1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2012 the V8 project authors. All rights reserved. 34 35 36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_ 37 #define V8_MIPS_ASSEMBLER_MIPS_H_ 38 39 #include <stdio.h> 40 41 #include <set> 42 43 #include "src/assembler.h" 44 #include "src/mips/constants-mips.h" 45 46 namespace v8 { 47 namespace internal { 48 49 // clang-format off 50 #define GENERAL_REGISTERS(V) \ 51 V(zero_reg) V(at) V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \ 52 V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(t7) \ 53 V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(t8) V(t9) \ 54 V(k0) V(k1) V(gp) V(sp) V(fp) V(ra) 55 56 #define ALLOCATABLE_GENERAL_REGISTERS(V) \ 57 V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \ 58 V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(s7) 59 60 #define DOUBLE_REGISTERS(V) \ 61 V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \ 62 V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \ 63 V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \ 64 V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31) 65 66 #define FLOAT_REGISTERS DOUBLE_REGISTERS 67 #define SIMD128_REGISTERS DOUBLE_REGISTERS 68 69 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \ 70 V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f14) \ 71 V(f16) V(f18) V(f20) V(f22) V(f24) V(f26) 72 // clang-format on 73 74 // CPU Registers. 75 // 76 // 1) We would prefer to use an enum, but enum values are assignment- 77 // compatible with int, which has caused code-generation bugs. 78 // 79 // 2) We would prefer to use a class instead of a struct but we don't like 80 // the register initialization to depend on the particular initialization 81 // order (which appears to be different on OS X, Linux, and Windows for the 82 // installed versions of C++ we tried). Using a struct permits C-style 83 // "initialization". Also, the Register objects cannot be const as this 84 // forces initialization stubs in MSVC, making us dependent on initialization 85 // order. 86 // 87 // 3) By not using an enum, we are possibly preventing the compiler from 88 // doing certain constant folds, which may significantly reduce the 89 // code generated for some assembly instructions (because they boil down 90 // to a few constants). If this is a problem, we could change the code 91 // such that we use an enum in optimized mode, and the struct in debug 92 // mode. This way we get the compile-time error checking in debug mode 93 // and best performance in optimized code. 94 95 96 // ----------------------------------------------------------------------------- 97 // Implementation of Register and FPURegister. 98 99 struct Register { 100 static const int kCpRegister = 23; // cp (s7) is the 23rd register. 101 102 enum Code { 103 #define REGISTER_CODE(R) kCode_##R, 104 GENERAL_REGISTERS(REGISTER_CODE) 105 #undef REGISTER_CODE 106 kAfterLast, 107 kCode_no_reg = -1 108 }; 109 110 static const int kNumRegisters = Code::kAfterLast; 111 112 #if defined(V8_TARGET_LITTLE_ENDIAN) 113 static const int kMantissaOffset = 0; 114 static const int kExponentOffset = 4; 115 #elif defined(V8_TARGET_BIG_ENDIAN) 116 static const int kMantissaOffset = 4; 117 static const int kExponentOffset = 0; 118 #else 119 #error Unknown endianness 120 #endif 121 122 from_codeRegister123 static Register from_code(int code) { 124 DCHECK(code >= 0); 125 DCHECK(code < kNumRegisters); 126 Register r = {code}; 127 return r; 128 } is_validRegister129 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; } isRegister130 bool is(Register reg) const { return reg_code == reg.reg_code; } codeRegister131 int code() const { 132 DCHECK(is_valid()); 133 return reg_code; 134 } bitRegister135 int bit() const { 136 DCHECK(is_valid()); 137 return 1 << reg_code; 138 } 139 140 // Unfortunately we can't make this private in a struct. 