1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 
9 #ifndef SkTSort_DEFINED
10 #define SkTSort_DEFINED
11 
12 #include "SkTypes.h"
13 #include "SkMathPriv.h"
14 
15 /* A comparison functor which performs the comparison 'a < b'. */
16 template <typename T> struct SkTCompareLT {
operatorSkTCompareLT17     bool operator()(const T a, const T b) const { return a < b; }
18 };
19 
20 /* A comparison functor which performs the comparison '*a < *b'. */
21 template <typename T> struct SkTPointerCompareLT {
operatorSkTPointerCompareLT22     bool operator()(const T* a, const T* b) const { return *a < *b; }
23 };
24 
25 ///////////////////////////////////////////////////////////////////////////////
26 
27 /*  Sifts a broken heap. The input array is a heap from root to bottom
28  *  except that the root entry may be out of place.
29  *
30  *  Sinks a hole from array[root] to leaf and then sifts the original array[root] element
31  *  from the leaf level up.
32  *
33  *  This version does extra work, in that it copies child to parent on the way down,
34  *  then copies parent to child on the way back up. When copies are inexpensive,
35  *  this is an optimization as this sift variant should only be used when
36  *  the potentially out of place root entry value is expected to be small.
37  *
38  *  @param root the one based index into array of the out-of-place root of the heap.
39  *  @param bottom the one based index in the array of the last entry in the heap.
40  */
41 template <typename T, typename C>
SkTHeapSort_SiftUp(T array[],size_t root,size_t bottom,C lessThan)42 void SkTHeapSort_SiftUp(T array[], size_t root, size_t bottom, C lessThan) {
43     T x = array[root-1];
44     size_t start = root;
45     size_t j = root << 1;
46     while (j <= bottom) {
47         if (j < bottom && lessThan(array[j-1], array[j])) {
48             ++j;
49         }
50         array[root-1] = array[j-1];
51         root = j;
52         j = root << 1;
53     }
54     j = root >> 1;
55     while (j >= start) {
56         if (lessThan(array[j-1], x)) {
57             array[root-1] = array[j-1];
58             root = j;
59             j = root >> 1;
60         } else {
61             break;
62         }
63     }
64     array[root-1] = x;
65 }
66 
67 /*  Sifts a broken heap. The input array is a heap from root to bottom
68  *  except that the root entry may be out of place.
69  *
70  *  Sifts the array[root] element from the root down.
71  *
72  *  @param root the one based index into array of the out-of-place root of the heap.
73  *  @param bottom the one based index in the array of the last entry in the heap.
74  */
75 template <typename T, typename C>
SkTHeapSort_SiftDown(T array[],size_t root,size_t bottom,C lessThan)76 void SkTHeapSort_SiftDown(T array[], size_t root, size_t bottom, C lessThan) {
77     T x = array[root-1];
78     size_t child = root << 1;
79     while (child <= bottom) {
80         if (child < bottom && lessThan(array[child-1], array[child])) {
81             ++child;
82         }
83         if (lessThan(x, array[child-1])) {
84             array[root-1] = array[child-1];
85             root = child;
86             child = root << 1;
87         } else {
88             break;
89         }
90     }
91     array[root-1] = x;
92 }
93 
94 /** Sorts the array of size count using comparator lessThan using a Heap Sort algorithm. Be sure to
95  *  specialize SkTSwap if T has an efficient swap operation.
96  *
97  *  @param array the array to be sorted.
98  *  @param count the number of elements in the array.
99  *  @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b.
