1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef SkRefCnt_DEFINED
9 #define SkRefCnt_DEFINED
10
11 #include "../private/SkTLogic.h"
12 #include "SkTypes.h"
13 #include <atomic>
14 #include <functional>
15 #include <memory>
16 #include <type_traits>
17 #include <utility>
18
19 /** \class SkRefCntBase
20
21 SkRefCntBase is the base class for objects that may be shared by multiple
22 objects. When an existing owner wants to share a reference, it calls ref().
23 When an owner wants to release its reference, it calls unref(). When the
24 shared object's reference count goes to zero as the result of an unref()
25 call, its (virtual) destructor is called. It is an error for the
26 destructor to be called explicitly (or via the object going out of scope on
27 the stack or calling delete) if getRefCnt() > 1.
28 */
29 class SK_API SkRefCntBase : SkNoncopyable {
30 public:
31 /** Default construct, initializing the reference count to 1.
32 */
SkRefCntBase()33 SkRefCntBase() : fRefCnt(1) {}
34
35 /** Destruct, asserting that the reference count is 1.
36 */
~SkRefCntBase()37 virtual ~SkRefCntBase() {
38 #ifdef SK_DEBUG
39 SkASSERTF(getRefCnt() == 1, "fRefCnt was %d", getRefCnt());
40 // illegal value, to catch us if we reuse after delete
41 fRefCnt.store(0, std::memory_order_relaxed);
42 #endif
43 }
44
45 #ifdef SK_DEBUG
46 /** Return the reference count. Use only for debugging. */
getRefCnt()47 int32_t getRefCnt() const {
48 return fRefCnt.load(std::memory_order_relaxed);
49 }
50
validate()51 void validate() const {
52 SkASSERT(getRefCnt() > 0);
53 }
54 #endif
55
56 /** May return true if the caller is the only owner.
57 * Ensures that all previous owner's actions are complete.
58 */
unique()59 bool unique() const {
60 if (1 == fRefCnt.load(std::memory_order_acquire)) {
61 // The acquire barrier is only really needed if we return true. It
62 // prevents code conditioned on the result of unique() from running
63 // until previous owners are all totally done calling unref().
64 return true;
65 }
66 return false;
67 }
68
69 /** Increment the reference count. Must be balanced by a call to unref().
70 */
ref()71 void ref() const {
72 SkASSERT(getRefCnt() > 0);
73 // No barrier required.
74 (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed);
75 }
76
77 /** Decrement the reference count. If the reference count is 1 before the
78 decrement, then delete the object. Note that if this is the case, then
79 the object needs to have been allocated via new, and not on the stack.
80 */
unref()81 void unref() const {
82 SkASSERT(getRefCnt() > 0);
83 // A release here acts in place of all releases we "should" have been doing in ref().
84 if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
85 // Like unique(), the acquire is only needed on success, to make sure
86 // code in internal_dispose() doesn't happen before the decrement.
87 this->internal_dispose();
88 }
89 }
90
91 protected:
92 /**
93 * Allow subclasses to call this if they've overridden internal_dispose
94 * so they can reset fRefCnt before the destructor is called or if they
95 * choose not to call the destructor (e.g. using a free list).
96 */
internal_dispose_restore_refcnt_to_1()97 void internal_dispose_restore_refcnt_to_1() const {
98 SkASSERT(0 == getRefCnt());
99 fRefCnt.store(1, std::memory_order_relaxed);
100 }
101
102 private:
103 /**
104 * Called when the ref count goes to 0.
105 */
internal_dispose()106 virtual void internal_dispose() const {
107 this->internal_dispose_restore_refcnt_to_1();
108 delete this;
109 }
110
111 // The following friends are those which override internal_dispose()
112 // and conditionally call SkRefCnt::internal_dispose().
113 friend class SkWeakRefCnt;
114
115 mutable std::atomic<int32_t> fRefCnt;
116
117 typedef SkNoncopyable INHERITED;
118 };
119
120 #ifdef SK_REF_CNT_MIXIN_INCLUDE
121 // It is the responsibility of the following include to define the type SkRefCnt.
122 // This SkRefCnt should normally derive from SkRefCntBase.
123 #include SK_REF_CNT_MIXIN_INCLUDE
124 #else
125 class SK_API SkRefCnt : public SkRefCntBase {
126 // "#include SK_REF_CNT_MIXIN_INCLUDE" doesn't work with this build system.
