1 //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfoImpl class, it just provides default
11 // implementations of various methods.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Target/TargetInstrInfo.h"
16 #include "llvm/Target/TargetLowering.h"
17 #include "llvm/Target/TargetMachine.h"
18 #include "llvm/Target/TargetRegisterInfo.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 using namespace llvm;
32 
33 static cl::opt<bool> DisableHazardRecognizer(
34   "disable-sched-hazard", cl::Hidden, cl::init(false),
35   cl::desc("Disable hazard detection during preRA scheduling"));
36 
37 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
38 /// after it, replacing it with an unconditional branch to NewDest.
39 void
ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,MachineBasicBlock * NewDest) const40 TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
41                                              MachineBasicBlock *NewDest) const {
42   MachineBasicBlock *MBB = Tail->getParent();
43 
44   // Remove all the old successors of MBB from the CFG.
45   while (!MBB->succ_empty())
46     MBB->removeSuccessor(MBB->succ_begin());
47 
48   // Remove all the dead instructions from the end of MBB.
49   MBB->erase(Tail, MBB->end());
50 
51   // If MBB isn't immediately before MBB, insert a branch to it.
52   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
53     InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
54                  Tail->getDebugLoc());
55   MBB->addSuccessor(NewDest);
56 }
57 
58 // commuteInstruction - The default implementation of this method just exchanges
59 // the two operands returned by findCommutedOpIndices.
commuteInstruction(MachineInstr * MI,bool NewMI) const60 MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
61                                                       bool NewMI) const {
62   const MCInstrDesc &MCID = MI->getDesc();
63   bool HasDef = MCID.getNumDefs();
64   if (HasDef && !MI->getOperand(0).isReg())
65     // No idea how to commute this instruction. Target should implement its own.
66     return 0;
67   unsigned Idx1, Idx2;
68   if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
69     std::string msg;
70     raw_string_ostream Msg(msg);
71     Msg << "Don't know how to commute: " << *MI;
72     report_fatal_error(Msg.str());
73   }
74 
75   assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
76          "This only knows how to commute register operands so far");
77   unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
78   unsigned Reg1 = MI->getOperand(Idx1).getReg();
79   unsigned Reg2 = MI->getOperand(Idx2).getReg();
80   bool Reg1IsKill = MI->getOperand(Idx1).isKill();
81   bool Reg2IsKill = MI->getOperand(Idx2).isKill();
82   // If destination is tied to either of the commuted source register, then
83   // it must be updated.
84   if (HasDef && Reg0 == Reg1 &&
85       MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
86     Reg2IsKill = false;
87     Reg0 = Reg2;
88   } else if (HasDef && Reg0 == Reg2 &&
89              MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
90     Reg1IsKill = false;
91     Reg0 = Reg1;
92   }
93 
94   if (NewMI) {
95     // Create a new instruction.
96     bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
97     MachineFunction &MF = *MI->getParent()->getParent();
98     if (HasDef)
99       return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
100         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
101         .addReg(Reg2, getKillRegState(Reg2IsKill))
102         .addReg(Reg1, getKillRegState(Reg2IsKill));
103     else
104       return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
105         .addReg(Reg2, getKillRegState(Reg2IsKill))
106         .addReg(Reg1, getKillRegState(Reg2IsKill));
107   }
108 
109   if (HasDef)
110     MI->getOperand(0).setReg(Reg0);
111   MI->getOperand(Idx2).setReg(Reg1);
112   MI->getOperand(Idx1).setReg(Reg2);
113   MI->getOperand(Idx2).setIsKill(Reg1IsKill);
114   MI->getOperand(Idx1).setIsKill(Reg2IsKill);
115   return MI;
116 }
117 
118 /// findCommutedOpIndices - If specified MI is commutable, return the two
119 /// operand indices that would swap value. Return true if the instruction
120 /// is not in a form which this routine understands.
findCommutedOpIndices(MachineInstr * MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const121 bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
122                                                 unsigned &SrcOpIdx1,
123                                                 unsigned &SrcOpIdx2) const {
124   const MCInstrDesc &MCID = MI->getDesc();
125   if (!MCID.isCommutable())
126     return false;
127   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
128   // is not true, then the target must implement this.
129   SrcOpIdx1 = MCID.getNumDefs();
130   SrcOpIdx2 = SrcOpIdx1 + 1;
131   if (!MI->getOperand(SrcOpIdx1).isReg() ||
132       !MI->getOperand(SrcOpIdx2).isReg())
133     // No idea.
