1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "Parcel"
18 //#define LOG_NDEBUG 0
19
20 #include <errno.h>
21 #include <fcntl.h>
22 #include <inttypes.h>
23 #include <pthread.h>
24 #include <stdint.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <sys/mman.h>
28 #include <sys/stat.h>
29 #include <sys/types.h>
30 #include <sys/resource.h>
31 #include <unistd.h>
32
33 #include <binder/Binder.h>
34 #include <binder/BpBinder.h>
35 #include <binder/IPCThreadState.h>
36 #include <binder/Parcel.h>
37 #include <binder/ProcessState.h>
38 #include <binder/Status.h>
39 #include <binder/TextOutput.h>
40 #include <binder/Value.h>
41
42 #include <cutils/ashmem.h>
43 #include <utils/Debug.h>
44 #include <utils/Flattenable.h>
45 #include <utils/Log.h>
46 #include <utils/misc.h>
47 #include <utils/String8.h>
48 #include <utils/String16.h>
49
50 #include <private/binder/binder_module.h>
51 #include <private/binder/Static.h>
52
53 #ifndef INT32_MAX
54 #define INT32_MAX ((int32_t)(2147483647))
55 #endif
56
57 #define LOG_REFS(...)
58 //#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
59 #define LOG_ALLOC(...)
60 //#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
61
62 // ---------------------------------------------------------------------------
63
64 // This macro should never be used at runtime, as a too large value
65 // of s could cause an integer overflow. Instead, you should always
66 // use the wrapper function pad_size()
67 #define PAD_SIZE_UNSAFE(s) (((s)+3)&~3)
68
pad_size(size_t s)69 static size_t pad_size(size_t s) {
70 if (s > (SIZE_T_MAX - 3)) {
71 abort();
72 }
73 return PAD_SIZE_UNSAFE(s);
74 }
75
76 // Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
77 #define STRICT_MODE_PENALTY_GATHER (0x40 << 16)
78
79 // XXX This can be made public if we want to provide
80 // support for typed data.
81 struct small_flat_data
82 {
83 uint32_t type;
84 uint32_t data;
85 };
86
87 namespace android {
88
89 static pthread_mutex_t gParcelGlobalAllocSizeLock = PTHREAD_MUTEX_INITIALIZER;
90 static size_t gParcelGlobalAllocSize = 0;
91 static size_t gParcelGlobalAllocCount = 0;
92
93 static size_t gMaxFds = 0;
94
95 // Maximum size of a blob to transfer in-place.
96 static const size_t BLOB_INPLACE_LIMIT = 16 * 1024;
97
98 enum {
99 BLOB_INPLACE = 0,
100 BLOB_ASHMEM_IMMUTABLE = 1,
101 BLOB_ASHMEM_MUTABLE = 2,
102 };
103
acquire_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who,size_t * outAshmemSize)104 void acquire_object(const sp<ProcessState>& proc,
105 const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
106 {
107 switch (obj.type) {
108 case BINDER_TYPE_BINDER:
109 if (obj.binder) {
110 LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);
111 reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
112 }
113 return;
114 case BINDER_TYPE_WEAK_BINDER:
115 if (obj.binder)
116 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);
117 return;
118 case BINDER_TYPE_HANDLE: {
119 const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
120 if (b != NULL) {
121 LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
122 b->incStrong(who);
123 }
124 return;
125 }
126 case BINDER_TYPE_WEAK_HANDLE: {
127 const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
128 if (b != NULL) b.get_refs()->incWeak(who);
129 return;
130 }
131 case BINDER_TYPE_FD: {
132 if ((obj.cookie != 0) && (outAshmemSize != NULL) && ashmem_valid(obj.handle)) {
133 // If we own an ashmem fd, keep track of how much memory it refers to.
134 int size = ashmem_get_size_region(obj.handle);
135 if (size > 0) {
136 *outAshmemSize += size;
137 }
138 }
139 return;
140 }
141 }
142
143 ALOGD("Invalid object type 0x%08x", obj.type);
144 }
145
acquire_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)146 void acquire_object(const sp<ProcessState>& proc,
147 const flat_binder_object& obj, const void* who)
148 {
149 acquire_object(proc, obj, who, NULL);
150 }
151
release_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who,size_t * outAshmemSize)152 static void release_object(const sp<ProcessState>& proc,
153 const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
154 {
155 switch (obj.type) {
156 case BINDER_TYPE_BINDER:
157 if (obj.binder) {
158 LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);
159 reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
160 }
161 return;
162 case BINDER_TYPE_WEAK_BINDER:
163 if (obj.binder)
164 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);
165 return;
166 case BINDER_TYPE_HANDLE: {
167 const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
168 if (b != NULL) {
169 LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
170 b->decStrong(who);
171 }
172 return;
173 }
174 case BINDER_TYPE_WEAK_HANDLE: {
175 const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
176 if (b != NULL) b.get_refs()->decWeak(who);
177 return;
178 }
179 case BINDER_TYPE_FD: {
180 if (obj.cookie != 0) { // owned
181 if ((outAshmemSize != NULL) && ashmem_valid(obj.handle)) {
182 int size = ashmem_get_size_region(obj.handle);
183 if (size > 0) {
184 *outAshmemSize -= size;
185 }
186 }
187
188 close(obj.handle);
189 }
190 return;
191 }
192 }
193
194 ALOGE("Invalid object type 0x%08x", obj.type);
195 }
196
release_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)197 void release_object(const sp<ProcessState>& proc,
198 const flat_binder_object& obj, const void* who)
199 {
200 release_object(proc, obj, who, NULL);
201 }
202
finish_flatten_binder(const sp<IBinder> &,const flat_binder_object & flat,Parcel * out)203 inline static status_t finish_flatten_binder(
204 const sp<IBinder>& /*binder*/, const flat_binder_object& flat, Parcel* out)
205 {
206 return out->writeObject(flat, false);
207 }
208
flatten_binder(const sp<ProcessState> &,const sp<IBinder> & binder,Parcel * out)209 status_t flatten_binder(const sp<ProcessState>& /*proc*/,
210 const sp<IBinder>& binder, Parcel* out)
211 {
212 flat_binder_object obj;
213
214 if (IPCThreadState::self()->backgroundSchedulingDisabled()) {
215 /* minimum priority for all nodes is nice 0 */
216 obj.flags = FLAT_BINDER_FLAG_ACCEPTS_FDS;
217 } else {
218 /* minimum priority for all nodes is MAX_NICE(19) */
219 obj.flags = 0x13 | FLAT_BINDER_FLAG_ACCEPTS_FDS;
220 }
221
222 if (binder != NULL) {
223 IBinder *local = binder->localBinder();
224 if (!local) {
225 BpBinder *proxy = binder->remoteBinder();
226 if (proxy == NULL) {
227 ALOGE("null proxy");
228 }
229 const int32_t handle = proxy ? proxy->handle() : 0;
230 obj.type = BINDER_TYPE_HANDLE;
231 obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
232 obj.handle = handle;
233 obj.cookie = 0;
234 } else {
235 obj.type = BINDER_TYPE_BINDER;
236 obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
237 obj.cookie = reinterpret_cast<uintptr_t>(local);
238 }
239 } else {
240 obj.type = BINDER_TYPE_BINDER;
241 obj.binder = 0;
242 obj.cookie = 0;
243 }
244
245 return finish_flatten_binder(binder, obj, out);
246 }
247
flatten_binder(const sp<ProcessState> &,const wp<IBinder> & binder,Parcel * out)248 status_t flatten_binder(const sp<ProcessState>& /*proc*/,
249 const wp<IBinder>& binder, Parcel* out)
250 {
251 flat_binder_object obj;
252
253 obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
254 if (binder != NULL) {
255 sp<IBinder> real = binder.promote();
256 if (real != NULL) {
257 IBinder *local = real->localBinder();
258 if (!local) {
259 BpBinder *proxy = real->remoteBinder();
260 if (proxy == NULL) {
261 ALOGE("null proxy");
262 }
263 const int32_t handle = proxy ? proxy->handle() : 0;
264 obj.type = BINDER_TYPE_WEAK_HANDLE;
265 obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
266 obj.handle = handle;
267 obj.cookie = 0;
268 } else {
269 obj.type = BINDER_TYPE_WEAK_BINDER;
270 obj.binder = reinterpret_cast<uintptr_t>(binder.get_refs());
271 obj.cookie = reinterpret_cast<uintptr_t>(binder.unsafe_get());
272 }
273 return finish_flatten_binder(real, obj, out);
274 }
275
276 // XXX How to deal? In order to flatten the given binder,
277 // we need to probe it for information, which requires a primary
278 // reference... but we don't have one.
279 //
280 // The OpenBinder implementation uses a dynamic_cast<> here,
281 // but we can't do that with the different reference counting
282 // implementation we are using.
283 ALOGE("Unable to unflatten Binder weak reference!");
284 obj.type = BINDER_TYPE_BINDER;
285 obj.binder = 0;
286 obj.cookie = 0;
287 return finish_flatten_binder(NULL, obj, out);
288
289 } else {
290 obj.type = BINDER_TYPE_BINDER;
291 obj.binder = 0;
292 obj.cookie = 0;
293 return finish_flatten_binder(NULL, obj, out);
294 }
295 }
296
finish_unflatten_binder(BpBinder *,const flat_binder_object &,const Parcel &)297 inline static status_t finish_unflatten_binder(
298 BpBinder* /*proxy*/, const flat_binder_object& /*flat*/,
299 const Parcel& /*in*/)
300 {
301 return NO_ERROR;
302 }
303
unflatten_binder(const sp<ProcessState> & proc,const Parcel & in,sp<IBinder> * out)304 status_t unflatten_binder(const sp<ProcessState>& proc,
305 const Parcel& in, sp<IBinder>* out)
306 {
307 const flat_binder_object* flat = in.readObject(false);
308
309 if (flat) {
310 switch (flat->type) {
311 case BINDER_TYPE_BINDER:
312 *out = reinterpret_cast<IBinder*>(flat->cookie);
313 return finish_unflatten_binder(NULL, *flat, in);
314 case BINDER_TYPE_HANDLE:
315 *out = proc->getStrongProxyForHandle(flat->handle);
316 return finish_unflatten_binder(
317 static_cast<BpBinder*>(out->get()), *flat, in);
318 }
319 }
320 return BAD_TYPE;
321 }
322
unflatten_binder(const sp<ProcessState> & proc,const Parcel & in,wp<IBinder> * out)323 status_t unflatten_binder(const sp<ProcessState>& proc,
324 const Parcel& in, wp<IBinder>* out)
325 {
326 const flat_binder_object* flat = in.readObject(false);
327
328 if (flat) {
329 switch (flat->type) {
330 case BINDER_TYPE_BINDER:
331 *out = reinterpret_cast<IBinder*>(flat->cookie);
332 return finish_unflatten_binder(NULL, *flat, in);
333 case BINDER_TYPE_WEAK_BINDER:
334 if (flat->binder != 0) {
335 out->set_object_and_refs(
336 reinterpret_cast<IBinder*>(flat->cookie),
337 reinterpret_cast<RefBase::weakref_type*>(flat->binder));
338 } else {
339 *out = NULL;
340 }
341 return finish_unflatten_binder(NULL, *flat, in);
342 case BINDER_TYPE_HANDLE:
343 case BINDER_TYPE_WEAK_HANDLE:
344 *out = proc->getWeakProxyForHandle(flat->handle);
345 return finish_unflatten_binder(
346 static_cast<BpBinder*>(out->unsafe_get()), *flat, in);
347 }
348 }
349 return BAD_TYPE;
350 }
351
352 // ---------------------------------------------------------------------------
353
Parcel()354 Parcel::Parcel()
355 {
356 LOG_ALLOC("Parcel %p: constructing", this);
357 initState();
358 }
359
~Parcel()360 Parcel::~Parcel()
361 {
362 freeDataNoInit();
363 LOG_ALLOC("Parcel %p: destroyed", this);
364 }
365
getGlobalAllocSize()366 size_t Parcel::getGlobalAllocSize() {
367 pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
368 size_t size = gParcelGlobalAllocSize;
369 pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
370 return size;
371 }
372
getGlobalAllocCount()373 size_t Parcel::getGlobalAllocCount() {
374 pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
375 size_t count = gParcelGlobalAllocCount;
376 pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
377 return count;
378 }
379
data() const380 const uint8_t* Parcel::data() const
381 {
382 return mData;
383 }
384
dataSize() const385 size_t Parcel::dataSize() const
386 {
387 return (mDataSize > mDataPos ? mDataSize : mDataPos);
388 }
389
dataAvail() const390 size_t Parcel::dataAvail() const
391 {
392 size_t result = dataSize() - dataPosition();
393 if (result > INT32_MAX) {
394 abort();
395 }
396 return result;
397 }
398
dataPosition() const399 size_t Parcel::dataPosition() const
400 {
401 return mDataPos;
402 }
403
dataCapacity() const404 size_t Parcel::dataCapacity() const
405 {
406 return mDataCapacity;
407 }
408
setDataSize(size_t size)409 status_t Parcel::setDataSize(size_t size)
410 {
411 if (size > INT32_MAX) {
412 // don't accept size_t values which may have come from an
413 // inadvertent conversion from a negative int.
