468     cr->rate_boost_fac = 12;
469   }
470   if (cpi->oxcf.rc_mode == VPX_VBR) {
471     // To be adjusted for VBR mode, e.g., based on gf period and boost.
472     // For now use smaller qp-delta (than CBR), no second boosted seg, and
473     // turn-off (no refresh) on golden refresh (since it's already boosted).
474     cr->percent_refresh = 10;
475     cr->rate_ratio_qdelta = 1.5;
476     cr->rate_boost_fac = 10;
477     if (cpi->refresh_golden_frame == 1) {
478       cr->percent_refresh = 0;
479       cr->rate_ratio_qdelta = 1.0;
480     }
481   }
482   // Weight for segment prior to encoding: take the average of the target
483   // number for the frame to be encoded and the actual from the previous frame.
484   // Use the target if its less. To be used for setting the base qp for the
485   // frame in vp9_rc_regulate_q.
486   target_refresh = cr->percent_refresh * cm->mi_rows * cm->mi_cols / 100;
487   weight_segment_target = (double)(target_refresh) / num8x8bl;
488   weight_segment = (double)((target_refresh + cr->actual_num_seg1_blocks +
489                              cr->actual_num_seg2_blocks) >>
490                             1) /
491                    num8x8bl;
492   if (weight_segment_target < 7 * weight_segment / 8)
493     weight_segment = weight_segment_target;
494   cr->weight_segment = weight_segment;
495 }
496 
497 // Setup cyclic background refresh: set delta q and segmentation map.
vp9_cyclic_refresh_setup(VP9_COMP * const cpi)498 void vp9_cyclic_refresh_setup(VP9_COMP *const cpi) {
499   VP9_COMMON *const cm = &cpi->common;
500   const RATE_CONTROL *const rc = &cpi->rc;
501   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
502   struct segmentation *const seg = &cm->seg;
503   if (cm->current_video_frame == 0) cr->low_content_avg = 0.0;
504   if (!cr->apply_cyclic_refresh || (cpi->force_update_segmentation)) {
505     // Set segmentation map to 0 and disable.
506     unsigned char *const seg_map = cpi->segmentation_map;
507     memset(seg_map, 0, cm->mi_rows * cm->mi_cols);
508     vp9_disable_segmentation(&cm->seg);
509     if (cm->frame_type == KEY_FRAME) {
510       memset(cr->last_coded_q_map, MAXQ,
511              cm->mi_rows * cm->mi_cols * sizeof(*cr->last_coded_q_map));
512       cr->sb_index = 0;
513       cr->reduce_refresh = 0;
514     }
515     return;
516   } else {
517     int qindex_delta = 0;
518     int qindex2;
519     const double q = vp9_convert_qindex_to_q(cm->base_qindex, cm->bit_depth);
520     vpx_clear_system_state();
521     // Set rate threshold to some multiple (set to 2 for now) of the target
522     // rate (target is given by sb64_target_rate and scaled by 256).
523     cr->thresh_rate_sb = ((int64_t)(rc->sb64_target_rate) << 8) << 2;
524     // Distortion threshold, quadratic in Q, scale factor to be adjusted.
525     // q will not exceed 457, so (q * q) is within 32bit; see:
526     // vp9_convert_qindex_to_q(), vp9_ac_quant(), ac_qlookup*[].
527     cr->thresh_dist_sb = ((int64_t)(q * q)) << 2;
528 
529     // Set up segmentation.
530     // Clear down the segment map.
531     vp9_enable_segmentation(&cm->seg);
532     vp9_clearall_segfeatures(seg);
533     // Select delta coding method.
534     seg->abs_delta = SEGMENT_DELTADATA;
535 
536     // Note: setting temporal_update has no effect, as the seg-map coding method
537     // (temporal or spatial) is determined in vp9_choose_segmap_coding_method(),
538     // based on the coding cost of each method. For error_resilient mode on the
539     // last_frame_seg_map is set to 0, so if temporal coding is used, it is
540     // relative to 0 previous map.
541     // seg->temporal_update = 0;
542 
543     // Segment BASE "Q" feature is disabled so it defaults to the baseline Q.
544     vp9_disable_segfeature(seg, CR_SEGMENT_ID_BASE, SEG_LVL_ALT_Q);
545     // Use segment BOOST1 for in-frame Q adjustment.
546     vp9_enable_segfeature(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q);
547     // Use segment BOOST2 for more aggressive in-frame Q adjustment.
548     vp9_enable_segfeature(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q);
549 
550     // Set the q delta for segment BOOST1.
551     qindex_delta = compute_deltaq(cpi, cm->base_qindex, cr->rate_ratio_qdelta);
552     cr->qindex_delta[1] = qindex_delta;
553 
554     // Compute rd-mult for segment BOOST1.
555     qindex2 = clamp(cm->base_qindex + cm->y_dc_delta_q + qindex_delta, 0, MAXQ);
556 
557     cr->rdmult = vp9_compute_rd_mult(cpi, qindex2);
558 
559     vp9_set_segdata(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q, qindex_delta);
560 
561     // Set a more aggressive (higher) q delta for segment BOOST2.
562     qindex_delta = compute_deltaq(
563         cpi, cm->base_qindex,
564         VPXMIN(CR_MAX_RATE_TARGET_RATIO,
565                0.1 * cr->rate_boost_fac * cr->rate_ratio_qdelta));
566     cr->qindex_delta[2] = qindex_delta;
567     vp9_set_segdata(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q, qindex_delta);
568 
569     // Reset if resoluton change has occurred.
570     if (cpi->resize_pending != 0) vp9_cyclic_refresh_reset_resize(cpi);
571 
572     // Update the segmentation and refresh map.
573     cyclic_refresh_update_map(cpi);
574   }
575 }
576 
vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH * cr)577 int vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) {
578   return cr->rdmult;
579 }
580 
vp9_cyclic_refresh_reset_resize(VP9_COMP * const cpi)581 void vp9_cyclic_refresh_reset_resize(VP9_COMP *const cpi) {
582   const VP9_COMMON *const cm = &cpi->common;
583   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
584   memset(cr->map, 0, cm->mi_rows * cm->mi_cols);
585   memset(cr->last_coded_q_map, MAXQ, cm->mi_rows * cm->mi_cols);
586   cr->sb_index = 0;
587   cpi->refresh_golden_frame = 1;
588   cpi->refresh_alt_ref_frame = 1;
589 }
590