1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0.  When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations before or after the
20 // unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/Utils/UnrollLoop.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpander.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include <algorithm>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 STATISTIC(NumRuntimeUnrolled,
47           "Number of loops unrolled with run-time trip counts");
48 
49 /// Connect the unrolling prolog code to the original loop.
50 /// The unrolling prolog code contains code to execute the
51 /// 'extra' iterations if the run-time trip count modulo the
52 /// unroll count is non-zero.
53 ///
54 /// This function performs the following:
55 /// - Create PHI nodes at prolog end block to combine values
56 ///   that exit the prolog code and jump around the prolog.
57 /// - Add a PHI operand to a PHI node at the loop exit block
58 ///   for values that exit the prolog and go around the loop.
59 /// - Branch around the original loop if the trip count is less
60 ///   than the unroll factor.
61 ///
ConnectProlog(Loop * L,Value * BECount,unsigned Count,BasicBlock * PrologExit,BasicBlock * PreHeader,BasicBlock * NewPreHeader,ValueToValueMapTy & VMap,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)62 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
63                           BasicBlock *PrologExit, BasicBlock *PreHeader,
64                           BasicBlock *NewPreHeader, ValueToValueMapTy &VMap,
65                           DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) {
66   BasicBlock *Latch = L->getLoopLatch();
67   assert(Latch && "Loop must have a latch");
68   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
69 
70   // Create a PHI node for each outgoing value from the original loop
71   // (which means it is an outgoing value from the prolog code too).
72   // The new PHI node is inserted in the prolog end basic block.
73   // The new PHI node value is added as an operand of a PHI node in either
74   // the loop header or the loop exit block.
75   for (BasicBlock *Succ : successors(Latch)) {
76     for (Instruction &BBI : *Succ) {
77       PHINode *PN = dyn_cast<PHINode>(&BBI);
78       // Exit when we passed all PHI nodes.
79       if (!PN)
80         break;
81       // Add a new PHI node to the prolog end block and add the
82       // appropriate incoming values.
83       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
84                                        PrologExit->getFirstNonPHI());
85       // Adding a value to the new PHI node from the original loop preheader.
86       // This is the value that skips all the prolog code.
87       if (L->contains(PN)) {
88         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader),
89                            PreHeader);
90       } else {
91         NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
92       }
93 
94       Value *V = PN->getIncomingValueForBlock(Latch);
95       if (Instruction *I = dyn_cast<Instruction>(V)) {
96         if (L->contains(I)) {
97           V = VMap.lookup(I);
98         }
99       }
100       // Adding a value to the new PHI node from the last prolog block
101       // that was created.
102       NewPN->addIncoming(V, PrologLatch);
103 
104       // Update the existing PHI node operand with the value from the
105       // new PHI node.  How this is done depends on if the existing
106       // PHI node is in the original loop block, or the exit block.
107       if (L->contains(PN)) {
108         PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN);
109       } else {
110         PN->addIncoming(NewPN, PrologExit);
111       }
112     }
113   }
114 
115   // Create a branch around the original loop, which is taken if there are no
116   // iterations remaining to be executed after running the prologue.
117   Instruction *InsertPt = PrologExit->getTerminator();
118   IRBuilder<> B(InsertPt);
119 
120   assert(Count != 0 && "nonsensical Count!");
121 
122   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
123   // This means %xtraiter is (BECount + 1) and all of the iterations of this
124   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
125   // then (BECount + 1) cannot unsigned-overflow.
126   Value *BrLoopExit =
127       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
128   BasicBlock *Exit = L->getUniqueExitBlock();
129   assert(Exit && "Loop must have a single exit block only");
130   // Split the exit to maintain loop canonicalization guarantees
131   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
132   SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI,
133                          PreserveLCSSA);
134   // Add the branch to the exit block (around the unrolled loop)
135   B.CreateCondBr(BrLoopExit, Exit, NewPreHeader);
136   InsertPt->eraseFromParent();
137 }
138 
139 /// Connect the unrolling epilog code to the original loop.
140 /// The unrolling epilog code contains code to execute the
141 /// 'extra' iterations if the run-time trip count modulo the
142 /// unroll count is non-zero.