414 return BAD_VALUE;
415 }
416
417 status_t err;
418 err = continueWrite(size);
419 if (err == NO_ERROR) {
420 mDataSize = size;
421 ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
422 }
423 return err;
424 }
425
setDataPosition(size_t pos) const426 void Parcel::setDataPosition(size_t pos) const
427 {
428 if (pos > INT32_MAX) {
429 // don't accept size_t values which may have come from an
430 // inadvertent conversion from a negative int.
431 abort();
432 }
433
434 mDataPos = pos;
435 mNextObjectHint = 0;
436 }
437
setDataCapacity(size_t size)438 status_t Parcel::setDataCapacity(size_t size)
439 {
440 if (size > INT32_MAX) {
441 // don't accept size_t values which may have come from an
442 // inadvertent conversion from a negative int.
443 return BAD_VALUE;
444 }
445
446 if (size > mDataCapacity) return continueWrite(size);
447 return NO_ERROR;
448 }
449
setData(const uint8_t * buffer,size_t len)450 status_t Parcel::setData(const uint8_t* buffer, size_t len)
451 {
452 if (len > INT32_MAX) {
453 // don't accept size_t values which may have come from an
454 // inadvertent conversion from a negative int.
455 return BAD_VALUE;
456 }
457
458 status_t err = restartWrite(len);
459 if (err == NO_ERROR) {
460 memcpy(const_cast<uint8_t*>(data()), buffer, len);
461 mDataSize = len;
462 mFdsKnown = false;
463 }
464 return err;
465 }
466
appendFrom(const Parcel * parcel,size_t offset,size_t len)467 status_t Parcel::appendFrom(const Parcel *parcel, size_t offset, size_t len)
468 {
469 const sp<ProcessState> proc(ProcessState::self());
470 status_t err;
471 const uint8_t *data = parcel->mData;
472 const binder_size_t *objects = parcel->mObjects;
473 size_t size = parcel->mObjectsSize;
474 int startPos = mDataPos;
475 int firstIndex = -1, lastIndex = -2;
476
477 if (len == 0) {
478 return NO_ERROR;
479 }
480
481 if (len > INT32_MAX) {
482 // don't accept size_t values which may have come from an
483 // inadvertent conversion from a negative int.
484 return BAD_VALUE;
485 }
486
487 // range checks against the source parcel size
488 if ((offset > parcel->mDataSize)
489 || (len > parcel->mDataSize)
490 || (offset + len > parcel->mDataSize)) {
491 return BAD_VALUE;
492 }
493
494 // Count objects in range
495 for (int i = 0; i < (int) size; i++) {
496 size_t off = objects[i];
497 if ((off >= offset) && (off + sizeof(flat_binder_object) <= offset + len)) {
498 if (firstIndex == -1) {
499 firstIndex = i;
500 }
501 lastIndex = i;
502 }
503 }
504 int numObjects = lastIndex - firstIndex + 1;
505
506 if ((mDataSize+len) > mDataCapacity) {
507 // grow data
508 err = growData(len);
509 if (err != NO_ERROR) {
510 return err;
511 }
512 }
513
514 // append data
515 memcpy(mData + mDataPos, data + offset, len);
516 mDataPos += len;
517 mDataSize += len;
518
519 err = NO_ERROR;
520
521 if (numObjects > 0) {
522 // grow objects
523 if (mObjectsCapacity < mObjectsSize + numObjects) {
524 size_t newSize = ((mObjectsSize + numObjects)*3)/2;
525 if (newSize*sizeof(binder_size_t) < mObjectsSize) return NO_MEMORY; // overflow
526 binder_size_t *objects =
527 (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
528 if (objects == (binder_size_t*)0) {
529 return NO_MEMORY;
530 }
531 mObjects = objects;
532 mObjectsCapacity = newSize;
533 }
534
535 // append and acquire objects
536 int idx = mObjectsSize;
537 for (int i = firstIndex; i <= lastIndex; i++) {
538 size_t off = objects[i] - offset + startPos;
539 mObjects[idx++] = off;
540 mObjectsSize++;
541
542 flat_binder_object* flat
543 = reinterpret_cast<flat_binder_object*>(mData + off);
544 acquire_object(proc, *flat, this, &mOpenAshmemSize);
545
546 if (flat->type == BINDER_TYPE_FD) {
547 // If this is a file descriptor, we need to dup it so the
548 // new Parcel now owns its own fd, and can declare that we
549 // officially know we have fds.
550 flat->handle = fcntl(flat->handle, F_DUPFD_CLOEXEC, 0);
551 flat->cookie = 1;
552 mHasFds = mFdsKnown = true;
553 if (!mAllowFds) {
554 err = FDS_NOT_ALLOWED;
555 }
556 }
557 }
558 }
559
560 return err;
561 }
562
compareData(const Parcel & other)563 int Parcel::compareData(const Parcel& other) {
564 size_t size = dataSize();
565 if (size != other.dataSize()) {
566 return size < other.dataSize() ? -1 : 1;
567 }
568 return memcmp(data(), other.data(), size);
569 }
570
allowFds() const571 bool Parcel::allowFds() const
572 {
573 return mAllowFds;
574 }
575
pushAllowFds(bool allowFds)576 bool Parcel::pushAllowFds(bool allowFds)
577 {
578 const bool origValue = mAllowFds;
579 if (!allowFds) {
580 mAllowFds = false;
581 }
582 return origValue;
583 }
584
restoreAllowFds(bool lastValue)585 void Parcel::restoreAllowFds(bool lastValue)
586 {
587 mAllowFds = lastValue;
588 }
589
hasFileDescriptors() const590 bool Parcel::hasFileDescriptors() const
591 {
592 if (!mFdsKnown) {
593 scanForFds();
594 }
595 return mHasFds;
596 }
597
598 // Write RPC headers. (previously just the interface token)
writeInterfaceToken(const String16 & interface)599 status_t Parcel::writeInterfaceToken(const String16& interface)
600 {
601 writeInt32(IPCThreadState::self()->getStrictModePolicy() |
602 STRICT_MODE_PENALTY_GATHER);
603 // currently the interface identification token is just its name as a string
604 return writeString16(interface);
605 }
606
checkInterface(IBinder * binder) const607 bool Parcel::checkInterface(IBinder* binder) const
608 {
609 return enforceInterface(binder->getInterfaceDescriptor());
610 }
611
enforceInterface(const String16 & interface,IPCThreadState * threadState) const612 bool Parcel::enforceInterface(const String16& interface,
613 IPCThreadState* threadState) const
614 {
615 int32_t strictPolicy = readInt32();
616 if (threadState == NULL) {
617 threadState = IPCThreadState::self();
618 }
619 if ((threadState->getLastTransactionBinderFlags() &
620 IBinder::FLAG_ONEWAY) != 0) {
621 // For one-way calls, the callee is running entirely
622 // disconnected from the caller, so disable StrictMode entirely.
623 // Not only does disk/network usage not impact the caller, but
624 // there's no way to commuicate back any violations anyway.
625 threadState->setStrictModePolicy(0);
626 } else {
627 threadState->setStrictModePolicy(strictPolicy);
628 }
629 const String16 str(readString16());
630 if (str == interface) {
631 return true;
632 } else {
633 ALOGW("**** enforceInterface() expected '%s' but read '%s'",
634 String8(interface).string(), String8(str).string());
635 return false;
636 }
637 }
638
objects() const639 const binder_size_t* Parcel::objects() const
640 {
641 return mObjects;
642 }
643
objectsCount() const644 size_t Parcel::objectsCount() const
645 {
646 return mObjectsSize;
647 }
648
errorCheck() const649 status_t Parcel::errorCheck() const
650 {
651 return mError;
652 }
653
setError(status_t err)654 void Parcel::setError(status_t err)
655 {
656 mError = err;
657 }
658
finishWrite(size_t len)659 status_t Parcel::finishWrite(size_t len)
660 {
661 if (len > INT32_MAX) {
662 // don't accept size_t values which may have come from an
663 // inadvertent conversion from a negative int.
664 return BAD_VALUE;
665 }
666
667 //printf("Finish write of %d\n", len);
668 mDataPos += len;
669 ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
670 if (mDataPos > mDataSize) {
671 mDataSize = mDataPos;
672 ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
673 }
674 //printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
675 return NO_ERROR;
676 }
677
writeUnpadded(const void * data,size_t len)678 status_t Parcel::writeUnpadded(const void* data, size_t len)
679 {
680 if (len > INT32_MAX) {
681 // don't accept size_t values which may have come from an
682 // inadvertent conversion from a negative int.
683 return BAD_VALUE;
684 }
685
686 size_t end = mDataPos + len;
687 if (end < mDataPos) {
688 // integer overflow
689 return BAD_VALUE;
690 }
691
692 if (end <= mDataCapacity) {
693 restart_write:
694 memcpy(mData+mDataPos, data, len);
695 return finishWrite(len);
696 }
697
698 status_t err = growData(len);
699 if (err == NO_ERROR) goto restart_write;
700 return err;
701 }
702
write(const void * data,size_t len)703 status_t Parcel::write(const void* data, size_t len)
704 {
705 if (len > INT32_MAX) {
706 // don't accept size_t values which may have come from an
707 // inadvertent conversion from a negative int.
708 return BAD_VALUE;
709 }
710
711 void* const d = writeInplace(len);
712 if (d) {
713 memcpy(d, data, len);
714 return NO_ERROR;
715 }
716 return mError;
717 }
718
writeInplace(size_t len)719 void* Parcel::writeInplace(size_t len)
720 {
721 if (len > INT32_MAX) {
722 // don't accept size_t values which may have come from an
723 // inadvertent conversion from a negative int.
724 return NULL;
725 }
726
727 const size_t padded = pad_size(len);
728
729 // sanity check for integer overflow
730 if (mDataPos+padded < mDataPos) {
731 return NULL;
732 }
733
734 if ((mDataPos+padded) <= mDataCapacity) {
735 restart_write:
736 //printf("Writing %ld bytes, padded to %ld\n", len, padded);
737 uint8_t* const data = mData+mDataPos;
738
739 // Need to pad at end?
