1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  *
10  *  This code was originally written by: Gregory Maxwell, at the Daala
11  *  project.
12  */
13 #include <assert.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <math.h>
17 
18 #include "./vpx_config.h"
19 #include "./vpx_dsp_rtcd.h"
20 #include "vpx_dsp/ssim.h"
21 #include "vpx_ports/system_state.h"
22 #include "vpx_dsp/psnr.h"
23 
24 #if !defined(M_PI)
25 #define M_PI (3.141592653589793238462643)
26 #endif
27 #include <string.h>
28 
od_bin_fdct8x8(tran_low_t * y,int ystride,const int16_t * x,int xstride)29 static void od_bin_fdct8x8(tran_low_t *y, int ystride, const int16_t *x,
30                            int xstride) {
31   int i, j;
32   (void)xstride;
33   vpx_fdct8x8(x, y, ystride);
34   for (i = 0; i < 8; i++)
35     for (j = 0; j < 8; j++)
36       *(y + ystride * i + j) = (*(y + ystride * i + j) + 4) >> 3;
37 }
38 #if CONFIG_VP9_HIGHBITDEPTH
hbd_od_bin_fdct8x8(tran_low_t * y,int ystride,const int16_t * x,int xstride)39 static void hbd_od_bin_fdct8x8(tran_low_t *y, int ystride, const int16_t *x,
40                                int xstride) {
41   int i, j;
42   (void)xstride;
43   vpx_highbd_fdct8x8(x, y, ystride);
44   for (i = 0; i < 8; i++)
45     for (j = 0; j < 8; j++)
46       *(y + ystride * i + j) = (*(y + ystride * i + j) + 4) >> 3;
47 }
48 #endif
49 
50 /* Normalized inverse quantization matrix for 8x8 DCT at the point of
51  * transparency. This is not the JPEG based matrix from the paper,
52  this one gives a slightly higher MOS agreement.*/
53 static const double csf_y[8][8] = {
54   { 1.6193873005, 2.2901594831, 2.08509755623, 1.48366094411, 1.00227514334,
55     0.678296995242, 0.466224900598, 0.3265091542 },
56   { 2.2901594831, 1.94321815382, 2.04793073064, 1.68731108984, 1.2305666963,
57     0.868920337363, 0.61280991668, 0.436405793551 },
58   { 2.08509755623, 2.04793073064, 1.34329019223, 1.09205635862, 0.875748795257,
59     0.670882927016, 0.501731932449, 0.372504254596 },
60   { 1.48366094411, 1.68731108984, 1.09205635862, 0.772819797575, 0.605636379554,
61     0.48309405692, 0.380429446972, 0.295774038565 },
62   { 1.00227514334, 1.2305666963, 0.875748795257, 0.605636379554, 0.448996256676,
63     0.352889268808, 0.283006984131, 0.226951348204 },
64   { 0.678296995242, 0.868920337363, 0.670882927016, 0.48309405692,
65     0.352889268808, 0.27032073436, 0.215017739696, 0.17408067321 },
66   { 0.466224900598, 0.61280991668, 0.501731932449, 0.380429446972,
67     0.283006984131, 0.215017739696, 0.168869545842, 0.136153931001 },
68   { 0.3265091542, 0.436405793551, 0.372504254596, 0.295774038565,
69     0.226951348204, 0.17408067321, 0.136153931001, 0.109083846276 }
70 };
71 static const double csf_cb420[8][8] = {
72   { 1.91113096927, 2.46074210438, 1.18284184739, 1.14982565193, 1.05017074788,
73     0.898018824055, 0.74725392039, 0.615105596242 },
74   { 2.46074210438, 1.58529308355, 1.21363250036, 1.38190029285, 1.33100189972,
75     1.17428548929, 0.996404342439, 0.830890433625 },
76   { 1.18284184739, 1.21363250036, 0.978712413627, 1.02624506078, 1.03145147362,
77     0.960060382087, 0.849823426169, 0.731221236837 },
78   { 1.14982565193, 1.38190029285, 1.02624506078, 0.861317501629, 0.801821139099,
79     0.751437590932, 0.685398513368, 0.608694761374 },
80   { 1.05017074788, 1.33100189972, 1.03145147362, 0.801821139099, 0.676555426187,
81     0.605503172737, 0.55002013668, 0.495804539034 },
82   { 0.898018824055, 1.17428548929, 0.960060382087, 0.751437590932,
83     0.605503172737, 0.514674450957, 0.454353482512, 0.407050308965 },
