1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Parcel"
18 //#define LOG_NDEBUG 0
19 
20 #include <errno.h>
21 #include <fcntl.h>
22 #include <inttypes.h>
23 #include <pthread.h>
24 #include <stdint.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <sys/mman.h>
28 #include <sys/stat.h>
29 #include <sys/types.h>
30 #include <sys/resource.h>
31 #include <unistd.h>
32 
33 #include <binder/Binder.h>
34 #include <binder/BpBinder.h>
35 #include <binder/IPCThreadState.h>
36 #include <binder/Parcel.h>
37 #include <binder/ProcessState.h>
38 #include <binder/Status.h>
39 #include <binder/TextOutput.h>
40 #include <binder/Value.h>
41 
42 #include <cutils/ashmem.h>
43 #include <utils/Debug.h>
44 #include <utils/Flattenable.h>
45 #include <utils/Log.h>
46 #include <utils/misc.h>
47 #include <utils/String8.h>
48 #include <utils/String16.h>
49 
50 #include <private/binder/binder_module.h>
51 #include <private/binder/Static.h>
52 
53 #ifndef INT32_MAX
54 #define INT32_MAX ((int32_t)(2147483647))
55 #endif
56 
57 #define LOG_REFS(...)
58 //#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
59 #define LOG_ALLOC(...)
60 //#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
61 
62 // ---------------------------------------------------------------------------
63 
64 // This macro should never be used at runtime, as a too large value
65 // of s could cause an integer overflow. Instead, you should always
66 // use the wrapper function pad_size()
67 #define PAD_SIZE_UNSAFE(s) (((s)+3)&~3)
68 
pad_size(size_t s)69 static size_t pad_size(size_t s) {
70     if (s > (SIZE_T_MAX - 3)) {
71         abort();
72     }
73     return PAD_SIZE_UNSAFE(s);
74 }
75 
76 // Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
77 #define STRICT_MODE_PENALTY_GATHER (0x40 << 16)
78 
79 // XXX This can be made public if we want to provide
80 // support for typed data.
81 struct small_flat_data
82 {
83     uint32_t type;
84     uint32_t data;
85 };
86 
87 namespace android {
88 
89 static pthread_mutex_t gParcelGlobalAllocSizeLock = PTHREAD_MUTEX_INITIALIZER;
90 static size_t gParcelGlobalAllocSize = 0;
91 static size_t gParcelGlobalAllocCount = 0;
92 
93 static size_t gMaxFds = 0;
94 
95 // Maximum size of a blob to transfer in-place.
96 static const size_t BLOB_INPLACE_LIMIT = 16 * 1024;
97 
98 enum {
99     BLOB_INPLACE = 0,
100     BLOB_ASHMEM_IMMUTABLE = 1,
101     BLOB_ASHMEM_MUTABLE = 2,
102 };
103 
acquire_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who,size_t * outAshmemSize)104 void acquire_object(const sp<ProcessState>& proc,
105     const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
106 {
107     switch (obj.type) {
108         case BINDER_TYPE_BINDER:
109             if (obj.binder) {
110                 LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);
111                 reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
112             }
113             return;
114         case BINDER_TYPE_WEAK_BINDER:
115             if (obj.binder)
116                 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);
117             return;
118         case BINDER_TYPE_HANDLE: {
119             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
120             if (b != NULL) {
121                 LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
122                 b->incStrong(who);
123             }
124             return;
125         }
126         case BINDER_TYPE_WEAK_HANDLE: {
127             const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
128             if (b != NULL) b.get_refs()->incWeak(who);
129             return;
130         }
131         case BINDER_TYPE_FD: {
132             if ((obj.cookie != 0) && (outAshmemSize != NULL) && ashmem_valid(obj.handle)) {
133                 // If we own an ashmem fd, keep track of how much memory it refers to.
134                 int size = ashmem_get_size_region(obj.handle);
135                 if (size > 0) {
136                     *outAshmemSize += size;
137                 }
138             }
139             return;
140         }
141     }
142 
143     ALOGD("Invalid object type 0x%08x", obj.type);
144 }
145 
acquire_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)146 void acquire_object(const sp<ProcessState>& proc,
147     const flat_binder_object& obj, const void* who)
148 {
149     acquire_object(proc, obj, who, NULL);
150 }
151 
release_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who,size_t * outAshmemSize)152 static void release_object(const sp<ProcessState>& proc,
153     const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
154 {
155     switch (obj.type) {
156         case BINDER_TYPE_BINDER:
157             if (obj.binder) {
158                 LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);
159                 reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
160             }
161             return;
162         case BINDER_TYPE_WEAK_BINDER:
163             if (obj.binder)
164                 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);
165             return;
166         case BINDER_TYPE_HANDLE: {
167             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
168             if (b != NULL) {
169                 LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
170                 b->decStrong(who);
171             }
172             return;
173         }
174         case BINDER_TYPE_WEAK_HANDLE: {
175             const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
176             if (b != NULL) b.get_refs()->decWeak(who);
177             return;
178         }
179         case BINDER_TYPE_FD: {
180             if (obj.cookie != 0) { // owned
181                 if ((outAshmemSize != NULL) && ashmem_valid(obj.handle)) {
182                     int size = ashmem_get_size_region(obj.handle);
183                     if (size > 0) {
184                         *outAshmemSize -= size;
185                     }
186                 }
187 
188                 close(obj.handle);
189             }
190             return;
191         }
192     }
193 
194     ALOGE("Invalid object type 0x%08x", obj.type);
195 }
196 
release_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)197 void release_object(const sp<ProcessState>& proc,
198     const flat_binder_object& obj, const void* who)
199 {
200     release_object(proc, obj, who, NULL);
201 }
202 
finish_flatten_binder(const sp<IBinder> &,const flat_binder_object & flat,Parcel * out)203 inline static status_t finish_flatten_binder(
204     const sp<IBinder>& /*binder*/, const flat_binder_object& flat, Parcel* out)
205 {
206     return out->writeObject(flat, false);
207 }
208 
flatten_binder(const sp<ProcessState> &,const sp<IBinder> & binder,Parcel * out)209 status_t flatten_binder(const sp<ProcessState>& /*proc*/,
210     const sp<IBinder>& binder, Parcel* out)
211 {
212     flat_binder_object obj;
213 
214     if (IPCThreadState::self()->backgroundSchedulingDisabled()) {
215         /* minimum priority for all nodes is nice 0 */
216         obj.flags = FLAT_BINDER_FLAG_ACCEPTS_FDS;
217     } else {
218         /* minimum priority for all nodes is MAX_NICE(19) */
219         obj.flags = 0x13 | FLAT_BINDER_FLAG_ACCEPTS_FDS;
220     }
221 
222     if (binder != NULL) {
223         IBinder *local = binder->localBinder();
224         if (!local) {
225             BpBinder *proxy = binder->remoteBinder();
226             if (proxy == NULL) {
227                 ALOGE("null proxy");
228             }
229             const int32_t handle = proxy ? proxy->handle() : 0;
230             obj.type = BINDER_TYPE_HANDLE;
231             obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
232             obj.handle = handle;
233             obj.cookie = 0;
234         } else {
235             obj.type = BINDER_TYPE_BINDER;
236             obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
237             obj.cookie = reinterpret_cast<uintptr_t>(local);
238         }
239     } else {
240         obj.type = BINDER_TYPE_BINDER;
241         obj.binder = 0;
242         obj.cookie = 0;
243     }
244 
245     return finish_flatten_binder(binder, obj, out);
246 }
247 
flatten_binder(const sp<ProcessState> &,const wp<IBinder> & binder,Parcel * out)248 status_t flatten_binder(const sp<ProcessState>& /*proc*/,
249     const wp<IBinder>& binder, Parcel* out)
250 {
251     flat_binder_object obj;
252 
253     obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
254     if (binder != NULL) {
255         sp<IBinder> real = binder.promote();
256         if (real != NULL) {
257             IBinder *local = real->localBinder();
258             if (!local) {
259                 BpBinder *proxy = real->remoteBinder();
260                 if (proxy == NULL) {
261                     ALOGE("null proxy");
262                 }
263                 const int32_t handle = proxy ? proxy->handle() : 0;
264                 obj.type = BINDER_TYPE_WEAK_HANDLE;
265                 obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
266                 obj.handle = handle;
267                 obj.cookie = 0;
268             } else {
269                 obj.type = BINDER_TYPE_WEAK_BINDER;
270                 obj.binder = reinterpret_cast<uintptr_t>(binder.get_refs());
271                 obj.cookie = reinterpret_cast<uintptr_t>(binder.unsafe_get());
272             }
273             return finish_flatten_binder(real, obj, out);
274         }
275 
276         // XXX How to deal?  In order to flatten the given binder,
277         // we need to probe it for information, which requires a primary
278         // reference...  but we don't have one.
279         //
280         // The OpenBinder implementation uses a dynamic_cast<> here,
281         // but we can't do that with the different reference counting
282         // implementation we are using.
283         ALOGE("Unable to unflatten Binder weak reference!");
284         obj.type = BINDER_TYPE_BINDER;
285         obj.binder = 0;
286         obj.cookie = 0;
287         return finish_flatten_binder(NULL, obj, out);
288 
289     } else {
290         obj.type = BINDER_TYPE_BINDER;
291         obj.binder = 0;
292         obj.cookie = 0;
293         return finish_flatten_binder(NULL, obj, out);
294     }
295 }
296 
finish_unflatten_binder(BpBinder *,const flat_binder_object &,const Parcel &)297 inline static status_t finish_unflatten_binder(
298     BpBinder* /*proxy*/, const flat_binder_object& /*flat*/,
299     const Parcel& /*in*/)
300 {
301     return NO_ERROR;
302 }
303 
unflatten_binder(const sp<ProcessState> & proc,const Parcel & in,sp<IBinder> * out)304 status_t unflatten_binder(const sp<ProcessState>& proc,
305     const Parcel& in, sp<IBinder>* out)
306 {
307     const flat_binder_object* flat = in.readObject(false);
308 
309     if (flat) {
310         switch (flat->type) {
311             case BINDER_TYPE_BINDER:
312                 *out = reinterpret_cast<IBinder*>(flat->cookie);
313                 return finish_unflatten_binder(NULL, *flat, in);
314             case BINDER_TYPE_HANDLE:
315                 *out = proc->getStrongProxyForHandle(flat->handle);
316                 return finish_unflatten_binder(
317                     static_cast<BpBinder*>(out->get()), *flat, in);
318         }
319     }
320     return BAD_TYPE;
321 }
322 
unflatten_binder(const sp<ProcessState> & proc,const Parcel & in,wp<IBinder> * out)323 status_t unflatten_binder(const sp<ProcessState>& proc,
324     const Parcel& in, wp<IBinder>* out)
325 {
326     const flat_binder_object* flat = in.readObject(false);
327 
328     if (flat) {
329         switch (flat->type) {
330             case BINDER_TYPE_BINDER:
331                 *out = reinterpret_cast<IBinder*>(flat->cookie);
332                 return finish_unflatten_binder(NULL, *flat, in);
333             case BINDER_TYPE_WEAK_BINDER:
334                 if (flat->binder != 0) {
335                     out->set_object_and_refs(
336                         reinterpret_cast<IBinder*>(flat->cookie),
337                         reinterpret_cast<RefBase::weakref_type*>(flat->binder));
338                 } else {
339                     *out = NULL;
340                 }
341                 return finish_unflatten_binder(NULL, *flat, in);
342             case BINDER_TYPE_HANDLE:
343             case BINDER_TYPE_WEAK_HANDLE:
344                 *out = proc->getWeakProxyForHandle(flat->handle);
345                 return finish_unflatten_binder(
346                     static_cast<BpBinder*>(out->unsafe_get()), *flat, in);
347         }
348     }
349     return BAD_TYPE;
350 }
351 
352 // ---------------------------------------------------------------------------
353 
Parcel()354 Parcel::Parcel()
355 {
356     LOG_ALLOC("Parcel %p: constructing", this);
357     initState();
358 }
359 
~Parcel()360 Parcel::~Parcel()
361 {
362     freeDataNoInit();
363     LOG_ALLOC("Parcel %p: destroyed", this);
364 }
365 
getGlobalAllocSize()366 size_t Parcel::getGlobalAllocSize() {
367     pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
368     size_t size = gParcelGlobalAllocSize;
369     pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
370     return size;
371 }
372 
getGlobalAllocCount()373 size_t Parcel::getGlobalAllocCount() {
374     pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
375     size_t count = gParcelGlobalAllocCount;
376     pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
377     return count;
378 }
379 
data() const380 const uint8_t* Parcel::data() const
381 {
382     return mData;
383 }
384 
dataSize() const385 size_t Parcel::dataSize() const
386 {
387     return (mDataSize > mDataPos ? mDataSize : mDataPos);
388 }
389 
dataAvail() const390 size_t Parcel::dataAvail() const
391 {
392     size_t result = dataSize() - dataPosition();
393     if (result > INT32_MAX) {
394         abort();
395     }
396     return result;
397 }
398 
dataPosition() const399 size_t Parcel::dataPosition() const
400 {
401     return mDataPos;
402 }
403 
dataCapacity() const404 size_t Parcel::dataCapacity() const
405 {
406     return mDataCapacity;
407 }
408 
setDataSize(size_t size)409 status_t Parcel::setDataSize(size_t size)
410 {
411     if (size > INT32_MAX) {
412         // don't accept size_t values which may have come from an
413         // inadvertent conversion from a negative int.
