1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * All landingpad instructions must use the same personality function with
43 // the same function.
44 // * All other things that are tested by asserts spread about the code...
45 //
46 //===----------------------------------------------------------------------===//
47
48 #include "llvm/Analysis/Verifier.h"
49 #include "llvm/CallingConv.h"
50 #include "llvm/Constants.h"
51 #include "llvm/DerivedTypes.h"
52 #include "llvm/InlineAsm.h"
53 #include "llvm/IntrinsicInst.h"
54 #include "llvm/Metadata.h"
55 #include "llvm/Module.h"
56 #include "llvm/Pass.h"
57 #include "llvm/PassManager.h"
58 #include "llvm/Analysis/Dominators.h"
59 #include "llvm/Assembly/Writer.h"
60 #include "llvm/CodeGen/ValueTypes.h"
61 #include "llvm/Support/CallSite.h"
62 #include "llvm/Support/CFG.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/InstVisitor.h"
65 #include "llvm/ADT/SetVector.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/StringExtras.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cstdarg>
74 using namespace llvm;
75
76 namespace { // Anonymous namespace for class
77 struct PreVerifier : public FunctionPass {
78 static char ID; // Pass ID, replacement for typeid
79
PreVerifier__anona6719b350111::PreVerifier80 PreVerifier() : FunctionPass(ID) {
81 initializePreVerifierPass(*PassRegistry::getPassRegistry());
82 }
83
getAnalysisUsage__anona6719b350111::PreVerifier84 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85 AU.setPreservesAll();
86 }
87
88 // Check that the prerequisites for successful DominatorTree construction
89 // are satisfied.
runOnFunction__anona6719b350111::PreVerifier90 bool runOnFunction(Function &F) {
91 bool Broken = false;
92
93 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
94 if (I->empty() || !I->back().isTerminator()) {
95 dbgs() << "Basic Block in function '" << F.getName()
96 << "' does not have terminator!\n";
97 WriteAsOperand(dbgs(), I, true);
98 dbgs() << "\n";
99 Broken = true;
100 }
101 }
102
103 if (Broken)
104 report_fatal_error("Broken module, no Basic Block terminator!");
105
106 return false;
107 }
108 };
109 }
110
111 char PreVerifier::ID = 0;
112 INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
113 false, false)
114 static char &PreVerifyID = PreVerifier::ID;
115
116 namespace {
117 struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
118 static char ID; // Pass ID, replacement for typeid
119 bool Broken; // Is this module found to be broken?
120 bool RealPass; // Are we not being run by a PassManager?
121 VerifierFailureAction action;
122 // What to do if verification fails.
123 Module *Mod; // Module we are verifying right now
124 LLVMContext *Context; // Context within which we are verifying
125 DominatorTree *DT; // Dominator Tree, caution can be null!
126
127 std::string Messages;
128 raw_string_ostream MessagesStr;
129
130 /// InstInThisBlock - when verifying a basic block, keep track of all of the
131 /// instructions we have seen so far. This allows us to do efficient
132 /// dominance checks for the case when an instruction has an operand that is
133 /// an instruction in the same block.
134 SmallPtrSet<Instruction*, 16> InstsInThisBlock;
135
136 /// MDNodes - keep track of the metadata nodes that have been checked
137 /// already.
138 SmallPtrSet<MDNode *, 32> MDNodes;
139
140 /// PersonalityFn - The personality function referenced by the
141 /// LandingPadInsts. All LandingPadInsts within the same function must use
142 /// the same personality function.
143 const Value *PersonalityFn;
144
Verifier__anona6719b350211::Verifier145 Verifier()
146 : FunctionPass(ID), Broken(false), RealPass(true),
147 action(AbortProcessAction), Mod(0), Context(0), DT(0),
148 MessagesStr(Messages), PersonalityFn(0) {
149 initializeVerifierPass(*PassRegistry::getPassRegistry());
150 }
Verifier__anona6719b350211::Verifier151 explicit Verifier(VerifierFailureAction ctn)
152 : FunctionPass(ID), Broken(false), RealPass(true), action(ctn), Mod(0),
153 Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
154 initializeVerifierPass(*PassRegistry::getPassRegistry());
155 }
156
doInitialization__anona6719b350211::Verifier157 bool doInitialization(Module &M) {
158 Mod = &M;
159 Context = &M.getContext();
160
161 // If this is a real pass, in a pass manager, we must abort before
162 // returning back to the pass manager, or else the pass manager may try to
163 // run other passes on the broken module.
164 if (RealPass)
165 return abortIfBroken();
166 return false;
167 }
168
runOnFunction__anona6719b350211::Verifier169 bool runOnFunction(Function &F) {
170 // Get dominator information if we are being run by PassManager
171 if (RealPass) DT = &getAnalysis<DominatorTree>();
172
173 Mod = F.getParent();
174 if (!Context) Context = &F.getContext();
175
176 visit(F);
177 InstsInThisBlock.clear();
178 PersonalityFn = 0;
179
180 // If this is a real pass, in a pass manager, we must abort before
181 // returning back to the pass manager, or else the pass manager may try to
182 // run other passes on the broken module.
183 if (RealPass)
184 return abortIfBroken();
185
186 return false;
187 }
188
doFinalization__anona6719b350211::Verifier189 bool doFinalization(Module &M) {
190 // Scan through, checking all of the external function's linkage now...
191 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
192 visitGlobalValue(*I);
193
194 // Check to make sure function prototypes are okay.
195 if (I->isDeclaration()) visitFunction(*I);
196 }
197
198 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
199 I != E; ++I)
200 visitGlobalVariable(*I);
201
202 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
203 I != E; ++I)
204 visitGlobalAlias(*I);
205
206 for (Module::named_metadata_iterator I = M.named_metadata_begin(),
207 E = M.named_metadata_end(); I != E; ++I)
208 visitNamedMDNode(*I);
209
210 // If the module is broken, abort at this time.
211 return abortIfBroken();
212 }
213
getAnalysisUsage__anona6719b350211::Verifier214 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
215 AU.setPreservesAll();
216 AU.addRequiredID(PreVerifyID);
217 if (RealPass)
218 AU.addRequired<DominatorTree>();
219 }
220
221 /// abortIfBroken - If the module is broken and we are supposed to abort on
222 /// this condition, do so.
223 ///
abortIfBroken__anona6719b350211::Verifier224 bool abortIfBroken() {
225 if (!Broken) return false;
226 MessagesStr << "Broken module found, ";
227 switch (action) {
228 default: llvm_unreachable("Unknown action");
229 case AbortProcessAction:
230 MessagesStr << "compilation aborted!\n";
231 dbgs() << MessagesStr.str();
232 // Client should choose different reaction if abort is not desired
233 abort();
234 case PrintMessageAction:
235 MessagesStr << "verification continues.\n";
236 dbgs() << MessagesStr.str();
237 return false;
238 case ReturnStatusAction:
239 MessagesStr << "compilation terminated.\n";
240 return true;
241 }
242 }
243
244
245 // Verification methods...
246 void visitGlobalValue(GlobalValue &GV);
247 void visitGlobalVariable(GlobalVariable &GV);
248 void visitGlobalAlias(GlobalAlias &GA);
249 void visitNamedMDNode(NamedMDNode &NMD);
250 void visitMDNode(MDNode &MD, Function *F);
251 void visitFunction(Function &F);
252 void visitBasicBlock(BasicBlock &BB);
253 using InstVisitor<Verifier>::visit;
254
255 void visit(Instruction &I);
256
257 void visitTruncInst(TruncInst &I);
258 void visitZExtInst(ZExtInst &I);
259 void visitSExtInst(SExtInst &I);
260 void visitFPTruncInst(FPTruncInst &I);
261 void visitFPExtInst(FPExtInst &I);
262 void visitFPToUIInst(FPToUIInst &I);
263 void visitFPToSIInst(FPToSIInst &I);
264 void visitUIToFPInst(UIToFPInst &I);
265 void visitSIToFPInst(SIToFPInst &I);
266 void visitIntToPtrInst(IntToPtrInst &I);
267 void visitPtrToIntInst(PtrToIntInst &I);
268 void visitBitCastInst(BitCastInst &I);
269 void visitPHINode(PHINode &PN);
270 void visitBinaryOperator(BinaryOperator &B);
271 void visitICmpInst(ICmpInst &IC);
272 void visitFCmpInst(FCmpInst &FC);
273 void visitExtractElementInst(ExtractElementInst &EI);
274 void visitInsertElementInst(InsertElementInst &EI);
275 void visitShuffleVectorInst(ShuffleVectorInst &EI);
visitVAArgInst__anona6719b350211::Verifier276 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
277 void visitCallInst(CallInst &CI);
278 void visitInvokeInst(InvokeInst &II);
279 void visitGetElementPtrInst(GetElementPtrInst &GEP);
280 void visitLoadInst(LoadInst &LI);
281 void visitStoreInst(StoreInst &SI);
282 void visitInstruction(Instruction &I);
283 void visitTerminatorInst(TerminatorInst &I);
284 void visitBranchInst(BranchInst &BI);
285 void visitReturnInst(ReturnInst &RI);
286 void visitSwitchInst(SwitchInst &SI);
287 void visitIndirectBrInst(IndirectBrInst &BI);
288 void visitSelectInst(SelectInst &SI);
289 void visitUserOp1(Instruction &I);
visitUserOp2__anona6719b350211::Verifier290 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
291 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
292 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
293 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
294 void visitFenceInst(FenceInst &FI);
295 void visitAllocaInst(AllocaInst &AI);
296 void visitExtractValueInst(ExtractValueInst &EVI);
297 void visitInsertValueInst(InsertValueInst &IVI);
298 void visitLandingPadInst(LandingPadInst &LPI);
299
300 void VerifyCallSite(CallSite CS);
301 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
302 int VT, unsigned ArgNo, std::string &Suffix);
303 void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
304 unsigned RetNum, unsigned ParamNum, ...);
305 void VerifyParameterAttrs(Attributes Attrs, Type *Ty,
306 bool isReturnValue, const Value *V);
307 void VerifyFunctionAttrs(FunctionType *FT, const AttrListPtr &Attrs,
308 const Value *V);
309
WriteValue__anona6719b350211::Verifier310 void WriteValue(const Value *V) {
311 if (!V) return;
312 if (isa<Instruction>(V)) {
313 MessagesStr << *V << '\n';
314 } else {
315 WriteAsOperand(MessagesStr, V, true, Mod);
316 MessagesStr << '\n';
317 }
318 }
319
WriteType__anona6719b350211::Verifier320 void WriteType(Type *T) {
321 if (!T) return;
322 MessagesStr << ' ' << *T;
323 }
324
325
326 // CheckFailed - A check failed, so print out the condition and the message
327 // that failed. This provides a nice place to put a breakpoint if you want
328 // to see why something is not correct.
