1 /******************************************************************************
2  *
3  *  Copyright (C) 1999-2012 Broadcom Corporation
4  *
5  *  Licensed under the Apache License, Version 2.0 (the "License");
6  *  you may not use this file except in compliance with the License.
7  *  You may obtain a copy of the License at:
8  *
9  *  http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  *
17  ******************************************************************************/
18 
19 /******************************************************************************
20  *
21  *  source file for fast dct operations
22  *
23  ******************************************************************************/
24 
25 #include "sbc_dct.h"
26 #include "sbc_enc_func_declare.h"
27 #include "sbc_encoder.h"
28 
29 /*******************************************************************************
30  *
31  * Function         SBC_FastIDCT8
32  *
33  * Description      implementation of fast DCT algorithm by Feig and Winograd
34  *
35  *
36  * Returns          y = dct(pInVect)
37  *
38  *
39  ******************************************************************************/
40 
41 #if (SBC_IS_64_MULT_IN_IDCT == FALSE)
42 #define SBC_COS_PI_SUR_4                              \
43   (0x00005a82) /* ((0x8000) * 0.7071)     = cos(pi/4) \
44                   */
45 #define SBC_COS_PI_SUR_8 \
46   (0x00007641) /* ((0x8000) * 0.9239)     = (cos(pi/8)) */
47 #define SBC_COS_3PI_SUR_8 \
48   (0x000030fb) /* ((0x8000) * 0.3827)     = (cos(3*pi/8)) */
49 #define SBC_COS_PI_SUR_16 \
50   (0x00007d8a) /* ((0x8000) * 0.9808))     = (cos(pi/16)) */
51 #define SBC_COS_3PI_SUR_16 \
52   (0x00006a6d) /* ((0x8000) * 0.8315))     = (cos(3*pi/16)) */
53 #define SBC_COS_5PI_SUR_16 \
54   (0x0000471c) /* ((0x8000) * 0.5556))     = (cos(5*pi/16)) */
55 #define SBC_COS_7PI_SUR_16 \
56   (0x000018f8) /* ((0x8000) * 0.1951))     = (cos(7*pi/16)) */
57 #define SBC_IDCT_MULT(a, b, c) SBC_MULT_32_16_SIMPLIFIED(a, b, c)
58 #else
59 #define SBC_COS_PI_SUR_4 \
60   (0x5A827999) /* ((0x80000000) * 0.707106781)      = (cos(pi/4)   ) */
61 #define SBC_COS_PI_SUR_8 \
62   (0x7641AF3C) /* ((0x80000000) * 0.923879533)      = (cos(pi/8)   ) */
63 #define SBC_COS_3PI_SUR_8 \
64   (0x30FBC54D) /* ((0x80000000) * 0.382683432)      = (cos(3*pi/8) ) */
65 #define SBC_COS_PI_SUR_16 \
66   (0x7D8A5F3F) /* ((0x80000000) * 0.98078528 ))     = (cos(pi/16)  ) */
67 #define SBC_COS_3PI_SUR_16 \
68   (0x6A6D98A4) /* ((0x80000000) * 0.831469612))     = (cos(3*pi/16)) */
69 #define SBC_COS_5PI_SUR_16 \
70   (0x471CECE6) /* ((0x80000000) * 0.555570233))     = (cos(5*pi/16)) */
71 #define SBC_COS_7PI_SUR_16 \
72   (0x18F8B83C) /* ((0x80000000) * 0.195090322))     = (cos(7*pi/16)) */
73 #define SBC_IDCT_MULT(a, b, c) SBC_MULT_32_32(a, b, c)
74 #endif /* SBC_IS_64_MULT_IN_IDCT */
75 
76 #if (SBC_FAST_DCT == FALSE)
77 extern const int16_t gas16AnalDCTcoeff8[];
78 extern const int16_t gas16AnalDCTcoeff4[];
79 #endif
80 
SBC_FastIDCT8(int32_t * pInVect,int32_t * pOutVect)81 void SBC_FastIDCT8(int32_t* pInVect, int32_t* pOutVect) {
82 #if (SBC_FAST_DCT == TRUE)
83 #if (SBC_ARM_ASM_OPT == TRUE)
84 #else
85 #if (SBC_IPAQ_OPT == TRUE)
86 #if (SBC_IS_64_MULT_IN_IDCT == TRUE)
87   int64_t s64Temp;
88 #endif
89 #else
