1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2011 the V8 project authors. All rights reserved.
34
35 // A light-weight IA32 Assembler.
36
37 #ifndef V8_IA32_ASSEMBLER_IA32_H_
38 #define V8_IA32_ASSEMBLER_IA32_H_
39
40 #include <deque>
41
42 #include "src/assembler.h"
43 #include "src/isolate.h"
44 #include "src/utils.h"
45
46 namespace v8 {
47 namespace internal {
48
49 #define GENERAL_REGISTERS(V) \
50 V(eax) \
51 V(ecx) \
52 V(edx) \
53 V(ebx) \
54 V(esp) \
55 V(ebp) \
56 V(esi) \
57 V(edi)
58
59 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
60 V(eax) \
61 V(ecx) \
62 V(edx) \
63 V(ebx) \
64 V(esi) \
65 V(edi)
66
67 #define DOUBLE_REGISTERS(V) \
68 V(xmm0) \
69 V(xmm1) \
70 V(xmm2) \
71 V(xmm3) \
72 V(xmm4) \
73 V(xmm5) \
74 V(xmm6) \
75 V(xmm7)
76
77 #define FLOAT_REGISTERS DOUBLE_REGISTERS
78 #define SIMD128_REGISTERS DOUBLE_REGISTERS
79
80 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \
81 V(xmm1) \
82 V(xmm2) \
83 V(xmm3) \
84 V(xmm4) \
85 V(xmm5) \
86 V(xmm6) \
87 V(xmm7)
88
89 // CPU Registers.
90 //
91 // 1) We would prefer to use an enum, but enum values are assignment-
92 // compatible with int, which has caused code-generation bugs.
93 //
94 // 2) We would prefer to use a class instead of a struct but we don't like
95 // the register initialization to depend on the particular initialization
96 // order (which appears to be different on OS X, Linux, and Windows for the
97 // installed versions of C++ we tried). Using a struct permits C-style
98 // "initialization". Also, the Register objects cannot be const as this
99 // forces initialization stubs in MSVC, making us dependent on initialization
100 // order.
101 //
102 // 3) By not using an enum, we are possibly preventing the compiler from
103 // doing certain constant folds, which may significantly reduce the
104 // code generated for some assembly instructions (because they boil down
105 // to a few constants). If this is a problem, we could change the code
106 // such that we use an enum in optimized mode, and the struct in debug
107 // mode. This way we get the compile-time error checking in debug mode
108 // and best performance in optimized code.
109 //
110 struct Register {
111 enum Code {
112 #define REGISTER_CODE(R) kCode_##R,
113 GENERAL_REGISTERS(REGISTER_CODE)
114 #undef REGISTER_CODE
115 kAfterLast,
116 kCode_no_reg = -1
117 };
118
119 static const int kNumRegisters = Code::kAfterLast;
120
from_codeRegister121 static Register from_code(int code) {
122 DCHECK(code >= 0);
123 DCHECK(code < kNumRegisters);
124 Register r = {code};
125 return r;
126 }
is_validRegister127 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister128 bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister129 int code() const {
130 DCHECK(is_valid());
131 return reg_code;
132 }
bitRegister133 int bit() const {
134 DCHECK(is_valid());
135 return 1 << reg_code;
136 }
137
is_byte_registerRegister138 bool is_byte_register() const { return reg_code <= 3; }
139
140 // Unfortunately we can't make this private in a struct.
141 int reg_code;
142 };
143
144
145 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
146 GENERAL_REGISTERS(DECLARE_REGISTER)
147 #undef DECLARE_REGISTER
148 const Register no_reg = {Register::kCode_no_reg};
149
150 static const bool kSimpleFPAliasing = true;
151
152 struct XMMRegister {
153 enum Code {
154 #define REGISTER_CODE(R) kCode_##R,
155 DOUBLE_REGISTERS(REGISTER_CODE)
156 #undef REGISTER_CODE
157 kAfterLast,
158 kCode_no_reg = -1
159 };
160
161 static const int kMaxNumRegisters = Code::kAfterLast;
162
from_codeXMMRegister163 static XMMRegister from_code(int code) {
164 XMMRegister result = {code};
165 return result;
166 }
167
is_validXMMRegister168 bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
169
codeXMMRegister170 int code() const {
171 DCHECK(is_valid());
172 return reg_code;
173 }
174
isXMMRegister175 bool is(XMMRegister reg) const { return reg_code == reg.reg_code; }
176
177 int reg_code;
178 };
179
180 typedef XMMRegister FloatRegister;
181
182 typedef XMMRegister DoubleRegister;
183
184 typedef XMMRegister Simd128Register;
185
186 #define DECLARE_REGISTER(R) \
187 const DoubleRegister R = {DoubleRegister::kCode_##R};
188 DOUBLE_REGISTERS(DECLARE_REGISTER)
189 #undef DECLARE_REGISTER
190 const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};
191
192 enum Condition {
193 // any value < 0 is considered no_condition
194 no_condition = -1,
195
196 overflow = 0,
197 no_overflow = 1,
198 below = 2,
199 above_equal = 3,
200 equal = 4,
201 not_equal = 5,
202 below_equal = 6,
203 above = 7,
204 negative = 8,
205 positive = 9,
206 parity_even = 10,
207 parity_odd = 11,
208 less = 12,
209 greater_equal = 13,
210 less_equal = 14,
211 greater = 15,
212
213 // aliases
214 carry = below,
215 not_carry = above_equal,
216 zero = equal,
217 not_zero = not_equal,
218 sign = negative,
219 not_sign = positive
220 };
221
222
223 // Returns the equivalent of !cc.