740 if (padded != len) {
741 #if BYTE_ORDER == BIG_ENDIAN
742 static const uint32_t mask[4] = {
743 0x00000000, 0xffffff00, 0xffff0000, 0xff000000
744 };
745 #endif
746 #if BYTE_ORDER == LITTLE_ENDIAN
747 static const uint32_t mask[4] = {
748 0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
749 };
750 #endif
751 //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
752 // *reinterpret_cast<void**>(data+padded-4));
753 *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
754 }
755
756 finishWrite(padded);
757 return data;
758 }
759
760 status_t err = growData(padded);
761 if (err == NO_ERROR) goto restart_write;
762 return NULL;
763 }
764
writeUtf8AsUtf16(const std::string & str)765 status_t Parcel::writeUtf8AsUtf16(const std::string& str) {
766 const uint8_t* strData = (uint8_t*)str.data();
767 const size_t strLen= str.length();
768 const ssize_t utf16Len = utf8_to_utf16_length(strData, strLen);
769 if (utf16Len < 0 || utf16Len > std::numeric_limits<int32_t>::max()) {
770 return BAD_VALUE;
771 }
772
773 status_t err = writeInt32(utf16Len);
774 if (err) {
775 return err;
776 }
777
778 // Allocate enough bytes to hold our converted string and its terminating NULL.
779 void* dst = writeInplace((utf16Len + 1) * sizeof(char16_t));
780 if (!dst) {
781 return NO_MEMORY;
782 }
783
784 utf8_to_utf16(strData, strLen, (char16_t*)dst, (size_t) utf16Len + 1);
785
786 return NO_ERROR;
787 }
788
writeUtf8AsUtf16(const std::unique_ptr<std::string> & str)789 status_t Parcel::writeUtf8AsUtf16(const std::unique_ptr<std::string>& str) {
790 if (!str) {
791 return writeInt32(-1);
792 }
793 return writeUtf8AsUtf16(*str);
794 }
795
796 namespace {
797
798 template<typename T>
writeByteVectorInternal(Parcel * parcel,const std::vector<T> & val)799 status_t writeByteVectorInternal(Parcel* parcel, const std::vector<T>& val)
800 {
801 status_t status;
802 if (val.size() > std::numeric_limits<int32_t>::max()) {
803 status = BAD_VALUE;
804 return status;
805 }
806
807 status = parcel->writeInt32(val.size());
808 if (status != OK) {
809 return status;
810 }
811
812 void* data = parcel->writeInplace(val.size());
813 if (!data) {
814 status = BAD_VALUE;
815 return status;
816 }
817
818 memcpy(data, val.data(), val.size());
819 return status;
820 }
821
822 template<typename T>
writeByteVectorInternalPtr(Parcel * parcel,const std::unique_ptr<std::vector<T>> & val)823 status_t writeByteVectorInternalPtr(Parcel* parcel,
824 const std::unique_ptr<std::vector<T>>& val)
825 {
826 if (!val) {
827 return parcel->writeInt32(-1);
828 }
829
830 return writeByteVectorInternal(parcel, *val);
831 }
832
833 } // namespace
834
writeByteVector(const std::vector<int8_t> & val)835 status_t Parcel::writeByteVector(const std::vector<int8_t>& val) {
836 return writeByteVectorInternal(this, val);
837 }
838
writeByteVector(const std::unique_ptr<std::vector<int8_t>> & val)839 status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<int8_t>>& val)
840 {
841 return writeByteVectorInternalPtr(this, val);
842 }
843
writeByteVector(const std::vector<uint8_t> & val)844 status_t Parcel::writeByteVector(const std::vector<uint8_t>& val) {
845 return writeByteVectorInternal(this, val);
846 }
847
writeByteVector(const std::unique_ptr<std::vector<uint8_t>> & val)848 status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<uint8_t>>& val)
849 {
850 return writeByteVectorInternalPtr(this, val);
851 }
852
writeInt32Vector(const std::vector<int32_t> & val)853 status_t Parcel::writeInt32Vector(const std::vector<int32_t>& val)
854 {
855 return writeTypedVector(val, &Parcel::writeInt32);
856 }
857
writeInt32Vector(const std::unique_ptr<std::vector<int32_t>> & val)858 status_t Parcel::writeInt32Vector(const std::unique_ptr<std::vector<int32_t>>& val)
859 {
860 return writeNullableTypedVector(val, &Parcel::writeInt32);
861 }
862
writeInt64Vector(const std::vector<int64_t> & val)863 status_t Parcel::writeInt64Vector(const std::vector<int64_t>& val)
864 {
865 return writeTypedVector(val, &Parcel::writeInt64);
866 }
867
writeInt64Vector(const std::unique_ptr<std::vector<int64_t>> & val)868 status_t Parcel::writeInt64Vector(const std::unique_ptr<std::vector<int64_t>>& val)
869 {
870 return writeNullableTypedVector(val, &Parcel::writeInt64);
871 }
872
writeFloatVector(const std::vector<float> & val)873 status_t Parcel::writeFloatVector(const std::vector<float>& val)
874 {
875 return writeTypedVector(val, &Parcel::writeFloat);
876 }
877
writeFloatVector(const std::unique_ptr<std::vector<float>> & val)878 status_t Parcel::writeFloatVector(const std::unique_ptr<std::vector<float>>& val)
879 {
880 return writeNullableTypedVector(val, &Parcel::writeFloat);
881 }
882
writeDoubleVector(const std::vector<double> & val)883 status_t Parcel::writeDoubleVector(const std::vector<double>& val)
884 {
885 return writeTypedVector(val, &Parcel::writeDouble);
886 }
887
writeDoubleVector(const std::unique_ptr<std::vector<double>> & val)888 status_t Parcel::writeDoubleVector(const std::unique_ptr<std::vector<double>>& val)
889 {
890 return writeNullableTypedVector(val, &Parcel::writeDouble);
891 }
892
writeBoolVector(const std::vector<bool> & val)893 status_t Parcel::writeBoolVector(const std::vector<bool>& val)
894 {
895 return writeTypedVector(val, &Parcel::writeBool);
896 }
897
writeBoolVector(const std::unique_ptr<std::vector<bool>> & val)898 status_t Parcel::writeBoolVector(const std::unique_ptr<std::vector<bool>>& val)
899 {
900 return writeNullableTypedVector(val, &Parcel::writeBool);
901 }
902
writeCharVector(const std::vector<char16_t> & val)903 status_t Parcel::writeCharVector(const std::vector<char16_t>& val)
904 {
905 return writeTypedVector(val, &Parcel::writeChar);
906 }
907
writeCharVector(const std::unique_ptr<std::vector<char16_t>> & val)908 status_t Parcel::writeCharVector(const std::unique_ptr<std::vector<char16_t>>& val)
909 {
910 return writeNullableTypedVector(val, &Parcel::writeChar);
911 }
912
writeString16Vector(const std::vector<String16> & val)913 status_t Parcel::writeString16Vector(const std::vector<String16>& val)
914 {
915 return writeTypedVector(val, &Parcel::writeString16);
916 }
917
writeString16Vector(const std::unique_ptr<std::vector<std::unique_ptr<String16>>> & val)918 status_t Parcel::writeString16Vector(
919 const std::unique_ptr<std::vector<std::unique_ptr<String16>>>& val)
920 {
921 return writeNullableTypedVector(val, &Parcel::writeString16);
922 }
923
writeUtf8VectorAsUtf16Vector(const std::unique_ptr<std::vector<std::unique_ptr<std::string>>> & val)924 status_t Parcel::writeUtf8VectorAsUtf16Vector(
925 const std::unique_ptr<std::vector<std::unique_ptr<std::string>>>& val) {
926 return writeNullableTypedVector(val, &Parcel::writeUtf8AsUtf16);
927 }
928
writeUtf8VectorAsUtf16Vector(const std::vector<std::string> & val)929 status_t Parcel::writeUtf8VectorAsUtf16Vector(const std::vector<std::string>& val) {
930 return writeTypedVector(val, &Parcel::writeUtf8AsUtf16);
931 }
932
writeInt32(int32_t val)933 status_t Parcel::writeInt32(int32_t val)
934 {
935 return writeAligned(val);
936 }
937
writeUint32(uint32_t val)938 status_t Parcel::writeUint32(uint32_t val)
939 {
940 return writeAligned(val);
941 }
942
writeInt32Array(size_t len,const int32_t * val)943 status_t Parcel::writeInt32Array(size_t len, const int32_t *val) {
944 if (len > INT32_MAX) {
945 // don't accept size_t values which may have come from an
946 // inadvertent conversion from a negative int.
947 return BAD_VALUE;
948 }
949
950 if (!val) {
951 return writeInt32(-1);
952 }
953 status_t ret = writeInt32(static_cast<uint32_t>(len));
954 if (ret == NO_ERROR) {
955 ret = write(val, len * sizeof(*val));
956 }
957 return ret;
958 }
writeByteArray(size_t len,const uint8_t * val)959 status_t Parcel::writeByteArray(size_t len, const uint8_t *val) {
960 if (len > INT32_MAX) {
961 // don't accept size_t values which may have come from an
962 // inadvertent conversion from a negative int.
963 return BAD_VALUE;
964 }
965
966 if (!val) {
967 return writeInt32(-1);
968 }
969 status_t ret = writeInt32(static_cast<uint32_t>(len));
970 if (ret == NO_ERROR) {
971 ret = write(val, len * sizeof(*val));
972 }
973 return ret;
974 }
975
writeBool(bool val)976 status_t Parcel::writeBool(bool val)
977 {
978 return writeInt32(int32_t(val));
979 }
980
writeChar(char16_t val)981 status_t Parcel::writeChar(char16_t val)
982 {
983 return writeInt32(int32_t(val));
984 }
985
writeByte(int8_t val)986 status_t Parcel::writeByte(int8_t val)
987 {
988 return writeInt32(int32_t(val));
989 }
990
writeInt64(int64_t val)991 status_t Parcel::writeInt64(int64_t val)
992 {
993 return writeAligned(val);
994 }
995
writeUint64(uint64_t val)996 status_t Parcel::writeUint64(uint64_t val)
997 {
998 return writeAligned(val);
999 }
1000
writePointer(uintptr_t val)1001 status_t Parcel::writePointer(uintptr_t val)
1002 {
1003 return writeAligned<binder_uintptr_t>(val);
1004 }
1005
writeFloat(float val)1006 status_t Parcel::writeFloat(float val)
1007 {
1008 return writeAligned(val);
1009 }
1010
1011 #if defined(__mips__) && defined(__mips_hard_float)
1012
writeDouble(double val)1013 status_t Parcel::writeDouble(double val)
1014 {
1015 union {
1016 double d;
1017 unsigned long long ll;
1018 } u;
1019 u.d = val;
1020 return writeAligned(u.ll);
1021 }
1022
1023 #else
1024
writeDouble(double val)1025 status_t Parcel::writeDouble(double val)
1026 {
1027 return writeAligned(val);
1028 }
1029
1030 #endif
1031
writeCString(const char * str)1032 status_t Parcel::writeCString(const char* str)
1033 {
1034 return write(str, strlen(str)+1);
1035 }
1036
writeString8(const String8 & str)1037 status_t Parcel::writeString8(const String8& str)
1038 {
1039 status_t err = writeInt32(str.bytes());
1040 // only write string if its length is more than zero characters,
1041 // as readString8 will only read if the length field is non-zero.
1042 // this is slightly different from how writeString16 works.