CheckFailed__anona6719b350211::Verifier329 void CheckFailed(const Twine &Message,
330 const Value *V1 = 0, const Value *V2 = 0,
331 const Value *V3 = 0, const Value *V4 = 0) {
332 MessagesStr << Message.str() << "\n";
333 WriteValue(V1);
334 WriteValue(V2);
335 WriteValue(V3);
336 WriteValue(V4);
337 Broken = true;
338 }
339
CheckFailed__anona6719b350211::Verifier340 void CheckFailed(const Twine &Message, const Value *V1,
341 Type *T2, const Value *V3 = 0) {
342 MessagesStr << Message.str() << "\n";
343 WriteValue(V1);
344 WriteType(T2);
345 WriteValue(V3);
346 Broken = true;
347 }
348
CheckFailed__anona6719b350211::Verifier349 void CheckFailed(const Twine &Message, Type *T1,
350 Type *T2 = 0, Type *T3 = 0) {
351 MessagesStr << Message.str() << "\n";
352 WriteType(T1);
353 WriteType(T2);
354 WriteType(T3);
355 Broken = true;
356 }
357 };
358 } // End anonymous namespace
359
360 char Verifier::ID = 0;
361 INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
INITIALIZE_PASS_DEPENDENCY(PreVerifier)362 INITIALIZE_PASS_DEPENDENCY(PreVerifier)
363 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
364 INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
365
366 // Assert - We know that cond should be true, if not print an error message.
367 #define Assert(C, M) \
368 do { if (!(C)) { CheckFailed(M); return; } } while (0)
369 #define Assert1(C, M, V1) \
370 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
371 #define Assert2(C, M, V1, V2) \
372 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
373 #define Assert3(C, M, V1, V2, V3) \
374 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
375 #define Assert4(C, M, V1, V2, V3, V4) \
376 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
377
378 void Verifier::visit(Instruction &I) {
379 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
380 Assert1(I.getOperand(i) != 0, "Operand is null", &I);
381 InstVisitor<Verifier>::visit(I);
382 }
383
384
visitGlobalValue(GlobalValue & GV)385 void Verifier::visitGlobalValue(GlobalValue &GV) {
386 Assert1(!GV.isDeclaration() ||
387 GV.isMaterializable() ||
388 GV.hasExternalLinkage() ||
389 GV.hasDLLImportLinkage() ||
390 GV.hasExternalWeakLinkage() ||
391 (isa<GlobalAlias>(GV) &&
392 (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
393 "Global is external, but doesn't have external or dllimport or weak linkage!",
394 &GV);
395
396 Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
397 "Global is marked as dllimport, but not external", &GV);
398
399 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
400 "Only global variables can have appending linkage!", &GV);
401
402 if (GV.hasAppendingLinkage()) {
403 GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
404 Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
405 "Only global arrays can have appending linkage!", GVar);
406 }
407
408 Assert1(!GV.hasLinkerPrivateWeakDefAutoLinkage() || GV.hasDefaultVisibility(),
409 "linker_private_weak_def_auto can only have default visibility!",
410 &GV);
411 }
412
visitGlobalVariable(GlobalVariable & GV)413 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
414 if (GV.hasInitializer()) {
415 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
416 "Global variable initializer type does not match global "
417 "variable type!", &GV);
418
419 // If the global has common linkage, it must have a zero initializer and
420 // cannot be constant.
421 if (GV.hasCommonLinkage()) {
422 Assert1(GV.getInitializer()->isNullValue(),
423 "'common' global must have a zero initializer!", &GV);
424 Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
425 &GV);
426 }
427 } else {
428 Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
429 GV.hasExternalWeakLinkage(),
430 "invalid linkage type for global declaration", &GV);
431 }
432
433 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
434 GV.getName() == "llvm.global_dtors")) {
435 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
436 "invalid linkage for intrinsic global variable", &GV);
437 // Don't worry about emitting an error for it not being an array,
438 // visitGlobalValue will complain on appending non-array.
439 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
440 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
441 PointerType *FuncPtrTy =
442 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
443 Assert1(STy && STy->getNumElements() == 2 &&
444 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
445 STy->getTypeAtIndex(1) == FuncPtrTy,
446 "wrong type for intrinsic global variable", &GV);
447 }
448 }
449
450 visitGlobalValue(GV);
451 }
452
visitGlobalAlias(GlobalAlias & GA)453 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
454 Assert1(!GA.getName().empty(),
455 "Alias name cannot be empty!", &GA);
456 Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
457 GA.hasWeakLinkage(),
458 "Alias should have external or external weak linkage!", &GA);
459 Assert1(GA.getAliasee(),
460 "Aliasee cannot be NULL!", &GA);
461 Assert1(GA.getType() == GA.getAliasee()->getType(),
462 "Alias and aliasee types should match!", &GA);
463 Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
464
465 if (!isa<GlobalValue>(GA.getAliasee())) {
466 const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
467 Assert1(CE &&
468 (CE->getOpcode() == Instruction::BitCast ||
469 CE->getOpcode() == Instruction::GetElementPtr) &&
470 isa<GlobalValue>(CE->getOperand(0)),
471 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
472 &GA);
473 }
474
475 const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
476 Assert1(Aliasee,
477 "Aliasing chain should end with function or global variable", &GA);
478
479 visitGlobalValue(GA);
480 }
481
visitNamedMDNode(NamedMDNode & NMD)482 void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
483 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
484 MDNode *MD = NMD.getOperand(i);
485 if (!MD)
486 continue;
487
488 Assert1(!MD->isFunctionLocal(),
489 "Named metadata operand cannot be function local!", MD);
490 visitMDNode(*MD, 0);
491 }
492 }
493
visitMDNode(MDNode & MD,Function * F)494 void Verifier::visitMDNode(MDNode &MD, Function *F) {
495 // Only visit each node once. Metadata can be mutually recursive, so this
496 // avoids infinite recursion here, as well as being an optimization.
497 if (!MDNodes.insert(&MD))
498 return;
499
500 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
501 Value *Op = MD.getOperand(i);
502 if (!Op)
503 continue;
504 if (isa<Constant>(Op) || isa<MDString>(Op))
505 continue;
506 if (MDNode *N = dyn_cast<MDNode>(Op)) {
507 Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
508 "Global metadata operand cannot be function local!", &MD, N);
509 visitMDNode(*N, F);
510 continue;
511 }
512 Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
513
514 // If this was an instruction, bb, or argument, verify that it is in the
515 // function that we expect.
516 Function *ActualF = 0;
517 if (Instruction *I = dyn_cast<Instruction>(Op))
518 ActualF = I->getParent()->getParent();
519 else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
520 ActualF = BB->getParent();
521 else if (Argument *A = dyn_cast<Argument>(Op))
522 ActualF = A->getParent();
523 assert(ActualF && "Unimplemented function local metadata case!");
524
525 Assert2(ActualF == F, "function-local metadata used in wrong function",
526 &MD, Op);
527 }
528 }
529
530 // VerifyParameterAttrs - Check the given attributes for an argument or return
531 // value of the specified type. The value V is printed in error messages.