84   { 0.74725392039, 0.996404342439, 0.849823426169, 0.685398513368,
85     0.55002013668, 0.454353482512, 0.389234902883, 0.342353999733 },
86   { 0.615105596242, 0.830890433625, 0.731221236837, 0.608694761374,
87     0.495804539034, 0.407050308965, 0.342353999733, 0.295530605237 }
88 };
89 static const double csf_cr420[8][8] = {
90   { 2.03871978502, 2.62502345193, 1.26180942886, 1.11019789803, 1.01397751469,
91     0.867069376285, 0.721500455585, 0.593906509971 },
92   { 2.62502345193, 1.69112867013, 1.17180569821, 1.3342742857, 1.28513006198,
93     1.13381474809, 0.962064122248, 0.802254508198 },
94   { 1.26180942886, 1.17180569821, 0.944981930573, 0.990876405848,
95     0.995903384143, 0.926972725286, 0.820534991409, 0.706020324706 },
96   { 1.11019789803, 1.3342742857, 0.990876405848, 0.831632933426, 0.77418706195,
97     0.725539939514, 0.661776842059, 0.587716619023 },
98   { 1.01397751469, 1.28513006198, 0.995903384143, 0.77418706195, 0.653238524286,
99     0.584635025748, 0.531064164893, 0.478717061273 },
100   { 0.867069376285, 1.13381474809, 0.926972725286, 0.725539939514,
101     0.584635025748, 0.496936637883, 0.438694579826, 0.393021669543 },
102   { 0.721500455585, 0.962064122248, 0.820534991409, 0.661776842059,
103     0.531064164893, 0.438694579826, 0.375820256136, 0.330555063063 },
104   { 0.593906509971, 0.802254508198, 0.706020324706, 0.587716619023,
105     0.478717061273, 0.393021669543, 0.330555063063, 0.285345396658 }
106 };
107 
convert_score_db(double _score,double _weight,int bit_depth)108 static double convert_score_db(double _score, double _weight, int bit_depth) {
109   int16_t pix_max = 255;
110   assert(_score * _weight >= 0.0);
111   if (bit_depth == 10)
112     pix_max = 1023;
113   else if (bit_depth == 12)
114     pix_max = 4095;
115 
116   if (_weight * _score < pix_max * pix_max * 1e-10) return MAX_PSNR;
117   return 10 * (log10(pix_max * pix_max) - log10(_weight * _score));
118 }
119 
calc_psnrhvs(const unsigned char * src,int _systride,const unsigned char * dst,int _dystride,double _par,int _w,int _h,int _step,const double _csf[8][8],uint32_t bit_depth,uint32_t _shift)120 static double calc_psnrhvs(const unsigned char *src, int _systride,
121                            const unsigned char *dst, int _dystride, double _par,
122                            int _w, int _h, int _step, const double _csf[8][8],
123                            uint32_t bit_depth, uint32_t _shift) {
124   double ret;
125   const uint8_t *_src8 = src;
126   const uint8_t *_dst8 = dst;
127   const uint16_t *_src16 = CONVERT_TO_SHORTPTR(src);
128   const uint16_t *_dst16 = CONVERT_TO_SHORTPTR(dst);
129   int16_t dct_s[8 * 8], dct_d[8 * 8];
130   tran_low_t dct_s_coef[8 * 8], dct_d_coef[8 * 8];
131   double mask[8][8];
132   int pixels;
133   int x;
134   int y;
135   (void)_par;
136   ret = pixels = 0;
137 
138   /*In the PSNR-HVS-M paper[1] the authors describe the construction of
139    their masking table as "we have used the quantization table for the
140    color component Y of JPEG [6] that has been also obtained on the
141    basis of CSF. Note that the values in quantization table JPEG have
142    been normalized and then squared." Their CSF matrix (from PSNR-HVS)
143    was also constructed from the JPEG matrices. I can not find any obvious
144    scheme of normalizing to produce their table, but if I multiply their
145    CSF by 0.38857 and square the result I get their masking table.
146    I have no idea where this constant comes from, but deviating from it
147    too greatly hurts MOS agreement.