224 // Negation of the default no_condition (-1) results in a non-default
225 // no_condition value (-2). As long as tests for no_condition check
226 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)227 inline Condition NegateCondition(Condition cc) {
228 return static_cast<Condition>(cc ^ 1);
229 }
230
231
232 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)233 inline Condition CommuteCondition(Condition cc) {
234 switch (cc) {
235 case below:
236 return above;
237 case above:
238 return below;
239 case above_equal:
240 return below_equal;
241 case below_equal:
242 return above_equal;
243 case less:
244 return greater;
245 case greater:
246 return less;
247 case greater_equal:
248 return less_equal;
249 case less_equal:
250 return greater_equal;
251 default:
252 return cc;
253 }
254 }
255
256
257 enum RoundingMode {
258 kRoundToNearest = 0x0,
259 kRoundDown = 0x1,
260 kRoundUp = 0x2,
261 kRoundToZero = 0x3
262 };
263
264
265 // -----------------------------------------------------------------------------
266 // Machine instruction Immediates
267
268 class Immediate BASE_EMBEDDED {
269 public:
270 inline explicit Immediate(int x);
271 inline explicit Immediate(const ExternalReference& ext);
272 inline explicit Immediate(Handle<Object> handle);
273 inline explicit Immediate(Smi* value);
274 inline explicit Immediate(Address addr);
275 inline explicit Immediate(Address x, RelocInfo::Mode rmode);
276
CodeRelativeOffset(Label * label)277 static Immediate CodeRelativeOffset(Label* label) {
278 return Immediate(label);
279 }
280
is_zero()281 bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
is_int8()282 bool is_int8() const {
283 return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
284 }
is_uint8()285 bool is_uint8() const {
286 return v8::internal::is_uint8(x_) && RelocInfo::IsNone(rmode_);
287 }
is_int16()288 bool is_int16() const {
289 return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
290 }
is_uint16()291 bool is_uint16() const {
292 return v8::internal::is_uint16(x_) && RelocInfo::IsNone(rmode_);
293 }
294
295 private:
296 inline explicit Immediate(Label* value);
297
298 int x_;
299 RelocInfo::Mode rmode_;
300
301 friend class Operand;
302 friend class Assembler;
303 friend class MacroAssembler;
304 };
305
306
307 // -----------------------------------------------------------------------------
308 // Machine instruction Operands
309
310 enum ScaleFactor {
311 times_1 = 0,
312 times_2 = 1,
313 times_4 = 2,
314 times_8 = 3,
315 times_int_size = times_4,
316 times_half_pointer_size = times_2,
317 times_pointer_size = times_4,
318 times_twice_pointer_size = times_8
319 };
320
321
322 class Operand BASE_EMBEDDED {
323 public:
324 // reg
325 INLINE(explicit Operand(Register reg));
326
327 // XMM reg
328 INLINE(explicit Operand(XMMRegister xmm_reg));
329
330 // [disp/r]
331 INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
332
333 // [disp/r]
334 INLINE(explicit Operand(Immediate imm));
335
336 // [base + disp/r]
337 explicit Operand(Register base, int32_t disp,
338 RelocInfo::Mode rmode = RelocInfo::NONE32);
339
340 // [base + index*scale + disp/r]
341 explicit Operand(Register base,
342 Register index,
343 ScaleFactor scale,
344 int32_t disp,
345 RelocInfo::Mode rmode = RelocInfo::NONE32);
346
347 // [index*scale + disp/r]
348 explicit Operand(Register index,
349 ScaleFactor scale,
350 int32_t disp,
351 RelocInfo::Mode rmode = RelocInfo::NONE32);
352
JumpTable(Register index,ScaleFactor scale,Label * table)353 static Operand JumpTable(Register index, ScaleFactor scale, Label* table) {
354 return Operand(index, scale, reinterpret_cast<int32_t>(table),
355 RelocInfo::INTERNAL_REFERENCE);
356 }
357
StaticVariable(const ExternalReference & ext)358 static Operand StaticVariable(const ExternalReference& ext) {
359 return Operand(reinterpret_cast<int32_t>(ext.address()),
360 RelocInfo::EXTERNAL_REFERENCE);
361 }
362
StaticArray(Register index,ScaleFactor scale,const ExternalReference & arr)363 static Operand StaticArray(Register index,
364 ScaleFactor scale,
365 const ExternalReference& arr) {
366 return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
367 RelocInfo::EXTERNAL_REFERENCE);
368 }
369
ForCell(Handle<Cell> cell)370 static Operand ForCell(Handle<Cell> cell) {
371 AllowDeferredHandleDereference embedding_raw_address;
372 return Operand(reinterpret_cast<int32_t>(cell.location()),
373 RelocInfo::CELL);
374 }
375
ForRegisterPlusImmediate(Register base,Immediate imm)376 static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
377 return Operand(base, imm.x_, imm.rmode_);
378 }
379
380 // Returns true if this Operand is a wrapper for the specified register.
381 bool is_reg(Register reg) const;
382
383 // Returns true if this Operand is a wrapper for one register.
384 bool is_reg_only() const;
385
386 // Asserts that this Operand is a wrapper for one register and returns the
387 // register.
388 Register reg() const;
389
390 private:
391 // Set the ModRM byte without an encoded 'reg' register. The
392 // register is encoded later as part of the emit_operand operation.
393 inline void set_modrm(int mod, Register rm);
394
395 inline void set_sib(ScaleFactor scale, Register index, Register base);
396 inline void set_disp8(int8_t disp);
397 inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
398
399 byte buf_[6];
400 // The number of bytes in buf_.
401 unsigned int len_;
402 // Only valid if len_ > 4.
403 RelocInfo::Mode rmode_;
404
405 friend class Assembler;
406 friend class MacroAssembler;
407 };
408
409
410 // -----------------------------------------------------------------------------
411 // A Displacement describes the 32bit immediate field of an instruction which
412 // may be used together with a Label in order to refer to a yet unknown code
413 // position. Displacements stored in the instruction stream are used to describe
414 // the instruction and to chain a list of instructions using the same Label.
415 // A Displacement contains 2 different fields:
416 //
417 // next field: position of next displacement in the chain (0 = end of list)
418 // type field: instruction type
419 //
420 // A next value of null (0) indicates the end of a chain (note that there can
421 // be no displacement at position zero, because there is always at least one
422 // instruction byte before the displacement).
423 //
424 // Displacement _data field layout
425 //
426 // |31.....2|1......0|
427 // [ next | type |
428
429 class Displacement BASE_EMBEDDED {
430 public:
431 enum Type { UNCONDITIONAL_JUMP, CODE_RELATIVE, OTHER, CODE_ABSOLUTE };
432
data()433 int data() const { return data_; }
type()434 Type type() const { return TypeField::decode(data_); }
next(Label * L)435 void next(Label* L) const {
436 int n = NextField::decode(data_);
437 n > 0 ? L->link_to(n) : L->Unuse();
438 }
link_to(Label * L)439 void link_to(Label* L) { init(L, type()); }
440
Displacement(int data)441 explicit Displacement(int data) { data_ = data; }
442
Displacement(Label * L,Type type)443 Displacement(Label* L, Type type) { init(L, type); }
444
print()445 void print() {
446 PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
447 NextField::decode(data_));
448 }
449
450 private:
451 int data_;
452
453 class TypeField: public BitField<Type, 0, 2> {};
454 class NextField: public BitField<int, 2, 32-2> {};
455
456 void init(Label* L, Type type);
457 };
458
459
460 class Assembler : public AssemblerBase {
461 private:
462 // We check before assembling an instruction that there is sufficient
463 // space to write an instruction and its relocation information.
464 // The relocation writer's position must be kGap bytes above the end of
465 // the generated instructions. This leaves enough space for the
466 // longest possible ia32 instruction, 15 bytes, and the longest possible
467 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
468 // (There is a 15 byte limit on ia32 instruction length that rules out some
469 // otherwise valid instructions.)
470 // This allows for a single, fast space check per instruction.
471 static const int kGap = 32;
472
473 public:
474 // Create an assembler. Instructions and relocation information are emitted
475 // into a buffer, with the instructions starting from the beginning and the
476 // relocation information starting from the end of the buffer. See CodeDesc
477 // for a detailed comment on the layout (globals.h).
478 //
479 // If the provided buffer is NULL, the assembler allocates and grows its own
480 // buffer, and buffer_size determines the initial buffer size. The buffer is
481 // owned by the assembler and deallocated upon destruction of the assembler.
482 //
483 // If the provided buffer is not NULL, the assembler uses the provided buffer
484 // for code generation and assumes its size to be buffer_size. If the buffer
485 // is too small, a fatal error occurs. No deallocation of the buffer is done
486 // upon destruction of the assembler.
487 // TODO(vitalyr): the assembler does not need an isolate.
488 Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()489 virtual ~Assembler() { }
490
491 // GetCode emits any pending (non-emitted) code and fills the descriptor
492 // desc. GetCode() is idempotent; it returns the same result if no other
493 // Assembler functions are invoked in between GetCode() calls.
494 void GetCode(CodeDesc* desc);
495
496 // Read/Modify the code target in the branch/call instruction at pc.
497 inline static Address target_address_at(Address pc, Address constant_pool);
498 inline static void set_target_address_at(
499 Isolate* isolate, Address pc, Address constant_pool, Address target,
500 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
target_address_at(Address pc,Code * code)501 static inline Address target_address_at(Address pc, Code* code) {
502 Address constant_pool = code ? code->constant_pool() : NULL;
503 return target_address_at(pc, constant_pool);
504 }
505 static inline void set_target_address_at(
506 Isolate* isolate, Address pc, Code* code, Address target,
507 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
508 Address constant_pool = code ? code->constant_pool() : NULL;
509 set_target_address_at(isolate, pc, constant_pool, target);
510 }
511
512 // Return the code target address at a call site from the return address
513 // of that call in the instruction stream.
514 inline static Address target_address_from_return_address(Address pc);
515
516 // This sets the branch destination (which is in the instruction on x86).
517 // This is for calls and branches within generated code.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)518 inline static void deserialization_set_special_target_at(
519 Isolate* isolate, Address instruction_payload, Code* code,
520 Address target) {
521 set_target_address_at(isolate, instruction_payload, code, target);
522 }
523
524 // This sets the internal reference at the pc.