VerifyParameterAttrs(Attributes Attrs,Type * Ty,bool isReturnValue,const Value * V)532 void Verifier::VerifyParameterAttrs(Attributes Attrs, Type *Ty,
533 bool isReturnValue, const Value *V) {
534 if (Attrs == Attribute::None)
535 return;
536
537 Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
538 Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
539 " only applies to the function!", V);
540
541 if (isReturnValue) {
542 Attributes RetI = Attrs & Attribute::ParameterOnly;
543 Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
544 " does not apply to return values!", V);
545 }
546
547 for (unsigned i = 0;
548 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
549 Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
550 Assert1(!(MutI & (MutI - 1)), "Attributes " +
551 Attribute::getAsString(MutI) + " are incompatible!", V);
552 }
553
554 Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
555 Assert1(!TypeI, "Wrong type for attribute " +
556 Attribute::getAsString(TypeI), V);
557
558 Attributes ByValI = Attrs & Attribute::ByVal;
559 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
560 Assert1(!ByValI || PTy->getElementType()->isSized(),
561 "Attribute " + Attribute::getAsString(ByValI) +
562 " does not support unsized types!", V);
563 } else {
564 Assert1(!ByValI,
565 "Attribute " + Attribute::getAsString(ByValI) +
566 " only applies to parameters with pointer type!", V);
567 }
568 }
569
570 // VerifyFunctionAttrs - Check parameter attributes against a function type.
571 // The value V is printed in error messages.
VerifyFunctionAttrs(FunctionType * FT,const AttrListPtr & Attrs,const Value * V)572 void Verifier::VerifyFunctionAttrs(FunctionType *FT,
573 const AttrListPtr &Attrs,
574 const Value *V) {
575 if (Attrs.isEmpty())
576 return;
577
578 bool SawNest = false;
579
580 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
581 const AttributeWithIndex &Attr = Attrs.getSlot(i);
582
583 Type *Ty;
584 if (Attr.Index == 0)
585 Ty = FT->getReturnType();
586 else if (Attr.Index-1 < FT->getNumParams())
587 Ty = FT->getParamType(Attr.Index-1);
588 else
589 break; // VarArgs attributes, verified elsewhere.
590
591 VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
592
593 if (Attr.Attrs & Attribute::Nest) {
594 Assert1(!SawNest, "More than one parameter has attribute nest!", V);
595 SawNest = true;
596 }
597
598 if (Attr.Attrs & Attribute::StructRet)
599 Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
600 }
601
602 Attributes FAttrs = Attrs.getFnAttributes();
603 Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
604 Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
605 " does not apply to the function!", V);
606
607 for (unsigned i = 0;
608 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
609 Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
610 Assert1(!(MutI & (MutI - 1)), "Attributes " +
611 Attribute::getAsString(MutI) + " are incompatible!", V);
612 }
613 }
614
VerifyAttributeCount(const AttrListPtr & Attrs,unsigned Params)615 static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
616 if (Attrs.isEmpty())
617 return true;
618
619 unsigned LastSlot = Attrs.getNumSlots() - 1;
620 unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
621 if (LastIndex <= Params
622 || (LastIndex == (unsigned)~0
623 && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
624 return true;
625
626 return false;
627 }
628
629 // visitFunction - Verify that a function is ok.
630 //
visitFunction(Function & F)631 void Verifier::visitFunction(Function &F) {
632 // Check function arguments.
633 FunctionType *FT = F.getFunctionType();
634 unsigned NumArgs = F.arg_size();
635
636 Assert1(Context == &F.getContext(),
637 "Function context does not match Module context!", &F);
638
639 Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
640 Assert2(FT->getNumParams() == NumArgs,
641 "# formal arguments must match # of arguments for function type!",
642 &F, FT);
643 Assert1(F.getReturnType()->isFirstClassType() ||
644 F.getReturnType()->isVoidTy() ||
645 F.getReturnType()->isStructTy(),
646 "Functions cannot return aggregate values!", &F);
647
648 Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
649 "Invalid struct return type!", &F);
650
651 const AttrListPtr &Attrs = F.getAttributes();
652
653 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
654 "Attributes after last parameter!", &F);
655
656 // Check function attributes.
657 VerifyFunctionAttrs(FT, Attrs, &F);
658
659 // Check that this function meets the restrictions on this calling convention.
660 switch (F.getCallingConv()) {
661 default:
662 break;
663 case CallingConv::C:
664 break;
665 case CallingConv::Fast:
666 case CallingConv::Cold:
667 case CallingConv::X86_FastCall:
668 case CallingConv::X86_ThisCall:
669 case CallingConv::PTX_Kernel:
670 case CallingConv::PTX_Device:
671 Assert1(!F.isVarArg(),
672 "Varargs functions must have C calling conventions!", &F);
673 break;
674 }
675
676 bool isLLVMdotName = F.getName().size() >= 5 &&
677 F.getName().substr(0, 5) == "llvm.";
678
679 // Check that the argument values match the function type for this function...
680 unsigned i = 0;
681 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
682 I != E; ++I, ++i) {
683 Assert2(I->getType() == FT->getParamType(i),
684 "Argument value does not match function argument type!",
685 I, FT->getParamType(i));
686 Assert1(I->getType()->isFirstClassType(),
687 "Function arguments must have first-class types!", I);
688 if (!isLLVMdotName)
689 Assert2(!I->getType()->isMetadataTy(),
690 "Function takes metadata but isn't an intrinsic", I, &F);
691 }
692
693 if (F.isMaterializable()) {
694 // Function has a body somewhere we can't see.
695 } else if (F.isDeclaration()) {
696 Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
697 F.hasExternalWeakLinkage(),
698 "invalid linkage type for function declaration", &F);
699 } else {
700 // Verify that this function (which has a body) is not named "llvm.*". It
701 // is not legal to define intrinsics.
702 Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
703
704 // Check the entry node
705 BasicBlock *Entry = &F.getEntryBlock();
706 Assert1(pred_begin(Entry) == pred_end(Entry),
707 "Entry block to function must not have predecessors!", Entry);
708
709 // The address of the entry block cannot be taken, unless it is dead.
710 if (Entry->hasAddressTaken()) {
711 Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
712 "blockaddress may not be used with the entry block!", Entry);
713 }
714 }
715
716 // If this function is actually an intrinsic, verify that it is only used in
717 // direct call/invokes, never having its "address taken".
718 if (F.getIntrinsicID()) {
719 const User *U;
720 if (F.hasAddressTaken(&U))
721 Assert1(0, "Invalid user of intrinsic instruction!", U);
722 }
723 }
724
725 // verifyBasicBlock - Verify that a basic block is well formed...
726 //
visitBasicBlock(BasicBlock & BB)727 void Verifier::visitBasicBlock(BasicBlock &BB) {
728 InstsInThisBlock.clear();
729
730 // Ensure that basic blocks have terminators!
731 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
732
733 // Check constraints that this basic block imposes on all of the PHI nodes in
734 // it.
735 if (isa<PHINode>(BB.front())) {
736 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
737 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
738 std::sort(Preds.begin(), Preds.end());
739 PHINode *PN;
740 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
741 // Ensure that PHI nodes have at least one entry!
742 Assert1(PN->getNumIncomingValues() != 0,
743 "PHI nodes must have at least one entry. If the block is dead, "
744 "the PHI should be removed!", PN);
745 Assert1(PN->getNumIncomingValues() == Preds.size(),
746 "PHINode should have one entry for each predecessor of its "
747 "parent basic block!", PN);
748
749 // Get and sort all incoming values in the PHI node...
750 Values.clear();
751 Values.reserve(PN->getNumIncomingValues());
752 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
753 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
754 PN->getIncomingValue(i)));
755 std::sort(Values.begin(), Values.end());
756
757 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
758 // Check to make sure that if there is more than one entry for a
759 // particular basic block in this PHI node, that the incoming values are
760 // all identical.
761 //
762 Assert4(i == 0 || Values[i].first != Values[i-1].first ||
763 Values[i].second == Values[i-1].second,
764 "PHI node has multiple entries for the same basic block with "
765 "different incoming values!", PN, Values[i].first,
766 Values[i].second, Values[i-1].second);
767
768 // Check to make sure that the predecessors and PHI node entries are
769 // matched up.
770 Assert3(Values[i].first == Preds[i],
771 "PHI node entries do not match predecessors!", PN,
772 Values[i].first, Preds[i]);
773 }
774 }
775 }
776 }
777
visitTerminatorInst(TerminatorInst & I)778 void Verifier::visitTerminatorInst(TerminatorInst &I) {
779 // Ensure that terminators only exist at the end of the basic block.
780 Assert1(&I == I.getParent()->getTerminator(),
781 "Terminator found in the middle of a basic block!", I.getParent());
782 visitInstruction(I);
783 }
784
visitBranchInst(BranchInst & BI)785 void Verifier::visitBranchInst(BranchInst &BI) {
786 if (BI.isConditional()) {
787 Assert2(BI.getCondition()->getType()->isIntegerTy(1),
788 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
789 }
790 visitTerminatorInst(BI);
791 }
792
visitReturnInst(ReturnInst & RI)793 void Verifier::visitReturnInst(ReturnInst &RI) {
794 Function *F = RI.getParent()->getParent();
795 unsigned N = RI.getNumOperands();
796 if (F->getReturnType()->isVoidTy())
797 Assert2(N == 0,
798 "Found return instr that returns non-void in Function of void "
799 "return type!", &RI, F->getReturnType());
800 else
801 Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
802 "Function return type does not match operand "
803 "type of return inst!", &RI, F->getReturnType());
804
805 // Check to make sure that the return value has necessary properties for
806 // terminators...