414         return BAD_VALUE;
415     }
416 
417     status_t err;
418     err = continueWrite(size);
419     if (err == NO_ERROR) {
420         mDataSize = size;
421         ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
422     }
423     return err;
424 }
425 
setDataPosition(size_t pos) const426 void Parcel::setDataPosition(size_t pos) const
427 {
428     if (pos > INT32_MAX) {
429         // don't accept size_t values which may have come from an
430         // inadvertent conversion from a negative int.
431         abort();
432     }
433 
434     mDataPos = pos;
435     mNextObjectHint = 0;
436 }
437 
setDataCapacity(size_t size)438 status_t Parcel::setDataCapacity(size_t size)
439 {
440     if (size > INT32_MAX) {
441         // don't accept size_t values which may have come from an
442         // inadvertent conversion from a negative int.
443         return BAD_VALUE;
444     }
445 
446     if (size > mDataCapacity) return continueWrite(size);
447     return NO_ERROR;
448 }
449 
setData(const uint8_t * buffer,size_t len)450 status_t Parcel::setData(const uint8_t* buffer, size_t len)
451 {
452     if (len > INT32_MAX) {
453         // don't accept size_t values which may have come from an
454         // inadvertent conversion from a negative int.
455         return BAD_VALUE;
456     }
457 
458     status_t err = restartWrite(len);
459     if (err == NO_ERROR) {
460         memcpy(const_cast<uint8_t*>(data()), buffer, len);
461         mDataSize = len;
462         mFdsKnown = false;
463     }
464     return err;
465 }
466 
appendFrom(const Parcel * parcel,size_t offset,size_t len)467 status_t Parcel::appendFrom(const Parcel *parcel, size_t offset, size_t len)
468 {
469     const sp<ProcessState> proc(ProcessState::self());
470     status_t err;
471     const uint8_t *data = parcel->mData;
472     const binder_size_t *objects = parcel->mObjects;
473     size_t size = parcel->mObjectsSize;
474     int startPos = mDataPos;
475     int firstIndex = -1, lastIndex = -2;
476 
477     if (len == 0) {
478         return NO_ERROR;
479     }
480 
481     if (len > INT32_MAX) {
482         // don't accept size_t values which may have come from an
483         // inadvertent conversion from a negative int.
484         return BAD_VALUE;
485     }
486 
487     // range checks against the source parcel size
488     if ((offset > parcel->mDataSize)
489             || (len > parcel->mDataSize)
490             || (offset + len > parcel->mDataSize)) {
491         return BAD_VALUE;
492     }
493 
494     // Count objects in range
495     for (int i = 0; i < (int) size; i++) {
496         size_t off = objects[i];
497         if ((off >= offset) && (off + sizeof(flat_binder_object) <= offset + len)) {
498             if (firstIndex == -1) {
499                 firstIndex = i;
500             }
501             lastIndex = i;
502         }
503     }
504     int numObjects = lastIndex - firstIndex + 1;
505 
506     if ((mDataSize+len) > mDataCapacity) {
507         // grow data
508         err = growData(len);
509         if (err != NO_ERROR) {
510             return err;
511         }
512     }
513 
514     // append data
515     memcpy(mData + mDataPos, data + offset, len);
516     mDataPos += len;
517     mDataSize += len;
518 
519     err = NO_ERROR;
520 
521     if (numObjects > 0) {
522         // grow objects
523         if (mObjectsCapacity < mObjectsSize + numObjects) {
524             size_t newSize = ((mObjectsSize + numObjects)*3)/2;
525             if (newSize*sizeof(binder_size_t) < mObjectsSize) return NO_MEMORY;   // overflow
526             binder_size_t *objects =
527                 (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
528             if (objects == (binder_size_t*)0) {
529                 return NO_MEMORY;
530             }
531             mObjects = objects;
532             mObjectsCapacity = newSize;
533         }
534 
535         // append and acquire objects
536         int idx = mObjectsSize;
537         for (int i = firstIndex; i <= lastIndex; i++) {
538             size_t off = objects[i] - offset + startPos;
539             mObjects[idx++] = off;
540             mObjectsSize++;
541 
542             flat_binder_object* flat
543                 = reinterpret_cast<flat_binder_object*>(mData + off);
544             acquire_object(proc, *flat, this, &mOpenAshmemSize);
545 
546             if (flat->type == BINDER_TYPE_FD) {
547                 // If this is a file descriptor, we need to dup it so the
548                 // new Parcel now owns its own fd, and can declare that we
549                 // officially know we have fds.
550                 flat->handle = fcntl(flat->handle, F_DUPFD_CLOEXEC, 0);
551                 flat->cookie = 1;
552                 mHasFds = mFdsKnown = true;
553                 if (!mAllowFds) {
554                     err = FDS_NOT_ALLOWED;
555                 }
556             }
557         }
558     }
559 
560     return err;
561 }
562 
compareData(const Parcel & other)563 int Parcel::compareData(const Parcel& other) {
564     size_t size = dataSize();
565     if (size != other.dataSize()) {
566         return size < other.dataSize() ? -1 : 1;
567     }
568     return memcmp(data(), other.data(), size);
569 }
570 
allowFds() const571 bool Parcel::allowFds() const
572 {
573     return mAllowFds;
574 }
575 
pushAllowFds(bool allowFds)576 bool Parcel::pushAllowFds(bool allowFds)
577 {
578     const bool origValue = mAllowFds;
579     if (!allowFds) {
580         mAllowFds = false;
581     }
582     return origValue;
583 }
584 
restoreAllowFds(bool lastValue)585 void Parcel::restoreAllowFds(bool lastValue)
586 {
587     mAllowFds = lastValue;
588 }
589 
hasFileDescriptors() const590 bool Parcel::hasFileDescriptors() const
591 {
592     if (!mFdsKnown) {
593         scanForFds();
594     }
595     return mHasFds;
596 }
597 
598 // Write RPC headers.  (previously just the interface token)
writeInterfaceToken(const String16 & interface)599 status_t Parcel::writeInterfaceToken(const String16& interface)
600 {
601     writeInt32(IPCThreadState::self()->getStrictModePolicy() |
602                STRICT_MODE_PENALTY_GATHER);
603     // currently the interface identification token is just its name as a string
604     return writeString16(interface);
605 }
606 
checkInterface(IBinder * binder) const607 bool Parcel::checkInterface(IBinder* binder) const
608 {
609     return enforceInterface(binder->getInterfaceDescriptor());
610 }
611 
enforceInterface(const String16 & interface,IPCThreadState * threadState) const612 bool Parcel::enforceInterface(const String16& interface,
613                               IPCThreadState* threadState) const
614 {
615     int32_t strictPolicy = readInt32();
616     if (threadState == NULL) {
617         threadState = IPCThreadState::self();
618     }
619     if ((threadState->getLastTransactionBinderFlags() &
620          IBinder::FLAG_ONEWAY) != 0) {
621       // For one-way calls, the callee is running entirely
622       // disconnected from the caller, so disable StrictMode entirely.
623       // Not only does disk/network usage not impact the caller, but
624       // there's no way to commuicate back any violations anyway.
625       threadState->setStrictModePolicy(0);
626     } else {
627       threadState->setStrictModePolicy(strictPolicy);
628     }
629     const String16 str(readString16());
630     if (str == interface) {
631         return true;
632     } else {
633         ALOGW("**** enforceInterface() expected '%s' but read '%s'",
634                 String8(interface).string(), String8(str).string());
635         return false;
636     }
637 }
638 
objects() const639 const binder_size_t* Parcel::objects() const
640 {
641     return mObjects;
642 }
643 
objectsCount() const644 size_t Parcel::objectsCount() const
645 {
646     return mObjectsSize;
647 }
648 
errorCheck() const649 status_t Parcel::errorCheck() const
650 {
651     return mError;
652 }
653 
setError(status_t err)654 void Parcel::setError(status_t err)
655 {
656     mError = err;
657 }
658 
finishWrite(size_t len)659 status_t Parcel::finishWrite(size_t len)
660 {
661     if (len > INT32_MAX) {
662         // don't accept size_t values which may have come from an
663         // inadvertent conversion from a negative int.
664         return BAD_VALUE;
665     }
666 
667     //printf("Finish write of %d\n", len);
668     mDataPos += len;
669     ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
670     if (mDataPos > mDataSize) {
671         mDataSize = mDataPos;
672         ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
673     }
674     //printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
675     return NO_ERROR;
676 }
677 
writeUnpadded(const void * data,size_t len)678 status_t Parcel::writeUnpadded(const void* data, size_t len)
679 {
680     if (len > INT32_MAX) {
681         // don't accept size_t values which may have come from an
682         // inadvertent conversion from a negative int.
683         return BAD_VALUE;
684     }
685 
686     size_t end = mDataPos + len;
687     if (end < mDataPos) {
688         // integer overflow
689         return BAD_VALUE;
690     }
691 
692     if (end <= mDataCapacity) {
693 restart_write:
694         memcpy(mData+mDataPos, data, len);
695         return finishWrite(len);
696     }
697 
698     status_t err = growData(len);
699     if (err == NO_ERROR) goto restart_write;
700     return err;
701 }
702 
write(const void * data,size_t len)703 status_t Parcel::write(const void* data, size_t len)
704 {
705     if (len > INT32_MAX) {
706         // don't accept size_t values which may have come from an
707         // inadvertent conversion from a negative int.
708         return BAD_VALUE;
709     }
710 
711     void* const d = writeInplace(len);
712     if (d) {
713         memcpy(d, data, len);
714         return NO_ERROR;
715     }
716     return mError;
717 }
718 
writeInplace(size_t len)719 void* Parcel::writeInplace(size_t len)
720 {
721     if (len > INT32_MAX) {
722         // don't accept size_t values which may have come from an
723         // inadvertent conversion from a negative int.
724         return NULL;
725     }
726 
727     const size_t padded = pad_size(len);
728 
729     // sanity check for integer overflow
730     if (mDataPos+padded < mDataPos) {
731         return NULL;
732     }
733 
734     if ((mDataPos+padded) <= mDataCapacity) {
735 restart_write:
736         //printf("Writing %ld bytes, padded to %ld\n", len, padded);
737         uint8_t* const data = mData+mDataPos;
738 
739         // Need to pad at end?
