1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkRefCnt_DEFINED
9 #define SkRefCnt_DEFINED
10 
11 #include "../private/SkTLogic.h"
12 #include "SkTypes.h"
13 #include <atomic>
14 #include <functional>
15 #include <memory>
16 #include <type_traits>
17 #include <utility>
18 
19 /** \class SkRefCntBase
20 
21     SkRefCntBase is the base class for objects that may be shared by multiple
22     objects. When an existing owner wants to share a reference, it calls ref().
23     When an owner wants to release its reference, it calls unref(). When the
24     shared object's reference count goes to zero as the result of an unref()
25     call, its (virtual) destructor is called. It is an error for the
26     destructor to be called explicitly (or via the object going out of scope on
27     the stack or calling delete) if getRefCnt() > 1.
28 */
29 class SK_API SkRefCntBase : SkNoncopyable {
30 public:
31     /** Default construct, initializing the reference count to 1.
32     */
SkRefCntBase()33     SkRefCntBase() : fRefCnt(1) {}
34 
35     /** Destruct, asserting that the reference count is 1.
36     */
~SkRefCntBase()37     virtual ~SkRefCntBase() {
38 #ifdef SK_DEBUG
39         SkASSERTF(getRefCnt() == 1, "fRefCnt was %d", getRefCnt());
40         // illegal value, to catch us if we reuse after delete
41         fRefCnt.store(0, std::memory_order_relaxed);
42 #endif
43     }
44 
45 #ifdef SK_DEBUG
46     /** Return the reference count. Use only for debugging. */
getRefCnt()47     int32_t getRefCnt() const {
48         return fRefCnt.load(std::memory_order_relaxed);
49     }
50 
validate()51     void validate() const {
52         SkASSERT(getRefCnt() > 0);
53     }
54 #endif
55 
56     /** May return true if the caller is the only owner.
57      *  Ensures that all previous owner's actions are complete.
58      */
unique()59     bool unique() const {
60         if (1 == fRefCnt.load(std::memory_order_acquire)) {
61             // The acquire barrier is only really needed if we return true.  It
62             // prevents code conditioned on the result of unique() from running
63             // until previous owners are all totally done calling unref().
64             return true;
65         }
66         return false;
67     }
68 
69     /** Increment the reference count. Must be balanced by a call to unref().
70     */
ref()71     void ref() const {
72         SkASSERT(getRefCnt() > 0);
73         // No barrier required.
74         (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed);
75     }
76 
77     /** Decrement the reference count. If the reference count is 1 before the
78         decrement, then delete the object. Note that if this is the case, then
79         the object needs to have been allocated via new, and not on the stack.
80     */
unref()81     void unref() const {
82         SkASSERT(getRefCnt() > 0);
83         // A release here acts in place of all releases we "should" have been doing in ref().
84         if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
85             // Like unique(), the acquire is only needed on success, to make sure
86             // code in internal_dispose() doesn't happen before the decrement.
87             this->internal_dispose();
88         }
89     }
90 
91 protected:
92     /**
93      *  Allow subclasses to call this if they've overridden internal_dispose
94      *  so they can reset fRefCnt before the destructor is called or if they
95      *  choose not to call the destructor (e.g. using a free list).
96      */
internal_dispose_restore_refcnt_to_1()97     void internal_dispose_restore_refcnt_to_1() const {
98         SkASSERT(0 == getRefCnt());
99         fRefCnt.store(1, std::memory_order_relaxed);
100     }
101 
102 private:
103     /**
104      *  Called when the ref count goes to 0.
105      */
internal_dispose()106     virtual void internal_dispose() const {
107         this->internal_dispose_restore_refcnt_to_1();
108         delete this;
109     }
110 
111     // The following friends are those which override internal_dispose()
112     // and conditionally call SkRefCnt::internal_dispose().
113     friend class SkWeakRefCnt;
114 
115     mutable std::atomic<int32_t> fRefCnt;
116 
117     typedef SkNoncopyable INHERITED;
118 };
119 
120 #ifdef SK_REF_CNT_MIXIN_INCLUDE
121 // It is the responsibility of the following include to define the type SkRefCnt.
122 // This SkRefCnt should normally derive from SkRefCntBase.
123 #include SK_REF_CNT_MIXIN_INCLUDE
124 #else
125 class SK_API SkRefCnt : public SkRefCntBase {
126     // "#include SK_REF_CNT_MIXIN_INCLUDE" doesn't work with this build system.