143 ///
144 /// This function performs the following:
145 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
146 /// - Create PHI nodes at the unrolling loop exit to combine
147 ///   values that exit the unrolling loop code and jump around it.
148 /// - Update PHI operands in the epilog loop by the new PHI nodes
149 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
150 ///
ConnectEpilog(Loop * L,Value * ModVal,BasicBlock * NewExit,BasicBlock * Exit,BasicBlock * PreHeader,BasicBlock * EpilogPreHeader,BasicBlock * NewPreHeader,ValueToValueMapTy & VMap,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)151 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
152                           BasicBlock *Exit, BasicBlock *PreHeader,
153                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
154                           ValueToValueMapTy &VMap, DominatorTree *DT,
155                           LoopInfo *LI, bool PreserveLCSSA)  {
156   BasicBlock *Latch = L->getLoopLatch();
157   assert(Latch && "Loop must have a latch");
158   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
159 
160   // Loop structure should be the following:
161   //
162   // PreHeader
163   // NewPreHeader
164   //   Header
165   //   ...
166   //   Latch
167   // NewExit (PN)
168   // EpilogPreHeader
169   //   EpilogHeader
170   //   ...
171   //   EpilogLatch
172   // Exit (EpilogPN)
173 
174   // Update PHI nodes at NewExit and Exit.
175   for (Instruction &BBI : *NewExit) {
176     PHINode *PN = dyn_cast<PHINode>(&BBI);
177     // Exit when we passed all PHI nodes.
178     if (!PN)
179       break;
180     // PN should be used in another PHI located in Exit block as
181     // Exit was split by SplitBlockPredecessors into Exit and NewExit
182     // Basicaly it should look like:
183     // NewExit:
184     //   PN = PHI [I, Latch]
185     // ...
186     // Exit:
187     //   EpilogPN = PHI [PN, EpilogPreHeader]
188     //
189     // There is EpilogPreHeader incoming block instead of NewExit as
190     // NewExit was spilt 1 more time to get EpilogPreHeader.
191     assert(PN->hasOneUse() && "The phi should have 1 use");
192     PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser());
193     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
194 
195     // Add incoming PreHeader from branch around the Loop
196     PN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
197 
198     Value *V = PN->getIncomingValueForBlock(Latch);
199     Instruction *I = dyn_cast<Instruction>(V);
200     if (I && L->contains(I))
201       // If value comes from an instruction in the loop add VMap value.
202       V = VMap.lookup(I);
203     // For the instruction out of the loop, constant or undefined value
204     // insert value itself.
205     EpilogPN->addIncoming(V, EpilogLatch);
206 
207     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
208           "EpilogPN should have EpilogPreHeader incoming block");
209     // Change EpilogPreHeader incoming block to NewExit.
210     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
211                                NewExit);
212     // Now PHIs should look like:
213     // NewExit:
214     //   PN = PHI [I, Latch], [undef, PreHeader]
215     // ...
216     // Exit:
217     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
218   }
219 
220   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
221   // Update corresponding PHI nodes in epilog loop.
222   for (BasicBlock *Succ : successors(Latch)) {
223     // Skip this as we already updated phis in exit blocks.
224     if (!L->contains(Succ))
225       continue;
226     for (Instruction &BBI : *Succ) {
227       PHINode *PN = dyn_cast<PHINode>(&BBI);
228       // Exit when we passed all PHI nodes.
229       if (!PN)
230         break;
231       // Add new PHI nodes to the loop exit block and update epilog
232       // PHIs with the new PHI values.
233       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
234                                        NewExit->getFirstNonPHI());
235       // Adding a value to the new PHI node from the unrolling loop preheader.
236       NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader);
237       // Adding a value to the new PHI node from the unrolling loop latch.
238       NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch);
239 
240       // Update the existing PHI node operand with the value from the new PHI
241       // node.  Corresponding instruction in epilog loop should be PHI.