740         if (padded != len) {
741 #if BYTE_ORDER == BIG_ENDIAN
742             static const uint32_t mask[4] = {
743                 0x00000000, 0xffffff00, 0xffff0000, 0xff000000
744             };
745 #endif
746 #if BYTE_ORDER == LITTLE_ENDIAN
747             static const uint32_t mask[4] = {
748                 0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
749             };
750 #endif
751             //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
752             //    *reinterpret_cast<void**>(data+padded-4));
753             *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
754         }
755 
756         finishWrite(padded);
757         return data;
758     }
759 
760     status_t err = growData(padded);
761     if (err == NO_ERROR) goto restart_write;
762     return NULL;
763 }
764 
writeUtf8AsUtf16(const std::string & str)765 status_t Parcel::writeUtf8AsUtf16(const std::string& str) {
766     const uint8_t* strData = (uint8_t*)str.data();
767     const size_t strLen= str.length();
768     const ssize_t utf16Len = utf8_to_utf16_length(strData, strLen);
769     if (utf16Len < 0 || utf16Len > std::numeric_limits<int32_t>::max()) {
770         return BAD_VALUE;
771     }
772 
773     status_t err = writeInt32(utf16Len);
774     if (err) {
775         return err;
776     }
777 
778     // Allocate enough bytes to hold our converted string and its terminating NULL.
779     void* dst = writeInplace((utf16Len + 1) * sizeof(char16_t));
780     if (!dst) {
781         return NO_MEMORY;
782     }
783 
784     utf8_to_utf16(strData, strLen, (char16_t*)dst, (size_t) utf16Len + 1);
785 
786     return NO_ERROR;
787 }
788 
writeUtf8AsUtf16(const std::unique_ptr<std::string> & str)789 status_t Parcel::writeUtf8AsUtf16(const std::unique_ptr<std::string>& str) {
790   if (!str) {
791     return writeInt32(-1);
792   }
793   return writeUtf8AsUtf16(*str);
794 }
795 
796 namespace {
797 
798 template<typename T>
writeByteVectorInternal(Parcel * parcel,const std::vector<T> & val)799 status_t writeByteVectorInternal(Parcel* parcel, const std::vector<T>& val)
800 {
801     status_t status;
802     if (val.size() > std::numeric_limits<int32_t>::max()) {
803         status = BAD_VALUE;
804         return status;
805     }
806 
807     status = parcel->writeInt32(val.size());
808     if (status != OK) {
809         return status;
810     }
811 
812     void* data = parcel->writeInplace(val.size());
813     if (!data) {
814         status = BAD_VALUE;
815         return status;
816     }
817 
818     memcpy(data, val.data(), val.size());
819     return status;
820 }
821 
822 template<typename T>
writeByteVectorInternalPtr(Parcel * parcel,const std::unique_ptr<std::vector<T>> & val)823 status_t writeByteVectorInternalPtr(Parcel* parcel,
824                                     const std::unique_ptr<std::vector<T>>& val)
825 {
826     if (!val) {
827         return parcel->writeInt32(-1);
828     }
829 
830     return writeByteVectorInternal(parcel, *val);
831 }
832 
833 }  // namespace
834 
writeByteVector(const std::vector<int8_t> & val)835 status_t Parcel::writeByteVector(const std::vector<int8_t>& val) {
836     return writeByteVectorInternal(this, val);
837 }
838 
writeByteVector(const std::unique_ptr<std::vector<int8_t>> & val)839 status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<int8_t>>& val)
840 {
841     return writeByteVectorInternalPtr(this, val);
842 }
843 
writeByteVector(const std::vector<uint8_t> & val)844 status_t Parcel::writeByteVector(const std::vector<uint8_t>& val) {
845     return writeByteVectorInternal(this, val);
846 }
847 
writeByteVector(const std::unique_ptr<std::vector<uint8_t>> & val)848 status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<uint8_t>>& val)
849 {
850     return writeByteVectorInternalPtr(this, val);
851 }
852 
writeInt32Vector(const std::vector<int32_t> & val)853 status_t Parcel::writeInt32Vector(const std::vector<int32_t>& val)
854 {
855     return writeTypedVector(val, &Parcel::writeInt32);
856 }
857 
writeInt32Vector(const std::unique_ptr<std::vector<int32_t>> & val)858 status_t Parcel::writeInt32Vector(const std::unique_ptr<std::vector<int32_t>>& val)
859 {
860     return writeNullableTypedVector(val, &Parcel::writeInt32);
861 }
862 
writeInt64Vector(const std::vector<int64_t> & val)863 status_t Parcel::writeInt64Vector(const std::vector<int64_t>& val)
864 {
865     return writeTypedVector(val, &Parcel::writeInt64);
866 }
867 
writeInt64Vector(const std::unique_ptr<std::vector<int64_t>> & val)868 status_t Parcel::writeInt64Vector(const std::unique_ptr<std::vector<int64_t>>& val)
869 {
870     return writeNullableTypedVector(val, &Parcel::writeInt64);
871 }
872 
writeFloatVector(const std::vector<float> & val)873 status_t Parcel::writeFloatVector(const std::vector<float>& val)
874 {
875     return writeTypedVector(val, &Parcel::writeFloat);
876 }
877 
writeFloatVector(const std::unique_ptr<std::vector<float>> & val)878 status_t Parcel::writeFloatVector(const std::unique_ptr<std::vector<float>>& val)
879 {
880     return writeNullableTypedVector(val, &Parcel::writeFloat);
881 }
882 
writeDoubleVector(const std::vector<double> & val)883 status_t Parcel::writeDoubleVector(const std::vector<double>& val)
884 {
885     return writeTypedVector(val, &Parcel::writeDouble);
886 }
887 
writeDoubleVector(const std::unique_ptr<std::vector<double>> & val)888 status_t Parcel::writeDoubleVector(const std::unique_ptr<std::vector<double>>& val)
889 {
890     return writeNullableTypedVector(val, &Parcel::writeDouble);
891 }
892 
writeBoolVector(const std::vector<bool> & val)893 status_t Parcel::writeBoolVector(const std::vector<bool>& val)
894 {
895     return writeTypedVector(val, &Parcel::writeBool);
896 }
897 
writeBoolVector(const std::unique_ptr<std::vector<bool>> & val)898 status_t Parcel::writeBoolVector(const std::unique_ptr<std::vector<bool>>& val)
899 {
900     return writeNullableTypedVector(val, &Parcel::writeBool);
901 }
902 
writeCharVector(const std::vector<char16_t> & val)903 status_t Parcel::writeCharVector(const std::vector<char16_t>& val)
904 {
905     return writeTypedVector(val, &Parcel::writeChar);
906 }
907 
writeCharVector(const std::unique_ptr<std::vector<char16_t>> & val)908 status_t Parcel::writeCharVector(const std::unique_ptr<std::vector<char16_t>>& val)
909 {
910     return writeNullableTypedVector(val, &Parcel::writeChar);
911 }
912 
writeString16Vector(const std::vector<String16> & val)913 status_t Parcel::writeString16Vector(const std::vector<String16>& val)
914 {
915     return writeTypedVector(val, &Parcel::writeString16);
916 }
917 
writeString16Vector(const std::unique_ptr<std::vector<std::unique_ptr<String16>>> & val)918 status_t Parcel::writeString16Vector(
919         const std::unique_ptr<std::vector<std::unique_ptr<String16>>>& val)
920 {
921     return writeNullableTypedVector(val, &Parcel::writeString16);
922 }
923 
writeUtf8VectorAsUtf16Vector(const std::unique_ptr<std::vector<std::unique_ptr<std::string>>> & val)924 status_t Parcel::writeUtf8VectorAsUtf16Vector(
925                         const std::unique_ptr<std::vector<std::unique_ptr<std::string>>>& val) {
926     return writeNullableTypedVector(val, &Parcel::writeUtf8AsUtf16);
927 }
928 
writeUtf8VectorAsUtf16Vector(const std::vector<std::string> & val)929 status_t Parcel::writeUtf8VectorAsUtf16Vector(const std::vector<std::string>& val) {
930     return writeTypedVector(val, &Parcel::writeUtf8AsUtf16);
931 }
932 
writeInt32(int32_t val)933 status_t Parcel::writeInt32(int32_t val)
934 {
935     return writeAligned(val);
936 }
937 
writeUint32(uint32_t val)938 status_t Parcel::writeUint32(uint32_t val)
939 {
940     return writeAligned(val);
941 }
942 
writeInt32Array(size_t len,const int32_t * val)943 status_t Parcel::writeInt32Array(size_t len, const int32_t *val) {
944     if (len > INT32_MAX) {
945         // don't accept size_t values which may have come from an
946         // inadvertent conversion from a negative int.
947         return BAD_VALUE;
948     }
949 
950     if (!val) {
951         return writeInt32(-1);
952     }
953     status_t ret = writeInt32(static_cast<uint32_t>(len));
954     if (ret == NO_ERROR) {
955         ret = write(val, len * sizeof(*val));
956     }
957     return ret;
958 }
writeByteArray(size_t len,const uint8_t * val)959 status_t Parcel::writeByteArray(size_t len, const uint8_t *val) {
960     if (len > INT32_MAX) {
961         // don't accept size_t values which may have come from an
962         // inadvertent conversion from a negative int.
963         return BAD_VALUE;
964     }
965 
966     if (!val) {
967         return writeInt32(-1);
968     }
969     status_t ret = writeInt32(static_cast<uint32_t>(len));
970     if (ret == NO_ERROR) {
971         ret = write(val, len * sizeof(*val));
972     }
973     return ret;
974 }
975 
writeBool(bool val)976 status_t Parcel::writeBool(bool val)
977 {
978     return writeInt32(int32_t(val));
979 }
980 
writeChar(char16_t val)981 status_t Parcel::writeChar(char16_t val)
982 {
983     return writeInt32(int32_t(val));
984 }
985 
writeByte(int8_t val)986 status_t Parcel::writeByte(int8_t val)
987 {
988     return writeInt32(int32_t(val));
989 }
990 
writeInt64(int64_t val)991 status_t Parcel::writeInt64(int64_t val)
992 {
993     return writeAligned(val);
994 }
995 
writeUint64(uint64_t val)996 status_t Parcel::writeUint64(uint64_t val)
997 {
998     return writeAligned(val);
999 }
1000 
writePointer(uintptr_t val)1001 status_t Parcel::writePointer(uintptr_t val)
1002 {
1003     return writeAligned<binder_uintptr_t>(val);
1004 }
1005 
writeFloat(float val)1006 status_t Parcel::writeFloat(float val)
1007 {
1008     return writeAligned(val);
1009 }
1010 
1011 #if defined(__mips__) && defined(__mips_hard_float)
1012 
writeDouble(double val)1013 status_t Parcel::writeDouble(double val)
1014 {
1015     union {
1016         double d;
1017         unsigned long long ll;
1018     } u;
1019     u.d = val;
1020     return writeAligned(u.ll);
1021 }
1022 
1023 #else
1024 
writeDouble(double val)1025 status_t Parcel::writeDouble(double val)
1026 {
1027     return writeAligned(val);
1028 }
1029 
1030 #endif
1031 
writeCString(const char * str)1032 status_t Parcel::writeCString(const char* str)
1033 {
1034     return write(str, strlen(str)+1);
1035 }
1036 
writeString8(const String8 & str)1037 status_t Parcel::writeString8(const String8& str)
1038 {
1039     status_t err = writeInt32(str.bytes());
1040     // only write string if its length is more than zero characters,
1041     // as readString8 will only read if the length field is non-zero.
1042     // this is slightly different from how writeString16 works.