127     #if defined(GOOGLE3)
128     public:
deref()129         void deref() const { this->unref(); }
130     #endif
131 };
132 #endif
133 
134 ///////////////////////////////////////////////////////////////////////////////
135 
136 /** Helper macro to safely assign one SkRefCnt[TS]* to another, checking for
137     null in on each side of the assignment, and ensuring that ref() is called
138     before unref(), in case the two pointers point to the same object.
139  */
140 
141 #if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK)
142 // This version heuristically detects data races, since those otherwise result
143 // in redundant reference count decrements, which are exceedingly
144 // difficult to debug.
145 
146 #define SkRefCnt_SafeAssign(dst, src)   \
147     do {                                \
148         typedef typename std::remove_reference<decltype(dst)>::type \
149                 SkRefCntPtrT;  \
150         SkRefCntPtrT old_dst = *const_cast<SkRefCntPtrT volatile *>(&dst); \
151         if (src) src->ref();            \
152         if (old_dst) old_dst->unref();          \
153         if (old_dst != *const_cast<SkRefCntPtrT volatile *>(&dst)) { \
154             SkDebugf("Detected racing Skia calls at %s:%d\n", \
155                     __FILE__, __LINE__); \
156         } \
157         dst = src;                      \
158     } while (0)
159 
160 #else /* !SK_BUILD_FOR_ANDROID_FRAMEWORK */
161 
162 #define SkRefCnt_SafeAssign(dst, src)   \
163     do {                                \
164         if (src) src->ref();            \
165         if (dst) dst->unref();          \
166         dst = src;                      \
167     } while (0)
168 
169 #endif
170 
171 
172 /** Call obj->ref() and return obj. The obj must not be nullptr.
173  */
SkRef(T * obj)174 template <typename T> static inline T* SkRef(T* obj) {
175     SkASSERT(obj);
176     obj->ref();
177     return obj;
178 }
179 
180 /** Check if the argument is non-null, and if so, call obj->ref() and return obj.
181  */
SkSafeRef(T * obj)182 template <typename T> static inline T* SkSafeRef(T* obj) {
183     if (obj) {
184         obj->ref();
185     }
186     return obj;
187 }
188 
189 /** Check if the argument is non-null, and if so, call obj->unref()
190  */
SkSafeUnref(T * obj)191 template <typename T> static inline void SkSafeUnref(T* obj) {
192     if (obj) {
193         obj->unref();
194     }
195 }
196 
SkSafeSetNull(T * & obj)197 template<typename T> static inline void SkSafeSetNull(T*& obj) {
198     if (obj) {
199         obj->unref();
200         obj = nullptr;
201     }
202 }
203 
204 ///////////////////////////////////////////////////////////////////////////////
205 
206 // This is a variant of SkRefCnt that's Not Virtual, so weighs 4 bytes instead of 8 or 16.
207 // There's only benefit to using this if the deriving class does not otherwise need a vtable.
208 template <typename Derived>
209 class SkNVRefCnt : SkNoncopyable {
210 public:
SkNVRefCnt()211     SkNVRefCnt() : fRefCnt(1) {}
~SkNVRefCnt()212     ~SkNVRefCnt() { SkASSERTF(1 == getRefCnt(), "NVRefCnt was %d", getRefCnt()); }
213 
214     // Implementation is pretty much the same as SkRefCntBase. All required barriers are the same:
215     //   - unique() needs acquire when it returns true, and no barrier if it returns false;
216     //   - ref() doesn't need any barrier;
217     //   - unref() needs a release barrier, and an acquire if it's going to call delete.
218 
unique()219     bool unique() const { return 1 == fRefCnt.load(std::memory_order_acquire); }
ref()220     void ref() const { (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed); }
unref()221     void  unref() const {
222         if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
223             // restore the 1 for our destructor's assert
224             SkDEBUGCODE(fRefCnt.store(1, std::memory_order_relaxed));
225             delete (const Derived*)this;
226         }
227     }
deref()228     void  deref() const { this->unref(); }
229 
230 private:
231     mutable std::atomic<int32_t> fRefCnt;
getRefCnt()232     int32_t getRefCnt() const {
233         return fRefCnt.load(std::memory_order_relaxed);
234     }
235 };
236 
237 ///////////////////////////////////////////////////////////////////////////////////////////////////
238 
239 /**
240  *  Shared pointer class to wrap classes that support a ref()/unref() interface.
