1 /* xwrap.c - wrappers around existing library functions.
2 *
3 * Functions with the x prefix are wrappers that either succeed or kill the
4 * program with an error message, but never return failure. They usually have
5 * the same arguments and return value as the function they wrap.
6 *
7 * Copyright 2006 Rob Landley <rob@landley.net>
8 */
9
10 #include "toys.h"
11
12 // strcpy and strncat with size checking. Size is the total space in "dest",
13 // including null terminator. Exit if there's not enough space for the string
14 // (including space for the null terminator), because silently truncating is
15 // still broken behavior. (And leaving the string unterminated is INSANE.)
xstrncpy(char * dest,char * src,size_t size)16 void xstrncpy(char *dest, char *src, size_t size)
17 {
18 if (strlen(src)+1 > size) error_exit("'%s' > %ld bytes", src, (long)size);
19 strcpy(dest, src);
20 }
21
xstrncat(char * dest,char * src,size_t size)22 void xstrncat(char *dest, char *src, size_t size)
23 {
24 long len = strlen(dest);
25
26 if (len+strlen(src)+1 > size)
27 error_exit("'%s%s' > %ld bytes", dest, src, (long)size);
28 strcpy(dest+len, src);
29 }
30
31 // We replaced exit(), _exit(), and atexit() with xexit(), _xexit(), and
32 // sigatexit(). This gives _xexit() the option to siglongjmp(toys.rebound, 1)
33 // instead of exiting, lets xexit() report stdout flush failures to stderr
34 // and change the exit code to indicate error, lets our toys.exit function
35 // change happen for signal exit paths and lets us remove the functions
36 // after we've called them.
37
_xexit(void)38 void _xexit(void)
39 {
40 if (toys.rebound) siglongjmp(*toys.rebound, 1);
41
42 _exit(toys.exitval);
43 }
44
xexit(void)45 void xexit(void)
46 {
47 // Call toys.xexit functions in reverse order added.
48 while (toys.xexit) {
49 // This is typecasting xexit->arg to a function pointer,then calling it.
50 // Using the invalid signal number 0 lets the signal handlers distinguish
51 // an actual signal from a regular exit.
52 ((void (*)(int))(toys.xexit->arg))(0);
53
54 free(llist_pop(&toys.xexit));
55 }
56 if (fflush(NULL) || ferror(stdout))
57 if (!toys.exitval) perror_msg("write");
58 _xexit();
59 }
60
61 // Die unless we can allocate memory.
xmalloc(size_t size)62 void *xmalloc(size_t size)
63 {
64 void *ret = malloc(size);
65 if (!ret) error_exit("xmalloc(%ld)", (long)size);
66
67 return ret;
68 }
69
70 // Die unless we can allocate prezeroed memory.
xzalloc(size_t size)71 void *xzalloc(size_t size)
72 {
73 void *ret = xmalloc(size);
74 memset(ret, 0, size);
75 return ret;
76 }
77
78 // Die unless we can change the size of an existing allocation, possibly
79 // moving it. (Notice different arguments from libc function.)
xrealloc(void * ptr,size_t size)80 void *xrealloc(void *ptr, size_t size)
81 {
82 ptr = realloc(ptr, size);
83 if (!ptr) error_exit("xrealloc");
84
85 return ptr;
86 }
87
88 // Die unless we can allocate a copy of this many bytes of string.
xstrndup(char * s,size_t n)89 char *xstrndup(char *s, size_t n)
90 {
91 char *ret = strndup(s, ++n);
92
93 if (!ret) error_exit("xstrndup");
94 ret[--n] = 0;
95
96 return ret;
97 }
98
99 // Die unless we can allocate a copy of this string.
xstrdup(char * s)100 char *xstrdup(char *s)
101 {
102 return xstrndup(s, strlen(s));
103 }
104
xmemdup(void * s,long len)105 void *xmemdup(void *s, long len)
106 {
107 void *ret = xmalloc(len);
108 memcpy(ret, s, len);
109
110 return ret;
111 }
112
113 // Die unless we can allocate enough space to sprintf() into.
xmprintf(char * format,...)114 char *xmprintf(char *format, ...)