807 visitTerminatorInst(RI);
808 }
809
visitSwitchInst(SwitchInst & SI)810 void Verifier::visitSwitchInst(SwitchInst &SI) {
811 // Check to make sure that all of the constants in the switch instruction
812 // have the same type as the switched-on value.
813 Type *SwitchTy = SI.getCondition()->getType();
814 SmallPtrSet<ConstantInt*, 32> Constants;
815 for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) {
816 Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
817 "Switch constants must all be same type as switch value!", &SI);
818 Assert2(Constants.insert(SI.getCaseValue(i)),
819 "Duplicate integer as switch case", &SI, SI.getCaseValue(i));
820 }
821
822 visitTerminatorInst(SI);
823 }
824
visitIndirectBrInst(IndirectBrInst & BI)825 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
826 Assert1(BI.getAddress()->getType()->isPointerTy(),
827 "Indirectbr operand must have pointer type!", &BI);
828 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
829 Assert1(BI.getDestination(i)->getType()->isLabelTy(),
830 "Indirectbr destinations must all have pointer type!", &BI);
831
832 visitTerminatorInst(BI);
833 }
834
visitSelectInst(SelectInst & SI)835 void Verifier::visitSelectInst(SelectInst &SI) {
836 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
837 SI.getOperand(2)),
838 "Invalid operands for select instruction!", &SI);
839
840 Assert1(SI.getTrueValue()->getType() == SI.getType(),
841 "Select values must have same type as select instruction!", &SI);
842 visitInstruction(SI);
843 }
844
845 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
846 /// a pass, if any exist, it's an error.
847 ///
visitUserOp1(Instruction & I)848 void Verifier::visitUserOp1(Instruction &I) {
849 Assert1(0, "User-defined operators should not live outside of a pass!", &I);
850 }
851
visitTruncInst(TruncInst & I)852 void Verifier::visitTruncInst(TruncInst &I) {
853 // Get the source and destination types
854 Type *SrcTy = I.getOperand(0)->getType();
855 Type *DestTy = I.getType();
856
857 // Get the size of the types in bits, we'll need this later
858 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
859 unsigned DestBitSize = DestTy->getScalarSizeInBits();
860
861 Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
862 Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
863 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
864 "trunc source and destination must both be a vector or neither", &I);
865 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
866
867 visitInstruction(I);
868 }
869
visitZExtInst(ZExtInst & I)870 void Verifier::visitZExtInst(ZExtInst &I) {
871 // Get the source and destination types
872 Type *SrcTy = I.getOperand(0)->getType();
873 Type *DestTy = I.getType();
874
875 // Get the size of the types in bits, we'll need this later
876 Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
877 Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
878 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
879 "zext source and destination must both be a vector or neither", &I);
880 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
881 unsigned DestBitSize = DestTy->getScalarSizeInBits();
882
883 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
884
885 visitInstruction(I);
886 }
887
visitSExtInst(SExtInst & I)888 void Verifier::visitSExtInst(SExtInst &I) {
889 // Get the source and destination types
890 Type *SrcTy = I.getOperand(0)->getType();
891 Type *DestTy = I.getType();
892
893 // Get the size of the types in bits, we'll need this later
894 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
895 unsigned DestBitSize = DestTy->getScalarSizeInBits();
896
897 Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
898 Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
899 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
900 "sext source and destination must both be a vector or neither", &I);
901 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
902
903 visitInstruction(I);
904 }
905
visitFPTruncInst(FPTruncInst & I)906 void Verifier::visitFPTruncInst(FPTruncInst &I) {
907 // Get the source and destination types
908 Type *SrcTy = I.getOperand(0)->getType();
909 Type *DestTy = I.getType();
910 // Get the size of the types in bits, we'll need this later
911 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
912 unsigned DestBitSize = DestTy->getScalarSizeInBits();
913
914 Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
915 Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
916 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
917 "fptrunc source and destination must both be a vector or neither",&I);
918 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
919
920 visitInstruction(I);
921 }
922
visitFPExtInst(FPExtInst & I)923 void Verifier::visitFPExtInst(FPExtInst &I) {
924 // Get the source and destination types
925 Type *SrcTy = I.getOperand(0)->getType();
926 Type *DestTy = I.getType();
927
928 // Get the size of the types in bits, we'll need this later
929 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
930 unsigned DestBitSize = DestTy->getScalarSizeInBits();
931
932 Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
933 Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
934 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
935 "fpext source and destination must both be a vector or neither", &I);
936 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
937
938 visitInstruction(I);
939 }
940
visitUIToFPInst(UIToFPInst & I)941 void Verifier::visitUIToFPInst(UIToFPInst &I) {
942 // Get the source and destination types
943 Type *SrcTy = I.getOperand(0)->getType();
944 Type *DestTy = I.getType();
945
946 bool SrcVec = SrcTy->isVectorTy();
947 bool DstVec = DestTy->isVectorTy();
948
949 Assert1(SrcVec == DstVec,
950 "UIToFP source and dest must both be vector or scalar", &I);
951 Assert1(SrcTy->isIntOrIntVectorTy(),
952 "UIToFP source must be integer or integer vector", &I);
953 Assert1(DestTy->isFPOrFPVectorTy(),
954 "UIToFP result must be FP or FP vector", &I);
955
956 if (SrcVec && DstVec)
957 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
958 cast<VectorType>(DestTy)->getNumElements(),
959 "UIToFP source and dest vector length mismatch", &I);
960
961 visitInstruction(I);
962 }
963
visitSIToFPInst(SIToFPInst & I)964 void Verifier::visitSIToFPInst(SIToFPInst &I) {
965 // Get the source and destination types
966 Type *SrcTy = I.getOperand(0)->getType();
967 Type *DestTy = I.getType();
968
969 bool SrcVec = SrcTy->isVectorTy();
970 bool DstVec = DestTy->isVectorTy();
971
972 Assert1(SrcVec == DstVec,
973 "SIToFP source and dest must both be vector or scalar", &I);
974 Assert1(SrcTy->isIntOrIntVectorTy(),
975 "SIToFP source must be integer or integer vector", &I);
976 Assert1(DestTy->isFPOrFPVectorTy(),
977 "SIToFP result must be FP or FP vector", &I);
978
979 if (SrcVec && DstVec)
980 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
981 cast<VectorType>(DestTy)->getNumElements(),
982 "SIToFP source and dest vector length mismatch", &I);
983
984 visitInstruction(I);
985 }
986
visitFPToUIInst(FPToUIInst & I)987 void Verifier::visitFPToUIInst(FPToUIInst &I) {
988 // Get the source and destination types
989 Type *SrcTy = I.getOperand(0)->getType();
990 Type *DestTy = I.getType();
991
992 bool SrcVec = SrcTy->isVectorTy();
993 bool DstVec = DestTy->isVectorTy();
994
995 Assert1(SrcVec == DstVec,
996 "FPToUI source and dest must both be vector or scalar", &I);
997 Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
998 &I);
999 Assert1(DestTy->isIntOrIntVectorTy(),
1000 "FPToUI result must be integer or integer vector", &I);
1001
1002 if (SrcVec && DstVec)
1003 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1004 cast<VectorType>(DestTy)->getNumElements(),
1005 "FPToUI source and dest vector length mismatch", &I);
1006
1007 visitInstruction(I);
1008 }
1009
visitFPToSIInst(FPToSIInst & I)1010 void Verifier::visitFPToSIInst(FPToSIInst &I) {
1011 // Get the source and destination types
1012 Type *SrcTy = I.getOperand(0)->getType();
1013 Type *DestTy = I.getType();
1014
1015 bool SrcVec = SrcTy->isVectorTy();
1016 bool DstVec = DestTy->isVectorTy();
1017
1018 Assert1(SrcVec == DstVec,
1019 "FPToSI source and dest must both be vector or scalar", &I);
1020 Assert1(SrcTy->isFPOrFPVectorTy(),
1021 "FPToSI source must be FP or FP vector", &I);
1022 Assert1(DestTy->isIntOrIntVectorTy(),
1023 "FPToSI result must be integer or integer vector", &I);
1024
1025 if (SrcVec && DstVec)
1026 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1027 cast<VectorType>(DestTy)->getNumElements(),
1028 "FPToSI source and dest vector length mismatch", &I);
1029
1030 visitInstruction(I);
1031 }
1032
visitPtrToIntInst(PtrToIntInst & I)1033 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1034 // Get the source and destination types
1035 Type *SrcTy = I.getOperand(0)->getType();
1036 Type *DestTy = I.getType();
1037
1038 Assert1(SrcTy->isPointerTy(), "PtrToInt source must be pointer", &I);
1039 Assert1(DestTy->isIntegerTy(), "PtrToInt result must be integral", &I);
1040
1041 visitInstruction(I);
1042 }
1043
visitIntToPtrInst(IntToPtrInst & I)1044 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1045 // Get the source and destination types
1046 Type *SrcTy = I.getOperand(0)->getType();
1047 Type *DestTy = I.getType();
1048
1049 Assert1(SrcTy->isIntegerTy(), "IntToPtr source must be an integral", &I);
1050 Assert1(DestTy->isPointerTy(), "IntToPtr result must be a pointer",&I);
1051
1052 visitInstruction(I);
1053 }
1054
visitBitCastInst(BitCastInst & I)1055 void Verifier::visitBitCastInst(BitCastInst &I) {
1056 // Get the source and destination types
1057 Type *SrcTy = I.getOperand(0)->getType();
1058 Type *DestTy = I.getType();
1059
1060 // Get the size of the types in bits, we'll need this later
1061 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1062 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
1063
1064 // BitCast implies a no-op cast of type only. No bits change.