148 
149    [1] Nikolay Ponomarenko, Flavia Silvestri, Karen Egiazarian, Marco Carli,
150    Jaakko Astola, Vladimir Lukin, "On between-coefficient contrast masking
151    of DCT basis functions", CD-ROM Proceedings of the Third
152    International Workshop on Video Processing and Quality Metrics for Consumer
153    Electronics VPQM-07, Scottsdale, Arizona, USA, 25-26 January, 2007, 4 p.*/
154   for (x = 0; x < 8; x++)
155     for (y = 0; y < 8; y++)
156       mask[x][y] =
157           (_csf[x][y] * 0.3885746225901003) * (_csf[x][y] * 0.3885746225901003);
158   for (y = 0; y < _h - 7; y += _step) {
159     for (x = 0; x < _w - 7; x += _step) {
160       int i;
161       int j;
162       double s_means[4];
163       double d_means[4];
164       double s_vars[4];
165       double d_vars[4];
166       double s_gmean = 0;
167       double d_gmean = 0;
168       double s_gvar = 0;
169       double d_gvar = 0;
170       double s_mask = 0;
171       double d_mask = 0;
172       for (i = 0; i < 4; i++)
173         s_means[i] = d_means[i] = s_vars[i] = d_vars[i] = 0;
174       for (i = 0; i < 8; i++) {
175         for (j = 0; j < 8; j++) {
176           int sub = ((i & 12) >> 2) + ((j & 12) >> 1);
177           if (bit_depth == 8 && _shift == 0) {
178             dct_s[i * 8 + j] = _src8[(y + i) * _systride + (j + x)];
179             dct_d[i * 8 + j] = _dst8[(y + i) * _dystride + (j + x)];
180           } else if (bit_depth == 10 || bit_depth == 12) {
181             dct_s[i * 8 + j] = _src16[(y + i) * _systride + (j + x)] >> _shift;
182             dct_d[i * 8 + j] = _dst16[(y + i) * _dystride + (j + x)] >> _shift;
183           }
184           s_gmean += dct_s[i * 8 + j];
185           d_gmean += dct_d[i * 8 + j];
186           s_means[sub] += dct_s[i * 8 + j];
187           d_means[sub] += dct_d[i * 8 + j];
188         }
189       }
190       s_gmean /= 64.f;
191       d_gmean /= 64.f;
192       for (i = 0; i < 4; i++) s_means[i] /= 16.f;
193       for (i = 0; i < 4; i++) d_means[i] /= 16.f;
194       for (i = 0; i < 8; i++) {
195         for (j = 0; j < 8; j++) {
196           int sub = ((i & 12) >> 2) + ((j & 12) >> 1);
197           s_gvar += (dct_s[i * 8 + j] - s_gmean) * (dct_s[i * 8 + j] - s_gmean);
198           d_gvar += (dct_d[i * 8 + j] - d_gmean) * (dct_d[i * 8 + j] - d_gmean);
199           s_vars[sub] += (dct_s[i * 8 + j] - s_means[sub]) *
200                          (dct_s[i * 8 + j] - s_means[sub]);
201           d_vars[sub] += (dct_d[i * 8 + j] - d_means[sub]) *
202                          (dct_d[i * 8 + j] - d_means[sub]);
203         }
204       }
205       s_gvar *= 1 / 63.f * 64;
206       d_gvar *= 1 / 63.f * 64;
207       for (i = 0; i < 4; i++) s_vars[i] *= 1 / 15.f * 16;
208       for (i = 0; i < 4; i++) d_vars[i] *= 1 / 15.f * 16;
209       if (s_gvar > 0)
210         s_gvar = (s_vars[0] + s_vars[1] + s_vars[2] + s_vars[3]) / s_gvar;
211       if (d_gvar > 0)