134     return false;
135   return true;
136 }
137 
138 
PredicateInstruction(MachineInstr * MI,const SmallVectorImpl<MachineOperand> & Pred) const139 bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
140                             const SmallVectorImpl<MachineOperand> &Pred) const {
141   bool MadeChange = false;
142   const MCInstrDesc &MCID = MI->getDesc();
143   if (!MCID.isPredicable())
144     return false;
145 
146   for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
147     if (MCID.OpInfo[i].isPredicate()) {
148       MachineOperand &MO = MI->getOperand(i);
149       if (MO.isReg()) {
150         MO.setReg(Pred[j].getReg());
151         MadeChange = true;
152       } else if (MO.isImm()) {
153         MO.setImm(Pred[j].getImm());
154         MadeChange = true;
155       } else if (MO.isMBB()) {
156         MO.setMBB(Pred[j].getMBB());
157         MadeChange = true;
158       }
159       ++j;
160     }
161   }
162   return MadeChange;
163 }
164 
hasLoadFromStackSlot(const MachineInstr * MI,const MachineMemOperand * & MMO,int & FrameIndex) const165 bool TargetInstrInfoImpl::hasLoadFromStackSlot(const MachineInstr *MI,
166                                         const MachineMemOperand *&MMO,
167                                         int &FrameIndex) const {
168   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
169          oe = MI->memoperands_end();
170        o != oe;
171        ++o) {
172     if ((*o)->isLoad() && (*o)->getValue())
173       if (const FixedStackPseudoSourceValue *Value =
174           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
175         FrameIndex = Value->getFrameIndex();
176         MMO = *o;
177         return true;
178       }
179   }
180   return false;
181 }
182 
hasStoreToStackSlot(const MachineInstr * MI,const MachineMemOperand * & MMO,int & FrameIndex) const183 bool TargetInstrInfoImpl::hasStoreToStackSlot(const MachineInstr *MI,
184                                        const MachineMemOperand *&MMO,
185                                        int &FrameIndex) const {
186   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
187          oe = MI->memoperands_end();
188        o != oe;
189        ++o) {
190     if ((*o)->isStore() && (*o)->getValue())
191       if (const FixedStackPseudoSourceValue *Value =
192           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
193         FrameIndex = Value->getFrameIndex();
194         MMO = *o;
195         return true;
196       }
197   }
198   return false;
199 }
200 
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr * Orig,const TargetRegisterInfo & TRI) const201 void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
202                                         MachineBasicBlock::iterator I,
203                                         unsigned DestReg,
204                                         unsigned SubIdx,
205                                         const MachineInstr *Orig,
206                                         const TargetRegisterInfo &TRI) const {
207   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
208   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
209   MBB.insert(I, MI);
210 }
211 
212 bool
produceSameValue(const MachineInstr * MI0,const MachineInstr * MI1,const MachineRegisterInfo * MRI) const213 TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
214                                       const MachineInstr *MI1,
215                                       const MachineRegisterInfo *MRI) const {
216   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
217 }
218 
duplicate(MachineInstr * Orig,MachineFunction & MF) const219 MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
220                                              MachineFunction &MF) const {
221   assert(!Orig->getDesc().isNotDuplicable() &&
222          "Instruction cannot be duplicated");
223   return MF.CloneMachineInstr(Orig);
224 }
225 
226 // If the COPY instruction in MI can be folded to a stack operation, return
227 // the register class to use.
canFoldCopy(const MachineInstr * MI,unsigned FoldIdx)228 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
229                                               unsigned FoldIdx) {
230   assert(MI->isCopy() && "MI must be a COPY instruction");
231   if (MI->getNumOperands() != 2)
232     return 0;
233   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
234 
235   const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
236   const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
237 
238   if (FoldOp.getSubReg() || LiveOp.getSubReg())
239     return 0;
240 
241   unsigned FoldReg = FoldOp.getReg();
242   unsigned LiveReg = LiveOp.getReg();
243 
244   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
245          "Cannot fold physregs");
246 
247   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
248   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
249 
250   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
251     return RC->contains(LiveOp.getReg()) ? RC : 0;
252 
253   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
254     return RC;
255 
256   // FIXME: Allow folding when register classes are memory compatible.