525 inline static void deserialization_set_target_internal_reference_at(
526 Isolate* isolate, Address pc, Address target,
527 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
528
529 static const int kSpecialTargetSize = kPointerSize;
530
531 // Distance between the address of the code target in the call instruction
532 // and the return address
533 static const int kCallTargetAddressOffset = kPointerSize;
534
535 static const int kCallInstructionLength = 5;
536
537 // The debug break slot must be able to contain a call instruction.
538 static const int kDebugBreakSlotLength = kCallInstructionLength;
539
540 // Distance between start of patched debug break slot and the emitted address
541 // to jump to.
542 static const int kPatchDebugBreakSlotAddressOffset = 1; // JMP imm32.
543
544 // One byte opcode for test al, 0xXX.
545 static const byte kTestAlByte = 0xA8;
546 // One byte opcode for nop.
547 static const byte kNopByte = 0x90;
548
549 // One byte opcode for a short unconditional jump.
550 static const byte kJmpShortOpcode = 0xEB;
551 // One byte prefix for a short conditional jump.
552 static const byte kJccShortPrefix = 0x70;
553 static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
554 static const byte kJcShortOpcode = kJccShortPrefix | carry;
555 static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
556 static const byte kJzShortOpcode = kJccShortPrefix | zero;
557
558
559 // ---------------------------------------------------------------------------
560 // Code generation
561 //
562 // - function names correspond one-to-one to ia32 instruction mnemonics
563 // - unless specified otherwise, instructions operate on 32bit operands
564 // - instructions on 8bit (byte) operands/registers have a trailing '_b'
565 // - instructions on 16bit (word) operands/registers have a trailing '_w'
566 // - naming conflicts with C++ keywords are resolved via a trailing '_'
567
568 // NOTE ON INTERFACE: Currently, the interface is not very consistent
569 // in the sense that some operations (e.g. mov()) can be called in more
570 // the one way to generate the same instruction: The Register argument
571 // can in some cases be replaced with an Operand(Register) argument.
572 // This should be cleaned up and made more orthogonal. The questions
573 // is: should we always use Operands instead of Registers where an
574 // Operand is possible, or should we have a Register (overloaded) form
575 // instead? We must be careful to make sure that the selected instruction
576 // is obvious from the parameters to avoid hard-to-find code generation
577 // bugs.
578
579 // Insert the smallest number of nop instructions
580 // possible to align the pc offset to a multiple
581 // of m. m must be a power of 2.
582 void Align(int m);
583 // Insert the smallest number of zero bytes possible to align the pc offset
584 // to a mulitple of m. m must be a power of 2 (>= 2).
585 void DataAlign(int m);
586 void Nop(int bytes = 1);
587 // Aligns code to something that's optimal for a jump target for the platform.
588 void CodeTargetAlign();
589
590 // Stack
591 void pushad();
592 void popad();
593
594 void pushfd();
595 void popfd();
596
597 void push(const Immediate& x);
598 void push_imm32(int32_t imm32);
599 void push(Register src);
600 void push(const Operand& src);
601
602 void pop(Register dst);
603 void pop(const Operand& dst);
604
605 void enter(const Immediate& size);
606 void leave();
607
608 // Moves
mov_b(Register dst,Register src)609 void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
610 void mov_b(Register dst, const Operand& src);
mov_b(Register dst,int8_t imm8)611 void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
mov_b(const Operand & dst,int8_t src)612 void mov_b(const Operand& dst, int8_t src) { mov_b(dst, Immediate(src)); }
613 void mov_b(const Operand& dst, const Immediate& src);
614 void mov_b(const Operand& dst, Register src);
615
616 void mov_w(Register dst, const Operand& src);
mov_w(const Operand & dst,int16_t src)617 void mov_w(const Operand& dst, int16_t src) { mov_w(dst, Immediate(src)); }
618 void mov_w(const Operand& dst, const Immediate& src);
619 void mov_w(const Operand& dst, Register src);
620
621 void mov(Register dst, int32_t imm32);
622 void mov(Register dst, const Immediate& x);
623 void mov(Register dst, Handle<Object> handle);
624 void mov(Register dst, const Operand& src);
625 void mov(Register dst, Register src);
626 void mov(const Operand& dst, const Immediate& x);
627 void mov(const Operand& dst, Handle<Object> handle);
628 void mov(const Operand& dst, Register src);
629
movsx_b(Register dst,Register src)630 void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
631 void movsx_b(Register dst, const Operand& src);
632
movsx_w(Register dst,Register src)633 void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
634 void movsx_w(Register dst, const Operand& src);
635
movzx_b(Register dst,Register src)636 void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
637 void movzx_b(Register dst, const Operand& src);
638
movzx_w(Register dst,Register src)639 void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
640 void movzx_w(Register dst, const Operand& src);
641
642 // Conditional moves
cmov(Condition cc,Register dst,Register src)643 void cmov(Condition cc, Register dst, Register src) {
644 cmov(cc, dst, Operand(src));
645 }
646 void cmov(Condition cc, Register dst, const Operand& src);
647
648 // Flag management.
649 void cld();
650
651 // Repetitive string instructions.
652 void rep_movs();
653 void rep_stos();
654 void stos();
655
656 // Exchange
657 void xchg(Register dst, Register src);
658 void xchg(Register dst, const Operand& src);
659 void xchg_b(Register reg, const Operand& op);
660 void xchg_w(Register reg, const Operand& op);
661
662 // Lock prefix
663 void lock();
664
665 // CompareExchange
666 void cmpxchg(const Operand& dst, Register src);
667 void cmpxchg_b(const Operand& dst, Register src);
668 void cmpxchg_w(const Operand& dst, Register src);
669
670 // Arithmetics
671 void adc(Register dst, int32_t imm32);
672 void adc(Register dst, const Operand& src);
673
add(Register dst,Register src)674 void add(Register dst, Register src) { add(dst, Operand(src)); }
675 void add(Register dst, const Operand& src);
676 void add(const Operand& dst, Register src);
add(Register dst,const Immediate & imm)677 void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
678 void add(const Operand& dst, const Immediate& x);
679
680 void and_(Register dst, int32_t imm32);
681 void and_(Register dst, const Immediate& x);
and_(Register dst,Register src)682 void and_(Register dst, Register src) { and_(dst, Operand(src)); }
683 void and_(Register dst, const Operand& src);
684 void and_(const Operand& dst, Register src);
685 void and_(const Operand& dst, const Immediate& x);
686
cmpb(Register reg,Immediate imm8)687 void cmpb(Register reg, Immediate imm8) { cmpb(Operand(reg), imm8); }
688 void cmpb(const Operand& op, Immediate imm8);
689 void cmpb(Register reg, const Operand& op);
690 void cmpb(const Operand& op, Register reg);
cmpb(Register dst,Register src)691 void cmpb(Register dst, Register src) { cmpb(Operand(dst), src); }
692 void cmpb_al(const Operand& op);
693 void cmpw_ax(const Operand& op);
694 void cmpw(const Operand& dst, Immediate src);
cmpw(Register dst,Immediate src)695 void cmpw(Register dst, Immediate src) { cmpw(Operand(dst), src); }
696 void cmpw(Register dst, const Operand& src);
cmpw(Register dst,Register src)697 void cmpw(Register dst, Register src) { cmpw(Operand(dst), src); }
698 void cmpw(const Operand& dst, Register src);
699 void cmp(Register reg, int32_t imm32);
700 void cmp(Register reg, Handle<Object> handle);
cmp(Register reg0,Register reg1)701 void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
702 void cmp(Register reg, const Operand& op);
cmp(Register reg,const Immediate & imm)703 void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
704 void cmp(const Operand& op, Register reg);
705 void cmp(const Operand& op, const Immediate& imm);
706 void cmp(const Operand& op, Handle<Object> handle);
707
708 void dec_b(Register dst);
709 void dec_b(const Operand& dst);
710
711 void dec(Register dst);
712 void dec(const Operand& dst);
713
714 void cdq();
715
idiv(Register src)716 void idiv(Register src) { idiv(Operand(src)); }
717 void idiv(const Operand& src);
div(Register src)718 void div(Register src) { div(Operand(src)); }
719 void div(const Operand& src);
720
721 // Signed multiply instructions.