242       PHINode *VPN = cast<PHINode>(VMap[&BBI]);
243       VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
244     }
245   }
246 
247   Instruction *InsertPt = NewExit->getTerminator();
248   IRBuilder<> B(InsertPt);
249   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
250   assert(Exit && "Loop must have a single exit block only");
251   // Split the exit to maintain loop canonicalization guarantees
252   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
253   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
254                          PreserveLCSSA);
255   // Add the branch to the exit block (around the unrolling loop)
256   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
257   InsertPt->eraseFromParent();
258 }
259 
260 /// Create a clone of the blocks in a loop and connect them together.
261 /// If CreateRemainderLoop is false, loop structure will not be cloned,
262 /// otherwise a new loop will be created including all cloned blocks, and the
263 /// iterator of it switches to count NewIter down to 0.
264 /// The cloned blocks should be inserted between InsertTop and InsertBot.
265 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
266 /// new loop exit.
267 ///
CloneLoopBlocks(Loop * L,Value * NewIter,const bool CreateRemainderLoop,const bool UseEpilogRemainder,BasicBlock * InsertTop,BasicBlock * InsertBot,BasicBlock * Preheader,std::vector<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,LoopInfo * LI)268 static void CloneLoopBlocks(Loop *L, Value *NewIter,
269                             const bool CreateRemainderLoop,
270                             const bool UseEpilogRemainder,
271                             BasicBlock *InsertTop, BasicBlock *InsertBot,
272                             BasicBlock *Preheader,
273                             std::vector<BasicBlock *> &NewBlocks,
274                             LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
275                             LoopInfo *LI) {
276   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
277   BasicBlock *Header = L->getHeader();
278   BasicBlock *Latch = L->getLoopLatch();
279   Function *F = Header->getParent();
280   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
281   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
282   Loop *NewLoop = nullptr;
283   Loop *ParentLoop = L->getParentLoop();
284   if (CreateRemainderLoop) {
285     NewLoop = new Loop();
286     if (ParentLoop)
287       ParentLoop->addChildLoop(NewLoop);
288     else
289       LI->addTopLevelLoop(NewLoop);
290   }
291 
292   // For each block in the original loop, create a new copy,
293   // and update the value map with the newly created values.
294   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
295     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
296     NewBlocks.push_back(NewBB);
297 
298     if (NewLoop)
299       NewLoop->addBasicBlockToLoop(NewBB, *LI);
300     else if (ParentLoop)
301       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
302 
303     VMap[*BB] = NewBB;
304     if (Header == *BB) {
305       // For the first block, add a CFG connection to this newly
306       // created block.
307       InsertTop->getTerminator()->setSuccessor(0, NewBB);
308     }
309 
310     if (Latch == *BB) {
311       // For the last block, if CreateRemainderLoop is false, create a direct
312       // jump to InsertBot. If not, create a loop back to cloned head.
313       VMap.erase((*BB)->getTerminator());
314       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
315       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
316       IRBuilder<> Builder(LatchBR);
317       if (!CreateRemainderLoop) {
318         Builder.CreateBr(InsertBot);
319       } else {
320         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
321                                           suffix + ".iter",
322                                           FirstLoopBB->getFirstNonPHI());
323         Value *IdxSub =
324             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
325                               NewIdx->getName() + ".sub");
326         Value *IdxCmp =
327             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
328         Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
329         NewIdx->addIncoming(NewIter, InsertTop);
330         NewIdx->addIncoming(IdxSub, NewBB);
331       }
332       LatchBR->eraseFromParent();
333     }
334   }
335 
336   // Change the incoming values to the ones defined in the preheader or
337   // cloned loop.
338   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
339     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
340     if (!CreateRemainderLoop) {
341       if (UseEpilogRemainder) {
342         unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
343         NewPHI->setIncomingBlock(idx, InsertTop);
344         NewPHI->removeIncomingValue(Latch, false);
345       } else {
346         VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
347         cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
348       }
349     } else {
350       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
351       NewPHI->setIncomingBlock(idx, InsertTop);
352       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
353       idx = NewPHI->getBasicBlockIndex(Latch);
354       Value *InVal = NewPHI->getIncomingValue(idx);
355       NewPHI->setIncomingBlock(idx, NewLatch);
356       if (Value *V = VMap.lookup(InVal))
357         NewPHI->setIncomingValue(idx, V);
358     }
359   }
360   if (NewLoop) {
361     // Add unroll disable metadata to disable future unrolling for this loop.