90 #if (SBC_IS_64_MULT_IN_IDCT == TRUE)
91   int32_t s32HiTemp;
92 #else
93   int32_t s32In2Temp;
94   register int32_t s32In1Temp;
95 #endif
96 #endif
97 #endif
98 
99   register int32_t x0, x1, x2, x3, x4, x5, x6, x7, temp;
100   int32_t res_even[4], res_odd[4];
101   /*x0= (pInVect[4])/2 ;*/
102   SBC_IDCT_MULT(SBC_COS_PI_SUR_4, pInVect[4], x0);
103   /*printf("x0 0x%x = %d = %d * %d\n", x0, x0, SBC_COS_PI_SUR_4, pInVect[4]);*/
104 
105   x1 = (pInVect[3] + pInVect[5]) >> 1;
106   x2 = (pInVect[2] + pInVect[6]) >> 1;
107   x3 = (pInVect[1] + pInVect[7]) >> 1;
108   x4 = (pInVect[0] + pInVect[8]) >> 1;
109   x5 = (pInVect[9] - pInVect[15]) >> 1;
110   x6 = (pInVect[10] - pInVect[14]) >> 1;
111   x7 = (pInVect[11] - pInVect[13]) >> 1;
112 
113   /* 2-point IDCT of x0 and x4 as in (11) */
114   temp = x0;
115   SBC_IDCT_MULT(SBC_COS_PI_SUR_4, (x0 + x4),
116                 x0); /*x0 = ( x0 + x4 ) * cos(1*pi/4) ; */
117   SBC_IDCT_MULT(SBC_COS_PI_SUR_4, (temp - x4),
118                 x4); /*x4 = ( temp - x4 ) * cos(1*pi/4) ; */
119 
120   /* rearrangement of x2 and x6 as in (15) */
121   x2 -= x6;
122   x6 <<= 1;
123 
124   /* 2-point IDCT of x2 and x6 and post-multiplication as in (15) */
125   SBC_IDCT_MULT(SBC_COS_PI_SUR_4, x6, x6); /*x6 = x6 * cos(1*pi/4) ; */
126   temp = x2;
127   SBC_IDCT_MULT(SBC_COS_PI_SUR_8, (x2 + x6),
128                 x2); /*x2 = ( x2 + x6 ) * cos(1*pi/8) ; */
129   SBC_IDCT_MULT(SBC_COS_3PI_SUR_8, (temp - x6),
130                 x6); /*x6 = ( temp - x6 ) * cos(3*pi/8) ;*/
131 
132   /* 4-point IDCT of x0,x2,x4 and x6 as in (11) */
133   res_even[0] = x0 + x2;
134   res_even[1] = x4 + x6;
135   res_even[2] = x4 - x6;
136   res_even[3] = x0 - x2;
137 
138   /* rearrangement of x1,x3,x5,x7 as in (15) */
139   x7 <<= 1;
140   x5 = (x5 << 1) - x7;
141   x3 = (x3 << 1) - x5;
142   x1 -= x3 >> 1;
143 
144   /* two-dimensional IDCT of x1 and x5 */
145   SBC_IDCT_MULT(SBC_COS_PI_SUR_4, x5, x5); /*x5 = x5 * cos(1*pi/4) ; */
146   temp = x1;
147   x1 = x1 + x5;
148   x5 = temp - x5;
149 
150   /* rearrangement of x3 and x7 as in (15) */
151   x3 -= x7;
152   x7 <<= 1;
153   SBC_IDCT_MULT(SBC_COS_PI_SUR_4, x7, x7); /*x7 = x7 * cos(1*pi/4) ; */
154 
155   /* 2-point IDCT of x3 and x7 and post-multiplication as in (15) */
156   temp = x3;
157   SBC_IDCT_MULT(SBC_COS_PI_SUR_8, (x3 + x7),
158                 x3); /*x3 = ( x3 + x7 ) * cos(1*pi/8)  ; */
159   SBC_IDCT_MULT(SBC_COS_3PI_SUR_8, (temp - x7),
160                 x7); /*x7 = ( temp - x7 ) * cos(3*pi/8) ;*/
161 
162   /* 4-point IDCT of x1,x3,x5 and x7 and post multiplication by diagonal matrix
163    * as in (14) */
164   SBC_IDCT_MULT((SBC_COS_PI_SUR_16), (x1 + x3),
165                 res_odd[0]); /*res_odd[ 0 ] = ( x1 + x3 ) * cos(1*pi/16) ; */
166   SBC_IDCT_MULT((SBC_COS_3PI_SUR_16), (x5 + x7),
167                 res_odd[1]); /*res_odd[ 1 ] = ( x5 + x7 ) * cos(3*pi/16) ; */
168   SBC_IDCT_MULT((SBC_COS_5PI_SUR_16), (x5 - x7),
169                 res_odd[2]); /*res_odd[ 2 ] = ( x5 - x7 ) * cos(5*pi/16) ; */
170   SBC_IDCT_MULT((SBC_COS_7PI_SUR_16), (x1 - x3),
171                 res_odd[3]); /*res_odd[ 3 ] = ( x1 - x3 ) * cos(7*pi/16) ; */
172 
173   /* additions and subtractions as in (9) */
174   pOutVect[0] = (res_even[0] + res_odd[0]);
