1 //===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass that performs some optimizations with LEA
11 // instructions in order to improve performance and code size.
12 // Currently, it does two things:
13 // 1) If there are two LEA instructions calculating addresses which only differ
14 // by displacement inside a basic block, one of them is removed.
15 // 2) Address calculations in load and store instructions are replaced by
16 // existing LEA def registers where possible.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "X86.h"
21 #include "X86InstrInfo.h"
22 #include "X86Subtarget.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34
35 using namespace llvm;
36
37 #define DEBUG_TYPE "x86-optimize-LEAs"
38
39 static cl::opt<bool>
40 DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
41 cl::desc("X86: Disable LEA optimizations."),
42 cl::init(false));
43
44 STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
45 STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
46
47 class MemOpKey;
48
49 /// \brief Returns a hash table key based on memory operands of \p MI. The
50 /// number of the first memory operand of \p MI is specified through \p N.
51 static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N);
52
53 /// \brief Returns true if two machine operands are identical and they are not
54 /// physical registers.
55 static inline bool isIdenticalOp(const MachineOperand &MO1,
56 const MachineOperand &MO2);
57
58 /// \brief Returns true if two address displacement operands are of the same
59 /// type and use the same symbol/index/address regardless of the offset.
60 static bool isSimilarDispOp(const MachineOperand &MO1,
61 const MachineOperand &MO2);
62
63 /// \brief Returns true if the instruction is LEA.
64 static inline bool isLEA(const MachineInstr &MI);
65
66 /// A key based on instruction's memory operands.
67 class MemOpKey {
68 public:
MemOpKey(const MachineOperand * Base,const MachineOperand * Scale,const MachineOperand * Index,const MachineOperand * Segment,const MachineOperand * Disp)69 MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
70 const MachineOperand *Index, const MachineOperand *Segment,
71 const MachineOperand *Disp)
72 : Disp(Disp) {
73 Operands[0] = Base;
74 Operands[1] = Scale;
75 Operands[2] = Index;
76 Operands[3] = Segment;
77 }
78
operator ==(const MemOpKey & Other) const79 bool operator==(const MemOpKey &Other) const {
80 // Addresses' bases, scales, indices and segments must be identical.
81 for (int i = 0; i < 4; ++i)
82 if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
83 return false;
84
85 // Addresses' displacements don't have to be exactly the same. It only
86 // matters that they use the same symbol/index/address. Immediates' or
87 // offsets' differences will be taken care of during instruction
88 // substitution.
89 return isSimilarDispOp(*Disp, *Other.Disp);
90 }
91
92 // Address' base, scale, index and segment operands.
93 const MachineOperand *Operands[4];
94
95 // Address' displacement operand.
96 const MachineOperand *Disp;
97 };
98
99 /// Provide DenseMapInfo for MemOpKey.
100 namespace llvm {
101 template <> struct DenseMapInfo<MemOpKey> {
102 typedef DenseMapInfo<const MachineOperand *> PtrInfo;
103
getEmptyKeyllvm::DenseMapInfo104 static inline MemOpKey getEmptyKey() {
105 return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
106 PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
107 PtrInfo::getEmptyKey());
108 }
109
getTombstoneKeyllvm::DenseMapInfo110 static inline MemOpKey getTombstoneKey() {
111 return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
112 PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
113 PtrInfo::getTombstoneKey());
114 }
115
getHashValuellvm::DenseMapInfo116 static unsigned getHashValue(const MemOpKey &Val) {
117 // Checking any field of MemOpKey is enough to determine if the key is
118 // empty or tombstone.
119 assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
120 assert(Val.Disp != PtrInfo::getTombstoneKey() &&
121 "Cannot hash the tombstone key");
122
123 hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
124 *Val.Operands[2], *Val.Operands[3]);
125
126 // If the address displacement is an immediate, it should not affect the
127 // hash so that memory operands which differ only be immediate displacement
128 // would have the same hash. If the address displacement is something else,
129 // we should reflect symbol/index/address in the hash.