362     SmallVector<Metadata *, 4> MDs;
363     // Reserve first location for self reference to the LoopID metadata node.
364     MDs.push_back(nullptr);
365     MDNode *LoopID = NewLoop->getLoopID();
366     if (LoopID) {
367       // First remove any existing loop unrolling metadata.
368       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
369         bool IsUnrollMetadata = false;
370         MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
371         if (MD) {
372           const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
373           IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
374         }
375         if (!IsUnrollMetadata)
376           MDs.push_back(LoopID->getOperand(i));
377       }
378     }
379 
380     LLVMContext &Context = NewLoop->getHeader()->getContext();
381     SmallVector<Metadata *, 1> DisableOperands;
382     DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
383     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
384     MDs.push_back(DisableNode);
385 
386     MDNode *NewLoopID = MDNode::get(Context, MDs);
387     // Set operand 0 to refer to the loop id itself.
388     NewLoopID->replaceOperandWith(0, NewLoopID);
389     NewLoop->setLoopID(NewLoopID);
390   }
391 }
392 
393 /// Insert code in the prolog/epilog code when unrolling a loop with a
394 /// run-time trip-count.
395 ///
396 /// This method assumes that the loop unroll factor is total number
397 /// of loop bodies in the loop after unrolling. (Some folks refer
398 /// to the unroll factor as the number of *extra* copies added).
399 /// We assume also that the loop unroll factor is a power-of-two. So, after
400 /// unrolling the loop, the number of loop bodies executed is 2,
401 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
402 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
403 /// the switch instruction is generated.
404 ///
405 /// ***Prolog case***
406 ///        extraiters = tripcount % loopfactor
407 ///        if (extraiters == 0) jump Loop:
408 ///        else jump Prol:
409 /// Prol:  LoopBody;
410 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
411 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
412 ///        if (tripcount < loopfactor) jump End:
413 /// Loop:
414 /// ...
415 /// End:
416 ///
417 /// ***Epilog case***
418 ///        extraiters = tripcount % loopfactor
419 ///        if (tripcount < loopfactor) jump LoopExit:
420 ///        unroll_iters = tripcount - extraiters
421 /// Loop:  LoopBody; (executes unroll_iter times);
422 ///        unroll_iter -= 1
423 ///        if (unroll_iter != 0) jump Loop:
424 /// LoopExit:
425 ///        if (extraiters == 0) jump EpilExit:
426 /// Epil:  LoopBody; (executes extraiters times)
427 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
428 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
429 /// EpilExit:
430 
UnrollRuntimeLoopRemainder(Loop * L,unsigned Count,bool AllowExpensiveTripCount,bool UseEpilogRemainder,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,bool PreserveLCSSA)431 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
432                                       bool AllowExpensiveTripCount,
433                                       bool UseEpilogRemainder,
434                                       LoopInfo *LI, ScalarEvolution *SE,
435                                       DominatorTree *DT, bool PreserveLCSSA) {
436   // for now, only unroll loops that contain a single exit
437   if (!L->getExitingBlock())
438     return false;
439 
440   // Make sure the loop is in canonical form, and there is a single
441   // exit block only.
442   if (!L->isLoopSimplifyForm())
443     return false;
444   BasicBlock *Exit = L->getUniqueExitBlock(); // successor out of loop
445   if (!Exit)
446     return false;
447 
448   // Use Scalar Evolution to compute the trip count. This allows more loops to
449   // be unrolled than relying on induction var simplification.
450   if (!SE)
451     return false;
452 
453   // Only unroll loops with a computable trip count, and the trip count needs
454   // to be an int value (allowing a pointer type is a TODO item).
455   const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
456   if (isa<SCEVCouldNotCompute>(BECountSC) ||
457       !BECountSC->getType()->isIntegerTy())
458     return false;
459 
460   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
461 
462   // Add 1 since the backedge count doesn't include the first loop iteration.