722 void imul(Register src); // edx:eax = eax * src.
imul(Register dst,Register src)723 void imul(Register dst, Register src) { imul(dst, Operand(src)); }
724 void imul(Register dst, const Operand& src); // dst = dst * src.
725 void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32.
726 void imul(Register dst, const Operand& src, int32_t imm32);
727
728 void inc(Register dst);
729 void inc(const Operand& dst);
730
731 void lea(Register dst, const Operand& src);
732
733 // Unsigned multiply instruction.
734 void mul(Register src); // edx:eax = eax * reg.
735
736 void neg(Register dst);
737 void neg(const Operand& dst);
738
739 void not_(Register dst);
740 void not_(const Operand& dst);
741
742 void or_(Register dst, int32_t imm32);
or_(Register dst,Register src)743 void or_(Register dst, Register src) { or_(dst, Operand(src)); }
744 void or_(Register dst, const Operand& src);
745 void or_(const Operand& dst, Register src);
or_(Register dst,const Immediate & imm)746 void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
747 void or_(const Operand& dst, const Immediate& x);
748
749 void rcl(Register dst, uint8_t imm8);
750 void rcr(Register dst, uint8_t imm8);
751
ror(Register dst,uint8_t imm8)752 void ror(Register dst, uint8_t imm8) { ror(Operand(dst), imm8); }
753 void ror(const Operand& dst, uint8_t imm8);
ror_cl(Register dst)754 void ror_cl(Register dst) { ror_cl(Operand(dst)); }
755 void ror_cl(const Operand& dst);
756
sar(Register dst,uint8_t imm8)757 void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
758 void sar(const Operand& dst, uint8_t imm8);
sar_cl(Register dst)759 void sar_cl(Register dst) { sar_cl(Operand(dst)); }
760 void sar_cl(const Operand& dst);
761
762 void sbb(Register dst, const Operand& src);
763
shl(Register dst,uint8_t imm8)764 void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
765 void shl(const Operand& dst, uint8_t imm8);
shl_cl(Register dst)766 void shl_cl(Register dst) { shl_cl(Operand(dst)); }
767 void shl_cl(const Operand& dst);
768 void shld(Register dst, Register src, uint8_t shift);
769 void shld_cl(Register dst, Register src);
770
shr(Register dst,uint8_t imm8)771 void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
772 void shr(const Operand& dst, uint8_t imm8);
shr_cl(Register dst)773 void shr_cl(Register dst) { shr_cl(Operand(dst)); }
774 void shr_cl(const Operand& dst);
775 void shrd(Register dst, Register src, uint8_t shift);
shrd_cl(Register dst,Register src)776 void shrd_cl(Register dst, Register src) { shrd_cl(Operand(dst), src); }
777 void shrd_cl(const Operand& dst, Register src);
778
sub(Register dst,const Immediate & imm)779 void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
780 void sub(const Operand& dst, const Immediate& x);
sub(Register dst,Register src)781 void sub(Register dst, Register src) { sub(dst, Operand(src)); }
782 void sub(Register dst, const Operand& src);
783 void sub(const Operand& dst, Register src);
784
785 void test(Register reg, const Immediate& imm);
test(Register reg0,Register reg1)786 void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
787 void test(Register reg, const Operand& op);
788 void test(const Operand& op, const Immediate& imm);
test(const Operand & op,Register reg)789 void test(const Operand& op, Register reg) { test(reg, op); }
790 void test_b(Register reg, const Operand& op);
791 void test_b(Register reg, Immediate imm8);
792 void test_b(const Operand& op, Immediate imm8);
test_b(const Operand & op,Register reg)793 void test_b(const Operand& op, Register reg) { test_b(reg, op); }
test_b(Register dst,Register src)794 void test_b(Register dst, Register src) { test_b(dst, Operand(src)); }
795 void test_w(Register reg, const Operand& op);
796 void test_w(Register reg, Immediate imm16);
797 void test_w(const Operand& op, Immediate imm16);
test_w(const Operand & op,Register reg)798 void test_w(const Operand& op, Register reg) { test_w(reg, op); }
test_w(Register dst,Register src)799 void test_w(Register dst, Register src) { test_w(dst, Operand(src)); }
800
801 void xor_(Register dst, int32_t imm32);
xor_(Register dst,Register src)802 void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
803 void xor_(Register dst, const Operand& src);
804 void xor_(const Operand& dst, Register src);
xor_(Register dst,const Immediate & imm)805 void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
806 void xor_(const Operand& dst, const Immediate& x);
807
808 // Bit operations.
809 void bt(const Operand& dst, Register src);
bts(Register dst,Register src)810 void bts(Register dst, Register src) { bts(Operand(dst), src); }
811 void bts(const Operand& dst, Register src);
bsr(Register dst,Register src)812 void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
813 void bsr(Register dst, const Operand& src);
bsf(Register dst,Register src)814 void bsf(Register dst, Register src) { bsf(dst, Operand(src)); }
815 void bsf(Register dst, const Operand& src);
816
817 // Miscellaneous
818 void hlt();
819 void int3();
820 void nop();
821 void ret(int imm16);
822 void ud2();
823
824 // Label operations & relative jumps (PPUM Appendix D)
825 //
826 // Takes a branch opcode (cc) and a label (L) and generates
827 // either a backward branch or a forward branch and links it
828 // to the label fixup chain. Usage:
829 //
830 // Label L; // unbound label
831 // j(cc, &L); // forward branch to unbound label
832 // bind(&L); // bind label to the current pc
833 // j(cc, &L); // backward branch to bound label
834 // bind(&L); // illegal: a label may be bound only once
835 //
836 // Note: The same Label can be used for forward and backward branches
837 // but it may be bound only once.
838
839 void bind(Label* L); // binds an unbound label L to the current code position
840
841 // Calls
842 void call(Label* L);
843 void call(byte* entry, RelocInfo::Mode rmode);
844 int CallSize(const Operand& adr);
call(Register reg)845 void call(Register reg) { call(Operand(reg)); }
846 void call(const Operand& adr);
847 int CallSize(Handle<Code> code, RelocInfo::Mode mode);
848 void call(Handle<Code> code,
849 RelocInfo::Mode rmode,
850 TypeFeedbackId id = TypeFeedbackId::None());
851
852 // Jumps
853 // unconditional jump to L
854 void jmp(Label* L, Label::Distance distance = Label::kFar);
855 void jmp(byte* entry, RelocInfo::Mode rmode);
jmp(Register reg)856 void jmp(Register reg) { jmp(Operand(reg)); }
857 void jmp(const Operand& adr);
858 void jmp(Handle<Code> code, RelocInfo::Mode rmode);
859
860 // Conditional jumps
861 void j(Condition cc,
862 Label* L,
863 Label::Distance distance = Label::kFar);
864 void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
865 void j(Condition cc, Handle<Code> code,
866 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
867
868 // Floating-point operations
869 void fld(int i);
870 void fstp(int i);
871
872 void fld1();
873 void fldz();
874 void fldpi();
875 void fldln2();
876
877 void fld_s(const Operand& adr);
878 void fld_d(const Operand& adr);
879
880 void fstp_s(const Operand& adr);
881 void fst_s(const Operand& adr);
882 void fstp_d(const Operand& adr);
883 void fst_d(const Operand& adr);
884
885 void fild_s(const Operand& adr);
886 void fild_d(const Operand& adr);
887
888 void fist_s(const Operand& adr);
889
890 void fistp_s(const Operand& adr);
891 void fistp_d(const Operand& adr);
892
893 // The fisttp instructions require SSE3.