130 switch (Val.Disp->getType()) {
131 case MachineOperand::MO_Immediate:
132 break;
133 case MachineOperand::MO_ConstantPoolIndex:
134 case MachineOperand::MO_JumpTableIndex:
135 Hash = hash_combine(Hash, Val.Disp->getIndex());
136 break;
137 case MachineOperand::MO_ExternalSymbol:
138 Hash = hash_combine(Hash, Val.Disp->getSymbolName());
139 break;
140 case MachineOperand::MO_GlobalAddress:
141 Hash = hash_combine(Hash, Val.Disp->getGlobal());
142 break;
143 case MachineOperand::MO_BlockAddress:
144 Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
145 break;
146 case MachineOperand::MO_MCSymbol:
147 Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
148 break;
149 case MachineOperand::MO_MachineBasicBlock:
150 Hash = hash_combine(Hash, Val.Disp->getMBB());
151 break;
152 default:
153 llvm_unreachable("Invalid address displacement operand");
154 }
155
156 return (unsigned)Hash;
157 }
158
isEqualllvm::DenseMapInfo159 static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
160 // Checking any field of MemOpKey is enough to determine if the key is
161 // empty or tombstone.
162 if (RHS.Disp == PtrInfo::getEmptyKey())
163 return LHS.Disp == PtrInfo::getEmptyKey();
164 if (RHS.Disp == PtrInfo::getTombstoneKey())
165 return LHS.Disp == PtrInfo::getTombstoneKey();
166 return LHS == RHS;
167 }
168 };
169 }
170
getMemOpKey(const MachineInstr & MI,unsigned N)171 static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
172 assert((isLEA(MI) || MI.mayLoadOrStore()) &&
173 "The instruction must be a LEA, a load or a store");
174 return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
175 &MI.getOperand(N + X86::AddrScaleAmt),
176 &MI.getOperand(N + X86::AddrIndexReg),
177 &MI.getOperand(N + X86::AddrSegmentReg),
178 &MI.getOperand(N + X86::AddrDisp));
179 }
180
isIdenticalOp(const MachineOperand & MO1,const MachineOperand & MO2)181 static inline bool isIdenticalOp(const MachineOperand &MO1,
182 const MachineOperand &MO2) {
183 return MO1.isIdenticalTo(MO2) &&
184 (!MO1.isReg() ||
185 !TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
186 }
187
188 #ifndef NDEBUG
isValidDispOp(const MachineOperand & MO)189 static bool isValidDispOp(const MachineOperand &MO) {
190 return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
191 MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
192 }
193 #endif
194
isSimilarDispOp(const MachineOperand & MO1,const MachineOperand & MO2)195 static bool isSimilarDispOp(const MachineOperand &MO1,
196 const MachineOperand &MO2) {
197 assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
198 "Address displacement operand is not valid");
199 return (MO1.isImm() && MO2.isImm()) ||
200 (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
201 (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
202 (MO1.isSymbol() && MO2.isSymbol() &&
203 MO1.getSymbolName() == MO2.getSymbolName()) ||
204 (MO1.isGlobal() && MO2.isGlobal() &&
205 MO1.getGlobal() == MO2.getGlobal()) ||
206 (MO1.isBlockAddress() && MO2.isBlockAddress() &&
207 MO1.getBlockAddress() == MO2.getBlockAddress()) ||
208 (MO1.isMCSymbol() && MO2.isMCSymbol() &&
209 MO1.getMCSymbol() == MO2.getMCSymbol()) ||
210 (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
211 }
212
isLEA(const MachineInstr & MI)213 static inline bool isLEA(const MachineInstr &MI) {
214 unsigned Opcode = MI.getOpcode();
215 return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
216 Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
217 }
218
219 namespace {
220 class OptimizeLEAPass : public MachineFunctionPass {
221 public:
OptimizeLEAPass()222 OptimizeLEAPass() : MachineFunctionPass(ID) {}
223
getPassName() const224 const char *getPassName() const override { return "X86 LEA Optimize"; }
225
226 /// \brief Loop over all of the basic blocks, replacing address
227 /// calculations in load and store instructions, if it's already
228 /// been calculated by LEA. Also, remove redundant LEAs.