1065 // However, you can't cast pointers to anything but pointers.
1066 Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(),
1067 "Bitcast requires both operands to be pointer or neither", &I);
1068 Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
1069
1070 // Disallow aggregates.
1071 Assert1(!SrcTy->isAggregateType(),
1072 "Bitcast operand must not be aggregate", &I);
1073 Assert1(!DestTy->isAggregateType(),
1074 "Bitcast type must not be aggregate", &I);
1075
1076 visitInstruction(I);
1077 }
1078
1079 /// visitPHINode - Ensure that a PHI node is well formed.
1080 ///
visitPHINode(PHINode & PN)1081 void Verifier::visitPHINode(PHINode &PN) {
1082 // Ensure that the PHI nodes are all grouped together at the top of the block.
1083 // This can be tested by checking whether the instruction before this is
1084 // either nonexistent (because this is begin()) or is a PHI node. If not,
1085 // then there is some other instruction before a PHI.
1086 Assert2(&PN == &PN.getParent()->front() ||
1087 isa<PHINode>(--BasicBlock::iterator(&PN)),
1088 "PHI nodes not grouped at top of basic block!",
1089 &PN, PN.getParent());
1090
1091 // Check that all of the values of the PHI node have the same type as the
1092 // result, and that the incoming blocks are really basic blocks.
1093 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1094 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1095 "PHI node operands are not the same type as the result!", &PN);
1096 }
1097
1098 // All other PHI node constraints are checked in the visitBasicBlock method.
1099
1100 visitInstruction(PN);
1101 }
1102
VerifyCallSite(CallSite CS)1103 void Verifier::VerifyCallSite(CallSite CS) {
1104 Instruction *I = CS.getInstruction();
1105
1106 Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1107 "Called function must be a pointer!", I);
1108 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1109
1110 Assert1(FPTy->getElementType()->isFunctionTy(),
1111 "Called function is not pointer to function type!", I);
1112 FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1113
1114 // Verify that the correct number of arguments are being passed
1115 if (FTy->isVarArg())
1116 Assert1(CS.arg_size() >= FTy->getNumParams(),
1117 "Called function requires more parameters than were provided!",I);
1118 else
1119 Assert1(CS.arg_size() == FTy->getNumParams(),
1120 "Incorrect number of arguments passed to called function!", I);
1121
1122 // Verify that all arguments to the call match the function type.
1123 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1124 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1125 "Call parameter type does not match function signature!",
1126 CS.getArgument(i), FTy->getParamType(i), I);
1127
1128 const AttrListPtr &Attrs = CS.getAttributes();
1129
1130 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1131 "Attributes after last parameter!", I);
1132
1133 // Verify call attributes.
1134 VerifyFunctionAttrs(FTy, Attrs, I);
1135
1136 if (FTy->isVarArg())
1137 // Check attributes on the varargs part.
1138 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1139 Attributes Attr = Attrs.getParamAttributes(Idx);
1140
1141 VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
1142
1143 Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
1144 Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
1145 " cannot be used for vararg call arguments!", I);
1146 }
1147
1148 // Verify that there's no metadata unless it's a direct call to an intrinsic.
1149 if (CS.getCalledFunction() == 0 ||
1150 !CS.getCalledFunction()->getName().startswith("llvm.")) {
1151 for (FunctionType::param_iterator PI = FTy->param_begin(),
1152 PE = FTy->param_end(); PI != PE; ++PI)
1153 Assert1(!(*PI)->isMetadataTy(),
1154 "Function has metadata parameter but isn't an intrinsic", I);
1155 }
1156
1157 visitInstruction(*I);
1158 }
1159
visitCallInst(CallInst & CI)1160 void Verifier::visitCallInst(CallInst &CI) {
1161 VerifyCallSite(&CI);
1162
1163 if (Function *F = CI.getCalledFunction())
1164 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1165 visitIntrinsicFunctionCall(ID, CI);
1166 }
1167
visitInvokeInst(InvokeInst & II)1168 void Verifier::visitInvokeInst(InvokeInst &II) {
1169 VerifyCallSite(&II);
1170
1171 // Verify that there is a landingpad instruction as the first non-PHI
1172 // instruction of the 'unwind' destination.
1173 Assert1(II.getUnwindDest()->isLandingPad(),
1174 "The unwind destination does not have a landingpad instruction!",&II);
1175
1176 visitTerminatorInst(II);
1177 }
1178
1179 /// visitBinaryOperator - Check that both arguments to the binary operator are
1180 /// of the same type!
1181 ///
visitBinaryOperator(BinaryOperator & B)1182 void Verifier::visitBinaryOperator(BinaryOperator &B) {
1183 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1184 "Both operands to a binary operator are not of the same type!", &B);
1185
1186 switch (B.getOpcode()) {
1187 // Check that integer arithmetic operators are only used with
1188 // integral operands.
1189 case Instruction::Add:
1190 case Instruction::Sub:
1191 case Instruction::Mul:
1192 case Instruction::SDiv:
1193 case Instruction::UDiv:
1194 case Instruction::SRem:
1195 case Instruction::URem:
1196 Assert1(B.getType()->isIntOrIntVectorTy(),
1197 "Integer arithmetic operators only work with integral types!", &B);
1198 Assert1(B.getType() == B.getOperand(0)->getType(),
1199 "Integer arithmetic operators must have same type "
1200 "for operands and result!", &B);
1201 break;
1202 // Check that floating-point arithmetic operators are only used with
1203 // floating-point operands.
1204 case Instruction::FAdd:
1205 case Instruction::FSub:
1206 case Instruction::FMul:
1207 case Instruction::FDiv:
1208 case Instruction::FRem:
1209 Assert1(B.getType()->isFPOrFPVectorTy(),
1210 "Floating-point arithmetic operators only work with "
1211 "floating-point types!", &B);
1212 Assert1(B.getType() == B.getOperand(0)->getType(),
1213 "Floating-point arithmetic operators must have same type "
1214 "for operands and result!", &B);
1215 break;
1216 // Check that logical operators are only used with integral operands.
1217 case Instruction::And:
1218 case Instruction::Or:
1219 case Instruction::Xor:
1220 Assert1(B.getType()->isIntOrIntVectorTy(),
1221 "Logical operators only work with integral types!", &B);
1222 Assert1(B.getType() == B.getOperand(0)->getType(),
1223 "Logical operators must have same type for operands and result!",
1224 &B);
1225 break;
1226 case Instruction::Shl:
1227 case Instruction::LShr:
1228 case Instruction::AShr:
1229 Assert1(B.getType()->isIntOrIntVectorTy(),
1230 "Shifts only work with integral types!", &B);
1231 Assert1(B.getType() == B.getOperand(0)->getType(),
1232 "Shift return type must be same as operands!", &B);
1233 break;
1234 default:
1235 llvm_unreachable("Unknown BinaryOperator opcode!");
1236 }
1237
1238 visitInstruction(B);
1239 }
1240
visitICmpInst(ICmpInst & IC)1241 void Verifier::visitICmpInst(ICmpInst &IC) {
1242 // Check that the operands are the same type
1243 Type *Op0Ty = IC.getOperand(0)->getType();
1244 Type *Op1Ty = IC.getOperand(1)->getType();
1245 Assert1(Op0Ty == Op1Ty,
1246 "Both operands to ICmp instruction are not of the same type!", &IC);
1247 // Check that the operands are the right type
1248 Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPointerTy(),
1249 "Invalid operand types for ICmp instruction", &IC);
1250 // Check that the predicate is valid.
1251 Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1252 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1253 "Invalid predicate in ICmp instruction!", &IC);
1254
1255 visitInstruction(IC);
1256 }
1257
visitFCmpInst(FCmpInst & FC)1258 void Verifier::visitFCmpInst(FCmpInst &FC) {
1259 // Check that the operands are the same type
1260 Type *Op0Ty = FC.getOperand(0)->getType();
1261 Type *Op1Ty = FC.getOperand(1)->getType();
1262 Assert1(Op0Ty == Op1Ty,
1263 "Both operands to FCmp instruction are not of the same type!", &FC);
1264 // Check that the operands are the right type
1265 Assert1(Op0Ty->isFPOrFPVectorTy(),
1266 "Invalid operand types for FCmp instruction", &FC);
1267 // Check that the predicate is valid.