141 int reg_code; 142 }; 143 144 // s7: context register 145 // s3: lithium scratch 146 // s4: lithium scratch2 147 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R}; 148 GENERAL_REGISTERS(DECLARE_REGISTER) 149 #undef DECLARE_REGISTER 150 const Register no_reg = {Register::kCode_no_reg}; 151 152 153 int ToNumber(Register reg); 154 155 Register ToRegister(int num); 156 157 static const bool kSimpleFPAliasing = true; 158 159 // Coprocessor register. 160 struct FPURegister { 161 enum Code { 162 #define REGISTER_CODE(R) kCode_##R, 163 DOUBLE_REGISTERS(REGISTER_CODE) 164 #undef REGISTER_CODE 165 kAfterLast, 166 kCode_no_reg = -1 167 }; 168 169 static const int kMaxNumRegisters = Code::kAfterLast; 170 171 inline static int NumRegisters(); 172 173 // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers 174 // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to 175 // number of Double regs (64-bit regs, or FPU-reg-pairs). 176 is_validFPURegister177 bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; } isFPURegister178 bool is(FPURegister reg) const { return reg_code == reg.reg_code; } lowFPURegister179 FPURegister low() const { 180 // Find low reg of a Double-reg pair, which is the reg itself. 181 DCHECK(reg_code % 2 == 0); // Specified Double reg must be even. 182 FPURegister reg; 183 reg.reg_code = reg_code; 184 DCHECK(reg.is_valid()); 185 return reg; 186 } highFPURegister187 FPURegister high() const { 188 // Find high reg of a Doubel-reg pair, which is reg + 1. 189 DCHECK(reg_code % 2 == 0); // Specified Double reg must be even. 190 FPURegister reg; 191 reg.reg_code = reg_code + 1; 192 DCHECK(reg.is_valid()); 193 return reg; 194 } 195 codeFPURegister196 int code() const { 197 DCHECK(is_valid()); 198 return reg_code; 199 } bitFPURegister200 int bit() const { 201 DCHECK(is_valid()); 202 return 1 << reg_code; 203 } 204 from_codeFPURegister205 static FPURegister from_code(int code) { 206 FPURegister r = {code}; 207 return r; 208 } setcodeFPURegister209 void setcode(int f) { 210 reg_code = f; 211 DCHECK(is_valid()); 212 } 213 // Unfortunately we can't make this private in a struct. 214 int reg_code; 215 }; 216 217 // A few double registers are reserved: one as a scratch register and one to 218 // hold 0.0. 219 // f28: 0.0 220 // f30: scratch register. 221 222 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32 223 // 32-bit registers, f0 through f31. When used as 'double' they are used 224 // in pairs, starting with the even numbered register. So a double operation 225 // on f0 really uses f0 and f1. 226 // (Modern mips hardware also supports 32 64-bit registers, via setting 227 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI, 228 // but it is not in common use. Someday we will want to support this in v8.) 229 230 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers. 231 typedef FPURegister FloatRegister; 232 233 typedef FPURegister DoubleRegister; 234 235 // TODO(mips) Define SIMD registers. 236 typedef FPURegister Simd128Register; 237 238 const DoubleRegister no_freg = {-1}; 239 240 const DoubleRegister f0 = {0}; // Return value in hard float mode. 241 const DoubleRegister f1 = {1}; 242 const DoubleRegister f2 = {2}; 243 const DoubleRegister f3 = {3}; 244 const DoubleRegister f4 = {4}; 245 const DoubleRegister f5 = {5}; 246 const DoubleRegister f6 = {6}; 247 const DoubleRegister f7 = {7}; 248 const DoubleRegister f8 = {8}; 249 const DoubleRegister f9 = {9}; 250 const DoubleRegister f10 = {10}; 251 const DoubleRegister f11 = {11}; 252 const DoubleRegister f12 = {12}; // Arg 0 in hard float mode. 253 const DoubleRegister f13 = {13}; 254 const DoubleRegister f14 = {14}; // Arg 1 in hard float mode. 255 const DoubleRegister f15 = {15}; 256 const DoubleRegister f16 = {16}; 257 const DoubleRegister f17 = {17}; 258 const DoubleRegister f18 = {18}; 259 const DoubleRegister f19 = {19}; 260 const DoubleRegister f20 = {20}; 261 const DoubleRegister f21 = {21}; 262 const DoubleRegister f22 = {22}; 263 const DoubleRegister f23 = {23}; 264 const DoubleRegister f24 = {24}; 265 const DoubleRegister f25 = {25}; 266 const DoubleRegister f26 = {26}; 267 const DoubleRegister f27 = {27}; 268 const DoubleRegister f28 = {28}; 269 const DoubleRegister f29 = {29}; 270 const DoubleRegister f30 = {30}; 271 const DoubleRegister f31 = {31}; 272 273 // Register aliases. 