115 {
116 va_list va, va2;
117 int len;
118 char *ret;
119
120 va_start(va, format);
121 va_copy(va2, va);
122
123 // How long is it?
124 len = vsnprintf(0, 0, format, va);
125 len++;
126 va_end(va);
127
128 // Allocate and do the sprintf()
129 ret = xmalloc(len);
130 vsnprintf(ret, len, format, va2);
131 va_end(va2);
132
133 return ret;
134 }
135
xprintf(char * format,...)136 void xprintf(char *format, ...)
137 {
138 va_list va;
139 va_start(va, format);
140
141 vprintf(format, va);
142 va_end(va);
143 if (fflush(stdout) || ferror(stdout)) perror_exit("write");
144 }
145
xputs(char * s)146 void xputs(char *s)
147 {
148 if (EOF == puts(s) || fflush(stdout) || ferror(stdout)) perror_exit("write");
149 }
150
xputc(char c)151 void xputc(char c)
152 {
153 if (EOF == fputc(c, stdout) || fflush(stdout) || ferror(stdout))
154 perror_exit("write");
155 }
156
xflush(void)157 void xflush(void)
158 {
159 if (fflush(stdout) || ferror(stdout)) perror_exit("write");;
160 }
161
162 // This is called through the XVFORK macro because parent/child of vfork
163 // share a stack, so child returning from a function would stomp the return
164 // address parent would need. Solution: make vfork() an argument so processes
165 // diverge before function gets called.
xvforkwrap(pid_t pid)166 pid_t __attribute__((returns_twice)) xvforkwrap(pid_t pid)
167 {
168 if (pid == -1) perror_exit("vfork");
169
170 // Signal to xexec() and friends that we vforked so can't recurse
171 toys.stacktop = 0;
172
173 return pid;
174 }
175
176 // Die unless we can exec argv[] (or run builtin command). Note that anything
177 // with a path isn't a builtin, so /bin/sh won't match the builtin sh.
xexec(char ** argv)178 void xexec(char **argv)
179 {
180 // Only recurse to builtin when we have multiplexer and !vfork context.
181 if (CFG_TOYBOX && !CFG_TOYBOX_NORECURSE && toys.stacktop) toy_exec(argv);
182 execvp(argv[0], argv);
183
184 perror_msg("exec %s", argv[0]);
185 toys.exitval = 127;
186 if (!CFG_TOYBOX_FORK) _exit(toys.exitval);
187 xexit();
188 }
189
190 // Spawn child process, capturing stdin/stdout.
191 // argv[]: command to exec. If null, child re-runs original program with
192 // toys.stacktop zeroed.
193 // pipes[2]: stdin, stdout of new process, only allocated if zero on way in,
194 // pass NULL to skip pipe allocation entirely.
195 // return: pid of child process
xpopen_both(char ** argv,int * pipes)196 pid_t xpopen_both(char **argv, int *pipes)
197 {
198 int cestnepasun[4], pid;
199
200 // Make the pipes? Note this won't set either pipe to 0 because if fds are
201 // allocated in order and if fd0 was free it would go to cestnepasun[0]
202 if (pipes) {
203 for (pid = 0; pid < 2; pid++) {
204 if (pipes[pid] != 0) continue;
205 if (pipe(cestnepasun+(2*pid))) perror_exit("pipe");
206 pipes[pid] = cestnepasun[pid+1];
207 }
208 }
209
210 // Child process.
211 if (!(pid = CFG_TOYBOX_FORK ? xfork() : XVFORK())) {
212 // Dance of the stdin/stdout redirection.