127 #if defined(GOOGLE3)
128 public:
deref()129 void deref() const { this->unref(); }
130 #endif
131 };
132 #endif
133
134 ///////////////////////////////////////////////////////////////////////////////
135
136 /** Helper macro to safely assign one SkRefCnt[TS]* to another, checking for
137 null in on each side of the assignment, and ensuring that ref() is called
138 before unref(), in case the two pointers point to the same object.
139 */
140
141 #if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK)
142 // This version heuristically detects data races, since those otherwise result
143 // in redundant reference count decrements, which are exceedingly
144 // difficult to debug.
145
146 #define SkRefCnt_SafeAssign(dst, src) \
147 do { \
148 typedef typename std::remove_reference<decltype(dst)>::type \
149 SkRefCntPtrT; \
150 SkRefCntPtrT old_dst = *const_cast<SkRefCntPtrT volatile *>(&dst); \
151 if (src) src->ref(); \
152 if (old_dst) old_dst->unref(); \
153 if (old_dst != *const_cast<SkRefCntPtrT volatile *>(&dst)) { \
154 SkDebugf("Detected racing Skia calls at %s:%d\n", \
155 __FILE__, __LINE__); \
156 } \
157 dst = src; \
158 } while (0)
159
160 #else /* !SK_BUILD_FOR_ANDROID_FRAMEWORK */
161
162 #define SkRefCnt_SafeAssign(dst, src) \
163 do { \
164 if (src) src->ref(); \
165 if (dst) dst->unref(); \
166 dst = src; \
167 } while (0)
168
169 #endif
170
171
172 /** Call obj->ref() and return obj. The obj must not be nullptr.
173 */
SkRef(T * obj)174 template <typename T> static inline T* SkRef(T* obj) {
175 SkASSERT(obj);
176 obj->ref();
177 return obj;
178 }
179
180 /** Check if the argument is non-null, and if so, call obj->ref() and return obj.
181 */
SkSafeRef(T * obj)182 template <typename T> static inline T* SkSafeRef(T* obj) {
183 if (obj) {
184 obj->ref();
185 }
186 return obj;
187 }
188
189 /** Check if the argument is non-null, and if so, call obj->unref()
190 */
SkSafeUnref(T * obj)191 template <typename T> static inline void SkSafeUnref(T* obj) {
192 if (obj) {
193 obj->unref();
194 }
195 }
196
SkSafeSetNull(T * & obj)197 template<typename T> static inline void SkSafeSetNull(T*& obj) {
198 if (obj) {
199 obj->unref();
200 obj = nullptr;
201 }
202 }
203
204 ///////////////////////////////////////////////////////////////////////////////
205
206 // This is a variant of SkRefCnt that's Not Virtual, so weighs 4 bytes instead of 8 or 16.
207 // There's only benefit to using this if the deriving class does not otherwise need a vtable.
208 template <typename Derived>
209 class SkNVRefCnt : SkNoncopyable {
210 public:
SkNVRefCnt()211 SkNVRefCnt() : fRefCnt(1) {}
~SkNVRefCnt()212 ~SkNVRefCnt() { SkASSERTF(1 == getRefCnt(), "NVRefCnt was %d", getRefCnt()); }
213
214 // Implementation is pretty much the same as SkRefCntBase. All required barriers are the same:
215 // - unique() needs acquire when it returns true, and no barrier if it returns false;
216 // - ref() doesn't need any barrier;
217 // - unref() needs a release barrier, and an acquire if it's going to call delete.
218
unique()219 bool unique() const { return 1 == fRefCnt.load(std::memory_order_acquire); }
ref()220 void ref() const { (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed); }
unref()221 void unref() const {
222 if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
223 // restore the 1 for our destructor's assert
224 SkDEBUGCODE(fRefCnt.store(1, std::memory_order_relaxed));
225 delete (const Derived*)this;
226 }
227 }
deref()228 void deref() const { this->unref(); }
229
230 private:
231 mutable std::atomic<int32_t> fRefCnt;
getRefCnt()232 int32_t getRefCnt() const {
233 return fRefCnt.load(std::memory_order_relaxed);
234 }
235 };
236
237 ///////////////////////////////////////////////////////////////////////////////////////////////////
238
239 /**
240 * Shared pointer class to wrap classes that support a ref()/unref() interface.