212         d_gvar = (d_vars[0] + d_vars[1] + d_vars[2] + d_vars[3]) / d_gvar;
213 #if CONFIG_VP9_HIGHBITDEPTH
214       if (bit_depth == 10 || bit_depth == 12) {
215         hbd_od_bin_fdct8x8(dct_s_coef, 8, dct_s, 8);
216         hbd_od_bin_fdct8x8(dct_d_coef, 8, dct_d, 8);
217       }
218 #endif
219       if (bit_depth == 8) {
220         od_bin_fdct8x8(dct_s_coef, 8, dct_s, 8);
221         od_bin_fdct8x8(dct_d_coef, 8, dct_d, 8);
222       }
223       for (i = 0; i < 8; i++)
224         for (j = (i == 0); j < 8; j++)
225           s_mask += dct_s_coef[i * 8 + j] * dct_s_coef[i * 8 + j] * mask[i][j];
226       for (i = 0; i < 8; i++)
227         for (j = (i == 0); j < 8; j++)
228           d_mask += dct_d_coef[i * 8 + j] * dct_d_coef[i * 8 + j] * mask[i][j];
229       s_mask = sqrt(s_mask * s_gvar) / 32.f;
230       d_mask = sqrt(d_mask * d_gvar) / 32.f;
231       if (d_mask > s_mask) s_mask = d_mask;
232       for (i = 0; i < 8; i++) {
233         for (j = 0; j < 8; j++) {
234           double err;
235           err = fabs((double)(dct_s_coef[i * 8 + j] - dct_d_coef[i * 8 + j]));
236           if (i != 0 || j != 0)
237             err = err < s_mask / mask[i][j] ? 0 : err - s_mask / mask[i][j];
238           ret += (err * _csf[i][j]) * (err * _csf[i][j]);
239           pixels++;
240         }
241       }
242     }
243   }
244   if (pixels <= 0) return 0;
245   ret /= pixels;
246   return ret;
247 }
248 
vpx_psnrhvs(const YV12_BUFFER_CONFIG * src,const YV12_BUFFER_CONFIG * dest,double * y_psnrhvs,double * u_psnrhvs,double * v_psnrhvs,uint32_t bd,uint32_t in_bd)249 double vpx_psnrhvs(const YV12_BUFFER_CONFIG *src,
250                    const YV12_BUFFER_CONFIG *dest, double *y_psnrhvs,
251                    double *u_psnrhvs, double *v_psnrhvs, uint32_t bd,
252                    uint32_t in_bd) {
253   double psnrhvs;
254   const double par = 1.0;
255   const int step = 7;
256   uint32_t bd_shift = 0;
257   vpx_clear_system_state();
258 
259   assert(bd == 8 || bd == 10 || bd == 12);
260   assert(bd >= in_bd);
261 
262   bd_shift = bd - in_bd;
263 
264   *y_psnrhvs = calc_psnrhvs(src->y_buffer, src->y_stride, dest->y_buffer,
265                             dest->y_stride, par, src->y_crop_width,
266                             src->y_crop_height, step, csf_y, bd, bd_shift);
267   *u_psnrhvs = calc_psnrhvs(src->u_buffer, src->uv_stride, dest->u_buffer,
268                             dest->uv_stride, par, src->uv_crop_width,
269                             src->uv_crop_height, step, csf_cb420, bd, bd_shift);
270   *v_psnrhvs = calc_psnrhvs(src->v_buffer, src->uv_stride, dest->v_buffer,
271                             dest->uv_stride, par, src->uv_crop_width,
272                             src->uv_crop_height, step, csf_cr420, bd, bd_shift);
273   psnrhvs = (*y_psnrhvs) * .8 + .1 * ((*u_psnrhvs) + (*v_psnrhvs));
274   return convert_score_db(psnrhvs, 1.0, in_bd);
275 }
276