1043 if (str.bytes() > 0 && err == NO_ERROR) {
1044 err = write(str.string(), str.bytes()+1);
1045 }
1046 return err;
1047 }
1048
writeString16(const std::unique_ptr<String16> & str)1049 status_t Parcel::writeString16(const std::unique_ptr<String16>& str)
1050 {
1051 if (!str) {
1052 return writeInt32(-1);
1053 }
1054
1055 return writeString16(*str);
1056 }
1057
writeString16(const String16 & str)1058 status_t Parcel::writeString16(const String16& str)
1059 {
1060 return writeString16(str.string(), str.size());
1061 }
1062
writeString16(const char16_t * str,size_t len)1063 status_t Parcel::writeString16(const char16_t* str, size_t len)
1064 {
1065 if (str == NULL) return writeInt32(-1);
1066
1067 status_t err = writeInt32(len);
1068 if (err == NO_ERROR) {
1069 len *= sizeof(char16_t);
1070 uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
1071 if (data) {
1072 memcpy(data, str, len);
1073 *reinterpret_cast<char16_t*>(data+len) = 0;
1074 return NO_ERROR;
1075 }
1076 err = mError;
1077 }
1078 return err;
1079 }
1080
writeStrongBinder(const sp<IBinder> & val)1081 status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
1082 {
1083 return flatten_binder(ProcessState::self(), val, this);
1084 }
1085
writeStrongBinderVector(const std::vector<sp<IBinder>> & val)1086 status_t Parcel::writeStrongBinderVector(const std::vector<sp<IBinder>>& val)
1087 {
1088 return writeTypedVector(val, &Parcel::writeStrongBinder);
1089 }
1090
writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>> & val)1091 status_t Parcel::writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>>& val)
1092 {
1093 return writeNullableTypedVector(val, &Parcel::writeStrongBinder);
1094 }
1095
readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>> * val) const1096 status_t Parcel::readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>>* val) const {
1097 return readNullableTypedVector(val, &Parcel::readNullableStrongBinder);
1098 }
1099
readStrongBinderVector(std::vector<sp<IBinder>> * val) const1100 status_t Parcel::readStrongBinderVector(std::vector<sp<IBinder>>* val) const {
1101 return readTypedVector(val, &Parcel::readStrongBinder);
1102 }
1103
writeWeakBinder(const wp<IBinder> & val)1104 status_t Parcel::writeWeakBinder(const wp<IBinder>& val)
1105 {
1106 return flatten_binder(ProcessState::self(), val, this);
1107 }
1108
writeRawNullableParcelable(const Parcelable * parcelable)1109 status_t Parcel::writeRawNullableParcelable(const Parcelable* parcelable) {
1110 if (!parcelable) {
1111 return writeInt32(0);
1112 }
1113
1114 return writeParcelable(*parcelable);
1115 }
1116
writeParcelable(const Parcelable & parcelable)1117 status_t Parcel::writeParcelable(const Parcelable& parcelable) {
1118 status_t status = writeInt32(1); // parcelable is not null.
1119 if (status != OK) {
1120 return status;
1121 }
1122 return parcelable.writeToParcel(this);
1123 }
1124
writeValue(const binder::Value & value)1125 status_t Parcel::writeValue(const binder::Value& value) {
1126 return value.writeToParcel(this);
1127 }
1128
writeNativeHandle(const native_handle * handle)1129 status_t Parcel::writeNativeHandle(const native_handle* handle)
1130 {
1131 if (!handle || handle->version != sizeof(native_handle))
1132 return BAD_TYPE;
1133
1134 status_t err;
1135 err = writeInt32(handle->numFds);
1136 if (err != NO_ERROR) return err;
1137
1138 err = writeInt32(handle->numInts);
1139 if (err != NO_ERROR) return err;
1140
1141 for (int i=0 ; err==NO_ERROR && i<handle->numFds ; i++)
1142 err = writeDupFileDescriptor(handle->data[i]);
1143
1144 if (err != NO_ERROR) {
1145 ALOGD("write native handle, write dup fd failed");
1146 return err;
1147 }
1148 err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts);
1149 return err;
1150 }
1151
writeFileDescriptor(int fd,bool takeOwnership)1152 status_t Parcel::writeFileDescriptor(int fd, bool takeOwnership)
1153 {
1154 flat_binder_object obj;
1155 obj.type = BINDER_TYPE_FD;
1156 obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
1157 obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
1158 obj.handle = fd;
1159 obj.cookie = takeOwnership ? 1 : 0;
1160 return writeObject(obj, true);
1161 }
1162
writeDupFileDescriptor(int fd)1163 status_t Parcel::writeDupFileDescriptor(int fd)
1164 {
1165 int dupFd = fcntl(fd, F_DUPFD_CLOEXEC, 0);
1166 if (dupFd < 0) {
1167 return -errno;
1168 }
1169 status_t err = writeFileDescriptor(dupFd, true /*takeOwnership*/);
1170 if (err != OK) {
1171 close(dupFd);
1172 }
1173 return err;
1174 }
1175
writeParcelFileDescriptor(int fd,bool takeOwnership)1176 status_t Parcel::writeParcelFileDescriptor(int fd, bool takeOwnership)
1177 {
1178 writeInt32(0);
1179 return writeFileDescriptor(fd, takeOwnership);
1180 }
1181
writeUniqueFileDescriptor(const base::unique_fd & fd)1182 status_t Parcel::writeUniqueFileDescriptor(const base::unique_fd& fd) {
1183 return writeDupFileDescriptor(fd.get());
1184 }
1185
writeUniqueFileDescriptorVector(const std::vector<base::unique_fd> & val)1186 status_t Parcel::writeUniqueFileDescriptorVector(const std::vector<base::unique_fd>& val) {
1187 return writeTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1188 }
1189
writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<base::unique_fd>> & val)1190 status_t Parcel::writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<base::unique_fd>>& val) {
1191 return writeNullableTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1192 }
1193
writeBlob(size_t len,bool mutableCopy,WritableBlob * outBlob)1194 status_t Parcel::writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob)
1195 {
1196 if (len > INT32_MAX) {
1197 // don't accept size_t values which may have come from an
1198 // inadvertent conversion from a negative int.
1199 return BAD_VALUE;
1200 }
1201
1202 status_t status;
1203 if (!mAllowFds || len <= BLOB_INPLACE_LIMIT) {
1204 ALOGV("writeBlob: write in place");
1205 status = writeInt32(BLOB_INPLACE);
1206 if (status) return status;
1207
1208 void* ptr = writeInplace(len);
1209 if (!ptr) return NO_MEMORY;
1210
1211 outBlob->init(-1, ptr, len, false);
1212 return NO_ERROR;
1213 }
1214
1215 ALOGV("writeBlob: write to ashmem");
1216 int fd = ashmem_create_region("Parcel Blob", len);
1217 if (fd < 0) return NO_MEMORY;
1218
1219 int result = ashmem_set_prot_region(fd, PROT_READ | PROT_WRITE);
1220 if (result < 0) {
1221 status = result;
1222 } else {
1223 void* ptr = ::mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
1224 if (ptr == MAP_FAILED) {
1225 status = -errno;
1226 } else {
1227 if (!mutableCopy) {
1228 result = ashmem_set_prot_region(fd, PROT_READ);
1229 }
1230 if (result < 0) {
1231 status = result;
1232 } else {
1233 status = writeInt32(mutableCopy ? BLOB_ASHMEM_MUTABLE : BLOB_ASHMEM_IMMUTABLE);
1234 if (!status) {
1235 status = writeFileDescriptor(fd, true /*takeOwnership*/);
1236 if (!status) {
1237 outBlob->init(fd, ptr, len, mutableCopy);
1238 return NO_ERROR;
1239 }
1240 }
1241 }
1242 }
1243 ::munmap(ptr, len);
1244 }
1245 ::close(fd);
1246 return status;
1247 }
1248
writeDupImmutableBlobFileDescriptor(int fd)1249 status_t Parcel::writeDupImmutableBlobFileDescriptor(int fd)
1250 {
1251 // Must match up with what's done in writeBlob.
1252 if (!mAllowFds) return FDS_NOT_ALLOWED;
1253 status_t status = writeInt32(BLOB_ASHMEM_IMMUTABLE);
1254 if (status) return status;
1255 return writeDupFileDescriptor(fd);
1256 }
1257
write(const FlattenableHelperInterface & val)1258 status_t Parcel::write(const FlattenableHelperInterface& val)
1259 {
1260 status_t err;
1261
1262 // size if needed
1263 const size_t len = val.getFlattenedSize();
1264 const size_t fd_count = val.getFdCount();
1265
1266 if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
1267 // don't accept size_t values which may have come from an
1268 // inadvertent conversion from a negative int.
1269 return BAD_VALUE;
1270 }
1271
1272 err = this->writeInt32(len);
1273 if (err) return err;
1274
1275 err = this->writeInt32(fd_count);
1276 if (err) return err;
1277
1278 // payload
1279 void* const buf = this->writeInplace(pad_size(len));
1280 if (buf == NULL)
1281 return BAD_VALUE;
1282
1283 int* fds = NULL;
1284 if (fd_count) {
1285 fds = new (std::nothrow) int[fd_count];
1286 if (fds == nullptr) {
1287 ALOGE("write: failed to allocate requested %zu fds", fd_count);
1288 return BAD_VALUE;
1289 }
1290 }
1291
1292 err = val.flatten(buf, len, fds, fd_count);
1293 for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
1294 err = this->writeDupFileDescriptor( fds[i] );
1295 }
1296
1297 if (fd_count) {
1298 delete [] fds;
1299 }
1300
1301 return err;
1302 }
1303
writeObject(const flat_binder_object & val,bool nullMetaData)1304 status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)
1305 {
1306 const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
1307 const bool enoughObjects = mObjectsSize < mObjectsCapacity;
1308 if (enoughData && enoughObjects) {
1309 restart_write:
1310 *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val;
1311
1312 // remember if it's a file descriptor
1313 if (val.type == BINDER_TYPE_FD) {
1314 if (!mAllowFds) {
1315 // fail before modifying our object index
1316 return FDS_NOT_ALLOWED;
1317 }
1318 mHasFds = mFdsKnown = true;
1319 }
1320
1321 // Need to write meta-data?