1268 Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1269 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1270 "Invalid predicate in FCmp instruction!", &FC);
1271
1272 visitInstruction(FC);
1273 }
1274
visitExtractElementInst(ExtractElementInst & EI)1275 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1276 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1277 EI.getOperand(1)),
1278 "Invalid extractelement operands!", &EI);
1279 visitInstruction(EI);
1280 }
1281
visitInsertElementInst(InsertElementInst & IE)1282 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1283 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1284 IE.getOperand(1),
1285 IE.getOperand(2)),
1286 "Invalid insertelement operands!", &IE);
1287 visitInstruction(IE);
1288 }
1289
visitShuffleVectorInst(ShuffleVectorInst & SV)1290 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1291 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1292 SV.getOperand(2)),
1293 "Invalid shufflevector operands!", &SV);
1294 visitInstruction(SV);
1295 }
1296
visitGetElementPtrInst(GetElementPtrInst & GEP)1297 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1298 Assert1(cast<PointerType>(GEP.getOperand(0)->getType())
1299 ->getElementType()->isSized(),
1300 "GEP into unsized type!", &GEP);
1301
1302 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1303 Type *ElTy =
1304 GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), Idxs);
1305 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1306 Assert2(GEP.getType()->isPointerTy() &&
1307 cast<PointerType>(GEP.getType())->getElementType() == ElTy,
1308 "GEP is not of right type for indices!", &GEP, ElTy);
1309 visitInstruction(GEP);
1310 }
1311
visitLoadInst(LoadInst & LI)1312 void Verifier::visitLoadInst(LoadInst &LI) {
1313 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1314 Assert1(PTy, "Load operand must be a pointer.", &LI);
1315 Type *ElTy = PTy->getElementType();
1316 Assert2(ElTy == LI.getType(),
1317 "Load result type does not match pointer operand type!", &LI, ElTy);
1318 if (LI.isAtomic()) {
1319 Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
1320 "Load cannot have Release ordering", &LI);
1321 Assert1(LI.getAlignment() != 0,
1322 "Atomic load must specify explicit alignment", &LI);
1323 } else {
1324 Assert1(LI.getSynchScope() == CrossThread,
1325 "Non-atomic load cannot have SynchronizationScope specified", &LI);
1326 }
1327 visitInstruction(LI);
1328 }
1329
visitStoreInst(StoreInst & SI)1330 void Verifier::visitStoreInst(StoreInst &SI) {
1331 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1332 Assert1(PTy, "Store operand must be a pointer.", &SI);
1333 Type *ElTy = PTy->getElementType();
1334 Assert2(ElTy == SI.getOperand(0)->getType(),
1335 "Stored value type does not match pointer operand type!",
1336 &SI, ElTy);
1337 if (SI.isAtomic()) {
1338 Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
1339 "Store cannot have Acquire ordering", &SI);
1340 Assert1(SI.getAlignment() != 0,
1341 "Atomic store must specify explicit alignment", &SI);
1342 } else {
1343 Assert1(SI.getSynchScope() == CrossThread,
1344 "Non-atomic store cannot have SynchronizationScope specified", &SI);
1345 }
1346 visitInstruction(SI);
1347 }
1348
visitAllocaInst(AllocaInst & AI)1349 void Verifier::visitAllocaInst(AllocaInst &AI) {
1350 PointerType *PTy = AI.getType();
1351 Assert1(PTy->getAddressSpace() == 0,
1352 "Allocation instruction pointer not in the generic address space!",
1353 &AI);
1354 Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
1355 &AI);
1356 Assert1(AI.getArraySize()->getType()->isIntegerTy(),
1357 "Alloca array size must have integer type", &AI);
1358 visitInstruction(AI);
1359 }
1360
visitAtomicCmpXchgInst(AtomicCmpXchgInst & CXI)1361 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
1362 Assert1(CXI.getOrdering() != NotAtomic,
1363 "cmpxchg instructions must be atomic.", &CXI);
1364 Assert1(CXI.getOrdering() != Unordered,
1365 "cmpxchg instructions cannot be unordered.", &CXI);
1366 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
1367 Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
1368 Type *ElTy = PTy->getElementType();
1369 Assert2(ElTy == CXI.getOperand(1)->getType(),
1370 "Expected value type does not match pointer operand type!",
1371 &CXI, ElTy);
1372 Assert2(ElTy == CXI.getOperand(2)->getType(),
1373 "Stored value type does not match pointer operand type!",
1374 &CXI, ElTy);
1375 visitInstruction(CXI);
1376 }
1377
visitAtomicRMWInst(AtomicRMWInst & RMWI)1378 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
1379 Assert1(RMWI.getOrdering() != NotAtomic,
1380 "atomicrmw instructions must be atomic.", &RMWI);
1381 Assert1(RMWI.getOrdering() != Unordered,
1382 "atomicrmw instructions cannot be unordered.", &RMWI);
1383 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
1384 Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
1385 Type *ElTy = PTy->getElementType();
1386 Assert2(ElTy == RMWI.getOperand(1)->getType(),
1387 "Argument value type does not match pointer operand type!",
1388 &RMWI, ElTy);
1389 Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
1390 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
1391 "Invalid binary operation!", &RMWI);
1392 visitInstruction(RMWI);
1393 }
1394
visitFenceInst(FenceInst & FI)1395 void Verifier::visitFenceInst(FenceInst &FI) {
1396 const AtomicOrdering Ordering = FI.getOrdering();
1397 Assert1(Ordering == Acquire || Ordering == Release ||
1398 Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
1399 "fence instructions may only have "
1400 "acquire, release, acq_rel, or seq_cst ordering.", &FI);
1401 visitInstruction(FI);
1402 }
1403
visitExtractValueInst(ExtractValueInst & EVI)1404 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1405 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1406 EVI.getIndices()) ==
1407 EVI.getType(),
1408 "Invalid ExtractValueInst operands!", &EVI);
1409
1410 visitInstruction(EVI);
1411 }
1412
visitInsertValueInst(InsertValueInst & IVI)1413 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1414 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1415 IVI.getIndices()) ==
1416 IVI.getOperand(1)->getType(),
1417 "Invalid InsertValueInst operands!", &IVI);
1418
1419 visitInstruction(IVI);
1420 }
1421
visitLandingPadInst(LandingPadInst & LPI)1422 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
1423 BasicBlock *BB = LPI.getParent();
1424
1425 // The landingpad instruction is ill-formed if it doesn't have any clauses and
1426 // isn't a cleanup.
1427 Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
1428 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
1429
1430 // The landingpad instruction defines its parent as a landing pad block. The
1431 // landing pad block may be branched to only by the unwind edge of an invoke.
1432 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1433 const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
1434 Assert1(II && II->getUnwindDest() == BB,
1435 "Block containing LandingPadInst must be jumped to "
1436 "only by the unwind edge of an invoke.", &LPI);
1437 }
1438
1439 // The landingpad instruction must be the first non-PHI instruction in the
1440 // block.
1441 Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
1442 "LandingPadInst not the first non-PHI instruction in the block.",
1443 &LPI);
1444
1445 // The personality functions for all landingpad instructions within the same
1446 // function should match.
1447 if (PersonalityFn)
1448 Assert1(LPI.getPersonalityFn() == PersonalityFn,
1449 "Personality function doesn't match others in function", &LPI);
1450 PersonalityFn = LPI.getPersonalityFn();
1451
1452 // All operands must be constants.
1453 Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
1454 &LPI);
1455 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
1456 Value *Clause = LPI.getClause(i);
1457 Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
1458 if (LPI.isCatch(i)) {
1459 Assert1(isa<PointerType>(Clause->getType()),
1460 "Catch operand does not have pointer type!", &LPI);
1461 } else {
1462 Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
1463 Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
1464 "Filter operand is not an array of constants!", &LPI);
1465 }
1466 }
1467
1468 visitInstruction(LPI);
1469 }
1470
1471 /// verifyInstruction - Verify that an instruction is well formed.
1472 ///
visitInstruction(Instruction & I)1473 void Verifier::visitInstruction(Instruction &I) {
1474 BasicBlock *BB = I.getParent();
1475 Assert1(BB, "Instruction not embedded in basic block!", &I);
1476
1477 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
1478 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
1479 UI != UE; ++UI)
1480 Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
1481 "Only PHI nodes may reference their own value!", &I);
1482 }
1483
1484 // Check that void typed values don't have names
1485 Assert1(!I.getType()->isVoidTy() || !I.hasName(),
1486 "Instruction has a name, but provides a void value!", &I);
1487
1488 // Check that the return value of the instruction is either void or a legal
1489 // value type.
1490 Assert1(I.getType()->isVoidTy() ||
1491 I.getType()->isFirstClassType(),
1492 "Instruction returns a non-scalar type!", &I);
1493
1494 // Check that the instruction doesn't produce metadata. Calls are already
1495 // checked against the callee type.
1496 Assert1(!I.getType()->isMetadataTy() ||
1497 isa<CallInst>(I) || isa<InvokeInst>(I),
1498 "Invalid use of metadata!", &I);
1499
1500 // Check that all uses of the instruction, if they are instructions
1501 // themselves, actually have parent basic blocks. If the use is not an
1502 // instruction, it is an error!