274 // cp is assumed to be a callee saved register. 275 // Defined using #define instead of "static const Register&" because Clang 276 // complains otherwise when a compilation unit that includes this header 277 // doesn't use the variables. 278 #define kRootRegister s6 279 #define cp s7 280 #define kLithiumScratchReg s3 281 #define kLithiumScratchReg2 s4 282 #define kLithiumScratchDouble f30 283 #define kDoubleRegZero f28 284 // Used on mips32r6 for compare operations. 285 // We use the last non-callee saved odd register for O32 ABI 286 #define kDoubleCompareReg f19 287 288 // FPU (coprocessor 1) control registers. 289 // Currently only FCSR (#31) is implemented. 290 struct FPUControlRegister { is_validFPUControlRegister291 bool is_valid() const { return reg_code == kFCSRRegister; } isFPUControlRegister292 bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; } codeFPUControlRegister293 int code() const { 294 DCHECK(is_valid()); 295 return reg_code; 296 } bitFPUControlRegister297 int bit() const { 298 DCHECK(is_valid()); 299 return 1 << reg_code; 300 } setcodeFPUControlRegister301 void setcode(int f) { 302 reg_code = f; 303 DCHECK(is_valid()); 304 } 305 // Unfortunately we can't make this private in a struct. 306 int reg_code; 307 }; 308 309 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister }; 310 const FPUControlRegister FCSR = { kFCSRRegister }; 311 312 // ----------------------------------------------------------------------------- 313 // Machine instruction Operands. 314 315 // Class Operand represents a shifter operand in data processing instructions. 316 class Operand BASE_EMBEDDED { 317 public: 318 // Immediate. 319 INLINE(explicit Operand(int32_t immediate, 320 RelocInfo::Mode rmode = RelocInfo::NONE32)); 321 INLINE(explicit Operand(const ExternalReference& f)); 322 INLINE(explicit Operand(const char* s)); 323 INLINE(explicit Operand(Object** opp)); 324 INLINE(explicit Operand(Context** cpp)); 325 explicit Operand(Handle<Object> handle); 326 INLINE(explicit Operand(Smi* value)); 327 328 // Register. 329 INLINE(explicit Operand(Register rm)); 330 331 // Return true if this is a register operand. 332 INLINE(bool is_reg() const); 333 immediate()334 inline int32_t immediate() const { 335 DCHECK(!is_reg()); 336 return imm32_; 337 } 338 rm()339 Register rm() const { return rm_; } 340 341 private: 342 Register rm_; 343 int32_t imm32_; // Valid if rm_ == no_reg. 344 RelocInfo::Mode rmode_; 345 346 friend class Assembler; 347 friend class MacroAssembler; 348 }; 349 350 351 // On MIPS we have only one adressing mode with base_reg + offset. 352 // Class MemOperand represents a memory operand in load and store instructions. 353 class MemOperand : public Operand { 354 public: 355 // Immediate value attached to offset. 356 enum OffsetAddend { 357 offset_minus_one = -1, 358 offset_zero = 0 359 }; 360 361 explicit MemOperand(Register rn, int32_t offset = 0); 362 explicit MemOperand(Register rn, int32_t unit, int32_t multiplier, 363 OffsetAddend offset_addend = offset_zero); offset()364 int32_t offset() const { return offset_; } 365 OffsetIsInt16Encodable()366 bool OffsetIsInt16Encodable() const { 367 return is_int16(offset_); 368 } 369 370 private: 371 int32_t offset_; 372 373 friend class Assembler; 374 }; 375 376 377 class Assembler : public AssemblerBase { 378 public: 379 // Create an assembler. Instructions and relocation information are emitted 380 // into a buffer, with the instructions starting from the beginning and the 381 // relocation information starting from the end of the buffer. See CodeDesc 382 // for a detailed comment on the layout (globals.h). 383 // 384 // If the provided buffer is NULL, the assembler allocates and grows its own 385 // buffer, and buffer_size determines the initial buffer size. The buffer is 386 // owned by the assembler and deallocated upon destruction of the assembler. 387 // 388 // If the provided buffer is not NULL, the assembler uses the provided buffer 389 // for code generation and assumes its size to be buffer_size. If the buffer 390 // is too small, a fatal error occurs. No deallocation of the buffer is done 391 // upon destruction of the assembler. 