1322 if (nullMetaData || val.binder != 0) {
1323 mObjects[mObjectsSize] = mDataPos;
1324 acquire_object(ProcessState::self(), val, this, &mOpenAshmemSize);
1325 mObjectsSize++;
1326 }
1327
1328 return finishWrite(sizeof(flat_binder_object));
1329 }
1330
1331 if (!enoughData) {
1332 const status_t err = growData(sizeof(val));
1333 if (err != NO_ERROR) return err;
1334 }
1335 if (!enoughObjects) {
1336 size_t newSize = ((mObjectsSize+2)*3)/2;
1337 if (newSize*sizeof(binder_size_t) < mObjectsSize) return NO_MEMORY; // overflow
1338 binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
1339 if (objects == NULL) return NO_MEMORY;
1340 mObjects = objects;
1341 mObjectsCapacity = newSize;
1342 }
1343
1344 goto restart_write;
1345 }
1346
writeNoException()1347 status_t Parcel::writeNoException()
1348 {
1349 binder::Status status;
1350 return status.writeToParcel(this);
1351 }
1352
writeMap(const::android::binder::Map & map_in)1353 status_t Parcel::writeMap(const ::android::binder::Map& map_in)
1354 {
1355 using ::std::map;
1356 using ::android::binder::Value;
1357 using ::android::binder::Map;
1358
1359 Map::const_iterator iter;
1360 status_t ret;
1361
1362 ret = writeInt32(map_in.size());
1363
1364 if (ret != NO_ERROR) {
1365 return ret;
1366 }
1367
1368 for (iter = map_in.begin(); iter != map_in.end(); ++iter) {
1369 ret = writeValue(Value(iter->first));
1370 if (ret != NO_ERROR) {
1371 return ret;
1372 }
1373
1374 ret = writeValue(iter->second);
1375 if (ret != NO_ERROR) {
1376 return ret;
1377 }
1378 }
1379
1380 return ret;
1381 }
1382
writeNullableMap(const std::unique_ptr<binder::Map> & map)1383 status_t Parcel::writeNullableMap(const std::unique_ptr<binder::Map>& map)
1384 {
1385 if (map == NULL) {
1386 return writeInt32(-1);
1387 }
1388
1389 return writeMap(*map.get());
1390 }
1391
readMap(::android::binder::Map * map_out) const1392 status_t Parcel::readMap(::android::binder::Map* map_out)const
1393 {
1394 using ::std::map;
1395 using ::android::String16;
1396 using ::android::String8;
1397 using ::android::binder::Value;
1398 using ::android::binder::Map;
1399
1400 status_t ret = NO_ERROR;
1401 int32_t count;
1402
1403 ret = readInt32(&count);
1404 if (ret != NO_ERROR) {
1405 return ret;
1406 }
1407
1408 if (count < 0) {
1409 ALOGE("readMap: Unexpected count: %d", count);
1410 return (count == -1)
1411 ? UNEXPECTED_NULL
1412 : BAD_VALUE;
1413 }
1414
1415 map_out->clear();
1416
1417 while (count--) {
1418 Map::key_type key;
1419 Value value;
1420
1421 ret = readValue(&value);
1422 if (ret != NO_ERROR) {
1423 return ret;
1424 }
1425
1426 if (!value.getString(&key)) {
1427 ALOGE("readMap: Key type not a string (parcelType = %d)", value.parcelType());
1428 return BAD_VALUE;
1429 }
1430
1431 ret = readValue(&value);
1432 if (ret != NO_ERROR) {
1433 return ret;
1434 }
1435
1436 (*map_out)[key] = value;
1437 }
1438
1439 return ret;
1440 }
1441
readNullableMap(std::unique_ptr<binder::Map> * map) const1442 status_t Parcel::readNullableMap(std::unique_ptr<binder::Map>* map) const
1443 {
1444 const size_t start = dataPosition();
1445 int32_t count;
1446 status_t status = readInt32(&count);
1447 map->reset();
1448
1449 if (status != OK || count == -1) {
1450 return status;
1451 }
1452
1453 setDataPosition(start);
1454 map->reset(new binder::Map());
1455
1456 status = readMap(map->get());
1457
1458 if (status != OK) {
1459 map->reset();
1460 }
1461
1462 return status;
1463 }
1464
1465
1466
remove(size_t,size_t)1467 void Parcel::remove(size_t /*start*/, size_t /*amt*/)
1468 {
1469 LOG_ALWAYS_FATAL("Parcel::remove() not yet implemented!");
1470 }
1471
read(void * outData,size_t len) const1472 status_t Parcel::read(void* outData, size_t len) const
1473 {
1474 if (len > INT32_MAX) {
1475 // don't accept size_t values which may have come from an
1476 // inadvertent conversion from a negative int.
1477 return BAD_VALUE;
1478 }
1479
1480 if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1481 && len <= pad_size(len)) {
1482 memcpy(outData, mData+mDataPos, len);
1483 mDataPos += pad_size(len);
1484 ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
1485 return NO_ERROR;
1486 }
1487 return NOT_ENOUGH_DATA;
1488 }
1489
readInplace(size_t len) const1490 const void* Parcel::readInplace(size_t len) const
1491 {
1492 if (len > INT32_MAX) {
1493 // don't accept size_t values which may have come from an
1494 // inadvertent conversion from a negative int.
1495 return NULL;
1496 }
1497
1498 if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1499 && len <= pad_size(len)) {
1500 const void* data = mData+mDataPos;
1501 mDataPos += pad_size(len);
1502 ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
1503 return data;
1504 }
1505 return NULL;
1506 }
1507
1508 template<class T>
readAligned(T * pArg) const1509 status_t Parcel::readAligned(T *pArg) const {
1510 COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1511
1512 if ((mDataPos+sizeof(T)) <= mDataSize) {
1513 const void* data = mData+mDataPos;
1514 mDataPos += sizeof(T);
1515 *pArg = *reinterpret_cast<const T*>(data);
1516 return NO_ERROR;
1517 } else {
1518 return NOT_ENOUGH_DATA;
1519 }
1520 }
1521
1522 template<class T>
readAligned() const1523 T Parcel::readAligned() const {
1524 T result;
1525 if (readAligned(&result) != NO_ERROR) {
1526 result = 0;
1527 }
1528
1529 return result;
1530 }
1531
1532 template<class T>
writeAligned(T val)1533 status_t Parcel::writeAligned(T val) {
1534 COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1535
1536 if ((mDataPos+sizeof(val)) <= mDataCapacity) {
1537 restart_write:
1538 *reinterpret_cast<T*>(mData+mDataPos) = val;
1539 return finishWrite(sizeof(val));
1540 }
1541
1542 status_t err = growData(sizeof(val));
1543 if (err == NO_ERROR) goto restart_write;
1544 return err;
1545 }
1546
1547 namespace {
1548
1549 template<typename T>
readByteVectorInternal(const Parcel * parcel,std::vector<T> * val)1550 status_t readByteVectorInternal(const Parcel* parcel,
1551 std::vector<T>* val) {
1552 val->clear();
1553
1554 int32_t size;
1555 status_t status = parcel->readInt32(&size);
1556
1557 if (status != OK) {
1558 return status;
1559 }
1560
1561 if (size < 0) {
1562 status = UNEXPECTED_NULL;
1563 return status;
1564 }
1565 if (size_t(size) > parcel->dataAvail()) {
1566 status = BAD_VALUE;
1567 return status;
1568 }
1569
1570 T* data = const_cast<T*>(reinterpret_cast<const T*>(parcel->readInplace(size)));
1571 if (!data) {
1572 status = BAD_VALUE;
1573 return status;
1574 }
1575 val->reserve(size);
1576 val->insert(val->end(), data, data + size);
1577
1578 return status;
1579 }
1580
1581 template<typename T>
readByteVectorInternalPtr(const Parcel * parcel,std::unique_ptr<std::vector<T>> * val)1582 status_t readByteVectorInternalPtr(
1583 const Parcel* parcel,
1584 std::unique_ptr<std::vector<T>>* val) {
1585 const int32_t start = parcel->dataPosition();
1586 int32_t size;
1587 status_t status = parcel->readInt32(&size);
1588 val->reset();
1589
1590 if (status != OK || size < 0) {
1591 return status;
1592 }
1593
1594 parcel->setDataPosition(start);
1595 val->reset(new (std::nothrow) std::vector<T>());
1596
1597 status = readByteVectorInternal(parcel, val->get());
1598
1599 if (status != OK) {
1600 val->reset();
1601 }
1602
1603 return status;
1604 }
1605
1606 } // namespace
1607
readByteVector(std::vector<int8_t> * val) const1608 status_t Parcel::readByteVector(std::vector<int8_t>* val) const {
1609 return readByteVectorInternal(this, val);
1610 }
1611
readByteVector(std::vector<uint8_t> * val) const1612 status_t Parcel::readByteVector(std::vector<uint8_t>* val) const {
1613 return readByteVectorInternal(this, val);
1614 }
1615
readByteVector(std::unique_ptr<std::vector<int8_t>> * val) const1616 status_t Parcel::readByteVector(std::unique_ptr<std::vector<int8_t>>* val) const {
1617 return readByteVectorInternalPtr(this, val);
1618 }
1619
readByteVector(std::unique_ptr<std::vector<uint8_t>> * val) const1620 status_t Parcel::readByteVector(std::unique_ptr<std::vector<uint8_t>>* val) const {
1621 return readByteVectorInternalPtr(this, val);
1622 }
1623
readInt32Vector(std::unique_ptr<std::vector<int32_t>> * val) const1624 status_t Parcel::readInt32Vector(std::unique_ptr<std::vector<int32_t>>* val) const {
1625 return readNullableTypedVector(val, &Parcel::readInt32);
1626 }
1627
readInt32Vector(std::vector<int32_t> * val) const1628 status_t Parcel::readInt32Vector(std::vector<int32_t>* val) const {
1629 return readTypedVector(val, &Parcel::readInt32);
1630 }
1631
readInt64Vector(std::unique_ptr<std::vector<int64_t>> * val) const1632 status_t Parcel::readInt64Vector(std::unique_ptr<std::vector<int64_t>>* val) const {
1633 return readNullableTypedVector(val, &Parcel::readInt64);
1634 }
1635
readInt64Vector(std::vector<int64_t> * val) const1636 status_t Parcel::readInt64Vector(std::vector<int64_t>* val) const {
1637 return readTypedVector(val, &Parcel::readInt64);
1638 }
1639
readFloatVector(std::unique_ptr<std::vector<float>> * val) const1640 status_t Parcel::readFloatVector(std::unique_ptr<std::vector<float>>* val) const {
1641 return readNullableTypedVector(val, &Parcel::readFloat);
1642 }
1643
readFloatVector(std::vector<float> * val) const1644 status_t Parcel::readFloatVector(std::vector<float>* val) const {
1645 return readTypedVector(val, &Parcel::readFloat);
1646 }
1647
readDoubleVector(std::unique_ptr<std::vector<double>> * val) const1648 status_t Parcel::readDoubleVector(std::unique_ptr<std::vector<double>>* val) const {
1649 return readNullableTypedVector(val, &Parcel::readDouble);
1650 }
1651
readDoubleVector(std::vector<double> * val) const1652 status_t Parcel::readDoubleVector(std::vector<double>* val) const {
1653 return readTypedVector(val, &Parcel::readDouble);
1654 }
1655
readBoolVector(std::unique_ptr<std::vector<bool>> * val) const1656 status_t Parcel::readBoolVector(std::unique_ptr<std::vector<bool>>* val) const {
1657 const int32_t start = dataPosition();
1658 int32_t size;
1659 status_t status = readInt32(&size);
1660 val->reset();
1661
1662 if (status != OK || size < 0) {
1663 return status;
1664 }
1665
1666 setDataPosition(start);
1667 val->reset(new (std::nothrow) std::vector<bool>());
1668
1669 status = readBoolVector(val->get());
1670
1671 if (status != OK) {
1672 val->reset();
1673 }
1674
1675 return status;
1676 }
1677
readBoolVector(std::vector<bool> * val) const1678 status_t Parcel::readBoolVector(std::vector<bool>* val) const {
1679 int32_t size;
1680 status_t status = readInt32(&size);
1681
1682 if (status != OK) {
1683 return status;
1684 }
1685
1686 if (size < 0) {
1687 return UNEXPECTED_NULL;