1503 for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
1504 UI != UE; ++UI) {
1505 if (Instruction *Used = dyn_cast<Instruction>(*UI))
1506 Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
1507 " embedded in a basic block!", &I, Used);
1508 else {
1509 CheckFailed("Use of instruction is not an instruction!", *UI);
1510 return;
1511 }
1512 }
1513
1514 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1515 Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
1516
1517 // Check to make sure that only first-class-values are operands to
1518 // instructions.
1519 if (!I.getOperand(i)->getType()->isFirstClassType()) {
1520 Assert1(0, "Instruction operands must be first-class values!", &I);
1521 }
1522
1523 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
1524 // Check to make sure that the "address of" an intrinsic function is never
1525 // taken.
1526 Assert1(!F->isIntrinsic() || (i + 1 == e && isa<CallInst>(I)),
1527 "Cannot take the address of an intrinsic!", &I);
1528 Assert1(F->getParent() == Mod, "Referencing function in another module!",
1529 &I);
1530 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
1531 Assert1(OpBB->getParent() == BB->getParent(),
1532 "Referring to a basic block in another function!", &I);
1533 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
1534 Assert1(OpArg->getParent() == BB->getParent(),
1535 "Referring to an argument in another function!", &I);
1536 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
1537 Assert1(GV->getParent() == Mod, "Referencing global in another module!",
1538 &I);
1539 } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
1540 BasicBlock *OpBlock = Op->getParent();
1541
1542 // Check that a definition dominates all of its uses.
1543 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1544 // Invoke results are only usable in the normal destination, not in the
1545 // exceptional destination.
1546 BasicBlock *NormalDest = II->getNormalDest();
1547
1548 Assert2(NormalDest != II->getUnwindDest(),
1549 "No uses of invoke possible due to dominance structure!",
1550 Op, &I);
1551
1552 // PHI nodes differ from other nodes because they actually "use" the
1553 // value in the predecessor basic blocks they correspond to.
1554 BasicBlock *UseBlock = BB;
1555 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
1556 unsigned j = PHINode::getIncomingValueNumForOperand(i);
1557 UseBlock = PN->getIncomingBlock(j);
1558 }
1559 Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB",
1560 Op, &I);
1561
1562 if (isa<PHINode>(I) && UseBlock == OpBlock) {
1563 // Special case of a phi node in the normal destination or the unwind
1564 // destination.
1565 Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock),
1566 "Invoke result not available in the unwind destination!",
1567 Op, &I);
1568 } else {
1569 Assert2(DT->dominates(NormalDest, UseBlock) ||
1570 !DT->isReachableFromEntry(UseBlock),
1571 "Invoke result does not dominate all uses!", Op, &I);
1572
1573 // If the normal successor of an invoke instruction has multiple
1574 // predecessors, then the normal edge from the invoke is critical,
1575 // so the invoke value can only be live if the destination block
1576 // dominates all of it's predecessors (other than the invoke).
1577 if (!NormalDest->getSinglePredecessor() &&
1578 DT->isReachableFromEntry(UseBlock))
1579 // If it is used by something non-phi, then the other case is that
1580 // 'NormalDest' dominates all of its predecessors other than the
1581 // invoke. In this case, the invoke value can still be used.
1582 for (pred_iterator PI = pred_begin(NormalDest),
1583 E = pred_end(NormalDest); PI != E; ++PI)
1584 if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) &&
1585 DT->isReachableFromEntry(*PI)) {
1586 CheckFailed("Invoke result does not dominate all uses!", Op,&I);
1587 return;
1588 }
1589 }
1590 } else if (PHINode *PN = dyn_cast<PHINode>(&I)) {
1591 // PHI nodes are more difficult than other nodes because they actually
1592 // "use" the value in the predecessor basic blocks they correspond to.
1593 unsigned j = PHINode::getIncomingValueNumForOperand(i);
1594 BasicBlock *PredBB = PN->getIncomingBlock(j);
1595 Assert2(PredBB && (DT->dominates(OpBlock, PredBB) ||
1596 !DT->isReachableFromEntry(PredBB)),
1597 "Instruction does not dominate all uses!", Op, &I);
1598 } else {
1599 if (OpBlock == BB) {
1600 // If they are in the same basic block, make sure that the definition
1601 // comes before the use.
1602 Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB),
1603 "Instruction does not dominate all uses!", Op, &I);
1604 }
1605
1606 // Definition must dominate use unless use is unreachable!
1607 Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
1608 !DT->isReachableFromEntry(BB),
1609 "Instruction does not dominate all uses!", Op, &I);
1610 }
1611 } else if (isa<InlineAsm>(I.getOperand(i))) {
1612 Assert1((i + 1 == e && isa<CallInst>(I)) ||
1613 (i + 3 == e && isa<InvokeInst>(I)),
1614 "Cannot take the address of an inline asm!", &I);
1615 }
1616 }
1617 InstsInThisBlock.insert(&I);
1618 }
1619
1620 // Flags used by TableGen to mark intrinsic parameters with the
1621 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
1622 static const unsigned ExtendedElementVectorType = 0x40000000;
1623 static const unsigned TruncatedElementVectorType = 0x20000000;
1624
1625 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1626 ///
visitIntrinsicFunctionCall(Intrinsic::ID ID,CallInst & CI)1627 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
1628 Function *IF = CI.getCalledFunction();
1629 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
1630 IF);
1631
1632 #define GET_INTRINSIC_VERIFIER
1633 #include "llvm/Intrinsics.gen"
1634 #undef GET_INTRINSIC_VERIFIER
1635
1636 // If the intrinsic takes MDNode arguments, verify that they are either global
1637 // or are local to *this* function.
1638 for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
1639 if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
1640 visitMDNode(*MD, CI.getParent()->getParent());
1641
1642 switch (ID) {
1643 default:
1644 break;
1645 case Intrinsic::dbg_declare: { // llvm.dbg.declare
1646 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
1647 "invalid llvm.dbg.declare intrinsic call 1", &CI);
1648 MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
1649 Assert1(MD->getNumOperands() == 1,
1650 "invalid llvm.dbg.declare intrinsic call 2", &CI);
1651 } break;
1652 case Intrinsic::memcpy:
1653 case Intrinsic::memmove:
1654 case Intrinsic::memset:
1655 Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
1656 "alignment argument of memory intrinsics must be a constant int",
1657 &CI);
1658 Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
1659 "isvolatile argument of memory intrinsics must be a constant int",
1660 &CI);
1661 break;
1662 case Intrinsic::gcroot:
1663 case Intrinsic::gcwrite:
1664 case Intrinsic::gcread:
1665 if (ID == Intrinsic::gcroot) {
1666 AllocaInst *AI =
1667 dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
1668 Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
1669 Assert1(isa<Constant>(CI.getArgOperand(1)),
1670 "llvm.gcroot parameter #2 must be a constant.", &CI);
1671 if (!AI->getType()->getElementType()->isPointerTy()) {
1672 Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
1673 "llvm.gcroot parameter #1 must either be a pointer alloca, "
1674 "or argument #2 must be a non-null constant.", &CI);
1675 }
1676 }
1677
1678 Assert1(CI.getParent()->getParent()->hasGC(),
1679 "Enclosing function does not use GC.", &CI);
1680 break;
1681 case Intrinsic::init_trampoline:
1682 Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
1683 "llvm.init_trampoline parameter #2 must resolve to a function.",
1684 &CI);
1685 break;
1686 case Intrinsic::prefetch:
1687 Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
1688 isa<ConstantInt>(CI.getArgOperand(2)) &&
1689 cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
1690 cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
1691 "invalid arguments to llvm.prefetch",
1692 &CI);
1693 break;
1694 case Intrinsic::stackprotector:
1695 Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
1696 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1697 &CI);
1698 break;
1699 case Intrinsic::lifetime_start:
1700 case Intrinsic::lifetime_end:
1701 case Intrinsic::invariant_start:
1702 Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
1703 "size argument of memory use markers must be a constant integer",
1704 &CI);
1705 break;
1706 case Intrinsic::invariant_end:
1707 Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
1708 "llvm.invariant.end parameter #2 must be a constant integer", &CI);
1709 break;
1710 }
1711 }
1712
1713 /// Produce a string to identify an intrinsic parameter or return value.
1714 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
1715 /// parameters beginning with NumRets.