229 bool runOnMachineFunction(MachineFunction &MF) override;
230
231 private:
232 typedef DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>> MemOpMap;
233
234 /// \brief Returns a distance between two instructions inside one basic block.
235 /// Negative result means, that instructions occur in reverse order.
236 int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
237
238 /// \brief Choose the best \p LEA instruction from the \p List to replace
239 /// address calculation in \p MI instruction. Return the address displacement
240 /// and the distance between \p MI and the choosen \p BestLEA in
241 /// \p AddrDispShift and \p Dist.
242 bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
243 const MachineInstr &MI, MachineInstr *&BestLEA,
244 int64_t &AddrDispShift, int &Dist);
245
246 /// \brief Returns the difference between addresses' displacements of \p MI1
247 /// and \p MI2. The numbers of the first memory operands for the instructions
248 /// are specified through \p N1 and \p N2.
249 int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
250 const MachineInstr &MI2, unsigned N2) const;
251
252 /// \brief Returns true if the \p Last LEA instruction can be replaced by the
253 /// \p First. The difference between displacements of the addresses calculated
254 /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
255 /// replacement of the \p Last LEA's uses with the \p First's def register.
256 bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
257 int64_t &AddrDispShift) const;
258
259 /// \brief Find all LEA instructions in the basic block. Also, assign position
260 /// numbers to all instructions in the basic block to speed up calculation of
261 /// distance between them.
262 void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
263
264 /// \brief Removes redundant address calculations.
265 bool removeRedundantAddrCalc(MemOpMap &LEAs);
266
267 /// \brief Removes LEAs which calculate similar addresses.
268 bool removeRedundantLEAs(MemOpMap &LEAs);
269
270 DenseMap<const MachineInstr *, unsigned> InstrPos;
271
272 MachineRegisterInfo *MRI;
273 const X86InstrInfo *TII;
274 const X86RegisterInfo *TRI;
275
276 static char ID;
277 };
278 char OptimizeLEAPass::ID = 0;
279 }
280
createX86OptimizeLEAs()281 FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); }
282
calcInstrDist(const MachineInstr & First,const MachineInstr & Last)283 int OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
284 const MachineInstr &Last) {
285 // Both instructions must be in the same basic block and they must be
286 // presented in InstrPos.
287 assert(Last.getParent() == First.getParent() &&
288 "Instructions are in different basic blocks");
289 assert(InstrPos.find(&First) != InstrPos.end() &&
290 InstrPos.find(&Last) != InstrPos.end() &&
291 "Instructions' positions are undefined");
292
293 return InstrPos[&Last] - InstrPos[&First];
294 }
295
296 // Find the best LEA instruction in the List to replace address recalculation in
297 // MI. Such LEA must meet these requirements:
298 // 1) The address calculated by the LEA differs only by the displacement from
299 // the address used in MI.
300 // 2) The register class of the definition of the LEA is compatible with the
301 // register class of the address base register of MI.
302 // 3) Displacement of the new memory operand should fit in 1 byte if possible.
303 // 4) The LEA should be as close to MI as possible, and prior to it if
304 // possible.
chooseBestLEA(const SmallVectorImpl<MachineInstr * > & List,const MachineInstr & MI,MachineInstr * & BestLEA,int64_t & AddrDispShift,int & Dist)305 bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
306 const MachineInstr &MI,
307 MachineInstr *&BestLEA,
308 int64_t &AddrDispShift, int &Dist) {
309 const MachineFunction *MF = MI.getParent()->getParent();
310 const MCInstrDesc &Desc = MI.getDesc();
311 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
312 X86II::getOperandBias(Desc);
313
314 BestLEA = nullptr;
315
316 // Loop over all LEA instructions.