175   pOutVect[1] = (res_even[1] + res_odd[1]);
176   pOutVect[2] = (res_even[2] + res_odd[2]);
177   pOutVect[3] = (res_even[3] + res_odd[3]);
178   pOutVect[7] = (res_even[0] - res_odd[0]);
179   pOutVect[6] = (res_even[1] - res_odd[1]);
180   pOutVect[5] = (res_even[2] - res_odd[2]);
181   pOutVect[4] = (res_even[3] - res_odd[3]);
182 #else
183   uint8_t Index, k;
184   int32_t temp;
185   /*Calculate 4 subband samples by matrixing*/
186   for (Index = 0; Index < 8; Index++) {
187     temp = 0;
188     for (k = 0; k < 16; k++) {
189       /*temp += (int32_t)(((int64_t)M[(Index*strEncParams->numOfSubBands*2)+k] *
190        * Y[k]) >> 16 );*/
191       temp += (gas16AnalDCTcoeff8[(Index * 8 * 2) + k] * (pInVect[k] >> 16));
192       temp +=
193           ((gas16AnalDCTcoeff8[(Index * 8 * 2) + k] * (pInVect[k] & 0xFFFF)) >>
194            16);
195     }
196     pOutVect[Index] = temp;
197   }
198 #endif
199   /*    printf("pOutVect: 0x%x;0x%x;0x%x;0x%x;0x%x;0x%x;0x%x;0x%x\n",\
200           pOutVect[0],pOutVect[1],pOutVect[2],pOutVect[3],pOutVect[4],pOutVect[5],pOutVect[6],pOutVect[7]);*/
201 }
202 
203 /*******************************************************************************
204  *
205  * Function         SBC_FastIDCT4
206  *
207  * Description      implementation of fast DCT algorithm by Feig and Winograd
208  *
209  *
210  * Returns          y = dct(x0)
211  *
212  *
213  ******************************************************************************/
SBC_FastIDCT4(int32_t * pInVect,int32_t * pOutVect)214 void SBC_FastIDCT4(int32_t* pInVect, int32_t* pOutVect) {
215 #if (SBC_FAST_DCT == TRUE)
216 #if (SBC_ARM_ASM_OPT == TRUE)
217 #else
218 #if (SBC_IPAQ_OPT == TRUE)
219 #if (SBC_IS_64_MULT_IN_IDCT == TRUE)
220   int64_t s64Temp;
221 #endif
222 #else
223 #if (SBC_IS_64_MULT_IN_IDCT == TRUE)
224   int32_t s32HiTemp;
225 #else
226   uint16_t s32In2Temp;
227   int32_t s32In1Temp;
228 #endif
229 #endif
230 #endif
231   int32_t temp, x2;
232   int32_t tmp[8];
233 
234   x2 = pInVect[2] >> 1;
235   temp = (pInVect[0] + pInVect[4]);
236   SBC_IDCT_MULT((SBC_COS_PI_SUR_4 >> 1), temp, tmp[0]);
237   tmp[1] = x2 - tmp[0];
238   tmp[0] += x2;
239   temp = (pInVect[1] + pInVect[3]);
240   SBC_IDCT_MULT((SBC_COS_3PI_SUR_8 >> 1), temp, tmp[3]);
241   SBC_IDCT_MULT((SBC_COS_PI_SUR_8 >> 1), temp, tmp[2]);
242   temp = (pInVect[5] - pInVect[7]);
243   SBC_IDCT_MULT((SBC_COS_3PI_SUR_8 >> 1), temp, tmp[5]);
244   SBC_IDCT_MULT((SBC_COS_PI_SUR_8 >> 1), temp, tmp[4]);
245   tmp[6] = tmp[2] + tmp[5];
246   tmp[7] = tmp[3] - tmp[4];
247   pOutVect[0] = (tmp[0] + tmp[6]);
248   pOutVect[1] = (tmp[1] + tmp[7]);
249   pOutVect[2] = (tmp[1] - tmp[7]);
250   pOutVect[3] = (tmp[0] - tmp[6]);
251 #else
252   uint8_t Index, k;
253   int32_t temp;
254   /*Calculate 4 subband samples by matrixing*/
255   for (Index = 0; Index < 4; Index++) {
256     temp = 0;
257     for (k = 0; k < 8; k++) {
258       /*temp += (int32_t)(((int64_t)M[(Index*strEncParams->numOfSubBands*2)+k] *
259        * Y[k]) >> 16 ); */
260       temp += (gas16AnalDCTcoeff4[(Index * 4 * 2) + k] * (pInVect[k] >> 16));
261       temp +=
262           ((gas16AnalDCTcoeff4[(Index * 4 * 2) + k] * (pInVect[k] & 0xFFFF)) >>
263            16);
264     }
265     pOutVect[Index] = temp;
266   }
267 #endif
268 }
269