1716 ///
IntrinsicParam(unsigned ArgNo,unsigned NumRets)1717 static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
1718 if (ArgNo >= NumRets)
1719 return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
1720 if (NumRets == 1)
1721 return "Intrinsic result type";
1722 return "Intrinsic result type #" + utostr(ArgNo);
1723 }
1724
PerformTypeCheck(Intrinsic::ID ID,Function * F,Type * Ty,int VT,unsigned ArgNo,std::string & Suffix)1725 bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
1726 int VT, unsigned ArgNo, std::string &Suffix) {
1727 FunctionType *FTy = F->getFunctionType();
1728
1729 unsigned NumElts = 0;
1730 Type *EltTy = Ty;
1731 VectorType *VTy = dyn_cast<VectorType>(Ty);
1732 if (VTy) {
1733 EltTy = VTy->getElementType();
1734 NumElts = VTy->getNumElements();
1735 }
1736
1737 Type *RetTy = FTy->getReturnType();
1738 StructType *ST = dyn_cast<StructType>(RetTy);
1739 unsigned NumRetVals;
1740 if (RetTy->isVoidTy())
1741 NumRetVals = 0;
1742 else if (ST)
1743 NumRetVals = ST->getNumElements();
1744 else
1745 NumRetVals = 1;
1746
1747 if (VT < 0) {
1748 int Match = ~VT;
1749
1750 // Check flags that indicate a type that is an integral vector type with
1751 // elements that are larger or smaller than the elements of the matched
1752 // type.
1753 if ((Match & (ExtendedElementVectorType |
1754 TruncatedElementVectorType)) != 0) {
1755 IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
1756 if (!VTy || !IEltTy) {
1757 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1758 "an integral vector type.", F);
1759 return false;
1760 }
1761 // Adjust the current Ty (in the opposite direction) rather than
1762 // the type being matched against.
1763 if ((Match & ExtendedElementVectorType) != 0) {
1764 if ((IEltTy->getBitWidth() & 1) != 0) {
1765 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector "
1766 "element bit-width is odd.", F);
1767 return false;
1768 }
1769 Ty = VectorType::getTruncatedElementVectorType(VTy);
1770 } else
1771 Ty = VectorType::getExtendedElementVectorType(VTy);
1772 Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
1773 }
1774
1775 if (Match <= static_cast<int>(NumRetVals - 1)) {
1776 if (ST)
1777 RetTy = ST->getElementType(Match);
1778
1779 if (Ty != RetTy) {
1780 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
1781 "match return type.", F);
1782 return false;
1783 }
1784 } else {
1785 if (Ty != FTy->getParamType(Match - NumRetVals)) {
1786 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
1787 "match parameter %" + utostr(Match - NumRetVals) + ".", F);
1788 return false;
1789 }
1790 }
1791 } else if (VT == MVT::iAny) {
1792 if (!EltTy->isIntegerTy()) {
1793 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1794 "an integer type.", F);
1795 return false;
1796 }
1797
1798 unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
1799 Suffix += ".";
1800
1801 if (EltTy != Ty)
1802 Suffix += "v" + utostr(NumElts);
1803
1804 Suffix += "i" + utostr(GotBits);
1805
1806 // Check some constraints on various intrinsics.
1807 switch (ID) {
1808 default: break; // Not everything needs to be checked.
1809 case Intrinsic::bswap:
1810 if (GotBits < 16 || GotBits % 16 != 0) {
1811 CheckFailed("Intrinsic requires even byte width argument", F);
1812 return false;
1813 }
1814 break;
1815 }
1816 } else if (VT == MVT::fAny) {
1817 if (!EltTy->isFloatingPointTy()) {
1818 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1819 "a floating-point type.", F);
1820 return false;
1821 }
1822
1823 Suffix += ".";
1824
1825 if (EltTy != Ty)
1826 Suffix += "v" + utostr(NumElts);
1827
1828 Suffix += EVT::getEVT(EltTy).getEVTString();
1829 } else if (VT == MVT::vAny) {
1830 if (!VTy) {
1831 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.",
1832 F);
1833 return false;
1834 }
1835 Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString();
1836 } else if (VT == MVT::iPTR) {
1837 if (!Ty->isPointerTy()) {
1838 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
1839 "pointer and a pointer is required.", F);
1840 return false;
1841 }
1842 } else if (VT == MVT::iPTRAny) {
1843 // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
1844 // and iPTR. In the verifier, we can not distinguish which case we have so
1845 // allow either case to be legal.
1846 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
1847 EVT PointeeVT = EVT::getEVT(PTyp->getElementType(), true);
1848 if (PointeeVT == MVT::Other) {
1849 CheckFailed("Intrinsic has pointer to complex type.");
1850 return false;
1851 }
1852 Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
1853 PointeeVT.getEVTString();
1854 } else {
1855 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
1856 "pointer and a pointer is required.", F);
1857 return false;
1858 }
1859 } else if (EVT((MVT::SimpleValueType)VT).isVector()) {
1860 EVT VVT = EVT((MVT::SimpleValueType)VT);
1861
1862 // If this is a vector argument, verify the number and type of elements.
1863 if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) {
1864 CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
1865 return false;
1866 }
1867
1868 if (VVT.getVectorNumElements() != NumElts) {
1869 CheckFailed("Intrinsic prototype has incorrect number of "
1870 "vector elements!", F);
1871 return false;
1872 }
1873 } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) !=
1874 EltTy) {
1875 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F);
1876 return false;
1877 } else if (EltTy != Ty) {
1878 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector "
1879 "and a scalar is required.", F);
1880 return false;
1881 }
1882
1883 return true;
1884 }
1885
1886 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1887 /// Intrinsics.gen. This implements a little state machine that verifies the
1888 /// prototype of intrinsics.
VerifyIntrinsicPrototype(Intrinsic::ID ID,Function * F,unsigned NumRetVals,unsigned NumParams,...)1889 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
1890 unsigned NumRetVals,
1891 unsigned NumParams, ...) {
1892 va_list VA;
1893 va_start(VA, NumParams);
1894 FunctionType *FTy = F->getFunctionType();
1895
1896 // For overloaded intrinsics, the Suffix of the function name must match the
1897 // types of the arguments. This variable keeps track of the expected
1898 // suffix, to be checked at the end.
1899 std::string Suffix;
1900
1901 if (FTy->getNumParams() + FTy->isVarArg() != NumParams) {
1902 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
1903 return;
1904 }
1905
1906 Type *Ty = FTy->getReturnType();
1907 StructType *ST = dyn_cast<StructType>(Ty);
1908
1909 if (NumRetVals == 0 && !Ty->isVoidTy()) {
1910 CheckFailed("Intrinsic should return void", F);
1911 return;
1912 }
1913
1914 // Verify the return types.
1915 if (ST && ST->getNumElements() != NumRetVals) {
1916 CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
1917 return;
1918 }
1919
1920 for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) {
1921 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1922
1923 if (ST) Ty = ST->getElementType(ArgNo);
1924 if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
1925 break;
1926 }
1927
1928 // Verify the parameter types.
1929 for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) {
1930 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1931
1932 if (VT == MVT::isVoid && ArgNo > 0) {
1933 if (!FTy->isVarArg())
1934 CheckFailed("Intrinsic prototype has no '...'!", F);
1935 break;
1936 }
1937
1938 if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT,
1939 ArgNo + NumRetVals, Suffix))
1940 break;
1941 }
1942
1943 va_end(VA);
1944
1945 // For intrinsics without pointer arguments, if we computed a Suffix then the
1946 // intrinsic is overloaded and we need to make sure that the name of the
1947 // function is correct. We add the suffix to the name of the intrinsic and
1948 // compare against the given function name. If they are not the same, the
1949 // function name is invalid. This ensures that overloading of intrinsics
1950 // uses a sane and consistent naming convention. Note that intrinsics with
1951 // pointer argument may or may not be overloaded so we will check assuming it
1952 // has a suffix and not.
1953 if (!Suffix.empty()) {
1954 std::string Name(Intrinsic::getName(ID));
1955 if (Name + Suffix != F->getName()) {
1956 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1957 F->getName().substr(Name.length()) + "'. It should be '" +
1958 Suffix + "'", F);
1959 }
1960 }
1961
1962 // Check parameter attributes.
1963 Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
1964 "Intrinsic has wrong parameter attributes!", F);
1965 }
1966
1967
1968 //===----------------------------------------------------------------------===//
1969 // Implement the public interfaces to this file...
1970 //===----------------------------------------------------------------------===//
1971
createVerifierPass(VerifierFailureAction action)1972 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
1973 return new Verifier(action);
1974 }
1975
1976
1977 /// verifyFunction - Check a function for errors, printing messages on stderr.
1978 /// Return true if the function is corrupt.
1979 ///
verifyFunction(const Function & f,VerifierFailureAction action)1980 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
1981 Function &F = const_cast<Function&>(f);
1982 assert(!F.isDeclaration() && "Cannot verify external functions");
1983
1984 FunctionPassManager FPM(F.getParent());
1985 Verifier *V = new Verifier(action);
1986 FPM.add(V);
1987 FPM.run(F);
1988 return V->Broken;
1989 }
1990
1991 /// verifyModule - Check a module for errors, printing messages on stderr.
1992 /// Return true if the module is corrupt.
1993 ///
verifyModule(const Module & M,VerifierFailureAction action,std::string * ErrorInfo)1994 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
1995 std::string *ErrorInfo) {
1996 PassManager PM;
1997 Verifier *V = new Verifier(action);
1998 PM.add(V);
1999 PM.run(const_cast<Module&>(M));
2000
2001 if (ErrorInfo && V->Broken)
2002 *ErrorInfo = V->MessagesStr.str();
2003 return V->Broken;
2004 }
2005