392 Assembler(Isolate* isolate, void* buffer, int buffer_size); ~Assembler()393 virtual ~Assembler() { } 394 395 // GetCode emits any pending (non-emitted) code and fills the descriptor 396 // desc. GetCode() is idempotent; it returns the same result if no other 397 // Assembler functions are invoked in between GetCode() calls. 398 void GetCode(CodeDesc* desc); 399 400 // Label operations & relative jumps (PPUM Appendix D). 401 // 402 // Takes a branch opcode (cc) and a label (L) and generates 403 // either a backward branch or a forward branch and links it 404 // to the label fixup chain. Usage: 405 // 406 // Label L; // unbound label 407 // j(cc, &L); // forward branch to unbound label 408 // bind(&L); // bind label to the current pc 409 // j(cc, &L); // backward branch to bound label 410 // bind(&L); // illegal: a label may be bound only once 411 // 412 // Note: The same Label can be used for forward and backward branches 413 // but it may be bound only once. 414 void bind(Label* L); // Binds an unbound label L to current code position. 415 416 enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 }; 417 418 // Determines if Label is bound and near enough so that branch instruction 419 // can be used to reach it, instead of jump instruction. 420 bool is_near(Label* L); 421 bool is_near(Label* L, OffsetSize bits); 422 bool is_near_branch(Label* L); is_near_pre_r6(Label * L)423 inline bool is_near_pre_r6(Label* L) { 424 DCHECK(!IsMipsArchVariant(kMips32r6)); 425 return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize; 426 } is_near_r6(Label * L)427 inline bool is_near_r6(Label* L) { 428 DCHECK(IsMipsArchVariant(kMips32r6)); 429 return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize; 430 } 431 432 int BranchOffset(Instr instr); 433 434 // Returns the branch offset to the given label from the current code 435 // position. Links the label to the current position if it is still unbound. 436 // Manages the jump elimination optimization if the second parameter is true. 437 int32_t branch_offset_helper(Label* L, OffsetSize bits); branch_offset(Label * L)438 inline int32_t branch_offset(Label* L) { 439 return branch_offset_helper(L, OffsetSize::kOffset16); 440 } branch_offset21(Label * L)441 inline int32_t branch_offset21(Label* L) { 442 return branch_offset_helper(L, OffsetSize::kOffset21); 443 } branch_offset26(Label * L)444 inline int32_t branch_offset26(Label* L) { 445 return branch_offset_helper(L, OffsetSize::kOffset26); 446 } shifted_branch_offset(Label * L)447 inline int32_t shifted_branch_offset(Label* L) { 448 return branch_offset(L) >> 2; 449 } shifted_branch_offset21(Label * L)450 inline int32_t shifted_branch_offset21(Label* L) { 451 return branch_offset21(L) >> 2; 452 } shifted_branch_offset26(Label * L)453 inline int32_t shifted_branch_offset26(Label* L) { 454 return branch_offset26(L) >> 2; 455 } 456 uint32_t jump_address(Label* L); 457 458 // Puts a labels target address at the given position. 459 // The high 8 bits are set to zero. 460 void label_at_put(Label* L, int at_offset); 461 462 // Read/Modify the code target address in the branch/call instruction at pc. 463 static Address target_address_at(Address pc); 464 static void set_target_address_at( 465 Isolate* isolate, Address pc, Address target, 466 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); 467 // On MIPS there is no Constant Pool so we skip that parameter. INLINE(static Address target_address_at (Address pc,Address constant_pool))468 INLINE(static Address target_address_at(Address pc, Address constant_pool)) { 469 return target_address_at(pc); 470 } INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))471 INLINE(static void set_target_address_at( 472 Isolate* isolate, Address pc, Address constant_pool, Address target, 473 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { 474 set_target_address_at(isolate, pc, target, icache_flush_mode); 475 } INLINE(static Address target_address_at (Address pc,Code * code))476 INLINE(static Address target_address_at(Address pc, Code* code)) { 477 Address constant_pool = code ? code->constant_pool() : NULL; 478 return target_address_at(pc, constant_pool); 479 } INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))480 INLINE(static void set_target_address_at( 481 Isolate* isolate, Address pc, Code* code, Address target, 482 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { 483 Address constant_pool = code ? code->constant_pool() : NULL; 484 set_target_address_at(isolate, pc, constant_pool, target, 485 icache_flush_mode); 486 } 487 488 // Return the code target address at a call site from the return address 489 // of that call in the instruction stream. 490 inline static Address target_address_from_return_address(Address pc); 491 492 static void QuietNaN(HeapObject* nan); 493 494 // This sets the branch destination (which gets loaded at the call address). 495 // This is for calls and branches within generated code. The serializer 496 // has already deserialized the lui/ori instructions etc. deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)497 inline static void deserialization_set_special_target_at( 498 Isolate* isolate, Address instruction_payload, Code* code, 499 Address target) { 500 set_target_address_at( 501 isolate, 502 instruction_payload - kInstructionsFor32BitConstant * kInstrSize, code, 503 target); 504 } 505 506 // This sets the internal reference at the pc. 507 inline static void deserialization_set_target_internal_reference_at( 508 Isolate* isolate, Address pc, Address target, 509 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE); 510 511 // Size of an instruction. 512 static const int kInstrSize = sizeof(Instr); 513 514 // Difference between address of current opcode and target address offset. 515 static const int kBranchPCOffset = 4; 516 517 // Here we are patching the address in the LUI/ORI instruction pair. 518 // These values are used in the serialization process and must be zero for 519 // MIPS platform, as Code, Embedded Object or External-reference pointers 520 // are split across two consecutive instructions and don't exist separately 521 // in the code, so the serializer should not step forwards in memory after 522 // a target is resolved and written. 523 static const int kSpecialTargetSize = 0; 524 525 // Number of consecutive instructions used to store 32bit constant. This 526 // constant is used in RelocInfo::target_address_address() function to tell 527 // serializer address of the instruction that follows LUI/ORI instruction 528 // pair. 529 static const int kInstructionsFor32BitConstant = 2; 530 531 // Distance between the instruction referring to the address of the call 532 // target and the return address. 533 #ifdef _MIPS_ARCH_MIPS32R6 534 static const int kCallTargetAddressOffset = 3 * kInstrSize; 535 #else 536 static const int kCallTargetAddressOffset = 4 * kInstrSize; 537 #endif 538 539 // Distance between start of patched debug break slot and the emitted address 540 // to jump to. 541 static const int kPatchDebugBreakSlotAddressOffset = 4 * kInstrSize; 542 543 // Difference between address of current opcode and value read from pc 544 // register. 545 static const int kPcLoadDelta = 4; 546 547 #ifdef _MIPS_ARCH_MIPS32R6 548 static const int kDebugBreakSlotInstructions = 3; 549 #else 550 static const int kDebugBreakSlotInstructions = 4; 551 #endif 552 static const int kDebugBreakSlotLength = 553 kDebugBreakSlotInstructions * kInstrSize; 554 555 556 // --------------------------------------------------------------------------- 557 // Code generation. 558 559 // Insert the smallest number of nop instructions 560 // possible to align the pc offset to a multiple 561 // of m. m must be a power of 2 (>= 4). 562 void Align(int m); 563 // Insert the smallest number of zero bytes possible to align the pc offset 564 // to a mulitple of m. m must be a power of 2 (>= 2). 565 void DataAlign(int m); 566 // Aligns code to something that's optimal for a jump target for the platform. 