1043     if (str.bytes() > 0 && err == NO_ERROR) {
1044         err = write(str.string(), str.bytes()+1);
1045     }
1046     return err;
1047 }
1048 
writeString16(const std::unique_ptr<String16> & str)1049 status_t Parcel::writeString16(const std::unique_ptr<String16>& str)
1050 {
1051     if (!str) {
1052         return writeInt32(-1);
1053     }
1054 
1055     return writeString16(*str);
1056 }
1057 
writeString16(const String16 & str)1058 status_t Parcel::writeString16(const String16& str)
1059 {
1060     return writeString16(str.string(), str.size());
1061 }
1062 
writeString16(const char16_t * str,size_t len)1063 status_t Parcel::writeString16(const char16_t* str, size_t len)
1064 {
1065     if (str == NULL) return writeInt32(-1);
1066 
1067     status_t err = writeInt32(len);
1068     if (err == NO_ERROR) {
1069         len *= sizeof(char16_t);
1070         uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
1071         if (data) {
1072             memcpy(data, str, len);
1073             *reinterpret_cast<char16_t*>(data+len) = 0;
1074             return NO_ERROR;
1075         }
1076         err = mError;
1077     }
1078     return err;
1079 }
1080 
writeStrongBinder(const sp<IBinder> & val)1081 status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
1082 {
1083     return flatten_binder(ProcessState::self(), val, this);
1084 }
1085 
writeStrongBinderVector(const std::vector<sp<IBinder>> & val)1086 status_t Parcel::writeStrongBinderVector(const std::vector<sp<IBinder>>& val)
1087 {
1088     return writeTypedVector(val, &Parcel::writeStrongBinder);
1089 }
1090 
writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>> & val)1091 status_t Parcel::writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>>& val)
1092 {
1093     return writeNullableTypedVector(val, &Parcel::writeStrongBinder);
1094 }
1095 
readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>> * val) const1096 status_t Parcel::readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>>* val) const {
1097     return readNullableTypedVector(val, &Parcel::readNullableStrongBinder);
1098 }
1099 
readStrongBinderVector(std::vector<sp<IBinder>> * val) const1100 status_t Parcel::readStrongBinderVector(std::vector<sp<IBinder>>* val) const {
1101     return readTypedVector(val, &Parcel::readStrongBinder);
1102 }
1103 
writeWeakBinder(const wp<IBinder> & val)1104 status_t Parcel::writeWeakBinder(const wp<IBinder>& val)
1105 {
1106     return flatten_binder(ProcessState::self(), val, this);
1107 }
1108 
writeRawNullableParcelable(const Parcelable * parcelable)1109 status_t Parcel::writeRawNullableParcelable(const Parcelable* parcelable) {
1110     if (!parcelable) {
1111         return writeInt32(0);
1112     }
1113 
1114     return writeParcelable(*parcelable);
1115 }
1116 
writeParcelable(const Parcelable & parcelable)1117 status_t Parcel::writeParcelable(const Parcelable& parcelable) {
1118     status_t status = writeInt32(1);  // parcelable is not null.
1119     if (status != OK) {
1120         return status;
1121     }
1122     return parcelable.writeToParcel(this);
1123 }
1124 
writeValue(const binder::Value & value)1125 status_t Parcel::writeValue(const binder::Value& value) {
1126     return value.writeToParcel(this);
1127 }
1128 
writeNativeHandle(const native_handle * handle)1129 status_t Parcel::writeNativeHandle(const native_handle* handle)
1130 {
1131     if (!handle || handle->version != sizeof(native_handle))
1132         return BAD_TYPE;
1133 
1134     status_t err;
1135     err = writeInt32(handle->numFds);
1136     if (err != NO_ERROR) return err;
1137 
1138     err = writeInt32(handle->numInts);
1139     if (err != NO_ERROR) return err;
1140 
1141     for (int i=0 ; err==NO_ERROR && i<handle->numFds ; i++)
1142         err = writeDupFileDescriptor(handle->data[i]);
1143 
1144     if (err != NO_ERROR) {
1145         ALOGD("write native handle, write dup fd failed");
1146         return err;
1147     }
1148     err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts);
1149     return err;
1150 }
1151 
writeFileDescriptor(int fd,bool takeOwnership)1152 status_t Parcel::writeFileDescriptor(int fd, bool takeOwnership)
1153 {
1154     flat_binder_object obj;
1155     obj.type = BINDER_TYPE_FD;
1156     obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
1157     obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
1158     obj.handle = fd;
1159     obj.cookie = takeOwnership ? 1 : 0;
1160     return writeObject(obj, true);
1161 }
1162 
writeDupFileDescriptor(int fd)1163 status_t Parcel::writeDupFileDescriptor(int fd)
1164 {
1165     int dupFd = fcntl(fd, F_DUPFD_CLOEXEC, 0);
1166     if (dupFd < 0) {
1167         return -errno;
1168     }
1169     status_t err = writeFileDescriptor(dupFd, true /*takeOwnership*/);
1170     if (err != OK) {
1171         close(dupFd);
1172     }
1173     return err;
1174 }
1175 
writeParcelFileDescriptor(int fd,bool takeOwnership)1176 status_t Parcel::writeParcelFileDescriptor(int fd, bool takeOwnership)
1177 {
1178     writeInt32(0);
1179     return writeFileDescriptor(fd, takeOwnership);
1180 }
1181 
writeUniqueFileDescriptor(const base::unique_fd & fd)1182 status_t Parcel::writeUniqueFileDescriptor(const base::unique_fd& fd) {
1183     return writeDupFileDescriptor(fd.get());
1184 }
1185 
writeUniqueFileDescriptorVector(const std::vector<base::unique_fd> & val)1186 status_t Parcel::writeUniqueFileDescriptorVector(const std::vector<base::unique_fd>& val) {
1187     return writeTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1188 }
1189 
writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<base::unique_fd>> & val)1190 status_t Parcel::writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<base::unique_fd>>& val) {
1191     return writeNullableTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1192 }
1193 
writeBlob(size_t len,bool mutableCopy,WritableBlob * outBlob)1194 status_t Parcel::writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob)
1195 {
1196     if (len > INT32_MAX) {
1197         // don't accept size_t values which may have come from an
1198         // inadvertent conversion from a negative int.
1199         return BAD_VALUE;
1200     }
1201 
1202     status_t status;
1203     if (!mAllowFds || len <= BLOB_INPLACE_LIMIT) {
1204         ALOGV("writeBlob: write in place");
1205         status = writeInt32(BLOB_INPLACE);
1206         if (status) return status;
1207 
1208         void* ptr = writeInplace(len);
1209         if (!ptr) return NO_MEMORY;
1210 
1211         outBlob->init(-1, ptr, len, false);
1212         return NO_ERROR;
1213     }
1214 
1215     ALOGV("writeBlob: write to ashmem");
1216     int fd = ashmem_create_region("Parcel Blob", len);
1217     if (fd < 0) return NO_MEMORY;
1218 
1219     int result = ashmem_set_prot_region(fd, PROT_READ | PROT_WRITE);
1220     if (result < 0) {
1221         status = result;
1222     } else {
1223         void* ptr = ::mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
1224         if (ptr == MAP_FAILED) {
1225             status = -errno;
1226         } else {
1227             if (!mutableCopy) {
1228                 result = ashmem_set_prot_region(fd, PROT_READ);
1229             }
1230             if (result < 0) {
1231                 status = result;
1232             } else {
1233                 status = writeInt32(mutableCopy ? BLOB_ASHMEM_MUTABLE : BLOB_ASHMEM_IMMUTABLE);
1234                 if (!status) {
1235                     status = writeFileDescriptor(fd, true /*takeOwnership*/);
1236                     if (!status) {
1237                         outBlob->init(fd, ptr, len, mutableCopy);
1238                         return NO_ERROR;
1239                     }
1240                 }
1241             }
1242         }
1243         ::munmap(ptr, len);
1244     }
1245     ::close(fd);
1246     return status;
1247 }
1248 
writeDupImmutableBlobFileDescriptor(int fd)1249 status_t Parcel::writeDupImmutableBlobFileDescriptor(int fd)
1250 {
1251     // Must match up with what's done in writeBlob.
1252     if (!mAllowFds) return FDS_NOT_ALLOWED;
1253     status_t status = writeInt32(BLOB_ASHMEM_IMMUTABLE);
1254     if (status) return status;
1255     return writeDupFileDescriptor(fd);
1256 }
1257 
write(const FlattenableHelperInterface & val)1258 status_t Parcel::write(const FlattenableHelperInterface& val)
1259 {
1260     status_t err;
1261 
1262     // size if needed
1263     const size_t len = val.getFlattenedSize();
1264     const size_t fd_count = val.getFdCount();
1265 
1266     if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
1267         // don't accept size_t values which may have come from an
1268         // inadvertent conversion from a negative int.
1269         return BAD_VALUE;
1270     }
1271 
1272     err = this->writeInt32(len);
1273     if (err) return err;
1274 
1275     err = this->writeInt32(fd_count);
1276     if (err) return err;
1277 
1278     // payload
1279     void* const buf = this->writeInplace(pad_size(len));
1280     if (buf == NULL)
1281         return BAD_VALUE;
1282 
1283     int* fds = NULL;
1284     if (fd_count) {
1285         fds = new (std::nothrow) int[fd_count];
1286         if (fds == nullptr) {
1287             ALOGE("write: failed to allocate requested %zu fds", fd_count);
1288             return BAD_VALUE;
1289         }
1290     }
1291 
1292     err = val.flatten(buf, len, fds, fd_count);
1293     for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
1294         err = this->writeDupFileDescriptor( fds[i] );
1295     }
1296 
1297     if (fd_count) {
1298         delete [] fds;
1299     }
1300 
1301     return err;
1302 }
1303 
writeObject(const flat_binder_object & val,bool nullMetaData)1304 status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)
1305 {
1306     const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
1307     const bool enoughObjects = mObjectsSize < mObjectsCapacity;
1308     if (enoughData && enoughObjects) {
1309 restart_write:
1310         *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val;
1311 
1312         // remember if it's a file descriptor
1313         if (val.type == BINDER_TYPE_FD) {
1314             if (!mAllowFds) {
1315                 // fail before modifying our object index
1316                 return FDS_NOT_ALLOWED;
1317             }
1318             mHasFds = mFdsKnown = true;
1319         }
1320 
1321         // Need to write meta-data?