317 for (auto DefMI : List) {
318 // Get new address displacement.
319 int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
320
321 // Make sure address displacement fits 4 bytes.
322 if (!isInt<32>(AddrDispShiftTemp))
323 continue;
324
325 // Check that LEA def register can be used as MI address base. Some
326 // instructions can use a limited set of registers as address base, for
327 // example MOV8mr_NOREX. We could constrain the register class of the LEA
328 // def to suit MI, however since this case is very rare and hard to
329 // reproduce in a test it's just more reliable to skip the LEA.
330 if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
331 MRI->getRegClass(DefMI->getOperand(0).getReg()))
332 continue;
333
334 // Choose the closest LEA instruction from the list, prior to MI if
335 // possible. Note that we took into account resulting address displacement
336 // as well. Also note that the list is sorted by the order in which the LEAs
337 // occur, so the break condition is pretty simple.
338 int DistTemp = calcInstrDist(*DefMI, MI);
339 assert(DistTemp != 0 &&
340 "The distance between two different instructions cannot be zero");
341 if (DistTemp > 0 || BestLEA == nullptr) {
342 // Do not update return LEA, if the current one provides a displacement
343 // which fits in 1 byte, while the new candidate does not.
344 if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
345 isInt<8>(AddrDispShift))
346 continue;
347
348 BestLEA = DefMI;
349 AddrDispShift = AddrDispShiftTemp;
350 Dist = DistTemp;
351 }
352
353 // FIXME: Maybe we should not always stop at the first LEA after MI.
354 if (DistTemp < 0)
355 break;
356 }
357
358 return BestLEA != nullptr;
359 }
360
361 // Get the difference between the addresses' displacements of the two
362 // instructions \p MI1 and \p MI2. The numbers of the first memory operands are
363 // passed through \p N1 and \p N2.
getAddrDispShift(const MachineInstr & MI1,unsigned N1,const MachineInstr & MI2,unsigned N2) const364 int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1,
365 const MachineInstr &MI2,
366 unsigned N2) const {
367 const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
368 const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
369
370 assert(isSimilarDispOp(Op1, Op2) &&
371 "Address displacement operands are not compatible");
372
373 // After the assert above we can be sure that both operands are of the same
374 // valid type and use the same symbol/index/address, thus displacement shift
375 // calculation is rather simple.
376 if (Op1.isJTI())
377 return 0;
378 return Op1.isImm() ? Op1.getImm() - Op2.getImm()
379 : Op1.getOffset() - Op2.getOffset();
380 }
381
382 // Check that the Last LEA can be replaced by the First LEA. To be so,
383 // these requirements must be met:
384 // 1) Addresses calculated by LEAs differ only by displacement.
385 // 2) Def registers of LEAs belong to the same class.
386 // 3) All uses of the Last LEA def register are replaceable, thus the
387 // register is used only as address base.
isReplaceable(const MachineInstr & First,const MachineInstr & Last,int64_t & AddrDispShift) const388 bool OptimizeLEAPass::isReplaceable(const MachineInstr &First,
389 const MachineInstr &Last,
390 int64_t &AddrDispShift) const {
391 assert(isLEA(First) && isLEA(Last) &&
392 "The function works only with LEA instructions");
393
394 // Get new address displacement.
395 AddrDispShift = getAddrDispShift(Last, 1, First, 1);
396
397 // Make sure that LEA def registers belong to the same class. There may be
398 // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
399 // be used as their operands, so we must be sure that replacing one LEA
400 // with another won't lead to putting a wrong register in the instruction.
401 if (MRI->getRegClass(First.getOperand(0).getReg()) !=
402 MRI->getRegClass(Last.getOperand(0).getReg()))
403 return false;
404
405 // Loop over all uses of the Last LEA to check that its def register is
406 // used only as address base for memory accesses. If so, it can be
407 // replaced, otherwise - no.