567 void CodeTargetAlign(); 568 569 // Different nop operations are used by the code generator to detect certain 570 // states of the generated code. 571 enum NopMarkerTypes { 572 NON_MARKING_NOP = 0, 573 DEBUG_BREAK_NOP, 574 // IC markers. 575 PROPERTY_ACCESS_INLINED, 576 PROPERTY_ACCESS_INLINED_CONTEXT, 577 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, 578 // Helper values. 579 LAST_CODE_MARKER, 580 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED, 581 // Code aging 582 CODE_AGE_MARKER_NOP = 6, 583 CODE_AGE_SEQUENCE_NOP 584 }; 585 586 // Type == 0 is the default non-marking nop. For mips this is a 587 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero 588 // marking, to avoid conflict with ssnop and ehb instructions. 589 void nop(unsigned int type = 0) { 590 DCHECK(type < 32); 591 Register nop_rt_reg = (type == 0) ? zero_reg : at; 592 sll(zero_reg, nop_rt_reg, type, true); 593 } 594 595 596 // --------Branch-and-jump-instructions---------- 597 // We don't use likely variant of instructions. 598 void b(int16_t offset); b(Label * L)599 inline void b(Label* L) { b(shifted_branch_offset(L)); } 600 void bal(int16_t offset); bal(Label * L)601 inline void bal(Label* L) { bal(shifted_branch_offset(L)); } 602 void bc(int32_t offset); bc(Label * L)603 inline void bc(Label* L) { bc(shifted_branch_offset26(L)); } 604 void balc(int32_t offset); balc(Label * L)605 inline void balc(Label* L) { balc(shifted_branch_offset26(L)); } 606 607 void beq(Register rs, Register rt, int16_t offset); beq(Register rs,Register rt,Label * L)608 inline void beq(Register rs, Register rt, Label* L) { 609 beq(rs, rt, shifted_branch_offset(L)); 610 } 611 void bgez(Register rs, int16_t offset); 612 void bgezc(Register rt, int16_t offset); bgezc(Register rt,Label * L)613 inline void bgezc(Register rt, Label* L) { 614 bgezc(rt, shifted_branch_offset(L)); 615 } 616 void bgeuc(Register rs, Register rt, int16_t offset); bgeuc(Register rs,Register rt,Label * L)617 inline void bgeuc(Register rs, Register rt, Label* L) { 618 bgeuc(rs, rt, shifted_branch_offset(L)); 619 } 620 void bgec(Register rs, Register rt, int16_t offset); bgec(Register rs,Register rt,Label * L)621 inline void bgec(Register rs, Register rt, Label* L) { 622 bgec(rs, rt, shifted_branch_offset(L)); 623 } 624 void bgezal(Register rs, int16_t offset); 625 void bgezalc(Register rt, int16_t offset); bgezalc(Register rt,Label * L)626 inline void bgezalc(Register rt, Label* L) { 627 bgezalc(rt, shifted_branch_offset(L)); 628 } 629 void bgezall(Register rs, int16_t offset); bgezall(Register rs,Label * L)630 inline void bgezall(Register rs, Label* L) { 631 bgezall(rs, branch_offset(L) >> 2); 632 } 633 void bgtz(Register rs, int16_t offset); 634 void bgtzc(Register rt, int16_t offset); bgtzc(Register rt,Label * L)635 inline void bgtzc(Register rt, Label* L) { 636 bgtzc(rt, shifted_branch_offset(L)); 637 } 638 void blez(Register rs, int16_t offset); 639 void blezc(Register rt, int16_t offset); blezc(Register rt,Label * L)640 inline void blezc(Register rt, Label* L) { 641 blezc(rt, shifted_branch_offset(L)); 642 } 643 void bltz(Register rs, int16_t offset); 644 void bltzc(Register rt, int16_t offset); bltzc(Register rt,Label * L)645 inline void bltzc(Register rt, Label* L) { 646 bltzc(rt, shifted_branch_offset(L)); 647 } 648 void bltuc(Register rs, Register rt, int16_t offset); bltuc(Register rs,Register rt,Label * L)649 inline void bltuc(Register rs, Register rt, Label* L) { 650 bltuc(rs, rt, shifted_branch_offset(L)); 651 } 652 void bltc(Register rs, Register rt, int16_t offset); bltc(Register rs,Register rt,Label * L)653 inline void bltc(Register rs, Register rt, Label* L) { 654 bltc(rs, rt, shifted_branch_offset(L)); 655 } 656 void bltzal(Register rs, int16_t offset); 657 void blezalc(Register rt, int16_t offset); blezalc(Register rt,Label * L)658 inline void blezalc(Register rt, Label* L) { 659 blezalc(rt, shifted_branch_offset(L)); 660 } 661 void bltzalc(Register rt, int16_t offset); bltzalc(Register rt,Label * L)662 inline void bltzalc(Register rt, Label* L) { 663 bltzalc(rt, shifted_branch_offset(L)); 664 } 665 