463   const SCEV *TripCountSC =
464       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
465   if (isa<SCEVCouldNotCompute>(TripCountSC))
466     return false;
467 
468   BasicBlock *Header = L->getHeader();
469   BasicBlock *PreHeader = L->getLoopPreheader();
470   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
471   const DataLayout &DL = Header->getModule()->getDataLayout();
472   SCEVExpander Expander(*SE, DL, "loop-unroll");
473   if (!AllowExpensiveTripCount &&
474       Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR))
475     return false;
476 
477   // This constraint lets us deal with an overflowing trip count easily; see the
478   // comment on ModVal below.
479   if (Log2_32(Count) > BEWidth)
480     return false;
481 
482   // If this loop is nested, then the loop unroller changes the code in the
483   // parent loop, so the Scalar Evolution pass needs to be run again.
484   if (Loop *ParentLoop = L->getParentLoop())
485     SE->forgetLoop(ParentLoop);
486 
487   BasicBlock *Latch = L->getLoopLatch();
488 
489   // Loop structure is the following:
490   //
491   // PreHeader
492   //   Header
493   //   ...
494   //   Latch
495   // Exit
496 
497   BasicBlock *NewPreHeader;
498   BasicBlock *NewExit = nullptr;
499   BasicBlock *PrologExit = nullptr;
500   BasicBlock *EpilogPreHeader = nullptr;
501   BasicBlock *PrologPreHeader = nullptr;
502 
503   if (UseEpilogRemainder) {
504     // If epilog remainder
505     // Split PreHeader to insert a branch around loop for unrolling.
506     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
507     NewPreHeader->setName(PreHeader->getName() + ".new");
508     // Split Exit to create phi nodes from branch above.
509     SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
510     NewExit = SplitBlockPredecessors(Exit, Preds, ".unr-lcssa",
511                                      DT, LI, PreserveLCSSA);
512     // Split NewExit to insert epilog remainder loop.
513     EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI);
514     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
515   } else {
516     // If prolog remainder
517     // Split the original preheader twice to insert prolog remainder loop
518     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
519     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
520     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
521                             DT, LI);
522     PrologExit->setName(Header->getName() + ".prol.loopexit");
523     // Split PrologExit to get NewPreHeader.
524     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
525     NewPreHeader->setName(PreHeader->getName() + ".new");
526   }
527   // Loop structure should be the following:
528   //  Epilog             Prolog
529   //
530   // PreHeader         PreHeader
531   // *NewPreHeader     *PrologPreHeader
532   //   Header          *PrologExit
533   //   ...             *NewPreHeader
534   //   Latch             Header
535   // *NewExit            ...
536   // *EpilogPreHeader    Latch
537   // Exit              Exit
538 
539   // Calculate conditions for branch around loop for unrolling
540   // in epilog case and around prolog remainder loop in prolog case.
541   // Compute the number of extra iterations required, which is:
542   //  extra iterations = run-time trip count % loop unroll factor
543   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
544   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
545                                             PreHeaderBR);
546   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
547                                           PreHeaderBR);
548   IRBuilder<> B(PreHeaderBR);
549   Value *ModVal;
550   // Calculate ModVal = (BECount + 1) % Count.
551   // Note that TripCount is BECount + 1.
552   if (isPowerOf2_32(Count)) {
553     // When Count is power of 2 we don't BECount for epilog case, however we'll
554     // need it for a branch around unrolling loop for prolog case.
555     ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
556     //  1. There are no iterations to be run in the prolog/epilog loop.
557     // OR
558     //  2. The addition computing TripCount overflowed.
559     //
560     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
561     // the number of iterations that remain to be run in the original loop is a
562     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
563     // explicitly check this above).
564   } else {
565     // As (BECount + 1) can potentially unsigned overflow we count
566     // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
567     Value *ModValTmp = B.CreateURem(BECount,
568                                     ConstantInt::get(BECount->getType(),
569                                                      Count));
570     Value *ModValAdd = B.CreateAdd(ModValTmp,
571                                    ConstantInt::get(ModValTmp->getType(), 1));
572     // At that point (BECount % Count) + 1 could be equal to Count.