1322         if (nullMetaData || val.binder != 0) {
1323             mObjects[mObjectsSize] = mDataPos;
1324             acquire_object(ProcessState::self(), val, this, &mOpenAshmemSize);
1325             mObjectsSize++;
1326         }
1327 
1328         return finishWrite(sizeof(flat_binder_object));
1329     }
1330 
1331     if (!enoughData) {
1332         const status_t err = growData(sizeof(val));
1333         if (err != NO_ERROR) return err;
1334     }
1335     if (!enoughObjects) {
1336         size_t newSize = ((mObjectsSize+2)*3)/2;
1337         if (newSize*sizeof(binder_size_t) < mObjectsSize) return NO_MEMORY;   // overflow
1338         binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
1339         if (objects == NULL) return NO_MEMORY;
1340         mObjects = objects;
1341         mObjectsCapacity = newSize;
1342     }
1343 
1344     goto restart_write;
1345 }
1346 
writeNoException()1347 status_t Parcel::writeNoException()
1348 {
1349     binder::Status status;
1350     return status.writeToParcel(this);
1351 }
1352 
writeMap(const::android::binder::Map & map_in)1353 status_t Parcel::writeMap(const ::android::binder::Map& map_in)
1354 {
1355     using ::std::map;
1356     using ::android::binder::Value;
1357     using ::android::binder::Map;
1358 
1359     Map::const_iterator iter;
1360     status_t ret;
1361 
1362     ret = writeInt32(map_in.size());
1363 
1364     if (ret != NO_ERROR) {
1365         return ret;
1366     }
1367 
1368     for (iter = map_in.begin(); iter != map_in.end(); ++iter) {
1369         ret = writeValue(Value(iter->first));
1370         if (ret != NO_ERROR) {
1371             return ret;
1372         }
1373 
1374         ret = writeValue(iter->second);
1375         if (ret != NO_ERROR) {
1376             return ret;
1377         }
1378     }
1379 
1380     return ret;
1381 }
1382 
writeNullableMap(const std::unique_ptr<binder::Map> & map)1383 status_t Parcel::writeNullableMap(const std::unique_ptr<binder::Map>& map)
1384 {
1385     if (map == NULL) {
1386         return writeInt32(-1);
1387     }
1388 
1389     return writeMap(*map.get());
1390 }
1391 
readMap(::android::binder::Map * map_out) const1392 status_t Parcel::readMap(::android::binder::Map* map_out)const
1393 {
1394     using ::std::map;
1395     using ::android::String16;
1396     using ::android::String8;
1397     using ::android::binder::Value;
1398     using ::android::binder::Map;
1399 
1400     status_t ret = NO_ERROR;
1401     int32_t count;
1402 
1403     ret = readInt32(&count);
1404     if (ret != NO_ERROR) {
1405         return ret;
1406     }
1407 
1408     if (count < 0) {
1409         ALOGE("readMap: Unexpected count: %d", count);
1410         return (count == -1)
1411             ? UNEXPECTED_NULL
1412             : BAD_VALUE;
1413     }
1414 
1415     map_out->clear();
1416 
1417     while (count--) {
1418         Map::key_type key;
1419         Value value;
1420 
1421         ret = readValue(&value);
1422         if (ret != NO_ERROR) {
1423             return ret;
1424         }
1425 
1426         if (!value.getString(&key)) {
1427             ALOGE("readMap: Key type not a string (parcelType = %d)", value.parcelType());
1428             return BAD_VALUE;
1429         }
1430 
1431         ret = readValue(&value);
1432         if (ret != NO_ERROR) {
1433             return ret;
1434         }
1435 
1436         (*map_out)[key] = value;
1437     }
1438 
1439     return ret;
1440 }
1441 
readNullableMap(std::unique_ptr<binder::Map> * map) const1442 status_t Parcel::readNullableMap(std::unique_ptr<binder::Map>* map) const
1443 {
1444     const size_t start = dataPosition();
1445     int32_t count;
1446     status_t status = readInt32(&count);
1447     map->reset();
1448 
1449     if (status != OK || count == -1) {
1450         return status;
1451     }
1452 
1453     setDataPosition(start);
1454     map->reset(new binder::Map());
1455 
1456     status = readMap(map->get());
1457 
1458     if (status != OK) {
1459         map->reset();
1460     }
1461 
1462     return status;
1463 }
1464 
1465 
1466 
remove(size_t,size_t)1467 void Parcel::remove(size_t /*start*/, size_t /*amt*/)
1468 {
1469     LOG_ALWAYS_FATAL("Parcel::remove() not yet implemented!");
1470 }
1471 
read(void * outData,size_t len) const1472 status_t Parcel::read(void* outData, size_t len) const
1473 {
1474     if (len > INT32_MAX) {
1475         // don't accept size_t values which may have come from an
1476         // inadvertent conversion from a negative int.
1477         return BAD_VALUE;
1478     }
1479 
1480     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1481             && len <= pad_size(len)) {
1482         memcpy(outData, mData+mDataPos, len);
1483         mDataPos += pad_size(len);
1484         ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
1485         return NO_ERROR;
1486     }
1487     return NOT_ENOUGH_DATA;
1488 }
1489 
readInplace(size_t len) const1490 const void* Parcel::readInplace(size_t len) const
1491 {
1492     if (len > INT32_MAX) {
1493         // don't accept size_t values which may have come from an
1494         // inadvertent conversion from a negative int.
1495         return NULL;
1496     }
1497 
1498     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1499             && len <= pad_size(len)) {
1500         const void* data = mData+mDataPos;
1501         mDataPos += pad_size(len);
1502         ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
1503         return data;
1504     }
1505     return NULL;
1506 }
1507 
1508 template<class T>
readAligned(T * pArg) const1509 status_t Parcel::readAligned(T *pArg) const {
1510     COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1511 
1512     if ((mDataPos+sizeof(T)) <= mDataSize) {
1513         const void* data = mData+mDataPos;
1514         mDataPos += sizeof(T);
1515         *pArg =  *reinterpret_cast<const T*>(data);
1516         return NO_ERROR;
1517     } else {
1518         return NOT_ENOUGH_DATA;
1519     }
1520 }
1521 
1522 template<class T>
readAligned() const1523 T Parcel::readAligned() const {
1524     T result;
1525     if (readAligned(&result) != NO_ERROR) {
1526         result = 0;
1527     }
1528 
1529     return result;
1530 }
1531 
1532 template<class T>
writeAligned(T val)1533 status_t Parcel::writeAligned(T val) {
1534     COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1535 
1536     if ((mDataPos+sizeof(val)) <= mDataCapacity) {
1537 restart_write:
1538         *reinterpret_cast<T*>(mData+mDataPos) = val;
1539         return finishWrite(sizeof(val));
1540     }
1541 
1542     status_t err = growData(sizeof(val));
1543     if (err == NO_ERROR) goto restart_write;
1544     return err;
1545 }
1546 
1547 namespace {
1548 
1549 template<typename T>
readByteVectorInternal(const Parcel * parcel,std::vector<T> * val)1550 status_t readByteVectorInternal(const Parcel* parcel,
1551                                 std::vector<T>* val) {
1552     val->clear();
1553 
1554     int32_t size;
1555     status_t status = parcel->readInt32(&size);
1556 
1557     if (status != OK) {
1558         return status;
1559     }
1560 
1561     if (size < 0) {
1562         status = UNEXPECTED_NULL;
1563         return status;
1564     }
1565     if (size_t(size) > parcel->dataAvail()) {
1566         status = BAD_VALUE;
1567         return status;
1568     }
1569 
1570     T* data = const_cast<T*>(reinterpret_cast<const T*>(parcel->readInplace(size)));
1571     if (!data) {
1572         status = BAD_VALUE;
1573         return status;
1574     }
1575     val->reserve(size);
1576     val->insert(val->end(), data, data + size);
1577 
1578     return status;
1579 }
1580 
1581 template<typename T>
readByteVectorInternalPtr(const Parcel * parcel,std::unique_ptr<std::vector<T>> * val)1582 status_t readByteVectorInternalPtr(
1583         const Parcel* parcel,
1584         std::unique_ptr<std::vector<T>>* val) {
1585     const int32_t start = parcel->dataPosition();
1586     int32_t size;
1587     status_t status = parcel->readInt32(&size);
1588     val->reset();
1589 
1590     if (status != OK || size < 0) {
1591         return status;
1592     }
1593 
1594     parcel->setDataPosition(start);
1595     val->reset(new (std::nothrow) std::vector<T>());
1596 
1597     status = readByteVectorInternal(parcel, val->get());
1598 
1599     if (status != OK) {
1600         val->reset();
1601     }
1602 
1603     return status;
1604 }
1605 
1606 }  // namespace
1607 
readByteVector(std::vector<int8_t> * val) const1608 status_t Parcel::readByteVector(std::vector<int8_t>* val) const {
1609     return readByteVectorInternal(this, val);
1610 }
1611 
readByteVector(std::vector<uint8_t> * val) const1612 status_t Parcel::readByteVector(std::vector<uint8_t>* val) const {
1613     return readByteVectorInternal(this, val);
1614 }
1615 
readByteVector(std::unique_ptr<std::vector<int8_t>> * val) const1616 status_t Parcel::readByteVector(std::unique_ptr<std::vector<int8_t>>* val) const {
1617     return readByteVectorInternalPtr(this, val);
1618 }
1619 
readByteVector(std::unique_ptr<std::vector<uint8_t>> * val) const1620 status_t Parcel::readByteVector(std::unique_ptr<std::vector<uint8_t>>* val) const {
1621     return readByteVectorInternalPtr(this, val);
1622 }
1623 
readInt32Vector(std::unique_ptr<std::vector<int32_t>> * val) const1624 status_t Parcel::readInt32Vector(std::unique_ptr<std::vector<int32_t>>* val) const {
1625     return readNullableTypedVector(val, &Parcel::readInt32);
1626 }
1627 
readInt32Vector(std::vector<int32_t> * val) const1628 status_t Parcel::readInt32Vector(std::vector<int32_t>* val) const {
1629     return readTypedVector(val, &Parcel::readInt32);
1630 }
1631 
readInt64Vector(std::unique_ptr<std::vector<int64_t>> * val) const1632 status_t Parcel::readInt64Vector(std::unique_ptr<std::vector<int64_t>>* val) const {
1633     return readNullableTypedVector(val, &Parcel::readInt64);
1634 }
1635 
readInt64Vector(std::vector<int64_t> * val) const1636 status_t Parcel::readInt64Vector(std::vector<int64_t>* val) const {
1637     return readTypedVector(val, &Parcel::readInt64);
1638 }
1639 
readFloatVector(std::unique_ptr<std::vector<float>> * val) const1640 status_t Parcel::readFloatVector(std::unique_ptr<std::vector<float>>* val) const {
1641     return readNullableTypedVector(val, &Parcel::readFloat);
1642 }
1643 
readFloatVector(std::vector<float> * val) const1644 status_t Parcel::readFloatVector(std::vector<float>* val) const {
1645     return readTypedVector(val, &Parcel::readFloat);
1646 }
1647 
readDoubleVector(std::unique_ptr<std::vector<double>> * val) const1648 status_t Parcel::readDoubleVector(std::unique_ptr<std::vector<double>>* val) const {
1649     return readNullableTypedVector(val, &Parcel::readDouble);
1650 }
1651 
readDoubleVector(std::vector<double> * val) const1652 status_t Parcel::readDoubleVector(std::vector<double>* val) const {
1653     return readTypedVector(val, &Parcel::readDouble);
1654 }
1655 
readBoolVector(std::unique_ptr<std::vector<bool>> * val) const1656 status_t Parcel::readBoolVector(std::unique_ptr<std::vector<bool>>* val) const {
1657     const int32_t start = dataPosition();
1658     int32_t size;
1659     status_t status = readInt32(&size);
1660     val->reset();
1661 
1662     if (status != OK || size < 0) {
1663         return status;
1664     }
1665 
1666     setDataPosition(start);
1667     val->reset(new (std::nothrow) std::vector<bool>());
1668 
1669     status = readBoolVector(val->get());
1670 
1671     if (status != OK) {
1672         val->reset();
1673     }
1674 
1675     return status;
1676 }
1677 
readBoolVector(std::vector<bool> * val) const1678 status_t Parcel::readBoolVector(std::vector<bool>* val) const {
1679     int32_t size;