257   return 0;
258 }
259 
260 bool TargetInstrInfoImpl::
canFoldMemoryOperand(const MachineInstr * MI,const SmallVectorImpl<unsigned> & Ops) const261 canFoldMemoryOperand(const MachineInstr *MI,
262                      const SmallVectorImpl<unsigned> &Ops) const {
263   return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
264 }
265 
266 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
267 /// slot into the specified machine instruction for the specified operand(s).
268 /// If this is possible, a new instruction is returned with the specified
269 /// operand folded, otherwise NULL is returned. The client is responsible for
270 /// removing the old instruction and adding the new one in the instruction
271 /// stream.
272 MachineInstr*
foldMemoryOperand(MachineBasicBlock::iterator MI,const SmallVectorImpl<unsigned> & Ops,int FI) const273 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
274                                    const SmallVectorImpl<unsigned> &Ops,
275                                    int FI) const {
276   unsigned Flags = 0;
277   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
278     if (MI->getOperand(Ops[i]).isDef())
279       Flags |= MachineMemOperand::MOStore;
280     else
281       Flags |= MachineMemOperand::MOLoad;
282 
283   MachineBasicBlock *MBB = MI->getParent();
284   assert(MBB && "foldMemoryOperand needs an inserted instruction");
285   MachineFunction &MF = *MBB->getParent();
286 
287   // Ask the target to do the actual folding.
288   if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
289     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
290     assert((!(Flags & MachineMemOperand::MOStore) ||
291             NewMI->getDesc().mayStore()) &&
292            "Folded a def to a non-store!");
293     assert((!(Flags & MachineMemOperand::MOLoad) ||
294             NewMI->getDesc().mayLoad()) &&
295            "Folded a use to a non-load!");
296     const MachineFrameInfo &MFI = *MF.getFrameInfo();
297     assert(MFI.getObjectOffset(FI) != -1);
298     MachineMemOperand *MMO =
299       MF.getMachineMemOperand(
300                     MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
301                               Flags, MFI.getObjectSize(FI),
302                               MFI.getObjectAlignment(FI));
303     NewMI->addMemOperand(MF, MMO);
304 
305     // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
306     return MBB->insert(MI, NewMI);
307   }
308 
309   // Straight COPY may fold as load/store.
310   if (!MI->isCopy() || Ops.size() != 1)
311     return 0;
312 
313   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
314   if (!RC)
315     return 0;
316 
317   const MachineOperand &MO = MI->getOperand(1-Ops[0]);
318   MachineBasicBlock::iterator Pos = MI;
319   const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
320 
321   if (Flags == MachineMemOperand::MOStore)
322     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
323   else
324     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
325   return --Pos;
326 }
327 
328 /// foldMemoryOperand - Same as the previous version except it allows folding
329 /// of any load and store from / to any address, not just from a specific
330 /// stack slot.
331 MachineInstr*
foldMemoryOperand(MachineBasicBlock::iterator MI,const SmallVectorImpl<unsigned> & Ops,MachineInstr * LoadMI) const332 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
333                                    const SmallVectorImpl<unsigned> &Ops,
334                                    MachineInstr* LoadMI) const {
335   assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!");
336 #ifndef NDEBUG
337   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
338     assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
339 #endif
340   MachineBasicBlock &MBB = *MI->getParent();
341   MachineFunction &MF = *MBB.getParent();
342 
343   // Ask the target to do the actual folding.
344   MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
345   if (!NewMI) return 0;
346 
347   NewMI = MBB.insert(MI, NewMI);
348 
349   // Copy the memoperands from the load to the folded instruction.
350   NewMI->setMemRefs(LoadMI->memoperands_begin(),
351                     LoadMI->memoperands_end());
352 
353   return NewMI;
354 }
355 
356 bool TargetInstrInfo::
isReallyTriviallyReMaterializableGeneric(const MachineInstr * MI,AliasAnalysis * AA) const357 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
358                                          AliasAnalysis *AA) const {
359   const MachineFunction &MF = *MI->getParent()->getParent();
360   const MachineRegisterInfo &MRI = MF.getRegInfo();
361   const TargetMachine &TM = MF.getTarget();
362   const TargetInstrInfo &TII = *TM.getInstrInfo();
363   const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
364 
365   // Remat clients assume operand 0 is the defined register.
366   if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
367     return false;
368   unsigned DefReg = MI->getOperand(0).getReg();
369 
370   // A sub-register definition can only be rematerialized if the instruction
371   // doesn't read the other parts of the register.  Otherwise it is really a
372   // read-modify-write operation on the full virtual register which cannot be
373   // moved safely.