573     // To handle this case we need to take mod by Count one more time.
574     ModVal = B.CreateURem(ModValAdd,
575                           ConstantInt::get(BECount->getType(), Count),
576                           "xtraiter");
577   }
578   Value *BranchVal =
579       UseEpilogRemainder ? B.CreateICmpULT(BECount,
580                                            ConstantInt::get(BECount->getType(),
581                                                             Count - 1)) :
582                            B.CreateIsNotNull(ModVal, "lcmp.mod");
583   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
584   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
585   // Branch to either remainder (extra iterations) loop or unrolling loop.
586   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
587   PreHeaderBR->eraseFromParent();
588   Function *F = Header->getParent();
589   // Get an ordered list of blocks in the loop to help with the ordering of the
590   // cloned blocks in the prolog/epilog code
591   LoopBlocksDFS LoopBlocks(L);
592   LoopBlocks.perform(LI);
593 
594   //
595   // For each extra loop iteration, create a copy of the loop's basic blocks
596   // and generate a condition that branches to the copy depending on the
597   // number of 'left over' iterations.
598   //
599   std::vector<BasicBlock *> NewBlocks;
600   ValueToValueMapTy VMap;
601 
602   // For unroll factor 2 remainder loop will have 1 iterations.
603   // Do not create 1 iteration loop.
604   bool CreateRemainderLoop = (Count != 2);
605 
606   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
607   // the loop, otherwise we create a cloned loop to execute the extra
608   // iterations. This function adds the appropriate CFG connections.
609   BasicBlock *InsertBot = UseEpilogRemainder ? Exit : PrologExit;
610   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
611   CloneLoopBlocks(L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop,
612                   InsertBot, NewPreHeader, NewBlocks, LoopBlocks, VMap, LI);
613 
614   // Insert the cloned blocks into the function.
615   F->getBasicBlockList().splice(InsertBot->getIterator(),
616                                 F->getBasicBlockList(),
617                                 NewBlocks[0]->getIterator(),
618                                 F->end());
619 
620   // Loop structure should be the following:
621   //  Epilog             Prolog
622   //
623   // PreHeader         PreHeader
624   // NewPreHeader      PrologPreHeader
625   //   Header            PrologHeader
626   //   ...               ...
627   //   Latch             PrologLatch
628   // NewExit           PrologExit
629   // EpilogPreHeader   NewPreHeader
630   //   EpilogHeader      Header
631   //   ...               ...
632   //   EpilogLatch       Latch
633   // Exit              Exit
634 
635   // Rewrite the cloned instruction operands to use the values created when the
636   // clone is created.
637   for (BasicBlock *BB : NewBlocks) {
638     for (Instruction &I : *BB) {
639       RemapInstruction(&I, VMap,
640                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
641     }
642   }
643 
644   if (UseEpilogRemainder) {
645     // Connect the epilog code to the original loop and update the
646     // PHI functions.
647     ConnectEpilog(L, ModVal, NewExit, Exit, PreHeader,
648                   EpilogPreHeader, NewPreHeader, VMap, DT, LI,
649                   PreserveLCSSA);
650 
651     // Update counter in loop for unrolling.
652     // I should be multiply of Count.
653     IRBuilder<> B2(NewPreHeader->getTerminator());
654     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
655     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
656     B2.SetInsertPoint(LatchBR);
657     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
658                                       Header->getFirstNonPHI());
659     Value *IdxSub =
660         B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
661                      NewIdx->getName() + ".nsub");
662     Value *IdxCmp;
663     if (LatchBR->getSuccessor(0) == Header)
664       IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
665     else
666       IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
667     NewIdx->addIncoming(TestVal, NewPreHeader);
668     NewIdx->addIncoming(IdxSub, Latch);
669     LatchBR->setCondition(IdxCmp);
670   } else {
671     // Connect the prolog code to the original loop and update the
672     // PHI functions.
673     ConnectProlog(L, BECount, Count, PrologExit, PreHeader, NewPreHeader,
674                   VMap, DT, LI, PreserveLCSSA);
675   }
676   NumRuntimeUnrolled++;
677   return true;
678 }
679