213 if (pipes) {
214 // if we had no stdin/out, pipe handles could overlap, so test for it
215 // and free up potentially overlapping pipe handles before reuse
216 if (pipes[1] != -1) close(cestnepasun[2]);
217 if (pipes[0] != -1) {
218 close(cestnepasun[1]);
219 if (cestnepasun[0]) {
220 dup2(cestnepasun[0], 0);
221 close(cestnepasun[0]);
222 }
223 }
224 if (pipes[1] != -1) {
225 dup2(cestnepasun[3], 1);
226 dup2(cestnepasun[3], 2);
227 if (cestnepasun[3] > 2 || !cestnepasun[3]) close(cestnepasun[3]);
228 }
229 }
230 if (argv) xexec(argv);
231
232 // In fork() case, force recursion because we know it's us.
233 if (CFG_TOYBOX_FORK) {
234 toy_init(toys.which, toys.argv);
235 toys.stacktop = 0;
236 toys.which->toy_main();
237 xexit();
238 // In vfork() case, exec /proc/self/exe with high bit of first letter set
239 // to tell main() we reentered.
240 } else {
241 char *s = "/proc/self/exe";
242
243 // We did a nommu-friendly vfork but must exec to continue.
244 // setting high bit of argv[0][0] to let new process know
245 **toys.argv |= 0x80;
246 execv(s, toys.argv);
247 perror_msg_raw(s);
248
249 _exit(127);
250 }
251 }
252
253 // Parent process
254 if (!CFG_TOYBOX_FORK) **toys.argv &= 0x7f;
255 if (pipes) {
256 if (pipes[0] != -1) close(cestnepasun[0]);
257 if (pipes[1] != -1) close(cestnepasun[3]);
258 }
259
260 return pid;
261 }
262
263 // Wait for child process to exit, then return adjusted exit code.
xwaitpid(pid_t pid)264 int xwaitpid(pid_t pid)
265 {
266 int status;
267
268 while (-1 == waitpid(pid, &status, 0) && errno == EINTR);
269
270 return WIFEXITED(status) ? WEXITSTATUS(status) : WTERMSIG(status)+127;
271 }
272
xpclose_both(pid_t pid,int * pipes)273 int xpclose_both(pid_t pid, int *pipes)
274 {
275 if (pipes) {
276 close(pipes[0]);
277 close(pipes[1]);
278 }
279
280 return xwaitpid(pid);
281 }
282
283 // Wrapper to xpopen with a pipe for just one of stdin/stdout
xpopen(char ** argv,int * pipe,int isstdout)284 pid_t xpopen(char **argv, int *pipe, int isstdout)
285 {
286 int pipes[2], pid;
287
288 pipes[!isstdout] = -1;
289 pipes[!!isstdout] = 0;
290 pid = xpopen_both(argv, pipes);
291 *pipe = pid ? pipes[!!isstdout] : -1;
292
293 return pid;
294 }
295
xpclose(pid_t pid,int pipe)296 int xpclose(pid_t pid, int pipe)
297 {
298 close(pipe);
299
300 return xpclose_both(pid, 0);
301 }
302
303 // Call xpopen and wait for it to finish, keeping existing stdin/stdout.
xrun(char ** argv)304 int xrun(char **argv)
305 {
306 return xpclose_both(xpopen_both(argv, 0), 0);
307 }
308
xaccess(char * path,int flags)309 void xaccess(char *path, int flags)
310 {
311 if (access(path, flags)) perror_exit("Can't access '%s'", path);
312 }
313
314 // Die unless we can delete a file. (File must exist to be deleted.)
xunlink(char * path)315 void xunlink(char *path)
316 {
317 if (unlink(path)) perror_exit("unlink '%s'", path);
318 }
319
320 // Die unless we can open/create a file, returning file descriptor.