374   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
375       MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
376     return false;
377 
378   // A load from a fixed stack slot can be rematerialized. This may be
379   // redundant with subsequent checks, but it's target-independent,
380   // simple, and a common case.
381   int FrameIdx = 0;
382   if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
383       MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
384     return true;
385 
386   const MCInstrDesc &MCID = MI->getDesc();
387 
388   // Avoid instructions obviously unsafe for remat.
389   if (MCID.isNotDuplicable() || MCID.mayStore() ||
390       MI->hasUnmodeledSideEffects())
391     return false;
392 
393   // Don't remat inline asm. We have no idea how expensive it is
394   // even if it's side effect free.
395   if (MI->isInlineAsm())
396     return false;
397 
398   // Avoid instructions which load from potentially varying memory.
399   if (MCID.mayLoad() && !MI->isInvariantLoad(AA))
400     return false;
401 
402   // If any of the registers accessed are non-constant, conservatively assume
403   // the instruction is not rematerializable.
404   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
405     const MachineOperand &MO = MI->getOperand(i);
406     if (!MO.isReg()) continue;
407     unsigned Reg = MO.getReg();
408     if (Reg == 0)
409       continue;
410 
411     // Check for a well-behaved physical register.
412     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
413       if (MO.isUse()) {
414         // If the physreg has no defs anywhere, it's just an ambient register
415         // and we can freely move its uses. Alternatively, if it's allocatable,
416         // it could get allocated to something with a def during allocation.
417         if (!MRI.def_empty(Reg))
418           return false;
419         BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0);
420         if (AllocatableRegs.test(Reg))
421           return false;
422         // Check for a def among the register's aliases too.
423         for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) {
424           unsigned AliasReg = *Alias;
425           if (!MRI.def_empty(AliasReg))
426             return false;
427           if (AllocatableRegs.test(AliasReg))
428             return false;
429         }
430       } else {
431         // A physreg def. We can't remat it.
432         return false;
433       }
434       continue;
435     }
436 
437     // Only allow one virtual-register def.  There may be multiple defs of the
438     // same virtual register, though.
439     if (MO.isDef() && Reg != DefReg)
440       return false;
441 
442     // Don't allow any virtual-register uses. Rematting an instruction with
443     // virtual register uses would length the live ranges of the uses, which
444     // is not necessarily a good idea, certainly not "trivial".
445     if (MO.isUse())
446       return false;
447   }
448 
449   // Everything checked out.
450   return true;
451 }
452 
453 /// isSchedulingBoundary - Test if the given instruction should be
454 /// considered a scheduling boundary. This primarily includes labels
455 /// and terminators.
isSchedulingBoundary(const MachineInstr * MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const456 bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
457                                                const MachineBasicBlock *MBB,
458                                                const MachineFunction &MF) const{
459   // Terminators and labels can't be scheduled around.
460   if (MI->getDesc().isTerminator() || MI->isLabel())
461     return true;
462 
463   // Don't attempt to schedule around any instruction that defines
464   // a stack-oriented pointer, as it's unlikely to be profitable. This
465   // saves compile time, because it doesn't require every single
466   // stack slot reference to depend on the instruction that does the
467   // modification.
468   const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
469   if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
470     return true;
471 
472   return false;
473 }
474 
475 // Provide a global flag for disabling the PreRA hazard recognizer that targets
476 // may choose to honor.
usePreRAHazardRecognizer() const477 bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const {
478   return !DisableHazardRecognizer;
479 }
480 
481 // Default implementation of CreateTargetRAHazardRecognizer.
482 ScheduleHazardRecognizer *TargetInstrInfoImpl::
CreateTargetHazardRecognizer(const TargetMachine * TM,const ScheduleDAG * DAG) const483 CreateTargetHazardRecognizer(const TargetMachine *TM,
484                              const ScheduleDAG *DAG) const {
485   // Dummy hazard recognizer allows all instructions to issue.
486   return new ScheduleHazardRecognizer();
487 }
488 
489 // Default implementation of CreateTargetPostRAHazardRecognizer.
490 ScheduleHazardRecognizer *TargetInstrInfoImpl::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const491 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
492                                    const ScheduleDAG *DAG) const {
493   return (ScheduleHazardRecognizer *)
494     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
495 }
496