1688 }
1689
1690 val->resize(size);
1691
1692 /* C++ bool handling means a vector of bools isn't necessarily addressable
1693 * (we might use individual bits)
1694 */
1695 bool data;
1696 for (int32_t i = 0; i < size; ++i) {
1697 status = readBool(&data);
1698 (*val)[i] = data;
1699
1700 if (status != OK) {
1701 return status;
1702 }
1703 }
1704
1705 return OK;
1706 }
1707
readCharVector(std::unique_ptr<std::vector<char16_t>> * val) const1708 status_t Parcel::readCharVector(std::unique_ptr<std::vector<char16_t>>* val) const {
1709 return readNullableTypedVector(val, &Parcel::readChar);
1710 }
1711
readCharVector(std::vector<char16_t> * val) const1712 status_t Parcel::readCharVector(std::vector<char16_t>* val) const {
1713 return readTypedVector(val, &Parcel::readChar);
1714 }
1715
readString16Vector(std::unique_ptr<std::vector<std::unique_ptr<String16>>> * val) const1716 status_t Parcel::readString16Vector(
1717 std::unique_ptr<std::vector<std::unique_ptr<String16>>>* val) const {
1718 return readNullableTypedVector(val, &Parcel::readString16);
1719 }
1720
readString16Vector(std::vector<String16> * val) const1721 status_t Parcel::readString16Vector(std::vector<String16>* val) const {
1722 return readTypedVector(val, &Parcel::readString16);
1723 }
1724
readUtf8VectorFromUtf16Vector(std::unique_ptr<std::vector<std::unique_ptr<std::string>>> * val) const1725 status_t Parcel::readUtf8VectorFromUtf16Vector(
1726 std::unique_ptr<std::vector<std::unique_ptr<std::string>>>* val) const {
1727 return readNullableTypedVector(val, &Parcel::readUtf8FromUtf16);
1728 }
1729
readUtf8VectorFromUtf16Vector(std::vector<std::string> * val) const1730 status_t Parcel::readUtf8VectorFromUtf16Vector(std::vector<std::string>* val) const {
1731 return readTypedVector(val, &Parcel::readUtf8FromUtf16);
1732 }
1733
readInt32(int32_t * pArg) const1734 status_t Parcel::readInt32(int32_t *pArg) const
1735 {
1736 return readAligned(pArg);
1737 }
1738
readInt32() const1739 int32_t Parcel::readInt32() const
1740 {
1741 return readAligned<int32_t>();
1742 }
1743
readUint32(uint32_t * pArg) const1744 status_t Parcel::readUint32(uint32_t *pArg) const
1745 {
1746 return readAligned(pArg);
1747 }
1748
readUint32() const1749 uint32_t Parcel::readUint32() const
1750 {
1751 return readAligned<uint32_t>();
1752 }
1753
readInt64(int64_t * pArg) const1754 status_t Parcel::readInt64(int64_t *pArg) const
1755 {
1756 return readAligned(pArg);
1757 }
1758
1759
readInt64() const1760 int64_t Parcel::readInt64() const
1761 {
1762 return readAligned<int64_t>();
1763 }
1764
readUint64(uint64_t * pArg) const1765 status_t Parcel::readUint64(uint64_t *pArg) const
1766 {
1767 return readAligned(pArg);
1768 }
1769
readUint64() const1770 uint64_t Parcel::readUint64() const
1771 {
1772 return readAligned<uint64_t>();
1773 }
1774
readPointer(uintptr_t * pArg) const1775 status_t Parcel::readPointer(uintptr_t *pArg) const
1776 {
1777 status_t ret;
1778 binder_uintptr_t ptr;
1779 ret = readAligned(&ptr);
1780 if (!ret)
1781 *pArg = ptr;
1782 return ret;
1783 }
1784
readPointer() const1785 uintptr_t Parcel::readPointer() const
1786 {
1787 return readAligned<binder_uintptr_t>();
1788 }
1789
1790
readFloat(float * pArg) const1791 status_t Parcel::readFloat(float *pArg) const
1792 {
1793 return readAligned(pArg);
1794 }
1795
1796
readFloat() const1797 float Parcel::readFloat() const
1798 {
1799 return readAligned<float>();
1800 }
1801
1802 #if defined(__mips__) && defined(__mips_hard_float)
1803
readDouble(double * pArg) const1804 status_t Parcel::readDouble(double *pArg) const
1805 {
1806 union {
1807 double d;
1808 unsigned long long ll;
1809 } u;
1810 u.d = 0;
1811 status_t status;
1812 status = readAligned(&u.ll);
1813 *pArg = u.d;
1814 return status;
1815 }
1816
readDouble() const1817 double Parcel::readDouble() const
1818 {
1819 union {
1820 double d;
1821 unsigned long long ll;
1822 } u;
1823 u.ll = readAligned<unsigned long long>();
1824 return u.d;
1825 }
1826
1827 #else
1828
readDouble(double * pArg) const1829 status_t Parcel::readDouble(double *pArg) const
1830 {
1831 return readAligned(pArg);
1832 }
1833
readDouble() const1834 double Parcel::readDouble() const
1835 {
1836 return readAligned<double>();
1837 }
1838
1839 #endif
1840
readIntPtr(intptr_t * pArg) const1841 status_t Parcel::readIntPtr(intptr_t *pArg) const
1842 {
1843 return readAligned(pArg);
1844 }
1845
1846
readIntPtr() const1847 intptr_t Parcel::readIntPtr() const
1848 {
1849 return readAligned<intptr_t>();
1850 }
1851
readBool(bool * pArg) const1852 status_t Parcel::readBool(bool *pArg) const
1853 {
1854 int32_t tmp;
1855 status_t ret = readInt32(&tmp);
1856 *pArg = (tmp != 0);
1857 return ret;
1858 }
1859
readBool() const1860 bool Parcel::readBool() const
1861 {
1862 return readInt32() != 0;
1863 }
1864
readChar(char16_t * pArg) const1865 status_t Parcel::readChar(char16_t *pArg) const
1866 {
1867 int32_t tmp;
1868 status_t ret = readInt32(&tmp);
1869 *pArg = char16_t(tmp);
1870 return ret;
1871 }
1872
readChar() const1873 char16_t Parcel::readChar() const
1874 {
1875 return char16_t(readInt32());
1876 }
1877
readByte(int8_t * pArg) const1878 status_t Parcel::readByte(int8_t *pArg) const
1879 {
1880 int32_t tmp;
1881 status_t ret = readInt32(&tmp);
1882 *pArg = int8_t(tmp);
1883 return ret;
1884 }
1885
readByte() const1886 int8_t Parcel::readByte() const
1887 {
1888 return int8_t(readInt32());
1889 }
1890
readUtf8FromUtf16(std::string * str) const1891 status_t Parcel::readUtf8FromUtf16(std::string* str) const {
1892 size_t utf16Size = 0;
1893 const char16_t* src = readString16Inplace(&utf16Size);
1894 if (!src) {
1895 return UNEXPECTED_NULL;
1896 }
1897
1898 // Save ourselves the trouble, we're done.
1899 if (utf16Size == 0u) {
1900 str->clear();
1901 return NO_ERROR;
1902 }
1903
1904 // Allow for closing '\0'
1905 ssize_t utf8Size = utf16_to_utf8_length(src, utf16Size) + 1;
1906 if (utf8Size < 1) {
1907 return BAD_VALUE;
1908 }
1909 // Note that while it is probably safe to assume string::resize keeps a
1910 // spare byte around for the trailing null, we still pass the size including the trailing null
1911 str->resize(utf8Size);
1912 utf16_to_utf8(src, utf16Size, &((*str)[0]), utf8Size);
1913 str->resize(utf8Size - 1);
1914 return NO_ERROR;
1915 }
1916
readUtf8FromUtf16(std::unique_ptr<std::string> * str) const1917 status_t Parcel::readUtf8FromUtf16(std::unique_ptr<std::string>* str) const {
1918 const int32_t start = dataPosition();
1919 int32_t size;
1920 status_t status = readInt32(&size);
1921 str->reset();
1922
1923 if (status != OK || size < 0) {
1924 return status;
1925 }
1926
1927 setDataPosition(start);
1928 str->reset(new (std::nothrow) std::string());
1929 return readUtf8FromUtf16(str->get());
1930 }
1931
readCString() const1932 const char* Parcel::readCString() const
1933 {
1934 const size_t avail = mDataSize-mDataPos;
1935 if (avail > 0) {
1936 const char* str = reinterpret_cast<const char*>(mData+mDataPos);
1937 // is the string's trailing NUL within the parcel's valid bounds?
1938 const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
1939 if (eos) {
1940 const size_t len = eos - str;
1941 mDataPos += pad_size(len+1);
1942 ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos);
1943 return str;
1944 }
1945 }
1946 return NULL;
1947 }
1948
readString8() const1949 String8 Parcel::readString8() const
1950 {
1951 String8 retString;
1952 status_t status = readString8(&retString);
1953 if (status != OK) {
1954 // We don't care about errors here, so just return an empty string.
1955 return String8();
1956 }
1957 return retString;
1958 }
1959
readString8(String8 * pArg) const1960 status_t Parcel::readString8(String8* pArg) const
1961 {
1962 int32_t size;
1963 status_t status = readInt32(&size);
1964 if (status != OK) {
1965 return status;
1966 }
1967 // watch for potential int overflow from size+1
1968 if (size < 0 || size >= INT32_MAX) {
1969 return BAD_VALUE;
1970 }
1971 // |writeString8| writes nothing for empty string.
1972 if (size == 0) {
1973 *pArg = String8();
1974 return OK;
1975 }
1976 const char* str = (const char*)readInplace(size + 1);
1977 if (str == NULL) {
1978 return BAD_VALUE;
1979 }
1980 pArg->setTo(str, size);
1981 return OK;
1982 }
1983
readString16() const1984 String16 Parcel::readString16() const
1985 {
1986 size_t len;
1987 const char16_t* str = readString16Inplace(&len);
1988 if (str) return String16(str, len);
1989 ALOGE("Reading a NULL string not supported here.");
1990 return String16();
1991 }
1992
readString16(std::unique_ptr<String16> * pArg) const1993 status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const
1994 {
1995 const int32_t start = dataPosition();
1996 int32_t size;
1997 status_t status = readInt32(&size);
1998 pArg->reset();
1999
2000 if (status != OK || size < 0) {
2001 return status;
2002 }
2003
2004 setDataPosition(start);
2005 pArg->reset(new (std::nothrow) String16());
2006
2007 status = readString16(pArg->get());
2008
2009 if (status != OK) {
2010 pArg->reset();
2011 }
2012
2013 return status;
2014 }
2015
readString16(String16 * pArg) const2016 status_t Parcel::readString16(String16* pArg) const
2017 {
2018 size_t len;
2019 const char16_t* str = readString16Inplace(&len);
2020 if (str) {
2021 pArg->setTo(str, len);
2022 return 0;
2023 } else {
2024 *pArg = String16();
2025 return UNEXPECTED_NULL;
2026 }
2027 }
2028
readString16Inplace(size_t * outLen) const2029 const char16_t* Parcel::readString16Inplace(size_t* outLen) const
2030 {
2031 int32_t size = readInt32();
2032 // watch for potential int overflow from size+1
2033 if (size >= 0 && size < INT32_MAX) {
2034 *outLen = size;
2035 const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
2036 if (str != NULL) {
2037 return str;
2038 }
2039 }
2040 *outLen = 0;
2041 return NULL;
2042 }
2043
readStrongBinder(sp<IBinder> * val) const2044 status_t Parcel::readStrongBinder(sp<IBinder>* val) const
2045 {
2046 status_t status = readNullableStrongBinder(val);
2047 if (status == OK && !val->get()) {
2048 status = UNEXPECTED_NULL;
2049 }
2050 return status;
2051 }
2052
readNullableStrongBinder(sp<IBinder> * val) const2053 status_t Parcel::readNullableStrongBinder(sp<IBinder>* val) const
2054 {
2055 return unflatten_binder(ProcessState::self(), *this, val);
2056 }
2057
readStrongBinder() const2058 sp<IBinder> Parcel::readStrongBinder() const
2059 {
2060 sp<IBinder> val;
2061 // Note that a lot of code in Android reads binders by hand with this
2062 // method, and that code has historically been ok with getting nullptr
2063 // back (while ignoring error codes).