321 // The meaning of O_CLOEXEC is reversed (it defaults on, pass it to disable)
322 // and WARN_ONLY tells us not to exit.
xcreate_stdio(char * path,int flags,int mode)323 int xcreate_stdio(char *path, int flags, int mode)
324 {
325 int fd = open(path, (flags^O_CLOEXEC)&~WARN_ONLY, mode);
326
327 if (fd == -1) ((mode&WARN_ONLY) ? perror_msg_raw : perror_exit_raw)(path);
328 return fd;
329 }
330
331 // Die unless we can open a file, returning file descriptor.
xopen_stdio(char * path,int flags)332 int xopen_stdio(char *path, int flags)
333 {
334 return xcreate_stdio(path, flags, 0);
335 }
336
xpipe(int * pp)337 void xpipe(int *pp)
338 {
339 if (pipe(pp)) perror_exit("xpipe");
340 }
341
xclose(int fd)342 void xclose(int fd)
343 {
344 if (close(fd)) perror_exit("xclose");
345 }
346
xdup(int fd)347 int xdup(int fd)
348 {
349 if (fd != -1) {
350 fd = dup(fd);
351 if (fd == -1) perror_exit("xdup");
352 }
353 return fd;
354 }
355
356 // Move file descriptor above stdin/stdout/stderr, using /dev/null to consume
357 // old one. (We should never be called with stdin/stdout/stderr closed, but...)
notstdio(int fd)358 int notstdio(int fd)
359 {
360 if (fd<0) return fd;
361
362 while (fd<3) {
363 int fd2 = xdup(fd);
364
365 close(fd);
366 xopen_stdio("/dev/null", O_RDWR);
367 fd = fd2;
368 }
369
370 return fd;
371 }
372
373 // Create a file but don't return stdin/stdout/stderr
xcreate(char * path,int flags,int mode)374 int xcreate(char *path, int flags, int mode)
375 {
376 return notstdio(xcreate_stdio(path, flags, mode));
377 }
378
379 // Open a file descriptor NOT in stdin/stdout/stderr
xopen(char * path,int flags)380 int xopen(char *path, int flags)
381 {
382 return notstdio(xopen_stdio(path, flags));
383 }
384
385 // Open read only, treating "-" as a synonym for stdin, defaulting to warn only
openro(char * path,int flags)386 int openro(char *path, int flags)
387 {
388 if (!strcmp(path, "-")) return 0;
389
390 return xopen(path, flags^WARN_ONLY);
391 }
392
393 // Open read only, treating "-" as a synonym for stdin.
xopenro(char * path)394 int xopenro(char *path)
395 {
396 return openro(path, O_RDONLY|WARN_ONLY);
397 }
398
xfdopen(int fd,char * mode)399 FILE *xfdopen(int fd, char *mode)
400 {
401 FILE *f = fdopen(fd, mode);
402
403 if (!f) perror_exit("xfdopen");
404
405 return f;
406 }
407
408 // Die unless we can open/create a file, returning FILE *.
xfopen(char * path,char * mode)409 FILE *xfopen(char *path, char *mode)
410 {
411 FILE *f = fopen(path, mode);
412 if (!f) perror_exit("No file %s", path);
413 return f;
414 }
415
416 // Die if there's an error other than EOF.
xread(int fd,void * buf,size_t len)417 size_t xread(int fd, void *buf, size_t len)
418 {
419 ssize_t ret = read(fd, buf, len);
420 if (ret < 0) perror_exit("xread");
421
422 return ret;
423 }
424
xreadall(int fd,void * buf,size_t len)425 void xreadall(int fd, void *buf, size_t len)
426 {
427 if (len != readall(fd, buf, len)) perror_exit("xreadall");
428 }
429
430 // There's no xwriteall(), just xwrite(). When we read, there may or may not
431 // be more data waiting. When we write, there is data and it had better go
432 // somewhere.
433
xwrite(int fd,void * buf,size_t len)434 void xwrite(int fd, void *buf, size_t len)
435 {
436 if (len != writeall(fd, buf, len)) perror_exit("xwrite");
437 }
438
439 // Die if lseek fails, probably due to being called on a pipe.