894 void fisttp_s(const Operand& adr);
895 void fisttp_d(const Operand& adr);
896
897 void fabs();
898 void fchs();
899 void fcos();
900 void fsin();
901 void fptan();
902 void fyl2x();
903 void f2xm1();
904 void fscale();
905 void fninit();
906
907 void fadd(int i);
908 void fadd_i(int i);
909 void fsub(int i);
910 void fsub_i(int i);
911 void fmul(int i);
912 void fmul_i(int i);
913 void fdiv(int i);
914 void fdiv_i(int i);
915
916 void fisub_s(const Operand& adr);
917
918 void faddp(int i = 1);
919 void fsubp(int i = 1);
920 void fsubrp(int i = 1);
921 void fmulp(int i = 1);
922 void fdivp(int i = 1);
923 void fprem();
924 void fprem1();
925
926 void fxch(int i = 1);
927 void fincstp();
928 void ffree(int i = 0);
929
930 void ftst();
931 void fucomp(int i);
932 void fucompp();
933 void fucomi(int i);
934 void fucomip();
935 void fcompp();
936 void fnstsw_ax();
937 void fwait();
938 void fnclex();
939
940 void frndint();
941
942 void sahf();
943 void setcc(Condition cc, Register reg);
944
945 void cpuid();
946
947 // SSE instructions
addss(XMMRegister dst,XMMRegister src)948 void addss(XMMRegister dst, XMMRegister src) { addss(dst, Operand(src)); }
949 void addss(XMMRegister dst, const Operand& src);
subss(XMMRegister dst,XMMRegister src)950 void subss(XMMRegister dst, XMMRegister src) { subss(dst, Operand(src)); }
951 void subss(XMMRegister dst, const Operand& src);
mulss(XMMRegister dst,XMMRegister src)952 void mulss(XMMRegister dst, XMMRegister src) { mulss(dst, Operand(src)); }
953 void mulss(XMMRegister dst, const Operand& src);
divss(XMMRegister dst,XMMRegister src)954 void divss(XMMRegister dst, XMMRegister src) { divss(dst, Operand(src)); }
955 void divss(XMMRegister dst, const Operand& src);
sqrtss(XMMRegister dst,XMMRegister src)956 void sqrtss(XMMRegister dst, XMMRegister src) { sqrtss(dst, Operand(src)); }
957 void sqrtss(XMMRegister dst, const Operand& src);
958
ucomiss(XMMRegister dst,XMMRegister src)959 void ucomiss(XMMRegister dst, XMMRegister src) { ucomiss(dst, Operand(src)); }
960 void ucomiss(XMMRegister dst, const Operand& src);
961 void movaps(XMMRegister dst, XMMRegister src);
962 void movups(XMMRegister dst, XMMRegister src);
963 void movups(XMMRegister dst, const Operand& src);
964 void movups(const Operand& dst, XMMRegister src);
965 void shufps(XMMRegister dst, XMMRegister src, byte imm8);
966
maxss(XMMRegister dst,XMMRegister src)967 void maxss(XMMRegister dst, XMMRegister src) { maxss(dst, Operand(src)); }
968 void maxss(XMMRegister dst, const Operand& src);
minss(XMMRegister dst,XMMRegister src)969 void minss(XMMRegister dst, XMMRegister src) { minss(dst, Operand(src)); }
970 void minss(XMMRegister dst, const Operand& src);
971
972 void andps(XMMRegister dst, const Operand& src);
andps(XMMRegister dst,XMMRegister src)973 void andps(XMMRegister dst, XMMRegister src) { andps(dst, Operand(src)); }
974 void xorps(XMMRegister dst, const Operand& src);
xorps(XMMRegister dst,XMMRegister src)975 void xorps(XMMRegister dst, XMMRegister src) { xorps(dst, Operand(src)); }
976 void orps(XMMRegister dst, const Operand& src);
orps(XMMRegister dst,XMMRegister src)977 void orps(XMMRegister dst, XMMRegister src) { orps(dst, Operand(src)); }
978
979 void addps(XMMRegister dst, const Operand& src);
addps(XMMRegister dst,XMMRegister src)980 void addps(XMMRegister dst, XMMRegister src) { addps(dst, Operand(src)); }
981 void subps(XMMRegister dst, const Operand& src);
subps(XMMRegister dst,XMMRegister src)982 void subps(XMMRegister dst, XMMRegister src) { subps(dst, Operand(src)); }
983 void mulps(XMMRegister dst, const Operand& src);
mulps(XMMRegister dst,XMMRegister src)984 void mulps(XMMRegister dst, XMMRegister src) { mulps(dst, Operand(src)); }
985 void divps(XMMRegister dst, const Operand& src);
divps(XMMRegister dst,XMMRegister src)986 void divps(XMMRegister dst, XMMRegister src) { divps(dst, Operand(src)); }
987
988 // SSE2 instructions
989 void cvttss2si(Register dst, const Operand& src);
cvttss2si(Register dst,XMMRegister src)990 void cvttss2si(Register dst, XMMRegister src) {
991 cvttss2si(dst, Operand(src));
992 }
993 void cvttsd2si(Register dst, const Operand& src);
cvttsd2si(Register dst,XMMRegister src)994 void cvttsd2si(Register dst, XMMRegister src) {
995 cvttsd2si(dst, Operand(src));
996 }
997 void cvtsd2si(Register dst, XMMRegister src);
998
cvtsi2ss(XMMRegister dst,Register src)999 void cvtsi2ss(XMMRegister dst, Register src) { cvtsi2ss(dst, Operand(src)); }
1000 void cvtsi2ss(XMMRegister dst, const Operand& src);
cvtsi2sd(XMMRegister dst,Register src)1001 void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); }
1002 void cvtsi2sd(XMMRegister dst, const Operand& src);
1003 void cvtss2sd(XMMRegister dst, const Operand& src);
cvtss2sd(XMMRegister dst,XMMRegister src)1004 void cvtss2sd(XMMRegister dst, XMMRegister src) {
1005 cvtss2sd(dst, Operand(src));
1006 }
1007 void cvtsd2ss(XMMRegister dst, const Operand& src);
cvtsd2ss(XMMRegister dst,XMMRegister src)1008 void cvtsd2ss(XMMRegister dst, XMMRegister src) {
1009 cvtsd2ss(dst, Operand(src));
1010 }
addsd(XMMRegister dst,XMMRegister src)1011 void addsd(XMMRegister dst, XMMRegister src) { addsd(dst, Operand(src)); }
1012 void addsd(XMMRegister dst, const Operand& src);
subsd(XMMRegister dst,XMMRegister src)1013 void subsd(XMMRegister dst, XMMRegister src) { subsd(dst, Operand(src)); }
1014 void subsd(XMMRegister dst, const Operand& src);
mulsd(XMMRegister dst,XMMRegister src)1015 void mulsd(XMMRegister dst, XMMRegister src) { mulsd(dst, Operand(src)); }
1016 void mulsd(XMMRegister dst, const Operand& src);
divsd(XMMRegister dst,XMMRegister src)1017 void divsd(XMMRegister dst, XMMRegister src) { divsd(dst, Operand(src)); }
1018 void divsd(XMMRegister dst, const Operand& src);
1019 void xorpd(XMMRegister dst, XMMRegister src);
sqrtsd(XMMRegister dst,XMMRegister src)1020 void sqrtsd(XMMRegister dst, XMMRegister src) { sqrtsd(dst, Operand(src)); }
1021 void sqrtsd(XMMRegister dst, const Operand& src);
1022
1023 void andpd(XMMRegister dst, XMMRegister src);
1024 void orpd(XMMRegister dst, XMMRegister src);
1025
ucomisd(XMMRegister dst,XMMRegister src)1026 void ucomisd(XMMRegister dst, XMMRegister src) { ucomisd(dst, Operand(src)); }
1027 void ucomisd(XMMRegister dst, const Operand& src);
1028
1029 void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
1030 void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
1031
1032 void movmskpd(Register dst, XMMRegister src);
1033 void movmskps(Register dst, XMMRegister src);
1034
1035 void cmpltsd(XMMRegister dst, XMMRegister src);
1036 void pcmpeqd(XMMRegister dst, XMMRegister src);
1037
1038 void punpckldq(XMMRegister dst, XMMRegister src);
1039 void punpckhdq(XMMRegister dst, XMMRegister src);
1040
maxsd(XMMRegister dst,XMMRegister src)1041 void maxsd(XMMRegister dst, XMMRegister src) { maxsd(dst, Operand(src)); }
1042 void maxsd(XMMRegister dst, const Operand& src);
minsd(XMMRegister dst,XMMRegister src)1043 void minsd(XMMRegister dst, XMMRegister src) { minsd(dst, Operand(src)); }
1044 void minsd(XMMRegister dst, const Operand& src);
1045
1046 void movdqa(XMMRegister dst, const Operand& src);
1047 void movdqa(const Operand& dst, XMMRegister src);
1048 void movdqu(XMMRegister dst, const Operand& src);
1049 void movdqu(const Operand& dst, XMMRegister src);
movdq(bool aligned,XMMRegister dst,const Operand & src)1050 void movdq(bool aligned, XMMRegister dst, const Operand& src) {
1051 if (aligned) {
1052 movdqa(dst, src);
1053 } else {
1054 movdqu(dst, src);
1055 }
1056 }
1057
movd(XMMRegister dst,Register src)1058 void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); }
1059 void movd(XMMRegister dst, const Operand& src);
movd(Register dst,XMMRegister src)1060 void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
1061 void movd(const Operand& dst, XMMRegister src);
movsd(XMMRegister dst,XMMRegister src)1062 void movsd(XMMRegister dst, XMMRegister src) { movsd(dst, Operand(src)); }
1063 void movsd(XMMRegister dst, const Operand& src);
1064 void movsd(const Operand& dst, XMMRegister src);
1065
1066
1067 void movss(XMMRegister dst, const Operand& src);
1068 void movss(const Operand& dst, XMMRegister src);
movss(XMMRegister dst,XMMRegister src)1069 void movss(XMMRegister dst, XMMRegister src) { movss(dst, Operand(src)); }
1070 void extractps(Register dst, XMMRegister src, byte imm8);
1071
1072 void pand(XMMRegister dst, XMMRegister src);
1073 void pxor(XMMRegister dst, XMMRegister src);
1074 void por(XMMRegister dst, XMMRegister src);
1075 void ptest(XMMRegister dst, XMMRegister src);
1076
1077 void pslld(XMMRegister reg, int8_t shift);
1078 void psrld(XMMRegister reg, int8_t shift);
1079 void psllq(XMMRegister reg, int8_t shift);
1080 void psllq(XMMRegister dst, XMMRegister src);
1081 void psrlq(XMMRegister reg, int8_t shift);
1082 void psrlq(XMMRegister dst, XMMRegister src);
1083 void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
pextrd(Register dst,XMMRegister src,int8_t offset)1084 void pextrd(Register dst, XMMRegister src, int8_t offset) {