408 for (auto &MO : MRI->use_operands(Last.getOperand(0).getReg())) {
409 MachineInstr &MI = *MO.getParent();
410
411 // Get the number of the first memory operand.
412 const MCInstrDesc &Desc = MI.getDesc();
413 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
414
415 // If the use instruction has no memory operand - the LEA is not
416 // replaceable.
417 if (MemOpNo < 0)
418 return false;
419
420 MemOpNo += X86II::getOperandBias(Desc);
421
422 // If the address base of the use instruction is not the LEA def register -
423 // the LEA is not replaceable.
424 if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
425 return false;
426
427 // If the LEA def register is used as any other operand of the use
428 // instruction - the LEA is not replaceable.
429 for (unsigned i = 0; i < MI.getNumOperands(); i++)
430 if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
431 isIdenticalOp(MI.getOperand(i), MO))
432 return false;
433
434 // Check that the new address displacement will fit 4 bytes.
435 if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
436 !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
437 AddrDispShift))
438 return false;
439 }
440
441 return true;
442 }
443
findLEAs(const MachineBasicBlock & MBB,MemOpMap & LEAs)444 void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) {
445 unsigned Pos = 0;
446 for (auto &MI : MBB) {
447 // Assign the position number to the instruction. Note that we are going to
448 // move some instructions during the optimization however there will never
449 // be a need to move two instructions before any selected instruction. So to
450 // avoid multiple positions' updates during moves we just increase position
451 // counter by two leaving a free space for instructions which will be moved.
452 InstrPos[&MI] = Pos += 2;
453
454 if (isLEA(MI))
455 LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
456 }
457 }
458
459 // Try to find load and store instructions which recalculate addresses already
460 // calculated by some LEA and replace their memory operands with its def
461 // register.
removeRedundantAddrCalc(MemOpMap & LEAs)462 bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
463 bool Changed = false;
464
465 assert(!LEAs.empty());
466 MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
467
468 // Process all instructions in basic block.
469 for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
470 MachineInstr &MI = *I++;
471
472 // Instruction must be load or store.
473 if (!MI.mayLoadOrStore())
474 continue;
475
476 // Get the number of the first memory operand.
477 const MCInstrDesc &Desc = MI.getDesc();
478 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
479
480 // If instruction has no memory operand - skip it.
481 if (MemOpNo < 0)
482 continue;
483
484 MemOpNo += X86II::getOperandBias(Desc);
485
486 // Get the best LEA instruction to replace address calculation.
487 MachineInstr *DefMI;
488 int64_t AddrDispShift;
489 int Dist;
490 if (!chooseBestLEA(LEAs[getMemOpKey(MI, MemOpNo)], MI, DefMI, AddrDispShift,
491 Dist))
492 continue;
493
494 // If LEA occurs before current instruction, we can freely replace
495 // the instruction. If LEA occurs after, we can lift LEA above the
496 // instruction and this way to be able to replace it. Since LEA and the
497 // instruction have similar memory operands (thus, the same def
498 // instructions for these operands), we can always do that, without
499 // worries of using registers before their defs.
500 if (Dist < 0) {
501 DefMI->removeFromParent();
502 MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
503 InstrPos[DefMI] = InstrPos[&MI] - 1;
504
505 // Make sure the instructions' position numbers are sane.
506 assert(((InstrPos[DefMI] == 1 &&
507 MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
508 InstrPos[DefMI] >
509 InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
510 "Instruction positioning is broken");
511 }
512
513 // Since we can possibly extend register lifetime, clear kill flags.
514 MRI->clearKillFlags(DefMI->getOperand(0).getReg());
515
516 ++NumSubstLEAs;
517 DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
518
519 // Change instruction operands.