440
xlseek(int fd,off_t offset,int whence)441 off_t xlseek(int fd, off_t offset, int whence)
442 {
443 offset = lseek(fd, offset, whence);
444 if (offset<0) perror_exit("lseek");
445
446 return offset;
447 }
448
xgetcwd(void)449 char *xgetcwd(void)
450 {
451 char *buf = getcwd(NULL, 0);
452 if (!buf) perror_exit("xgetcwd");
453
454 return buf;
455 }
456
xstat(char * path,struct stat * st)457 void xstat(char *path, struct stat *st)
458 {
459 if(stat(path, st)) perror_exit("Can't stat %s", path);
460 }
461
462 // Cannonicalize path, even to file with one or more missing components at end.
463 // if exact, require last path component to exist
xabspath(char * path,int exact)464 char *xabspath(char *path, int exact)
465 {
466 struct string_list *todo, *done = 0;
467 int try = 9999, dirfd = open("/", 0);;
468 char *ret;
469
470 // If this isn't an absolute path, start with cwd.
471 if (*path != '/') {
472 char *temp = xgetcwd();
473
474 splitpath(path, splitpath(temp, &todo));
475 free(temp);
476 } else splitpath(path, &todo);
477
478 // Iterate through path components
479 while (todo) {
480 struct string_list *new = llist_pop(&todo), **tail;
481 ssize_t len;
482
483 if (!try--) {
484 errno = ELOOP;
485 goto error;
486 }
487
488 // Removable path componenents.
489 if (!strcmp(new->str, ".") || !strcmp(new->str, "..")) {
490 int x = new->str[1];
491
492 free(new);
493 if (x) {
494 if (done) free(llist_pop(&done));
495 len = 0;
496 } else continue;
497
498 // Is this a symlink?
499 } else len = readlinkat(dirfd, new->str, libbuf, sizeof(libbuf));
500
501 if (len>4095) goto error;
502 if (len<1) {
503 int fd;
504 char *s = "..";
505
506 // For .. just move dirfd
507 if (len) {
508 // Not a symlink: add to linked list, move dirfd, fail if error
509 if ((exact || todo) && errno != EINVAL) goto error;
510 new->next = done;
511 done = new;
512 if (errno == EINVAL && !todo) break;
513 s = new->str;
514 }
515 fd = openat(dirfd, s, 0);
516 if (fd == -1 && (exact || todo || errno != ENOENT)) goto error;
517 close(dirfd);
518 dirfd = fd;
519 continue;
520 }
521
522 // If this symlink is to an absolute path, discard existing resolved path
523 libbuf[len] = 0;
524 if (*libbuf == '/') {
525 llist_traverse(done, free);
526 done=0;
527 close(dirfd);
528 dirfd = open("/", 0);
529 }
530 free(new);
531
532 // prepend components of new path. Note symlink to "/" will leave new NULL
533 tail = splitpath(libbuf, &new);
534
535 // symlink to "/" will return null and leave tail alone
536 if (new) {
537 *tail = todo;
538 todo = new;
539 }
540 }
541 close(dirfd);
542
543 // At this point done has the path, in reverse order. Reverse list while
544 // calculating buffer length.