2064 readNullableStrongBinder(&val);
2065 return val;
2066 }
2067
readWeakBinder() const2068 wp<IBinder> Parcel::readWeakBinder() const
2069 {
2070 wp<IBinder> val;
2071 unflatten_binder(ProcessState::self(), *this, &val);
2072 return val;
2073 }
2074
readParcelable(Parcelable * parcelable) const2075 status_t Parcel::readParcelable(Parcelable* parcelable) const {
2076 int32_t have_parcelable = 0;
2077 status_t status = readInt32(&have_parcelable);
2078 if (status != OK) {
2079 return status;
2080 }
2081 if (!have_parcelable) {
2082 return UNEXPECTED_NULL;
2083 }
2084 return parcelable->readFromParcel(this);
2085 }
2086
readValue(binder::Value * value) const2087 status_t Parcel::readValue(binder::Value* value) const {
2088 return value->readFromParcel(this);
2089 }
2090
readExceptionCode() const2091 int32_t Parcel::readExceptionCode() const
2092 {
2093 binder::Status status;
2094 status.readFromParcel(*this);
2095 return status.exceptionCode();
2096 }
2097
readNativeHandle() const2098 native_handle* Parcel::readNativeHandle() const
2099 {
2100 int numFds, numInts;
2101 status_t err;
2102 err = readInt32(&numFds);
2103 if (err != NO_ERROR) return 0;
2104 err = readInt32(&numInts);
2105 if (err != NO_ERROR) return 0;
2106
2107 native_handle* h = native_handle_create(numFds, numInts);
2108 if (!h) {
2109 return 0;
2110 }
2111
2112 for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {
2113 h->data[i] = fcntl(readFileDescriptor(), F_DUPFD_CLOEXEC, 0);
2114 if (h->data[i] < 0) {
2115 for (int j = 0; j < i; j++) {
2116 close(h->data[j]);
2117 }
2118 native_handle_delete(h);
2119 return 0;
2120 }
2121 }
2122 err = read(h->data + numFds, sizeof(int)*numInts);
2123 if (err != NO_ERROR) {
2124 native_handle_close(h);
2125 native_handle_delete(h);
2126 h = 0;
2127 }
2128 return h;
2129 }
2130
readFileDescriptor() const2131 int Parcel::readFileDescriptor() const
2132 {
2133 const flat_binder_object* flat = readObject(true);
2134
2135 if (flat && flat->type == BINDER_TYPE_FD) {
2136 return flat->handle;
2137 }
2138
2139 return BAD_TYPE;
2140 }
2141
readParcelFileDescriptor() const2142 int Parcel::readParcelFileDescriptor() const
2143 {
2144 int32_t hasComm = readInt32();
2145 int fd = readFileDescriptor();
2146 if (hasComm != 0) {
2147 // skip
2148 readFileDescriptor();
2149 }
2150 return fd;
2151 }
2152
readUniqueFileDescriptor(base::unique_fd * val) const2153 status_t Parcel::readUniqueFileDescriptor(base::unique_fd* val) const
2154 {
2155 int got = readFileDescriptor();
2156
2157 if (got == BAD_TYPE) {
2158 return BAD_TYPE;
2159 }
2160
2161 val->reset(fcntl(got, F_DUPFD_CLOEXEC, 0));
2162
2163 if (val->get() < 0) {
2164 return BAD_VALUE;
2165 }
2166
2167 return OK;
2168 }
2169
2170
readUniqueFileDescriptorVector(std::unique_ptr<std::vector<base::unique_fd>> * val) const2171 status_t Parcel::readUniqueFileDescriptorVector(std::unique_ptr<std::vector<base::unique_fd>>* val) const {
2172 return readNullableTypedVector(val, &Parcel::readUniqueFileDescriptor);
2173 }
2174
readUniqueFileDescriptorVector(std::vector<base::unique_fd> * val) const2175 status_t Parcel::readUniqueFileDescriptorVector(std::vector<base::unique_fd>* val) const {
2176 return readTypedVector(val, &Parcel::readUniqueFileDescriptor);
2177 }
2178
readBlob(size_t len,ReadableBlob * outBlob) const2179 status_t Parcel::readBlob(size_t len, ReadableBlob* outBlob) const
2180 {
2181 int32_t blobType;
2182 status_t status = readInt32(&blobType);
2183 if (status) return status;
2184
2185 if (blobType == BLOB_INPLACE) {
2186 ALOGV("readBlob: read in place");
2187 const void* ptr = readInplace(len);
2188 if (!ptr) return BAD_VALUE;
2189
2190 outBlob->init(-1, const_cast<void*>(ptr), len, false);
2191 return NO_ERROR;
2192 }
2193
2194 ALOGV("readBlob: read from ashmem");
2195 bool isMutable = (blobType == BLOB_ASHMEM_MUTABLE);
2196 int fd = readFileDescriptor();
2197 if (fd == int(BAD_TYPE)) return BAD_VALUE;
2198
2199 void* ptr = ::mmap(NULL, len, isMutable ? PROT_READ | PROT_WRITE : PROT_READ,
2200 MAP_SHARED, fd, 0);
2201 if (ptr == MAP_FAILED) return NO_MEMORY;
2202
2203 outBlob->init(fd, ptr, len, isMutable);
2204 return NO_ERROR;
2205 }
2206
read(FlattenableHelperInterface & val) const2207 status_t Parcel::read(FlattenableHelperInterface& val) const
2208 {
2209 // size
2210 const size_t len = this->readInt32();
2211 const size_t fd_count = this->readInt32();
2212
2213 if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
2214 // don't accept size_t values which may have come from an
2215 // inadvertent conversion from a negative int.
2216 return BAD_VALUE;
2217 }
2218
2219 // payload
2220 void const* const buf = this->readInplace(pad_size(len));
2221 if (buf == NULL)
2222 return BAD_VALUE;
2223
2224 int* fds = NULL;
2225 if (fd_count) {
2226 fds = new (std::nothrow) int[fd_count];
2227 if (fds == nullptr) {
2228 ALOGE("read: failed to allocate requested %zu fds", fd_count);
2229 return BAD_VALUE;
2230 }
2231 }
2232
2233 status_t err = NO_ERROR;
2234 for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
2235 int fd = this->readFileDescriptor();
2236 if (fd < 0 || ((fds[i] = fcntl(fd, F_DUPFD_CLOEXEC, 0)) < 0)) {
2237 err = BAD_VALUE;
2238 ALOGE("fcntl(F_DUPFD_CLOEXEC) failed in Parcel::read, i is %zu, fds[i] is %d, fd_count is %zu, error: %s",
2239 i, fds[i], fd_count, strerror(fd < 0 ? -fd : errno));
2240 // Close all the file descriptors that were dup-ed.
2241 for (size_t j=0; j<i ;j++) {
2242 close(fds[j]);
2243 }
2244 }
2245 }
2246
2247 if (err == NO_ERROR) {
2248 err = val.unflatten(buf, len, fds, fd_count);
2249 }
2250
2251 if (fd_count) {
2252 delete [] fds;
2253 }
2254
2255 return err;
2256 }
readObject(bool nullMetaData) const2257 const flat_binder_object* Parcel::readObject(bool nullMetaData) const
2258 {
2259 const size_t DPOS = mDataPos;
2260 if ((DPOS+sizeof(flat_binder_object)) <= mDataSize) {
2261 const flat_binder_object* obj
2262 = reinterpret_cast<const flat_binder_object*>(mData+DPOS);
2263 mDataPos = DPOS + sizeof(flat_binder_object);
2264 if (!nullMetaData && (obj->cookie == 0 && obj->binder == 0)) {
2265 // When transferring a NULL object, we don't write it into
2266 // the object list, so we don't want to check for it when
2267 // reading.
2268 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2269 return obj;
2270 }
2271
2272 // Ensure that this object is valid...
2273 binder_size_t* const OBJS = mObjects;
2274 const size_t N = mObjectsSize;
2275 size_t opos = mNextObjectHint;
2276
2277 if (N > 0) {
2278 ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
2279 this, DPOS, opos);
2280
2281 // Start at the current hint position, looking for an object at
2282 // the current data position.
2283 if (opos < N) {
2284 while (opos < (N-1) && OBJS[opos] < DPOS) {
2285 opos++;
2286 }
2287 } else {
2288 opos = N-1;
2289 }
2290 if (OBJS[opos] == DPOS) {
2291 // Found it!
2292 ALOGV("Parcel %p found obj %zu at index %zu with forward search",
2293 this, DPOS, opos);
2294 mNextObjectHint = opos+1;
2295 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2296 return obj;
2297 }
2298
2299 // Look backwards for it...
2300 while (opos > 0 && OBJS[opos] > DPOS) {
2301 opos--;
2302 }
2303 if (OBJS[opos] == DPOS) {
2304 // Found it!
2305 ALOGV("Parcel %p found obj %zu at index %zu with backward search",
2306 this, DPOS, opos);
2307 mNextObjectHint = opos+1;
2308 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2309 return obj;
2310 }
2311 }
2312 ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list",
2313 this, DPOS);
2314 }
2315 return NULL;
2316 }
2317
closeFileDescriptors()2318 void Parcel::closeFileDescriptors()
2319 {
2320 size_t i = mObjectsSize;
2321 if (i > 0) {
2322 //ALOGI("Closing file descriptors for %zu objects...", i);
2323 }
2324 while (i > 0) {
2325 i--;
2326 const flat_binder_object* flat
2327 = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2328 if (flat->type == BINDER_TYPE_FD) {
2329 //ALOGI("Closing fd: %ld", flat->handle);
2330 close(flat->handle);
2331 }
2332 }
2333 }
2334
ipcData() const2335 uintptr_t Parcel::ipcData() const
2336 {
2337 return reinterpret_cast<uintptr_t>(mData);
2338 }
2339
ipcDataSize() const2340 size_t Parcel::ipcDataSize() const
2341 {
2342 return (mDataSize > mDataPos ? mDataSize : mDataPos);
2343 }
2344
ipcObjects() const2345 uintptr_t Parcel::ipcObjects() const
2346 {
2347 return reinterpret_cast<uintptr_t>(mObjects);
2348 }
2349
ipcObjectsCount() const2350 size_t Parcel::ipcObjectsCount() const
2351 {
2352 return mObjectsSize;
2353 }
2354
ipcSetDataReference(const uint8_t * data,size_t dataSize,const binder_size_t * objects,size_t objectsCount,release_func relFunc,void * relCookie)2355 void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
2356 const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)
2357 {
2358 binder_size_t minOffset = 0;
2359 freeDataNoInit();
2360 mError = NO_ERROR;
2361 mData = const_cast<uint8_t*>(data);
2362 mDataSize = mDataCapacity = dataSize;
2363 //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid());
2364 mDataPos = 0;
2365 ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos);
2366 mObjects = const_cast<binder_size_t*>(objects);
2367 mObjectsSize = mObjectsCapacity = objectsCount;
2368 mNextObjectHint = 0;
2369 mOwner = relFunc;
2370 mOwnerCookie = relCookie;
2371 for (size_t i = 0; i < mObjectsSize; i++) {
2372 binder_size_t offset = mObjects[i];
2373 if (offset < minOffset) {
2374 ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
2375 __func__, (uint64_t)offset, (uint64_t)minOffset);
2376 mObjectsSize = 0;
2377 break;
2378 }
2379 minOffset = offset + sizeof(flat_binder_object);
2380 }
2381 scanForFds();
2382 }
2383
print(TextOutput & to,uint32_t) const2384 void Parcel::print(TextOutput& to, uint32_t /*flags*/) const
2385 {
2386 to << "Parcel(";
2387
2388 if (errorCheck() != NO_ERROR) {
2389 const status_t err = errorCheck();
2390 to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
2391 } else if (dataSize() > 0) {
2392 const uint8_t* DATA = data();
2393 to << indent << HexDump(DATA, dataSize()) << dedent;
2394 const binder_size_t* OBJS = objects();
2395 const size_t N = objectsCount();
2396 for (size_t i=0; i<N; i++) {
2397 const flat_binder_object* flat
2398 = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);
2399 to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
2400 << TypeCode(flat->type & 0x7f7f7f00)
2401 << " = " << flat->binder;
2402 }
2403 } else {
2404 to << "NULL";
2405 }
2406
2407 to << ")";
2408 }
2409
releaseObjects()2410 void Parcel::releaseObjects()
2411 {
2412 const sp<ProcessState> proc(ProcessState::self());
2413 size_t i = mObjectsSize;
2414 uint8_t* const data = mData;
2415 binder_size_t* const objects = mObjects;
2416 while (i > 0) {
2417 i--;
2418 const flat_binder_object* flat
2419 = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2420 release_object(proc, *flat, this, &mOpenAshmemSize);
2421 }
2422 }
2423
acquireObjects()2424 void Parcel::acquireObjects()
2425 {
2426 const sp<ProcessState> proc(ProcessState::self());
2427 size_t i = mObjectsSize;
2428 uint8_t* const data = mData;
2429 binder_size_t* const objects = mObjects;
2430 while (i > 0) {
2431 i--;
2432 const flat_binder_object* flat
2433 = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2434 acquire_object(proc, *flat, this, &mOpenAshmemSize);
2435 }
2436 }
2437
freeData()2438 void Parcel::freeData()
2439 {
2440 freeDataNoInit();
2441 initState();
2442 }
2443
freeDataNoInit()2444 void Parcel::freeDataNoInit()
2445 {
2446 if (mOwner) {
2447 LOG_ALLOC("Parcel %p: freeing other owner data", this);
2448 //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2449 mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2450 } else {
2451 LOG_ALLOC("Parcel %p: freeing allocated data", this);
2452 releaseObjects();
2453 if (mData) {
2454 LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
2455 pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2456 if (mDataCapacity <= gParcelGlobalAllocSize) {
2457 gParcelGlobalAllocSize = gParcelGlobalAllocSize - mDataCapacity;
2458 } else {
2459 gParcelGlobalAllocSize = 0;
2460 }
2461 if (gParcelGlobalAllocCount > 0) {
2462 gParcelGlobalAllocCount--;
2463 }
2464 pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2465 free(mData);
2466 }
2467 if (mObjects) free(mObjects);
2468 }
2469 }
2470
growData(size_t len)2471 status_t Parcel::growData(size_t len)
2472 {
2473 if (len > INT32_MAX) {
2474 // don't accept size_t values which may have come from an
2475 // inadvertent conversion from a negative int.