100  */
SkTHeapSort(T array[],size_t count,C lessThan)101 template <typename T, typename C> void SkTHeapSort(T array[], size_t count, C lessThan) {
102     for (size_t i = count >> 1; i > 0; --i) {
103         SkTHeapSort_SiftDown(array, i, count, lessThan);
104     }
105 
106     for (size_t i = count - 1; i > 0; --i) {
107         SkTSwap<T>(array[0], array[i]);
108         SkTHeapSort_SiftUp(array, 1, i, lessThan);
109     }
110 }
111 
112 /** Sorts the array of size count using comparator '<' using a Heap Sort algorithm. */
SkTHeapSort(T array[],size_t count)113 template <typename T> void SkTHeapSort(T array[], size_t count) {
114     SkTHeapSort(array, count, SkTCompareLT<T>());
115 }
116 
117 ///////////////////////////////////////////////////////////////////////////////
118 
119 /** Sorts the array of size count using comparator lessThan using an Insertion Sort algorithm. */
SkTInsertionSort(T * left,T * right,C lessThan)120 template <typename T, typename C> static void SkTInsertionSort(T* left, T* right, C lessThan) {
121     for (T* next = left + 1; next <= right; ++next) {
122         if (!lessThan(*next, *(next - 1))) {
123             continue;
124         }
125         T insert = std::move(*next);
126         T* hole = next;
127         do {
128             *hole = std::move(*(hole - 1));
129             --hole;
130         } while (left < hole && lessThan(insert, *(hole - 1)));
131         *hole = std::move(insert);
132     }
133 }
134 
135 ///////////////////////////////////////////////////////////////////////////////
136 
137 template <typename T, typename C>
SkTQSort_Partition(T * left,T * right,T * pivot,C lessThan)138 static T* SkTQSort_Partition(T* left, T* right, T* pivot, C lessThan) {
139     T pivotValue = *pivot;
140     SkTSwap(*pivot, *right);
141     T* newPivot = left;
142     while (left < right) {
143         if (lessThan(*left, pivotValue)) {
144             SkTSwap(*left, *newPivot);
145             newPivot += 1;
146         }
147         left += 1;
148     }
149     SkTSwap(*newPivot, *right);
150     return newPivot;
151 }
152 
153 /*  Intro Sort is a modified Quick Sort.
154  *  When the region to be sorted is a small constant size it uses Insertion Sort.
155  *  When depth becomes zero, it switches over to Heap Sort.
156  *  This implementation recurses on the left region after pivoting and loops on the right,
157  *    we already limit the stack depth by switching to heap sort,
158  *    and cache locality on the data appears more important than saving a few stack frames.
159  *
160  *  @param depth at this recursion depth, switch to Heap Sort.
161  *  @param left the beginning of the region to be sorted.
162  *  @param right the end of the region to be sorted (inclusive).
163  *  @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b.
164  */
SkTIntroSort(int depth,T * left,T * right,C lessThan)165 template <typename T, typename C> void SkTIntroSort(int depth, T* left, T* right, C lessThan) {
166     while (true) {
167         if (right - left < 32) {
168             SkTInsertionSort(left, right, lessThan);
169             return;
170         }
171 
172         if (depth == 0) {
173             SkTHeapSort<T>(left, right - left + 1, lessThan);
174             return;
175         }
176         --depth;
177 
178         T* pivot = left + ((right - left) >> 1);
179         pivot = SkTQSort_Partition(left, right, pivot, lessThan);
180 
181         SkTIntroSort(depth, left, pivot - 1, lessThan);
182         left = pivot + 1;
183     }
184 }
185 
186 /** Sorts the region from left to right using comparator lessThan using a Quick Sort algorithm. Be
187  *  sure to specialize SkTSwap if T has an efficient swap operation.
188  *
189  *  @param left the beginning of the region to be sorted.
190  *  @param right the end of the region to be sorted (inclusive).
191  *  @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b.
192  */
SkTQSort(T * left,T * right,C lessThan)193 template <typename T, typename C> void SkTQSort(T* left, T* right, C lessThan) {
194     if (left >= right) {
195         return;
196     }
197     // Limit Intro Sort recursion depth to no more than 2 * ceil(log2(n)).
198     int depth = 2 * SkNextLog2(SkToU32(right - left));
199     SkTIntroSort(depth, left, right, lessThan);
200 }
201 
202 /** Sorts the region from left to right using comparator '<' using a Quick Sort algorithm. */
SkTQSort(T * left,T * right)203 template <typename T> void SkTQSort(T* left, T* right) {
204     SkTQSort(left, right, SkTCompareLT<T>());
205 }
206 
207 /** Sorts the region from left to right using comparator '* < *' using a Quick Sort algorithm. */
SkTQSort(T ** left,T ** right)208 template <typename T> void SkTQSort(T** left, T** right) {
209     SkTQSort(left, right, SkTPointerCompareLT<T>());
210 }
211 
212 #endif
213