1085 pextrd(Operand(dst), src, offset);
1086 }
1087 void pextrd(const Operand& dst, XMMRegister src, int8_t offset);
pinsrd(XMMRegister dst,Register src,int8_t offset)1088 void pinsrd(XMMRegister dst, Register src, int8_t offset) {
1089 pinsrd(dst, Operand(src), offset);
1090 }
1091 void pinsrd(XMMRegister dst, const Operand& src, int8_t offset);
1092
1093 // AVX instructions
vfmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1094 void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1095 vfmadd132sd(dst, src1, Operand(src2));
1096 }
vfmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1097 void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1098 vfmadd213sd(dst, src1, Operand(src2));
1099 }
vfmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1100 void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1101 vfmadd231sd(dst, src1, Operand(src2));
1102 }
vfmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1103 void vfmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1104 vfmasd(0x99, dst, src1, src2);
1105 }
vfmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1106 void vfmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1107 vfmasd(0xa9, dst, src1, src2);
1108 }
vfmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1109 void vfmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1110 vfmasd(0xb9, dst, src1, src2);
1111 }
vfmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1112 void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1113 vfmsub132sd(dst, src1, Operand(src2));
1114 }
vfmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1115 void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1116 vfmsub213sd(dst, src1, Operand(src2));
1117 }
vfmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1118 void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1119 vfmsub231sd(dst, src1, Operand(src2));
1120 }
vfmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1121 void vfmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1122 vfmasd(0x9b, dst, src1, src2);
1123 }
vfmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1124 void vfmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1125 vfmasd(0xab, dst, src1, src2);
1126 }
vfmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1127 void vfmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1128 vfmasd(0xbb, dst, src1, src2);
1129 }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1130 void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1131 vfnmadd132sd(dst, src1, Operand(src2));
1132 }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1133 void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1134 vfnmadd213sd(dst, src1, Operand(src2));
1135 }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1136 void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1137 vfnmadd231sd(dst, src1, Operand(src2));
1138 }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1139 void vfnmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1140 vfmasd(0x9d, dst, src1, src2);
1141 }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1142 void vfnmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1143 vfmasd(0xad, dst, src1, src2);
1144 }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1145 void vfnmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1146 vfmasd(0xbd, dst, src1, src2);
1147 }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1148 void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1149 vfnmsub132sd(dst, src1, Operand(src2));
1150 }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1151 void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1152 vfnmsub213sd(dst, src1, Operand(src2));
1153 }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1154 void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1155 vfnmsub231sd(dst, src1, Operand(src2));
1156 }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1157 void vfnmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1158 vfmasd(0x9f, dst, src1, src2);
1159 }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1160 void vfnmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1161 vfmasd(0xaf, dst, src1, src2);
1162 }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1163 void vfnmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1164 vfmasd(0xbf, dst, src1, src2);
1165 }
1166 void vfmasd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1167
vfmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1168 void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1169 vfmadd132ss(dst, src1, Operand(src2));
1170 }
vfmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1171 void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1172 vfmadd213ss(dst, src1, Operand(src2));
1173 }
vfmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1174 void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1175 vfmadd231ss(dst, src1, Operand(src2));
1176 }
vfmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1177 void vfmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1178 vfmass(0x99, dst, src1, src2);
1179 }
vfmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1180 void vfmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1181 vfmass(0xa9, dst, src1, src2);
1182 }
vfmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1183 void vfmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1184 vfmass(0xb9, dst, src1, src2);
1185 }
vfmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1186 void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1187 vfmsub132ss(dst, src1, Operand(src2));
1188 }
vfmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1189 void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1190 vfmsub213ss(dst, src1, Operand(src2));
1191 }
vfmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1192 void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1193 vfmsub231ss(dst, src1, Operand(src2));
1194 }
vfmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1195 void vfmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1196 vfmass(0x9b, dst, src1, src2);
1197 }
vfmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1198 void vfmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1199 vfmass(0xab, dst, src1, src2);
1200 }
vfmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1201 void vfmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1202 vfmass(0xbb, dst, src1, src2);
1203 }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1204 void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1205 vfnmadd132ss(dst, src1, Operand(src2));
1206 }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1207 void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1208 vfnmadd213ss(dst, src1, Operand(src2));
1209 }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1210 void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1211 vfnmadd231ss(dst, src1, Operand(src2));
1212 }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1213 void vfnmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1214 vfmass(0x9d, dst, src1, src2);
1215 }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1216 void vfnmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1217 vfmass(0xad, dst, src1, src2);
1218 }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1219 void vfnmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1220 vfmass(0xbd, dst, src1, src2);
1221 }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1222 void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1223 vfnmsub132ss(dst, src1, Operand(src2));
1224 }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1225 void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1226 vfnmsub213ss(dst, src1, Operand(src2));
1227 }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1228 void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1229 vfnmsub231ss(dst, src1, Operand(src2));
1230 }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1231 void vfnmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1232 vfmass(0x9f, dst, src1, src2);
1233 }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1234 void vfnmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1235 vfmass(0xaf, dst, src1, src2);
1236 }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1237 void vfnmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1238 vfmass(0xbf, dst, src1, src2);
1239 }
1240 void vfmass(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1241
vaddsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1242 void vaddsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1243 vaddsd(dst, src1, Operand(src2));
1244 }
vaddsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1245 void vaddsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1246 vsd(0x58, dst, src1, src2);
1247 }
vsubsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1248 void vsubsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1249 vsubsd(dst, src1, Operand(src2));
1250 }
vsubsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1251 void vsubsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1252 vsd(0x5c, dst, src1, src2);
1253 }
vmulsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1254 void vmulsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1255 vmulsd(dst, src1, Operand(src2));
1256 }
vmulsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1257 void vmulsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1258 vsd(0x59, dst, src1, src2);
1259 }
vdivsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1260 void vdivsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1261 vdivsd(dst, src1, Operand(src2));
1262 }
vdivsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1263 void vdivsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1264 vsd(0x5e, dst, src1, src2);
1265 }
vmaxsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1266 void vmaxsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1267 vmaxsd(dst, src1, Operand(src2));
1268 }
vmaxsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1269 void vmaxsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1270 vsd(0x5f, dst, src1, src2);
1271 }
vminsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1272 void vminsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1273 vminsd(dst, src1, Operand(src2));
1274 }
vminsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1275 void vminsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1276 vsd(0x5d, dst, src1, src2);
1277 }
1278 void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1279
vaddss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1280 void vaddss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1281 vaddss(dst, src1, Operand(src2));
1282 }
vaddss(XMMRegister dst,XMMRegister src1,const Operand & src2)1283 void vaddss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1284 vss(0x58, dst, src1, src2);
1285 }
vsubss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1286 void vsubss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1287 vsubss(dst, src1, Operand(src2));
1288 }
vsubss(XMMRegister dst,XMMRegister src1,const Operand & src2)1289 void vsubss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1290 vss(0x5c, dst, src1, src2);
1291 }
vmulss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1292 void vmulss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1293 vmulss(dst, src1, Operand(src2));
1294 }
vmulss(XMMRegister dst,XMMRegister src1,const Operand & src2)1295 void vmulss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1296 vss(0x59, dst, src1, src2);
1297 }
vdivss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1298 void vdivss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1299 vdivss(dst, src1, Operand(src2));
1300 }
vdivss(XMMRegister dst,XMMRegister src1,const Operand & src2)1301 void vdivss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1302 vss(0x5e, dst, src1, src2);
1303 }
vmaxss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1304 void vmaxss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1305 vmaxss(dst, src1, Operand(src2));
1306 }
vmaxss(XMMRegister dst,XMMRegister src1,const Operand & src2)1307 void vmaxss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1308 vss(0x5f, dst, src1, src2);
1309 }
vminss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1310 void vminss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1311 vminss(dst, src1, Operand(src2));
1312 }
vminss(XMMRegister dst,XMMRegister src1,const Operand & src2)1313 void vminss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1314 vss(0x5d, dst, src1, src2);
1315 }
1316 void vss(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1317
1318 // BMI instruction
andn(Register dst,Register src1,Register src2)1319 void andn(Register dst, Register src1, Register src2) {
1320 andn(dst, src1, Operand(src2));
1321 }
andn(Register dst,Register src1,const Operand & src2)1322 void andn(Register dst, Register src1, const Operand& src2) {
1323 bmi1(0xf2, dst, src1, src2);
1324 }
bextr(Register dst,Register src1,Register src2)1325 void bextr(Register dst, Register src1, Register src2) {
1326 bextr(dst, Operand(src1), src2);
1327 }
bextr(Register dst,const Operand & src1,Register src2)1328 void bextr(Register dst, const Operand& src1, Register src2) {
1329 bmi1(0xf7, dst, src2, src1);
1330 }
blsi(Register dst,Register src)1331 void blsi(Register dst, Register src) { blsi(dst, Operand(src)); }
blsi(Register dst,const Operand & src)1332 void blsi(Register dst, const Operand& src) {
1333 Register ireg = {3};
1334 bmi1(0xf3, ireg, dst, src);
1335 }
blsmsk(Register dst,Register src)1336 void blsmsk(Register dst, Register src) { blsmsk(dst, Operand(src)); }
blsmsk(Register dst,const Operand & src)1337 void blsmsk(Register dst, const Operand& src) {
1338 Register ireg = {2};
1339 bmi1(0xf3, ireg, dst, src);
1340 }
blsr(Register dst,Register src)1341 void blsr(Register dst, Register src) { blsr(dst, Operand(src)); }
blsr(Register dst,const Operand & src)1342 void blsr(Register dst, const Operand& src) {
1343 Register ireg = {1};
1344 bmi1(0xf3, ireg, dst, src);
1345 }
tzcnt(Register dst,Register src)1346 void tzcnt(Register dst, Register src) { tzcnt(dst, Operand(src)); }
1347 void tzcnt(Register dst, const Operand& src);
1348
lzcnt(Register dst,Register src)1349 void lzcnt(Register dst, Register src) { lzcnt(dst, Operand(src)); }
1350 void lzcnt(Register dst, const Operand& src);
1351
popcnt(Register dst,Register src)1352 void popcnt(Register dst, Register src) { popcnt(dst, Operand(src)); }
1353 void popcnt(Register dst, const Operand& src);
1354
bzhi(Register dst,Register src1,Register src2)1355 void bzhi(Register dst, Register src1, Register src2) {
1356 bzhi(dst, Operand(src1), src2);
1357 }
bzhi(Register dst,const Operand & src1,Register src2)1358 void bzhi(Register dst, const Operand& src1, Register src2) {
1359 bmi2(kNone, 0xf5, dst, src2, src1);
1360 }
mulx(Register dst1,Register dst2,Register src)1361 void mulx(Register dst1, Register dst2, Register src) {
1362 mulx(dst1, dst2, Operand(src));
1363 }
mulx(Register dst1,Register dst2,const Operand & src)1364 void mulx(Register dst1, Register dst2, const Operand& src) {
1365 bmi2(kF2, 0xf6, dst1, dst2, src);
1366 }
pdep(Register dst,Register src1,Register src2)1367 void pdep(Register dst, Register src1, Register src2) {
1368 pdep(dst, src1, Operand(src2));
1369 }
pdep(Register dst,Register src1,const Operand & src2)1370 void pdep(Register dst, Register src1, const Operand& src2) {
1371 bmi2(kF2, 0xf5, dst, src1, src2);
1372 }
pext(Register dst,Register src1,Register src2)1373 void pext(Register dst, Register src1, Register src2) {
1374 pext(dst, src1, Operand(src2));
1375 }
pext(Register dst,Register src1,const Operand & src2)1376 void pext(Register dst, Register src1, const Operand& src2) {
1377 bmi2(kF3, 0xf5, dst, src1, src2);
1378 }
sarx(Register dst,Register src1,Register src2)1379 void sarx(Register dst, Register src1, Register src2) {
1380 sarx(dst, Operand(src1), src2);
1381 }
sarx(Register dst,const Operand & src1,Register src2)1382 void sarx(Register dst, const Operand& src1, Register src2) {
1383 bmi2(kF3, 0xf7, dst, src2, src1);
1384 }
shlx(Register dst,Register src1,Register src2)1385 void shlx(Register dst, Register src1, Register src2) {
1386 shlx(dst, Operand(src1), src2);
1387 }
shlx(Register dst,const Operand & src1,Register src2)1388 void shlx(Register dst, const Operand& src1, Register src2) {
1389 bmi2(k66, 0xf7, dst, src2, src1);
1390 }
shrx(Register dst,Register src1,Register src2)1391 void shrx(Register dst, Register src1, Register src2) {
1392 shrx(dst, Operand(src1), src2);
1393 }
shrx(Register dst,const Operand & src1,Register src2)1394 void shrx(Register dst, const Operand& src1, Register src2) {
1395 bmi2(kF2, 0xf7, dst, src2, src1);
1396 }
rorx(Register dst,Register src,byte imm8)1397 void rorx(Register dst, Register src, byte imm8) {
1398 rorx(dst, Operand(src), imm8);
1399 }
1400 void rorx(Register dst, const Operand& src, byte imm8);
1401
1402 #define PACKED_OP_LIST(V) \
1403 V(and, 0x54) \
1404 V(xor, 0x57)
1405
1406 #define AVX_PACKED_OP_DECLARE(name, opcode) \
1407 void v##name##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
1408 vps(opcode, dst, src1, Operand(src2)); \
1409 } \
1410 void v##name##ps(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1411 vps(opcode, dst, src1, src2); \
1412 } \
1413 void v##name##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
1414 vpd(opcode, dst, src1, Operand(src2)); \
1415 } \
1416 void v##name##pd(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1417 vpd(opcode, dst, src1, src2); \
1418 }
1419
1420 PACKED_OP_LIST(AVX_PACKED_OP_DECLARE);
1421 void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1422 void vps(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1423 void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1424 void vpd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1425
1426 // Prefetch src position into cache level.