2476 return BAD_VALUE;
2477 }
2478
2479 size_t newSize = ((mDataSize+len)*3)/2;
2480 return (newSize <= mDataSize)
2481 ? (status_t) NO_MEMORY
2482 : continueWrite(newSize);
2483 }
2484
restartWrite(size_t desired)2485 status_t Parcel::restartWrite(size_t desired)
2486 {
2487 if (desired > INT32_MAX) {
2488 // don't accept size_t values which may have come from an
2489 // inadvertent conversion from a negative int.
2490 return BAD_VALUE;
2491 }
2492
2493 if (mOwner) {
2494 freeData();
2495 return continueWrite(desired);
2496 }
2497
2498 uint8_t* data = (uint8_t*)realloc(mData, desired);
2499 if (!data && desired > mDataCapacity) {
2500 mError = NO_MEMORY;
2501 return NO_MEMORY;
2502 }
2503
2504 releaseObjects();
2505
2506 if (data) {
2507 LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired);
2508 pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2509 gParcelGlobalAllocSize += desired;
2510 gParcelGlobalAllocSize -= mDataCapacity;
2511 if (!mData) {
2512 gParcelGlobalAllocCount++;
2513 }
2514 pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2515 mData = data;
2516 mDataCapacity = desired;
2517 }
2518
2519 mDataSize = mDataPos = 0;
2520 ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize);
2521 ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos);
2522
2523 free(mObjects);
2524 mObjects = NULL;
2525 mObjectsSize = mObjectsCapacity = 0;
2526 mNextObjectHint = 0;
2527 mHasFds = false;
2528 mFdsKnown = true;
2529 mAllowFds = true;
2530
2531 return NO_ERROR;
2532 }
2533
continueWrite(size_t desired)2534 status_t Parcel::continueWrite(size_t desired)
2535 {
2536 if (desired > INT32_MAX) {
2537 // don't accept size_t values which may have come from an
2538 // inadvertent conversion from a negative int.
2539 return BAD_VALUE;
2540 }
2541
2542 // If shrinking, first adjust for any objects that appear
2543 // after the new data size.
2544 size_t objectsSize = mObjectsSize;
2545 if (desired < mDataSize) {
2546 if (desired == 0) {
2547 objectsSize = 0;
2548 } else {
2549 while (objectsSize > 0) {
2550 if (mObjects[objectsSize-1] < desired)
2551 break;
2552 objectsSize--;
2553 }
2554 }
2555 }
2556
2557 if (mOwner) {
2558 // If the size is going to zero, just release the owner's data.
2559 if (desired == 0) {
2560 freeData();
2561 return NO_ERROR;
2562 }
2563
2564 // If there is a different owner, we need to take
2565 // posession.
2566 uint8_t* data = (uint8_t*)malloc(desired);
2567 if (!data) {
2568 mError = NO_MEMORY;
2569 return NO_MEMORY;
2570 }
2571 binder_size_t* objects = NULL;
2572
2573 if (objectsSize) {
2574 objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
2575 if (!objects) {
2576 free(data);
2577
2578 mError = NO_MEMORY;
2579 return NO_MEMORY;
2580 }
2581
2582 // Little hack to only acquire references on objects
2583 // we will be keeping.
2584 size_t oldObjectsSize = mObjectsSize;
2585 mObjectsSize = objectsSize;
2586 acquireObjects();
2587 mObjectsSize = oldObjectsSize;
2588 }
2589
2590 if (mData) {
2591 memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
2592 }
2593 if (objects && mObjects) {
2594 memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t));
2595 }
2596 //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2597 mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2598 mOwner = NULL;
2599
2600 LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
2601 pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2602 gParcelGlobalAllocSize += desired;
2603 gParcelGlobalAllocCount++;
2604 pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2605
2606 mData = data;
2607 mObjects = objects;
2608 mDataSize = (mDataSize < desired) ? mDataSize : desired;
2609 ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2610 mDataCapacity = desired;
2611 mObjectsSize = mObjectsCapacity = objectsSize;
2612 mNextObjectHint = 0;
2613
2614 } else if (mData) {
2615 if (objectsSize < mObjectsSize) {
2616 // Need to release refs on any objects we are dropping.
2617 const sp<ProcessState> proc(ProcessState::self());
2618 for (size_t i=objectsSize; i<mObjectsSize; i++) {
2619 const flat_binder_object* flat
2620 = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2621 if (flat->type == BINDER_TYPE_FD) {
2622 // will need to rescan because we may have lopped off the only FDs
2623 mFdsKnown = false;
2624 }
2625 release_object(proc, *flat, this, &mOpenAshmemSize);
2626 }
2627 binder_size_t* objects =
2628 (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t));
2629 if (objects) {
2630 mObjects = objects;
2631 }
2632 mObjectsSize = objectsSize;
2633 mNextObjectHint = 0;
2634 }
2635
2636 // We own the data, so we can just do a realloc().
2637 if (desired > mDataCapacity) {
2638 uint8_t* data = (uint8_t*)realloc(mData, desired);
2639 if (data) {
2640 LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
2641 desired);
2642 pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2643 gParcelGlobalAllocSize += desired;
2644 gParcelGlobalAllocSize -= mDataCapacity;
2645 pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2646 mData = data;
2647 mDataCapacity = desired;
2648 } else if (desired > mDataCapacity) {
2649 mError = NO_MEMORY;
2650 return NO_MEMORY;
2651 }
2652 } else {
2653 if (mDataSize > desired) {
2654 mDataSize = desired;
2655 ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2656 }
2657 if (mDataPos > desired) {
2658 mDataPos = desired;
2659 ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2660 }
2661 }
2662
2663 } else {
2664 // This is the first data. Easy!
2665 uint8_t* data = (uint8_t*)malloc(desired);
2666 if (!data) {
2667 mError = NO_MEMORY;
2668 return NO_MEMORY;
2669 }
2670
2671 if(!(mDataCapacity == 0 && mObjects == NULL
2672 && mObjectsCapacity == 0)) {
2673 ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired);
2674 }
2675
2676 LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
2677 pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2678 gParcelGlobalAllocSize += desired;
2679 gParcelGlobalAllocCount++;
2680 pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2681
2682 mData = data;
2683 mDataSize = mDataPos = 0;
2684 ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2685 ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2686 mDataCapacity = desired;
2687 }
2688
2689 return NO_ERROR;
2690 }
2691
initState()2692 void Parcel::initState()
2693 {
2694 LOG_ALLOC("Parcel %p: initState", this);
2695 mError = NO_ERROR;
2696 mData = 0;
2697 mDataSize = 0;
2698 mDataCapacity = 0;
2699 mDataPos = 0;
2700 ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
2701 ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
2702 mObjects = NULL;
2703 mObjectsSize = 0;
2704 mObjectsCapacity = 0;
2705 mNextObjectHint = 0;
2706 mHasFds = false;
2707 mFdsKnown = true;
2708 mAllowFds = true;
2709 mOwner = NULL;
2710 mOpenAshmemSize = 0;
2711
2712 // racing multiple init leads only to multiple identical write
2713 if (gMaxFds == 0) {
2714 struct rlimit result;
2715 if (!getrlimit(RLIMIT_NOFILE, &result)) {
2716 gMaxFds = (size_t)result.rlim_cur;
2717 //ALOGI("parcel fd limit set to %zu", gMaxFds);
2718 } else {
2719 ALOGW("Unable to getrlimit: %s", strerror(errno));
2720 gMaxFds = 1024;
2721 }
2722 }
2723 }
2724
scanForFds() const2725 void Parcel::scanForFds() const
2726 {
2727 bool hasFds = false;
2728 for (size_t i=0; i<mObjectsSize; i++) {
2729 const flat_binder_object* flat
2730 = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);
2731 if (flat->type == BINDER_TYPE_FD) {
2732 hasFds = true;
2733 break;
2734 }
2735 }
2736 mHasFds = hasFds;
2737 mFdsKnown = true;
2738 }
2739
getBlobAshmemSize() const2740 size_t Parcel::getBlobAshmemSize() const
2741 {
2742 // This used to return the size of all blobs that were written to ashmem, now we're returning
2743 // the ashmem currently referenced by this Parcel, which should be equivalent.
2744 // TODO: Remove method once ABI can be changed.
2745 return mOpenAshmemSize;
2746 }
2747
getOpenAshmemSize() const2748 size_t Parcel::getOpenAshmemSize() const
2749 {
2750 return mOpenAshmemSize;
2751 }
2752
2753 // --- Parcel::Blob ---
2754
Blob()2755 Parcel::Blob::Blob() :
2756 mFd(-1), mData(NULL), mSize(0), mMutable(false) {
2757 }
2758
~Blob()2759 Parcel::Blob::~Blob() {
2760 release();
2761 }
2762
release()2763 void Parcel::Blob::release() {
2764 if (mFd != -1 && mData) {
2765 ::munmap(mData, mSize);
2766 }
2767 clear();
2768 }
2769
init(int fd,void * data,size_t size,bool isMutable)2770 void Parcel::Blob::init(int fd, void* data, size_t size, bool isMutable) {
2771 mFd = fd;
2772 mData = data;
2773 mSize = size;
2774 mMutable = isMutable;
2775 }
2776
clear()2777 void Parcel::Blob::clear() {
2778 mFd = -1;
2779 mData = NULL;
2780 mSize = 0;
2781 mMutable = false;
2782 }
2783
2784 }; // namespace android
2785