241  *
242  *  This can be used for classes inheriting from SkRefCnt, but it also works for other
243  *  classes that match the interface, but have different internal choices: e.g. the hosted class
244  *  may have its ref/unref be thread-safe, but that is not assumed/imposed by sk_sp.
245  */
246 template <typename T> class sk_sp {
247     /** Supports safe bool idiom. Obsolete with explicit operator bool. */
248     using unspecified_bool_type = T* sk_sp::*;
249 public:
250     using element_type = T;
251 
sk_sp()252     constexpr sk_sp() : fPtr(nullptr) {}
sk_sp(std::nullptr_t)253     constexpr sk_sp(std::nullptr_t) : fPtr(nullptr) {}
254 
255     /**
256      *  Shares the underlying object by calling ref(), so that both the argument and the newly
257      *  created sk_sp both have a reference to it.
258      */
sk_sp(const sk_sp<T> & that)259     sk_sp(const sk_sp<T>& that) : fPtr(SkSafeRef(that.get())) {}
260     template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
sk_sp(const sk_sp<U> & that)261     sk_sp(const sk_sp<U>& that) : fPtr(SkSafeRef(that.get())) {}
262 
263     /**
264      *  Move the underlying object from the argument to the newly created sk_sp. Afterwards only
265      *  the new sk_sp will have a reference to the object, and the argument will point to null.
266      *  No call to ref() or unref() will be made.
267      */
sk_sp(sk_sp<T> && that)268     sk_sp(sk_sp<T>&& that) : fPtr(that.release()) {}
269     template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
sk_sp(sk_sp<U> && that)270     sk_sp(sk_sp<U>&& that) : fPtr(that.release()) {}
271 
272     /**
273      *  Adopt the bare pointer into the newly created sk_sp.
274      *  No call to ref() or unref() will be made.
275      */
sk_sp(T * obj)276     explicit sk_sp(T* obj) : fPtr(obj) {}
277 
278     /**
279      *  Calls unref() on the underlying object pointer.
280      */
~sk_sp()281     ~sk_sp() {
282         SkSafeUnref(fPtr);
283         SkDEBUGCODE(fPtr = nullptr);
284     }
285 
286     sk_sp<T>& operator=(std::nullptr_t) { this->reset(); return *this; }
287 
288     /**
289      *  Shares the underlying object referenced by the argument by calling ref() on it. If this
290      *  sk_sp previously had a reference to an object (i.e. not null) it will call unref() on that
291      *  object.
292      */
293     sk_sp<T>& operator=(const sk_sp<T>& that) {
294         this->reset(SkSafeRef(that.get()));
295         return *this;
296     }
297     template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
298     sk_sp<T>& operator=(const sk_sp<U>& that) {
299         this->reset(SkSafeRef(that.get()));
300         return *this;
301     }
302 
303     /**
304      *  Move the underlying object from the argument to the sk_sp. If the sk_sp previously held
305      *  a reference to another object, unref() will be called on that object. No call to ref()
306      *  will be made.
307      */
308     sk_sp<T>& operator=(sk_sp<T>&& that) {
309         this->reset(that.release());
310         return *this;
311     }
312     template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
313     sk_sp<T>& operator=(sk_sp<U>&& that) {
314         this->reset(that.release());
315         return *this;
316     }
317 
318     T& operator*() const {
319         SkASSERT(this->get() != nullptr);
320         return *this->get();
321     }
322 
323     // MSVC 2013 does not work correctly with explicit operator bool.
324     // https://chromium-cpp.appspot.com/#core-blacklist
325     // When explicit operator bool can be used, remove operator! and operator unspecified_bool_type.
326     //explicit operator bool() const { return this->get() != nullptr; }
unspecified_bool_type()327     operator unspecified_bool_type() const { return this->get() ? &sk_sp::fPtr : nullptr; }
328     bool operator!() const { return this->get() == nullptr; }
329 
get()330     T* get() const { return fPtr; }
331     T* operator->() const { return fPtr; }
332 
333     /**
334      *  Adopt the new bare pointer, and call unref() on any previously held object (if not null).
335      *  No call to ref() will be made.
336      */
337     void reset(T* ptr = nullptr) {
338         // Calling fPtr->unref() may call this->~() or this->reset(T*).