1427 // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
1428 // non-temporal
1429 void prefetch(const Operand& src, int level);
1430 // TODO(lrn): Need SFENCE for movnt?
1431
1432 // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1433 int SizeOfCodeGeneratedSince(Label* label) {
1434 return pc_offset() - label->pos();
1435 }
1436
1437 // Mark generator continuation.
1438 void RecordGeneratorContinuation();
1439
1440 // Mark address of a debug break slot.
1441 void RecordDebugBreakSlot(RelocInfo::Mode mode);
1442
1443 // Record a comment relocation entry that can be used by a disassembler.
1444 // Use --code-comments to enable.
1445 void RecordComment(const char* msg);
1446
1447 // Record a deoptimization reason that can be used by a log or cpu profiler.
1448 // Use --trace-deopt to enable.
1449 void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
1450 int id);
1451
1452 // Writes a single byte or word of data in the code stream. Used for
1453 // inline tables, e.g., jump-tables.
1454 void db(uint8_t data);
1455 void dd(uint32_t data);
1456 void dq(uint64_t data);
dp(uintptr_t data)1457 void dp(uintptr_t data) { dd(data); }
1458 void dd(Label* label);
1459
1460 // Check if there is less than kGap bytes available in the buffer.
1461 // If this is the case, we need to grow the buffer before emitting
1462 // an instruction or relocation information.
buffer_overflow()1463 inline bool buffer_overflow() const {
1464 return pc_ >= reloc_info_writer.pos() - kGap;
1465 }
1466
1467 // Get the number of bytes available in the buffer.
available_space()1468 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1469
1470 static bool IsNop(Address addr);
1471
relocation_writer_size()1472 int relocation_writer_size() {
1473 return (buffer_ + buffer_size_) - reloc_info_writer.pos();
1474 }
1475
1476 // Avoid overflows for displacements etc.
1477 static const int kMaximalBufferSize = 512*MB;
1478
byte_at(int pos)1479 byte byte_at(int pos) { return buffer_[pos]; }
set_byte_at(int pos,byte value)1480 void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
1481
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1482 void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1483 ConstantPoolEntry::Access access,
1484 ConstantPoolEntry::Type type) {
1485 // No embedded constant pool support.
1486 UNREACHABLE();
1487 }
1488
1489 protected:
1490 void emit_sse_operand(XMMRegister reg, const Operand& adr);
1491 void emit_sse_operand(XMMRegister dst, XMMRegister src);
1492 void emit_sse_operand(Register dst, XMMRegister src);
1493 void emit_sse_operand(XMMRegister dst, Register src);
1494
addr_at(int pos)1495 byte* addr_at(int pos) { return buffer_ + pos; }
1496
1497
1498 private:
long_at(int pos)1499 uint32_t long_at(int pos) {
1500 return *reinterpret_cast<uint32_t*>(addr_at(pos));
1501 }
long_at_put(int pos,uint32_t x)1502 void long_at_put(int pos, uint32_t x) {
1503 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1504 }
1505
1506 // code emission
1507 void GrowBuffer();
1508 inline void emit(uint32_t x);
1509 inline void emit(Handle<Object> handle);
1510 inline void emit(uint32_t x,
1511 RelocInfo::Mode rmode,
1512 TypeFeedbackId id = TypeFeedbackId::None());
1513 inline void emit(Handle<Code> code,
1514 RelocInfo::Mode rmode,
1515 TypeFeedbackId id = TypeFeedbackId::None());
1516 inline void emit(const Immediate& x);
1517 inline void emit_b(Immediate x);
1518 inline void emit_w(const Immediate& x);
1519 inline void emit_q(uint64_t x);
1520
1521 // Emit the code-object-relative offset of the label's position
1522 inline void emit_code_relative_offset(Label* label);
1523
1524 // instruction generation
1525 void emit_arith_b(int op1, int op2, Register dst, int imm8);
1526
1527 // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
1528 // with a given destination expression and an immediate operand. It attempts
1529 // to use the shortest encoding possible.
1530 // sel specifies the /n in the modrm byte (see the Intel PRM).
1531 void emit_arith(int sel, Operand dst, const Immediate& x);
1532
1533 void emit_operand(Register reg, const Operand& adr);
1534
1535 void emit_label(Label* label);
1536
1537 void emit_farith(int b1, int b2, int i);
1538
1539 // Emit vex prefix
1540 enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
1541 enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
1542 enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
1543 enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
1544 inline void emit_vex_prefix(XMMRegister v, VectorLength l, SIMDPrefix pp,
1545 LeadingOpcode m, VexW w);
1546 inline void emit_vex_prefix(Register v, VectorLength l, SIMDPrefix pp,
1547 LeadingOpcode m, VexW w);
1548
1549 // labels
1550 void print(Label* L);
1551 void bind_to(Label* L, int pos);
1552
1553 // displacements
1554 inline Displacement disp_at(Label* L);
1555 inline void disp_at_put(Label* L, Displacement disp);
1556 inline void emit_disp(Label* L, Displacement::Type type);
1557 inline void emit_near_disp(Label* L);
1558
1559 // Most BMI instructions are similiar.
1560 void bmi1(byte op, Register reg, Register vreg, const Operand& rm);
1561 void bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
1562 const Operand& rm);
1563
1564 // record reloc info for current pc_
1565 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1566
1567 friend class CodePatcher;
1568 friend class EnsureSpace;
1569
1570 // Internal reference positions, required for (potential) patching in
1571 // GrowBuffer(); contains only those internal references whose labels
1572 // are already bound.
1573 std::deque<int> internal_reference_positions_;
1574
1575 // code generation
1576 RelocInfoWriter reloc_info_writer;
1577 };
1578
1579
1580 // Helper class that ensures that there is enough space for generating
1581 // instructions and relocation information. The constructor makes
1582 // sure that there is enough space and (in debug mode) the destructor
1583 // checks that we did not generate too much.
1584 class EnsureSpace BASE_EMBEDDED {
1585 public:
EnsureSpace(Assembler * assembler)1586 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1587 if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1588 #ifdef DEBUG
1589 space_before_ = assembler_->available_space();
1590 #endif
1591 }
1592
1593 #ifdef DEBUG
~EnsureSpace()1594 ~EnsureSpace() {
1595 int bytes_generated = space_before_ - assembler_->available_space();
1596 DCHECK(bytes_generated < assembler_->kGap);
1597 }
1598 #endif
1599
1600 private:
1601 Assembler* assembler_;
1602 #ifdef DEBUG
1603 int space_before_;
1604 #endif
1605 };
1606
1607 } // namespace internal
1608 } // namespace v8
1609
1610 #endif // V8_IA32_ASSEMBLER_IA32_H_
1611