1680     status_t status = readInt32(&size);
1681 
1682     if (status != OK) {
1683         return status;
1684     }
1685 
1686     if (size < 0) {
1687         return UNEXPECTED_NULL;
1688     }
1689 
1690     val->resize(size);
1691 
1692     /* C++ bool handling means a vector of bools isn't necessarily addressable
1693      * (we might use individual bits)
1694      */
1695     bool data;
1696     for (int32_t i = 0; i < size; ++i) {
1697         status = readBool(&data);
1698         (*val)[i] = data;
1699 
1700         if (status != OK) {
1701             return status;
1702         }
1703     }
1704 
1705     return OK;
1706 }
1707 
readCharVector(std::unique_ptr<std::vector<char16_t>> * val) const1708 status_t Parcel::readCharVector(std::unique_ptr<std::vector<char16_t>>* val) const {
1709     return readNullableTypedVector(val, &Parcel::readChar);
1710 }
1711 
readCharVector(std::vector<char16_t> * val) const1712 status_t Parcel::readCharVector(std::vector<char16_t>* val) const {
1713     return readTypedVector(val, &Parcel::readChar);
1714 }
1715 
readString16Vector(std::unique_ptr<std::vector<std::unique_ptr<String16>>> * val) const1716 status_t Parcel::readString16Vector(
1717         std::unique_ptr<std::vector<std::unique_ptr<String16>>>* val) const {
1718     return readNullableTypedVector(val, &Parcel::readString16);
1719 }
1720 
readString16Vector(std::vector<String16> * val) const1721 status_t Parcel::readString16Vector(std::vector<String16>* val) const {
1722     return readTypedVector(val, &Parcel::readString16);
1723 }
1724 
readUtf8VectorFromUtf16Vector(std::unique_ptr<std::vector<std::unique_ptr<std::string>>> * val) const1725 status_t Parcel::readUtf8VectorFromUtf16Vector(
1726         std::unique_ptr<std::vector<std::unique_ptr<std::string>>>* val) const {
1727     return readNullableTypedVector(val, &Parcel::readUtf8FromUtf16);
1728 }
1729 
readUtf8VectorFromUtf16Vector(std::vector<std::string> * val) const1730 status_t Parcel::readUtf8VectorFromUtf16Vector(std::vector<std::string>* val) const {
1731     return readTypedVector(val, &Parcel::readUtf8FromUtf16);
1732 }
1733 
readInt32(int32_t * pArg) const1734 status_t Parcel::readInt32(int32_t *pArg) const
1735 {
1736     return readAligned(pArg);
1737 }
1738 
readInt32() const1739 int32_t Parcel::readInt32() const
1740 {
1741     return readAligned<int32_t>();
1742 }
1743 
readUint32(uint32_t * pArg) const1744 status_t Parcel::readUint32(uint32_t *pArg) const
1745 {
1746     return readAligned(pArg);
1747 }
1748 
readUint32() const1749 uint32_t Parcel::readUint32() const
1750 {
1751     return readAligned<uint32_t>();
1752 }
1753 
readInt64(int64_t * pArg) const1754 status_t Parcel::readInt64(int64_t *pArg) const
1755 {
1756     return readAligned(pArg);
1757 }
1758 
1759 
readInt64() const1760 int64_t Parcel::readInt64() const
1761 {
1762     return readAligned<int64_t>();
1763 }
1764 
readUint64(uint64_t * pArg) const1765 status_t Parcel::readUint64(uint64_t *pArg) const
1766 {
1767     return readAligned(pArg);
1768 }
1769 
readUint64() const1770 uint64_t Parcel::readUint64() const
1771 {
1772     return readAligned<uint64_t>();
1773 }
1774 
readPointer(uintptr_t * pArg) const1775 status_t Parcel::readPointer(uintptr_t *pArg) const
1776 {
1777     status_t ret;
1778     binder_uintptr_t ptr;
1779     ret = readAligned(&ptr);
1780     if (!ret)
1781         *pArg = ptr;
1782     return ret;
1783 }
1784 
readPointer() const1785 uintptr_t Parcel::readPointer() const
1786 {
1787     return readAligned<binder_uintptr_t>();
1788 }
1789 
1790 
readFloat(float * pArg) const1791 status_t Parcel::readFloat(float *pArg) const
1792 {
1793     return readAligned(pArg);
1794 }
1795 
1796 
readFloat() const1797 float Parcel::readFloat() const
1798 {
1799     return readAligned<float>();
1800 }
1801 
1802 #if defined(__mips__) && defined(__mips_hard_float)
1803 
readDouble(double * pArg) const1804 status_t Parcel::readDouble(double *pArg) const
1805 {
1806     union {
1807       double d;
1808       unsigned long long ll;
1809     } u;
1810     u.d = 0;
1811     status_t status;
1812     status = readAligned(&u.ll);
1813     *pArg = u.d;
1814     return status;
1815 }
1816 
readDouble() const1817 double Parcel::readDouble() const
1818 {
1819     union {
1820       double d;
1821       unsigned long long ll;
1822     } u;
1823     u.ll = readAligned<unsigned long long>();
1824     return u.d;
1825 }
1826 
1827 #else
1828 
readDouble(double * pArg) const1829 status_t Parcel::readDouble(double *pArg) const
1830 {
1831     return readAligned(pArg);
1832 }
1833 
readDouble() const1834 double Parcel::readDouble() const
1835 {
1836     return readAligned<double>();
1837 }
1838 
1839 #endif
1840 
readIntPtr(intptr_t * pArg) const1841 status_t Parcel::readIntPtr(intptr_t *pArg) const
1842 {
1843     return readAligned(pArg);
1844 }
1845 
1846 
readIntPtr() const1847 intptr_t Parcel::readIntPtr() const
1848 {
1849     return readAligned<intptr_t>();
1850 }
1851 
readBool(bool * pArg) const1852 status_t Parcel::readBool(bool *pArg) const
1853 {
1854     int32_t tmp;
1855     status_t ret = readInt32(&tmp);
1856     *pArg = (tmp != 0);
1857     return ret;
1858 }
1859 
readBool() const1860 bool Parcel::readBool() const
1861 {
1862     return readInt32() != 0;
1863 }
1864 
readChar(char16_t * pArg) const1865 status_t Parcel::readChar(char16_t *pArg) const
1866 {
1867     int32_t tmp;
1868     status_t ret = readInt32(&tmp);
1869     *pArg = char16_t(tmp);
1870     return ret;
1871 }
1872 
readChar() const1873 char16_t Parcel::readChar() const
1874 {
1875     return char16_t(readInt32());
1876 }
1877 
readByte(int8_t * pArg) const1878 status_t Parcel::readByte(int8_t *pArg) const
1879 {
1880     int32_t tmp;
1881     status_t ret = readInt32(&tmp);
1882     *pArg = int8_t(tmp);
1883     return ret;
1884 }
1885 
readByte() const1886 int8_t Parcel::readByte() const
1887 {
1888     return int8_t(readInt32());
1889 }
1890 
readUtf8FromUtf16(std::string * str) const1891 status_t Parcel::readUtf8FromUtf16(std::string* str) const {
1892     size_t utf16Size = 0;
1893     const char16_t* src = readString16Inplace(&utf16Size);
1894     if (!src) {
1895         return UNEXPECTED_NULL;
1896     }
1897 
1898     // Save ourselves the trouble, we're done.
1899     if (utf16Size == 0u) {
1900         str->clear();
1901        return NO_ERROR;
1902     }
1903 
1904     // Allow for closing '\0'
1905     ssize_t utf8Size = utf16_to_utf8_length(src, utf16Size) + 1;
1906     if (utf8Size < 1) {
1907         return BAD_VALUE;
1908     }
1909     // Note that while it is probably safe to assume string::resize keeps a
1910     // spare byte around for the trailing null, we still pass the size including the trailing null
1911     str->resize(utf8Size);
1912     utf16_to_utf8(src, utf16Size, &((*str)[0]), utf8Size);
1913     str->resize(utf8Size - 1);
1914     return NO_ERROR;
1915 }
1916 
readUtf8FromUtf16(std::unique_ptr<std::string> * str) const1917 status_t Parcel::readUtf8FromUtf16(std::unique_ptr<std::string>* str) const {
1918     const int32_t start = dataPosition();
1919     int32_t size;
1920     status_t status = readInt32(&size);
1921     str->reset();
1922 
1923     if (status != OK || size < 0) {
1924         return status;
1925     }
1926 
1927     setDataPosition(start);
1928     str->reset(new (std::nothrow) std::string());
1929     return readUtf8FromUtf16(str->get());
1930 }
1931 
readCString() const1932 const char* Parcel::readCString() const
1933 {
1934     const size_t avail = mDataSize-mDataPos;
1935     if (avail > 0) {
1936         const char* str = reinterpret_cast<const char*>(mData+mDataPos);
1937         // is the string's trailing NUL within the parcel's valid bounds?
1938         const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
1939         if (eos) {
1940             const size_t len = eos - str;
1941             mDataPos += pad_size(len+1);
1942             ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos);
1943             return str;
1944         }
1945     }
1946     return NULL;
1947 }
1948 
readString8() const1949 String8 Parcel::readString8() const
1950 {
1951     String8 retString;
1952     status_t status = readString8(&retString);
1953     if (status != OK) {
1954         // We don't care about errors here, so just return an empty string.
1955         return String8();
1956     }
1957     return retString;
1958 }
1959 
readString8(String8 * pArg) const1960 status_t Parcel::readString8(String8* pArg) const
1961 {
1962     int32_t size;
1963     status_t status = readInt32(&size);
1964     if (status != OK) {
1965         return status;
1966     }
1967     // watch for potential int overflow from size+1
1968     if (size < 0 || size >= INT32_MAX) {
1969         return BAD_VALUE;
1970     }
1971     // |writeString8| writes nothing for empty string.
1972     if (size == 0) {
1973         *pArg = String8();
1974         return OK;
1975     }
1976     const char* str = (const char*)readInplace(size + 1);
1977     if (str == NULL) {
1978         return BAD_VALUE;
1979     }
1980     pArg->setTo(str, size);
1981     return OK;
1982 }
1983 
readString16() const1984 String16 Parcel::readString16() const
1985 {
1986     size_t len;
1987     const char16_t* str = readString16Inplace(&len);
1988     if (str) return String16(str, len);
1989     ALOGE("Reading a NULL string not supported here.");
1990     return String16();
1991 }
1992 
readString16(std::unique_ptr<String16> * pArg) const1993 status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const
1994 {
1995     const int32_t start = dataPosition();
1996     int32_t size;
1997     status_t status = readInt32(&size);
1998     pArg->reset();
1999 
2000     if (status != OK || size < 0) {
2001         return status;
2002     }
2003 
2004     setDataPosition(start);
2005     pArg->reset(new (std::nothrow) String16());
2006 
2007     status = readString16(pArg->get());
2008 
2009     if (status != OK) {
2010         pArg->reset();
2011     }
2012 
2013     return status;
2014 }
2015 
readString16(String16 * pArg) const2016 status_t Parcel::readString16(String16* pArg) const
2017 {
2018     size_t len;
2019     const char16_t* str = readString16Inplace(&len);
2020     if (str) {
2021         pArg->setTo(str, len);
2022         return 0;
2023     } else {
2024         *pArg = String16();
2025         return UNEXPECTED_NULL;
2026     }
2027 }
2028 
readString16Inplace(size_t * outLen) const2029 const char16_t* Parcel::readString16Inplace(size_t* outLen) const
2030 {
2031     int32_t size = readInt32();
2032     // watch for potential int overflow from size+1
2033     if (size >= 0 && size < INT32_MAX) {
2034         *outLen = size;
2035         const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
2036         if (str != NULL) {
2037             return str;
2038         }
2039     }
2040     *outLen = 0;
2041     return NULL;
2042 }
2043 
readStrongBinder(sp<IBinder> * val) const2044 status_t Parcel::readStrongBinder(sp<IBinder>* val) const
2045 {
2046     status_t status = readNullableStrongBinder(val);
2047     if (status == OK && !val->get()) {
2048         status = UNEXPECTED_NULL;
2049     }
2050     return status;
2051 }
2052 
readNullableStrongBinder(sp<IBinder> * val) const2053 status_t Parcel::readNullableStrongBinder(sp<IBinder>* val) const
2054 {
2055     return unflatten_binder(ProcessState::self(), *this, val);
2056 }
2057 
readStrongBinder() const2058 sp<IBinder> Parcel::readStrongBinder() const
2059 {
2060     sp<IBinder> val;
2061     // Note that a lot of code in Android reads binders by hand with this
2062     // method, and that code has historically been ok with getting nullptr
2063     // back (while ignoring error codes).