339         // http://wg21.cmeerw.net/lwg/issue998
340         // http://wg21.cmeerw.net/lwg/issue2262
341         T* oldPtr = fPtr;
342         fPtr = ptr;
343         SkSafeUnref(oldPtr);
344     }
345 
346     /**
347      *  Return the bare pointer, and set the internal object pointer to nullptr.
348      *  The caller must assume ownership of the object, and manage its reference count directly.
349      *  No call to unref() will be made.
350      */
release()351     T* SK_WARN_UNUSED_RESULT release() {
352         T* ptr = fPtr;
353         fPtr = nullptr;
354         return ptr;
355     }
356 
swap(sk_sp<T> & that)357     void swap(sk_sp<T>& that) /*noexcept*/ {
358         using std::swap;
359         swap(fPtr, that.fPtr);
360     }
361 
362 private:
363     T*  fPtr;
364 };
365 
swap(sk_sp<T> & a,sk_sp<T> & b)366 template <typename T> inline void swap(sk_sp<T>& a, sk_sp<T>& b) /*noexcept*/ {
367     a.swap(b);
368 }
369 
370 template <typename T, typename U> inline bool operator==(const sk_sp<T>& a, const sk_sp<U>& b) {
371     return a.get() == b.get();
372 }
373 template <typename T> inline bool operator==(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
374     return !a;
375 }
376 template <typename T> inline bool operator==(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
377     return !b;
378 }
379 
380 template <typename T, typename U> inline bool operator!=(const sk_sp<T>& a, const sk_sp<U>& b) {
381     return a.get() != b.get();
382 }
383 template <typename T> inline bool operator!=(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
384     return static_cast<bool>(a);
385 }
386 template <typename T> inline bool operator!=(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
387     return static_cast<bool>(b);
388 }
389 
390 template <typename T, typename U> inline bool operator<(const sk_sp<T>& a, const sk_sp<U>& b) {
391     // Provide defined total order on sk_sp.
392     // http://wg21.cmeerw.net/lwg/issue1297
393     // http://wg21.cmeerw.net/lwg/issue1401 .
394     return std::less<skstd::common_type_t<T*, U*>>()(a.get(), b.get());
395 }
396 template <typename T> inline bool operator<(const sk_sp<T>& a, std::nullptr_t) {
397     return std::less<T*>()(a.get(), nullptr);
398 }
399 template <typename T> inline bool operator<(std::nullptr_t, const sk_sp<T>& b) {
400     return std::less<T*>()(nullptr, b.get());
401 }
402 
403 template <typename T, typename U> inline bool operator<=(const sk_sp<T>& a, const sk_sp<U>& b) {
404     return !(b < a);
405 }
406 template <typename T> inline bool operator<=(const sk_sp<T>& a, std::nullptr_t) {
407     return !(nullptr < a);
408 }
409 template <typename T> inline bool operator<=(std::nullptr_t, const sk_sp<T>& b) {
410     return !(b < nullptr);
411 }
412 
413 template <typename T, typename U> inline bool operator>(const sk_sp<T>& a, const sk_sp<U>& b) {
414     return b < a;
415 }
416 template <typename T> inline bool operator>(const sk_sp<T>& a, std::nullptr_t) {
417     return nullptr < a;
418 }
419 template <typename T> inline bool operator>(std::nullptr_t, const sk_sp<T>& b) {
420     return b < nullptr;
421 }
422 
423 template <typename T, typename U> inline bool operator>=(const sk_sp<T>& a, const sk_sp<U>& b) {
424     return !(a < b);
425 }
426 template <typename T> inline bool operator>=(const sk_sp<T>& a, std::nullptr_t) {
427     return !(a < nullptr);
428 }
429 template <typename T> inline bool operator>=(std::nullptr_t, const sk_sp<T>& b) {
430     return !(nullptr < b);
431 }
432 
433 template <typename T, typename... Args>
sk_make_sp(Args &&...args)434 sk_sp<T> sk_make_sp(Args&&... args) {
435     return sk_sp<T>(new T(std::forward<Args>(args)...));
436 }
437 
438 /*
439  *  Returns a sk_sp wrapping the provided ptr AND calls ref on it (if not null).
440  *
441  *  This is different than the semantics of the constructor for sk_sp, which just wraps the ptr,
442  *  effectively "adopting" it.
443  */
sk_ref_sp(T * obj)444 template <typename T> sk_sp<T> sk_ref_sp(T* obj) {
445     return sk_sp<T>(SkSafeRef(obj));
446 }
447 
448 #endif
449