545
546 try = 2;
547 while (done) {
548 struct string_list *temp = llist_pop(&done);;
549
550 if (todo) try++;
551 try += strlen(temp->str);
552 temp->next = todo;
553 todo = temp;
554 }
555
556 // Assemble return buffer
557
558 ret = xmalloc(try);
559 *ret = '/';
560 ret [try = 1] = 0;
561 while (todo) {
562 if (try>1) ret[try++] = '/';
563 try = stpcpy(ret+try, todo->str) - ret;
564 free(llist_pop(&todo));
565 }
566
567 return ret;
568
569 error:
570 close(dirfd);
571 llist_traverse(todo, free);
572 llist_traverse(done, free);
573
574 return NULL;
575 }
576
xchdir(char * path)577 void xchdir(char *path)
578 {
579 if (chdir(path)) error_exit("chdir '%s'", path);
580 }
581
xchroot(char * path)582 void xchroot(char *path)
583 {
584 if (chroot(path)) error_exit("chroot '%s'", path);
585 xchdir("/");
586 }
587
xgetpwuid(uid_t uid)588 struct passwd *xgetpwuid(uid_t uid)
589 {
590 struct passwd *pwd = getpwuid(uid);
591 if (!pwd) error_exit("bad uid %ld", (long)uid);
592 return pwd;
593 }
594
xgetgrgid(gid_t gid)595 struct group *xgetgrgid(gid_t gid)
596 {
597 struct group *group = getgrgid(gid);
598
599 if (!group) perror_exit("gid %ld", (long)gid);
600 return group;
601 }
602
xgetuid(char * name)603 unsigned xgetuid(char *name)
604 {
605 struct passwd *up = getpwnam(name);
606 char *s = 0;
607 long uid;
608
609 if (up) return up->pw_uid;
610
611 uid = estrtol(name, &s, 10);
612 if (!errno && s && !*s && uid>=0 && uid<=UINT_MAX) return uid;
613
614 error_exit("bad user '%s'", name);
615 }
616
xgetgid(char * name)617 unsigned xgetgid(char *name)
618 {
619 struct group *gr = getgrnam(name);
620 char *s = 0;
621 long gid;
622
623 if (gr) return gr->gr_gid;
624
625 gid = estrtol(name, &s, 10);
626 if (!errno && s && !*s && gid>=0 && gid<=UINT_MAX) return gid;
627
628 error_exit("bad group '%s'", name);
629 }
630
xgetpwnam(char * name)631 struct passwd *xgetpwnam(char *name)
632 {
633 struct passwd *up = getpwnam(name);
634
635 if (!up) perror_exit("user '%s'", name);
636 return up;
637 }
638
xgetgrnam(char * name)639 struct group *xgetgrnam(char *name)
640 {
641 struct group *gr = getgrnam(name);
642
643 if (!gr) perror_exit("group '%s'", name);
644 return gr;
645 }
646
647 // setuid() can fail (for example, too many processes belonging to that user),
648 // which opens a security hole if the process continues as the original user.
649
xsetuser(struct passwd * pwd)650 void xsetuser(struct passwd *pwd)
651 {
652 if (initgroups(pwd->pw_name, pwd->pw_gid) || setgid(pwd->pw_uid)
653 || setuid(pwd->pw_uid)) perror_exit("xsetuser '%s'", pwd->pw_name);
654 }
655
656 // This can return null (meaning file not found). It just won't return null
657 // for memory allocation reasons.
xreadlink(char * name)658 char *xreadlink(char *name)
659 {
660 int len, size = 0;
661 char *buf = 0;
662
663 // Grow by 64 byte chunks until it's big enough.
664 for(;;) {
665 size +=64;
666 buf = xrealloc(buf, size);
667 len = readlink(name, buf, size);
668
669 if (len<0) {
670 free(buf);
671 return 0;
672 }
673 if (len<size) {
674 buf[len]=0;
675 return buf;
676 }
677 }
678 }
679
xreadfile(char * name,char * buf,off_t len)680 char *xreadfile(char *name, char *buf, off_t len)
681 {
682 if (!(buf = readfile(name, buf, len))) perror_exit("Bad '%s'", name);
683
684 return buf;
685 }
686
687 // The data argument to ioctl() is actually long, but it's usually used as
688 // a pointer. If you need to feed in a number, do (void *)(long) typecast.
xioctl(int fd,int request,void * data)689 int xioctl(int fd, int request, void *data)
690 {
691 int rc;
692
693 errno = 0;
694 rc = ioctl(fd, request, data);
695 if (rc == -1 && errno) perror_exit("ioctl %x", request);
696
697 return rc;
698 }
699
700 // Open a /var/run/NAME.pid file, dying if we can't write it or if it currently
701 // exists and is this executable.
xpidfile(char * name)702 void xpidfile(char *name)
703 {
704 char pidfile[256], spid[32];
705 int i, fd;
706 pid_t pid;
707
708 sprintf(pidfile, "/var/run/%s.pid", name);
709 // Try three times to open the sucker.