2064     readNullableStrongBinder(&val);
2065     return val;
2066 }
2067 
readWeakBinder() const2068 wp<IBinder> Parcel::readWeakBinder() const
2069 {
2070     wp<IBinder> val;
2071     unflatten_binder(ProcessState::self(), *this, &val);
2072     return val;
2073 }
2074 
readParcelable(Parcelable * parcelable) const2075 status_t Parcel::readParcelable(Parcelable* parcelable) const {
2076     int32_t have_parcelable = 0;
2077     status_t status = readInt32(&have_parcelable);
2078     if (status != OK) {
2079         return status;
2080     }
2081     if (!have_parcelable) {
2082         return UNEXPECTED_NULL;
2083     }
2084     return parcelable->readFromParcel(this);
2085 }
2086 
readValue(binder::Value * value) const2087 status_t Parcel::readValue(binder::Value* value) const {
2088     return value->readFromParcel(this);
2089 }
2090 
readExceptionCode() const2091 int32_t Parcel::readExceptionCode() const
2092 {
2093     binder::Status status;
2094     status.readFromParcel(*this);
2095     return status.exceptionCode();
2096 }
2097 
readNativeHandle() const2098 native_handle* Parcel::readNativeHandle() const
2099 {
2100     int numFds, numInts;
2101     status_t err;
2102     err = readInt32(&numFds);
2103     if (err != NO_ERROR) return 0;
2104     err = readInt32(&numInts);
2105     if (err != NO_ERROR) return 0;
2106 
2107     native_handle* h = native_handle_create(numFds, numInts);
2108     if (!h) {
2109         return 0;
2110     }
2111 
2112     for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {
2113         h->data[i] = fcntl(readFileDescriptor(), F_DUPFD_CLOEXEC, 0);
2114         if (h->data[i] < 0) {
2115             for (int j = 0; j < i; j++) {
2116                 close(h->data[j]);
2117             }
2118             native_handle_delete(h);
2119             return 0;
2120         }
2121     }
2122     err = read(h->data + numFds, sizeof(int)*numInts);
2123     if (err != NO_ERROR) {
2124         native_handle_close(h);
2125         native_handle_delete(h);
2126         h = 0;
2127     }
2128     return h;
2129 }
2130 
readFileDescriptor() const2131 int Parcel::readFileDescriptor() const
2132 {
2133     const flat_binder_object* flat = readObject(true);
2134 
2135     if (flat && flat->type == BINDER_TYPE_FD) {
2136         return flat->handle;
2137     }
2138 
2139     return BAD_TYPE;
2140 }
2141 
readParcelFileDescriptor() const2142 int Parcel::readParcelFileDescriptor() const
2143 {
2144     int32_t hasComm = readInt32();
2145     int fd = readFileDescriptor();
2146     if (hasComm != 0) {
2147         // skip
2148         readFileDescriptor();
2149     }
2150     return fd;
2151 }
2152 
readUniqueFileDescriptor(base::unique_fd * val) const2153 status_t Parcel::readUniqueFileDescriptor(base::unique_fd* val) const
2154 {
2155     int got = readFileDescriptor();
2156 
2157     if (got == BAD_TYPE) {
2158         return BAD_TYPE;
2159     }
2160 
2161     val->reset(fcntl(got, F_DUPFD_CLOEXEC, 0));
2162 
2163     if (val->get() < 0) {
2164         return BAD_VALUE;
2165     }
2166 
2167     return OK;
2168 }
2169 
2170 
readUniqueFileDescriptorVector(std::unique_ptr<std::vector<base::unique_fd>> * val) const2171 status_t Parcel::readUniqueFileDescriptorVector(std::unique_ptr<std::vector<base::unique_fd>>* val) const {
2172     return readNullableTypedVector(val, &Parcel::readUniqueFileDescriptor);
2173 }
2174 
readUniqueFileDescriptorVector(std::vector<base::unique_fd> * val) const2175 status_t Parcel::readUniqueFileDescriptorVector(std::vector<base::unique_fd>* val) const {
2176     return readTypedVector(val, &Parcel::readUniqueFileDescriptor);
2177 }
2178 
readBlob(size_t len,ReadableBlob * outBlob) const2179 status_t Parcel::readBlob(size_t len, ReadableBlob* outBlob) const
2180 {
2181     int32_t blobType;
2182     status_t status = readInt32(&blobType);
2183     if (status) return status;
2184 
2185     if (blobType == BLOB_INPLACE) {
2186         ALOGV("readBlob: read in place");
2187         const void* ptr = readInplace(len);
2188         if (!ptr) return BAD_VALUE;
2189 
2190         outBlob->init(-1, const_cast<void*>(ptr), len, false);
2191         return NO_ERROR;
2192     }
2193 
2194     ALOGV("readBlob: read from ashmem");
2195     bool isMutable = (blobType == BLOB_ASHMEM_MUTABLE);
2196     int fd = readFileDescriptor();
2197     if (fd == int(BAD_TYPE)) return BAD_VALUE;
2198 
2199     void* ptr = ::mmap(NULL, len, isMutable ? PROT_READ | PROT_WRITE : PROT_READ,
2200             MAP_SHARED, fd, 0);
2201     if (ptr == MAP_FAILED) return NO_MEMORY;
2202 
2203     outBlob->init(fd, ptr, len, isMutable);
2204     return NO_ERROR;
2205 }
2206 
read(FlattenableHelperInterface & val) const2207 status_t Parcel::read(FlattenableHelperInterface& val) const
2208 {
2209     // size
2210     const size_t len = this->readInt32();
2211     const size_t fd_count = this->readInt32();
2212 
2213     if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
2214         // don't accept size_t values which may have come from an
2215         // inadvertent conversion from a negative int.
2216         return BAD_VALUE;
2217     }
2218 
2219     // payload
2220     void const* const buf = this->readInplace(pad_size(len));
2221     if (buf == NULL)
2222         return BAD_VALUE;
2223 
2224     int* fds = NULL;
2225     if (fd_count) {
2226         fds = new (std::nothrow) int[fd_count];
2227         if (fds == nullptr) {
2228             ALOGE("read: failed to allocate requested %zu fds", fd_count);
2229             return BAD_VALUE;
2230         }
2231     }
2232 
2233     status_t err = NO_ERROR;
2234     for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
2235         int fd = this->readFileDescriptor();
2236         if (fd < 0 || ((fds[i] = fcntl(fd, F_DUPFD_CLOEXEC, 0)) < 0)) {
2237             err = BAD_VALUE;
2238             ALOGE("fcntl(F_DUPFD_CLOEXEC) failed in Parcel::read, i is %zu, fds[i] is %d, fd_count is %zu, error: %s",
2239                   i, fds[i], fd_count, strerror(fd < 0 ? -fd : errno));
2240             // Close all the file descriptors that were dup-ed.
2241             for (size_t j=0; j<i ;j++) {
2242                 close(fds[j]);
2243             }
2244         }
2245     }
2246 
2247     if (err == NO_ERROR) {
2248         err = val.unflatten(buf, len, fds, fd_count);
2249     }
2250 
2251     if (fd_count) {
2252         delete [] fds;
2253     }
2254 
2255     return err;
2256 }
readObject(bool nullMetaData) const2257 const flat_binder_object* Parcel::readObject(bool nullMetaData) const
2258 {
2259     const size_t DPOS = mDataPos;
2260     if ((DPOS+sizeof(flat_binder_object)) <= mDataSize) {
2261         const flat_binder_object* obj
2262                 = reinterpret_cast<const flat_binder_object*>(mData+DPOS);
2263         mDataPos = DPOS + sizeof(flat_binder_object);
2264         if (!nullMetaData && (obj->cookie == 0 && obj->binder == 0)) {
2265             // When transferring a NULL object, we don't write it into
2266             // the object list, so we don't want to check for it when
2267             // reading.
2268             ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2269             return obj;
2270         }
2271 
2272         // Ensure that this object is valid...
2273         binder_size_t* const OBJS = mObjects;
2274         const size_t N = mObjectsSize;
2275         size_t opos = mNextObjectHint;
2276 
2277         if (N > 0) {
2278             ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
2279                  this, DPOS, opos);
2280 
2281             // Start at the current hint position, looking for an object at
2282             // the current data position.
2283             if (opos < N) {
2284                 while (opos < (N-1) && OBJS[opos] < DPOS) {
2285                     opos++;
2286                 }
2287             } else {
2288                 opos = N-1;
2289             }
2290             if (OBJS[opos] == DPOS) {
2291                 // Found it!
2292                 ALOGV("Parcel %p found obj %zu at index %zu with forward search",
2293                      this, DPOS, opos);
2294                 mNextObjectHint = opos+1;
2295                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2296                 return obj;
2297             }
2298 
2299             // Look backwards for it...
2300             while (opos > 0 && OBJS[opos] > DPOS) {
2301                 opos--;
2302             }
2303             if (OBJS[opos] == DPOS) {
2304                 // Found it!
2305                 ALOGV("Parcel %p found obj %zu at index %zu with backward search",
2306                      this, DPOS, opos);
2307                 mNextObjectHint = opos+1;
2308                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2309                 return obj;
2310             }
2311         }
2312         ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list",
2313              this, DPOS);
2314     }
2315     return NULL;
2316 }
2317 
closeFileDescriptors()2318 void Parcel::closeFileDescriptors()
2319 {
2320     size_t i = mObjectsSize;
2321     if (i > 0) {
2322         //ALOGI("Closing file descriptors for %zu objects...", i);
2323     }
2324     while (i > 0) {
2325         i--;
2326         const flat_binder_object* flat
2327             = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2328         if (flat->type == BINDER_TYPE_FD) {
2329             //ALOGI("Closing fd: %ld", flat->handle);
2330             close(flat->handle);
2331         }
2332     }
2333 }
2334 
ipcData() const2335 uintptr_t Parcel::ipcData() const
2336 {
2337     return reinterpret_cast<uintptr_t>(mData);
2338 }
2339 
ipcDataSize() const2340 size_t Parcel::ipcDataSize() const
2341 {
2342     return (mDataSize > mDataPos ? mDataSize : mDataPos);
2343 }
2344 
ipcObjects() const2345 uintptr_t Parcel::ipcObjects() const
2346 {
2347     return reinterpret_cast<uintptr_t>(mObjects);
2348 }
2349 
ipcObjectsCount() const2350 size_t Parcel::ipcObjectsCount() const
2351 {
2352     return mObjectsSize;
2353 }
2354 
ipcSetDataReference(const uint8_t * data,size_t dataSize,const binder_size_t * objects,size_t objectsCount,release_func relFunc,void * relCookie)2355 void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
2356     const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)
2357 {
2358     binder_size_t minOffset = 0;
2359     freeDataNoInit();
2360     mError = NO_ERROR;
2361     mData = const_cast<uint8_t*>(data);
2362     mDataSize = mDataCapacity = dataSize;
2363     //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid());
2364     mDataPos = 0;
2365     ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos);
2366     mObjects = const_cast<binder_size_t*>(objects);
2367     mObjectsSize = mObjectsCapacity = objectsCount;
2368     mNextObjectHint = 0;
2369     mOwner = relFunc;
2370     mOwnerCookie = relCookie;
2371     for (size_t i = 0; i < mObjectsSize; i++) {
2372         binder_size_t offset = mObjects[i];
2373         if (offset < minOffset) {
2374             ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
2375                   __func__, (uint64_t)offset, (uint64_t)minOffset);
2376             mObjectsSize = 0;
2377             break;
2378         }
2379         minOffset = offset + sizeof(flat_binder_object);
2380     }
2381     scanForFds();
2382 }
2383 
print(TextOutput & to,uint32_t) const2384 void Parcel::print(TextOutput& to, uint32_t /*flags*/) const
2385 {
2386     to << "Parcel(";
2387 
2388     if (errorCheck() != NO_ERROR) {
2389         const status_t err = errorCheck();
2390         to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
2391     } else if (dataSize() > 0) {
2392         const uint8_t* DATA = data();
2393         to << indent << HexDump(DATA, dataSize()) << dedent;
2394         const binder_size_t* OBJS = objects();
2395         const size_t N = objectsCount();
2396         for (size_t i=0; i<N; i++) {
2397             const flat_binder_object* flat
2398                 = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);
2399             to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
2400                 << TypeCode(flat->type & 0x7f7f7f00)
2401                 << " = " << flat->binder;
2402         }
2403     } else {
2404         to << "NULL";
2405     }
2406 
2407     to << ")";
2408 }
2409 
releaseObjects()2410 void Parcel::releaseObjects()
2411 {
2412     const sp<ProcessState> proc(ProcessState::self());
2413     size_t i = mObjectsSize;
2414     uint8_t* const data = mData;
2415     binder_size_t* const objects = mObjects;
2416     while (i > 0) {
2417         i--;
2418         const flat_binder_object* flat
2419             = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2420         release_object(proc, *flat, this, &mOpenAshmemSize);
2421     }
2422 }
2423 
acquireObjects()2424 void Parcel::acquireObjects()
2425 {
2426     const sp<ProcessState> proc(ProcessState::self());
2427     size_t i = mObjectsSize;
2428     uint8_t* const data = mData;
2429     binder_size_t* const objects = mObjects;
2430     while (i > 0) {
2431         i--;
2432         const flat_binder_object* flat
2433             = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2434         acquire_object(proc, *flat, this, &mOpenAshmemSize);
2435     }
2436 }
2437 
freeData()2438 void Parcel::freeData()
2439 {
2440     freeDataNoInit();
2441     initState();
2442 }
2443 
freeDataNoInit()2444 void Parcel::freeDataNoInit()
2445 {
2446     if (mOwner) {
2447         LOG_ALLOC("Parcel %p: freeing other owner data", this);
2448         //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2449         mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2450     } else {
2451         LOG_ALLOC("Parcel %p: freeing allocated data", this);
2452         releaseObjects();
2453         if (mData) {
2454             LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
2455             pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2456             if (mDataCapacity <= gParcelGlobalAllocSize) {
2457               gParcelGlobalAllocSize = gParcelGlobalAllocSize - mDataCapacity;
2458             } else {
2459               gParcelGlobalAllocSize = 0;
2460             }
2461             if (gParcelGlobalAllocCount > 0) {
2462               gParcelGlobalAllocCount--;
2463             }
2464             pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2465             free(mData);
2466         }
2467         if (mObjects) free(mObjects);
2468     }
2469 }
2470 
growData(size_t len)2471 status_t Parcel::growData(size_t len)
2472 {
2473     if (len > INT32_MAX) {
2474         // don't accept size_t values which may have come from an
2475         // inadvertent conversion from a negative int.