241 *
242 * This can be used for classes inheriting from SkRefCnt, but it also works for other
243 * classes that match the interface, but have different internal choices: e.g. the hosted class
244 * may have its ref/unref be thread-safe, but that is not assumed/imposed by sk_sp.
245 */
246 template <typename T> class sk_sp {
247 /** Supports safe bool idiom. Obsolete with explicit operator bool. */
248 using unspecified_bool_type = T* sk_sp::*;
249 public:
250 using element_type = T;
251
sk_sp()252 constexpr sk_sp() : fPtr(nullptr) {}
sk_sp(std::nullptr_t)253 constexpr sk_sp(std::nullptr_t) : fPtr(nullptr) {}
254
255 /**
256 * Shares the underlying object by calling ref(), so that both the argument and the newly
257 * created sk_sp both have a reference to it.
258 */
sk_sp(const sk_sp<T> & that)259 sk_sp(const sk_sp<T>& that) : fPtr(SkSafeRef(that.get())) {}
260 template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
sk_sp(const sk_sp<U> & that)261 sk_sp(const sk_sp<U>& that) : fPtr(SkSafeRef(that.get())) {}
262
263 /**
264 * Move the underlying object from the argument to the newly created sk_sp. Afterwards only
265 * the new sk_sp will have a reference to the object, and the argument will point to null.
266 * No call to ref() or unref() will be made.
267 */
sk_sp(sk_sp<T> && that)268 sk_sp(sk_sp<T>&& that) : fPtr(that.release()) {}
269 template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
sk_sp(sk_sp<U> && that)270 sk_sp(sk_sp<U>&& that) : fPtr(that.release()) {}
271
272 /**
273 * Adopt the bare pointer into the newly created sk_sp.
274 * No call to ref() or unref() will be made.
275 */
sk_sp(T * obj)276 explicit sk_sp(T* obj) : fPtr(obj) {}
277
278 /**
279 * Calls unref() on the underlying object pointer.
280 */
~sk_sp()281 ~sk_sp() {
282 SkSafeUnref(fPtr);
283 SkDEBUGCODE(fPtr = nullptr);
284 }
285
286 sk_sp<T>& operator=(std::nullptr_t) { this->reset(); return *this; }
287
288 /**
289 * Shares the underlying object referenced by the argument by calling ref() on it. If this
290 * sk_sp previously had a reference to an object (i.e. not null) it will call unref() on that
291 * object.
292 */
293 sk_sp<T>& operator=(const sk_sp<T>& that) {
294 this->reset(SkSafeRef(that.get()));
295 return *this;
296 }
297 template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
298 sk_sp<T>& operator=(const sk_sp<U>& that) {
299 this->reset(SkSafeRef(that.get()));
300 return *this;
301 }
302
303 /**
304 * Move the underlying object from the argument to the sk_sp. If the sk_sp previously held
305 * a reference to another object, unref() will be called on that object. No call to ref()
306 * will be made.
307 */
308 sk_sp<T>& operator=(sk_sp<T>&& that) {
309 this->reset(that.release());
310 return *this;
311 }
312 template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
313 sk_sp<T>& operator=(sk_sp<U>&& that) {
314 this->reset(that.release());
315 return *this;
316 }
317
318 T& operator*() const {
319 SkASSERT(this->get() != nullptr);
320 return *this->get();
321 }
322
323 // MSVC 2013 does not work correctly with explicit operator bool.
324 // https://chromium-cpp.appspot.com/#core-blacklist
325 // When explicit operator bool can be used, remove operator! and operator unspecified_bool_type.
326 //explicit operator bool() const { return this->get() != nullptr; }
unspecified_bool_type()327 operator unspecified_bool_type() const { return this->get() ? &sk_sp::fPtr : nullptr; }
328 bool operator!() const { return this->get() == nullptr; }
329
get()330 T* get() const { return fPtr; }
331 T* operator->() const { return fPtr; }
332
333 /**
334 * Adopt the new bare pointer, and call unref() on any previously held object (if not null).
335 * No call to ref() will be made.
336 */
337 void reset(T* ptr = nullptr) {
338 // Calling fPtr->unref() may call this->~() or this->reset(T*).