710 for (i=0; i<3; i++) {
711 fd = open(pidfile, O_CREAT|O_EXCL|O_WRONLY, 0644);
712 if (fd != -1) break;
713
714 // If it already existed, read it. Loop for race condition.
715 fd = open(pidfile, O_RDONLY);
716 if (fd == -1) continue;
717
718 // Is the old program still there?
719 spid[xread(fd, spid, sizeof(spid)-1)] = 0;
720 close(fd);
721 pid = atoi(spid);
722 if (pid < 1 || (kill(pid, 0) && errno == ESRCH)) unlink(pidfile);
723
724 // An else with more sanity checking might be nice here.
725 }
726
727 if (i == 3) error_exit("xpidfile %s", name);
728
729 xwrite(fd, spid, sprintf(spid, "%ld\n", (long)getpid()));
730 close(fd);
731 }
732
733 // Copy the rest of in to out and close both files.
734
xsendfile(int in,int out)735 long long xsendfile(int in, int out)
736 {
737 long long total = 0;
738 long len;
739
740 if (in<0) return 0;
741 for (;;) {
742 len = xread(in, libbuf, sizeof(libbuf));
743 if (len<1) break;
744 xwrite(out, libbuf, len);
745 total += len;
746 }
747
748 return total;
749 }
750
751 // parse fractional seconds with optional s/m/h/d suffix
xparsetime(char * arg,long units,long * fraction)752 long xparsetime(char *arg, long units, long *fraction)
753 {
754 double d;
755 long l;
756
757 if (CFG_TOYBOX_FLOAT) d = strtod(arg, &arg);
758 else l = strtoul(arg, &arg, 10);
759
760 // Parse suffix
761 if (*arg) {
762 int ismhd[]={1,60,3600,86400}, i = stridx("smhd", *arg);
763
764 if (i == -1) error_exit("Unknown suffix '%c'", *arg);
765 if (CFG_TOYBOX_FLOAT) d *= ismhd[i];
766 else l *= ismhd[i];
767 }
768
769 if (CFG_TOYBOX_FLOAT) {
770 l = (long)d;
771 if (fraction) *fraction = units*(d-l);
772 } else if (fraction) *fraction = 0;
773
774 return l;
775 }
776
777 // Compile a regular expression into a regex_t
xregcomp(regex_t * preg,char * regex,int cflags)778 void xregcomp(regex_t *preg, char *regex, int cflags)
779 {
780 int rc = regcomp(preg, regex, cflags);
781
782 if (rc) {
783 regerror(rc, preg, libbuf, sizeof(libbuf));
784 error_exit("xregcomp: %s", libbuf);
785 }
786 }
787
xtzset(char * new)788 char *xtzset(char *new)
789 {
790 char *old = getenv("TZ");
791
792 if (old) old = xstrdup(old);
793 if (new ? setenv("TZ", new, 1) : unsetenv("TZ")) perror_exit("setenv");
794 tzset();
795
796 return old;
797 }
798
799 // Set a signal handler
xsignal(int signal,void * handler)800 void xsignal(int signal, void *handler)
801 {
802 struct sigaction *sa = (void *)libbuf;
803
804 memset(sa, 0, sizeof(struct sigaction));
805 sa->sa_handler = handler;
806
807 if (sigaction(signal, sa, 0)) perror_exit("xsignal %d", signal);
808 }
809