2476         return BAD_VALUE;
2477     }
2478 
2479     size_t newSize = ((mDataSize+len)*3)/2;
2480     return (newSize <= mDataSize)
2481             ? (status_t) NO_MEMORY
2482             : continueWrite(newSize);
2483 }
2484 
restartWrite(size_t desired)2485 status_t Parcel::restartWrite(size_t desired)
2486 {
2487     if (desired > INT32_MAX) {
2488         // don't accept size_t values which may have come from an
2489         // inadvertent conversion from a negative int.
2490         return BAD_VALUE;
2491     }
2492 
2493     if (mOwner) {
2494         freeData();
2495         return continueWrite(desired);
2496     }
2497 
2498     uint8_t* data = (uint8_t*)realloc(mData, desired);
2499     if (!data && desired > mDataCapacity) {
2500         mError = NO_MEMORY;
2501         return NO_MEMORY;
2502     }
2503 
2504     releaseObjects();
2505 
2506     if (data) {
2507         LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired);
2508         pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2509         gParcelGlobalAllocSize += desired;
2510         gParcelGlobalAllocSize -= mDataCapacity;
2511         if (!mData) {
2512             gParcelGlobalAllocCount++;
2513         }
2514         pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2515         mData = data;
2516         mDataCapacity = desired;
2517     }
2518 
2519     mDataSize = mDataPos = 0;
2520     ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize);
2521     ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos);
2522 
2523     free(mObjects);
2524     mObjects = NULL;
2525     mObjectsSize = mObjectsCapacity = 0;
2526     mNextObjectHint = 0;
2527     mHasFds = false;
2528     mFdsKnown = true;
2529     mAllowFds = true;
2530 
2531     return NO_ERROR;
2532 }
2533 
continueWrite(size_t desired)2534 status_t Parcel::continueWrite(size_t desired)
2535 {
2536     if (desired > INT32_MAX) {
2537         // don't accept size_t values which may have come from an
2538         // inadvertent conversion from a negative int.
2539         return BAD_VALUE;
2540     }
2541 
2542     // If shrinking, first adjust for any objects that appear
2543     // after the new data size.
2544     size_t objectsSize = mObjectsSize;
2545     if (desired < mDataSize) {
2546         if (desired == 0) {
2547             objectsSize = 0;
2548         } else {
2549             while (objectsSize > 0) {
2550                 if (mObjects[objectsSize-1] < desired)
2551                     break;
2552                 objectsSize--;
2553             }
2554         }
2555     }
2556 
2557     if (mOwner) {
2558         // If the size is going to zero, just release the owner's data.
2559         if (desired == 0) {
2560             freeData();
2561             return NO_ERROR;
2562         }
2563 
2564         // If there is a different owner, we need to take
2565         // posession.
2566         uint8_t* data = (uint8_t*)malloc(desired);
2567         if (!data) {
2568             mError = NO_MEMORY;
2569             return NO_MEMORY;
2570         }
2571         binder_size_t* objects = NULL;
2572 
2573         if (objectsSize) {
2574             objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
2575             if (!objects) {
2576                 free(data);
2577 
2578                 mError = NO_MEMORY;
2579                 return NO_MEMORY;
2580             }
2581 
2582             // Little hack to only acquire references on objects
2583             // we will be keeping.
2584             size_t oldObjectsSize = mObjectsSize;
2585             mObjectsSize = objectsSize;
2586             acquireObjects();
2587             mObjectsSize = oldObjectsSize;
2588         }
2589 
2590         if (mData) {
2591             memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
2592         }
2593         if (objects && mObjects) {
2594             memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t));
2595         }
2596         //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2597         mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2598         mOwner = NULL;
2599 
2600         LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
2601         pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2602         gParcelGlobalAllocSize += desired;
2603         gParcelGlobalAllocCount++;
2604         pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2605 
2606         mData = data;
2607         mObjects = objects;
2608         mDataSize = (mDataSize < desired) ? mDataSize : desired;
2609         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2610         mDataCapacity = desired;
2611         mObjectsSize = mObjectsCapacity = objectsSize;
2612         mNextObjectHint = 0;
2613 
2614     } else if (mData) {
2615         if (objectsSize < mObjectsSize) {
2616             // Need to release refs on any objects we are dropping.
2617             const sp<ProcessState> proc(ProcessState::self());
2618             for (size_t i=objectsSize; i<mObjectsSize; i++) {
2619                 const flat_binder_object* flat
2620                     = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2621                 if (flat->type == BINDER_TYPE_FD) {
2622                     // will need to rescan because we may have lopped off the only FDs
2623                     mFdsKnown = false;
2624                 }
2625                 release_object(proc, *flat, this, &mOpenAshmemSize);
2626             }
2627             binder_size_t* objects =
2628                 (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t));
2629             if (objects) {
2630                 mObjects = objects;
2631             }
2632             mObjectsSize = objectsSize;
2633             mNextObjectHint = 0;
2634         }
2635 
2636         // We own the data, so we can just do a realloc().
2637         if (desired > mDataCapacity) {
2638             uint8_t* data = (uint8_t*)realloc(mData, desired);
2639             if (data) {
2640                 LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
2641                         desired);
2642                 pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2643                 gParcelGlobalAllocSize += desired;
2644                 gParcelGlobalAllocSize -= mDataCapacity;
2645                 pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2646                 mData = data;
2647                 mDataCapacity = desired;
2648             } else if (desired > mDataCapacity) {
2649                 mError = NO_MEMORY;
2650                 return NO_MEMORY;
2651             }
2652         } else {
2653             if (mDataSize > desired) {
2654                 mDataSize = desired;
2655                 ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2656             }
2657             if (mDataPos > desired) {
2658                 mDataPos = desired;
2659                 ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2660             }
2661         }
2662 
2663     } else {
2664         // This is the first data.  Easy!
2665         uint8_t* data = (uint8_t*)malloc(desired);
2666         if (!data) {
2667             mError = NO_MEMORY;
2668             return NO_MEMORY;
2669         }
2670 
2671         if(!(mDataCapacity == 0 && mObjects == NULL
2672              && mObjectsCapacity == 0)) {
2673             ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired);
2674         }
2675 
2676         LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
2677         pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2678         gParcelGlobalAllocSize += desired;
2679         gParcelGlobalAllocCount++;
2680         pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2681 
2682         mData = data;
2683         mDataSize = mDataPos = 0;
2684         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2685         ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2686         mDataCapacity = desired;
2687     }
2688 
2689     return NO_ERROR;
2690 }
2691 
initState()2692 void Parcel::initState()
2693 {
2694     LOG_ALLOC("Parcel %p: initState", this);
2695     mError = NO_ERROR;
2696     mData = 0;
2697     mDataSize = 0;
2698     mDataCapacity = 0;
2699     mDataPos = 0;
2700     ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
2701     ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
2702     mObjects = NULL;
2703     mObjectsSize = 0;
2704     mObjectsCapacity = 0;
2705     mNextObjectHint = 0;
2706     mHasFds = false;
2707     mFdsKnown = true;
2708     mAllowFds = true;
2709     mOwner = NULL;
2710     mOpenAshmemSize = 0;
2711 
2712     // racing multiple init leads only to multiple identical write
2713     if (gMaxFds == 0) {
2714         struct rlimit result;
2715         if (!getrlimit(RLIMIT_NOFILE, &result)) {
2716             gMaxFds = (size_t)result.rlim_cur;
2717             //ALOGI("parcel fd limit set to %zu", gMaxFds);
2718         } else {
2719             ALOGW("Unable to getrlimit: %s", strerror(errno));
2720             gMaxFds = 1024;
2721         }
2722     }
2723 }
2724 
scanForFds() const2725 void Parcel::scanForFds() const
2726 {
2727     bool hasFds = false;
2728     for (size_t i=0; i<mObjectsSize; i++) {
2729         const flat_binder_object* flat
2730             = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);
2731         if (flat->type == BINDER_TYPE_FD) {
2732             hasFds = true;
2733             break;
2734         }
2735     }
2736     mHasFds = hasFds;
2737     mFdsKnown = true;
2738 }
2739 
getBlobAshmemSize() const2740 size_t Parcel::getBlobAshmemSize() const
2741 {
2742     // This used to return the size of all blobs that were written to ashmem, now we're returning
2743     // the ashmem currently referenced by this Parcel, which should be equivalent.
2744     // TODO: Remove method once ABI can be changed.
2745     return mOpenAshmemSize;
2746 }
2747 
getOpenAshmemSize() const2748 size_t Parcel::getOpenAshmemSize() const
2749 {
2750     return mOpenAshmemSize;
2751 }
2752 
2753 // --- Parcel::Blob ---
2754 
Blob()2755 Parcel::Blob::Blob() :
2756         mFd(-1), mData(NULL), mSize(0), mMutable(false) {
2757 }
2758 
~Blob()2759 Parcel::Blob::~Blob() {
2760     release();
2761 }
2762 
release()2763 void Parcel::Blob::release() {
2764     if (mFd != -1 && mData) {
2765         ::munmap(mData, mSize);
2766     }
2767     clear();
2768 }
2769 
init(int fd,void * data,size_t size,bool isMutable)2770 void Parcel::Blob::init(int fd, void* data, size_t size, bool isMutable) {
2771     mFd = fd;
2772     mData = data;
2773     mSize = size;
2774     mMutable = isMutable;
2775 }
2776 
clear()2777 void Parcel::Blob::clear() {
2778     mFd = -1;
2779     mData = NULL;
2780     mSize = 0;
2781     mMutable = false;
2782 }
2783 
2784 }; // namespace android
2785