339 // http://wg21.cmeerw.net/lwg/issue998
340 // http://wg21.cmeerw.net/lwg/issue2262
341 T* oldPtr = fPtr;
342 fPtr = ptr;
343 SkSafeUnref(oldPtr);
344 }
345
346 /**
347 * Return the bare pointer, and set the internal object pointer to nullptr.
348 * The caller must assume ownership of the object, and manage its reference count directly.
349 * No call to unref() will be made.
350 */
release()351 T* SK_WARN_UNUSED_RESULT release() {
352 T* ptr = fPtr;
353 fPtr = nullptr;
354 return ptr;
355 }
356
swap(sk_sp<T> & that)357 void swap(sk_sp<T>& that) /*noexcept*/ {
358 using std::swap;
359 swap(fPtr, that.fPtr);
360 }
361
362 private:
363 T* fPtr;
364 };
365
swap(sk_sp<T> & a,sk_sp<T> & b)366 template <typename T> inline void swap(sk_sp<T>& a, sk_sp<T>& b) /*noexcept*/ {
367 a.swap(b);
368 }
369
370 template <typename T, typename U> inline bool operator==(const sk_sp<T>& a, const sk_sp<U>& b) {
371 return a.get() == b.get();
372 }
373 template <typename T> inline bool operator==(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
374 return !a;
375 }
376 template <typename T> inline bool operator==(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
377 return !b;
378 }
379
380 template <typename T, typename U> inline bool operator!=(const sk_sp<T>& a, const sk_sp<U>& b) {
381 return a.get() != b.get();
382 }
383 template <typename T> inline bool operator!=(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
384 return static_cast<bool>(a);
385 }
386 template <typename T> inline bool operator!=(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
387 return static_cast<bool>(b);
388 }
389
390 template <typename T, typename U> inline bool operator<(const sk_sp<T>& a, const sk_sp<U>& b) {
391 // Provide defined total order on sk_sp.
392 // http://wg21.cmeerw.net/lwg/issue1297
393 // http://wg21.cmeerw.net/lwg/issue1401 .
394 return std::less<skstd::common_type_t<T*, U*>>()(a.get(), b.get());
395 }
396 template <typename T> inline bool operator<(const sk_sp<T>& a, std::nullptr_t) {
397 return std::less<T*>()(a.get(), nullptr);
398 }
399 template <typename T> inline bool operator<(std::nullptr_t, const sk_sp<T>& b) {
400 return std::less<T*>()(nullptr, b.get());
401 }
402
403 template <typename T, typename U> inline bool operator<=(const sk_sp<T>& a, const sk_sp<U>& b) {
404 return !(b < a);
405 }
406 template <typename T> inline bool operator<=(const sk_sp<T>& a, std::nullptr_t) {
407 return !(nullptr < a);
408 }
409 template <typename T> inline bool operator<=(std::nullptr_t, const sk_sp<T>& b) {
410 return !(b < nullptr);
411 }
412
413 template <typename T, typename U> inline bool operator>(const sk_sp<T>& a, const sk_sp<U>& b) {
414 return b < a;
415 }
416 template <typename T> inline bool operator>(const sk_sp<T>& a, std::nullptr_t) {
417 return nullptr < a;
418 }
419 template <typename T> inline bool operator>(std::nullptr_t, const sk_sp<T>& b) {
420 return b < nullptr;
421 }
422
423 template <typename T, typename U> inline bool operator>=(const sk_sp<T>& a, const sk_sp<U>& b) {
424 return !(a < b);
425 }
426 template <typename T> inline bool operator>=(const sk_sp<T>& a, std::nullptr_t) {
427 return !(a < nullptr);
428 }
429 template <typename T> inline bool operator>=(std::nullptr_t, const sk_sp<T>& b) {
430 return !(nullptr < b);
431 }
432
433 template <typename T, typename... Args>
sk_make_sp(Args &&...args)434 sk_sp<T> sk_make_sp(Args&&... args) {
435 return sk_sp<T>(new T(std::forward<Args>(args)...));
436 }
437
438 /*
439 * Returns a sk_sp wrapping the provided ptr AND calls ref on it (if not null).
440 *
441 * This is different than the semantics of the constructor for sk_sp, which just wraps the ptr,
442 * effectively "adopting" it.
443 */
sk_ref_sp(T * obj)444 template <typename T> sk_sp<T> sk_ref_sp(T* obj) {
445 return sk_sp<T>(SkSafeRef(obj));
446 }
447
448 #endif
449