520 MI.getOperand(MemOpNo + X86::AddrBaseReg)
521 .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
522 MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
523 MI.getOperand(MemOpNo + X86::AddrIndexReg)
524 .ChangeToRegister(X86::NoRegister, false);
525 MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
526 MI.getOperand(MemOpNo + X86::AddrSegmentReg)
527 .ChangeToRegister(X86::NoRegister, false);
528
529 DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
530
531 Changed = true;
532 }
533
534 return Changed;
535 }
536
537 // Try to find similar LEAs in the list and replace one with another.
removeRedundantLEAs(MemOpMap & LEAs)538 bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
539 bool Changed = false;
540
541 // Loop over all entries in the table.
542 for (auto &E : LEAs) {
543 auto &List = E.second;
544
545 // Loop over all LEA pairs.
546 auto I1 = List.begin();
547 while (I1 != List.end()) {
548 MachineInstr &First = **I1;
549 auto I2 = std::next(I1);
550 while (I2 != List.end()) {
551 MachineInstr &Last = **I2;
552 int64_t AddrDispShift;
553
554 // LEAs should be in occurence order in the list, so we can freely
555 // replace later LEAs with earlier ones.
556 assert(calcInstrDist(First, Last) > 0 &&
557 "LEAs must be in occurence order in the list");
558
559 // Check that the Last LEA instruction can be replaced by the First.
560 if (!isReplaceable(First, Last, AddrDispShift)) {
561 ++I2;
562 continue;
563 }
564
565 // Loop over all uses of the Last LEA and update their operands. Note
566 // that the correctness of this has already been checked in the
567 // isReplaceable function.
568 for (auto UI = MRI->use_begin(Last.getOperand(0).getReg()),
569 UE = MRI->use_end();
570 UI != UE;) {
571 MachineOperand &MO = *UI++;
572 MachineInstr &MI = *MO.getParent();
573
574 // Get the number of the first memory operand.
575 const MCInstrDesc &Desc = MI.getDesc();
576 int MemOpNo =
577 X86II::getMemoryOperandNo(Desc.TSFlags) +
578 X86II::getOperandBias(Desc);
579
580 // Update address base.
581 MO.setReg(First.getOperand(0).getReg());
582
583 // Update address disp.
584 MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
585 if (Op.isImm())
586 Op.setImm(Op.getImm() + AddrDispShift);
587 else if (!Op.isJTI())
588 Op.setOffset(Op.getOffset() + AddrDispShift);
589 }
590
591 // Since we can possibly extend register lifetime, clear kill flags.
592 MRI->clearKillFlags(First.getOperand(0).getReg());
593
594 ++NumRedundantLEAs;
595 DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump(););
596
597 // By this moment, all of the Last LEA's uses must be replaced. So we
598 // can freely remove it.
599 assert(MRI->use_empty(Last.getOperand(0).getReg()) &&
600 "The LEA's def register must have no uses");
601 Last.eraseFromParent();
602
603 // Erase removed LEA from the list.
604 I2 = List.erase(I2);
605
606 Changed = true;
607 }
608 ++I1;
609 }
610 }
611
612 return Changed;
613 }
614
runOnMachineFunction(MachineFunction & MF)615 bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
616 bool Changed = false;
617
618 if (DisableX86LEAOpt || skipFunction(*MF.getFunction()))
619 return false;
620
621 MRI = &MF.getRegInfo();
622 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
623 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
624
625 // Process all basic blocks.
626 for (auto &MBB : MF) {
627 MemOpMap LEAs;
628 InstrPos.clear();
629
630 // Find all LEA instructions in basic block.
631 findLEAs(MBB, LEAs);
632
633 // If current basic block has no LEAs, move on to the next one.
634 if (LEAs.empty())
635 continue;
636
637 // Remove redundant LEA instructions.
638 Changed |= removeRedundantLEAs(LEAs);
639
640 // Remove redundant address calculations. Do it only for -Os/-Oz since only
641 // a code size gain is expected from this part of the pass.
642 if (MF.getFunction()->optForSize())
643 Changed |= removeRedundantAddrCalc(LEAs);
644 }
645
646 return Changed;
647 }
648