void bgtzalc(Register rt, int16_t offset); bgtzalc(Register rt,Label * L)666 inline void bgtzalc(Register rt, Label* L) { 667 bgtzalc(rt, shifted_branch_offset(L)); 668 } 669 void beqzalc(Register rt, int16_t offset); beqzalc(Register rt,Label * L)670 inline void beqzalc(Register rt, Label* L) { 671 beqzalc(rt, shifted_branch_offset(L)); 672 } 673 void beqc(Register rs, Register rt, int16_t offset); beqc(Register rs,Register rt,Label * L)674 inline void beqc(Register rs, Register rt, Label* L) { 675 beqc(rs, rt, shifted_branch_offset(L)); 676 } 677 void beqzc(Register rs, int32_t offset); beqzc(Register rs,Label * L)678 inline void beqzc(Register rs, Label* L) { 679 beqzc(rs, shifted_branch_offset21(L)); 680 } 681 void bnezalc(Register rt, int16_t offset); bnezalc(Register rt,Label * L)682 inline void bnezalc(Register rt, Label* L) { 683 bnezalc(rt, shifted_branch_offset(L)); 684 } 685 void bnec(Register rs, Register rt, int16_t offset); bnec(Register rs,Register rt,Label * L)686 inline void bnec(Register rs, Register rt, Label* L) { 687 bnec(rs, rt, shifted_branch_offset(L)); 688 } 689 void bnezc(Register rt, int32_t offset); bnezc(Register rt,Label * L)690 inline void bnezc(Register rt, Label* L) { 691 bnezc(rt, shifted_branch_offset21(L)); 692 } 693 void bne(Register rs, Register rt, int16_t offset); bne(Register rs,Register rt,Label * L)694 inline void bne(Register rs, Register rt, Label* L) { 695 bne(rs, rt, shifted_branch_offset(L)); 696 } 697 void bovc(Register rs, Register rt, int16_t offset); bovc(Register rs,Register rt,Label * L)698 inline void bovc(Register rs, Register rt, Label* L) { 699 bovc(rs, rt, shifted_branch_offset(L)); 700 } 701 void bnvc(Register rs, Register rt, int16_t offset); bnvc(Register rs,Register rt,Label * L)702 inline void bnvc(Register rs, Register rt, Label* L) { 703 bnvc(rs, rt, shifted_branch_offset(L)); 704 } 705 706 // Never use the int16_t b(l)cond version with a branch offset 707 // instead of using the Label* version. 708 709 // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits. 710 void j(int32_t target); 711 void jal(int32_t target); 712 void jalr(Register rs, Register rd = ra); 713 void jr(Register target); 714 void jic(Register rt, int16_t offset); 715 void jialc(Register rt, int16_t offset); 716 717 718 // -------Data-processing-instructions--------- 719 720 // Arithmetic. 721 void addu(Register rd, Register rs, Register rt); 722 void subu(Register rd, Register rs, Register rt); 723 void mult(Register rs, Register rt); 724 void multu(Register rs, Register rt); 725 void div(Register rs, Register rt); 726 void divu(Register rs, Register rt); 727 void div(Register rd, Register rs, Register rt); 728 void divu(Register rd, Register rs, Register rt); 729 void mod(Register rd, Register rs, Register rt); 730 void modu(Register rd, Register rs, Register rt); 731 void mul(Register rd, Register rs, Register rt); 732 void muh(Register rd, Register rs, Register rt); 733 void mulu(Register rd, Register rs, Register rt); 734 void muhu(Register rd, Register rs, Register rt); 735 736 void addiu(Register rd, Register rs, int32_t j); 737 738 // Logical. 739 void and_(Register rd, Register rs, Register rt); 740 void or_(Register rd, Register rs, Register rt); 741 void xor_(Register rd, Register rs, Register rt); 742 void nor(Register rd, Register rs, Register rt); 743 744 void andi(Register rd, Register rs, int32_t j); 745 void ori(Register rd, Register rs, int32_t j); 746 void xori(Register rd, Register rs, int32_t j); 747 void lui(Register rd, int32_t j); 748 void aui(Register rs, Register rt, int32_t j); 749 750 // Shifts. 751 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop 752 // and may cause problems in normal code. coming_from_nop makes sure this 753 // doesn't happen. 754 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false); 755 void sllv(Register rd, Register rt, Register rs); 756 void srl(Register rd, Register rt, uint16_t sa); 757 void srlv(Register rd, Register rt, Register rs); 758 void sra(Register rt, Register rd, uint16_t sa); 759 void srav(Register rt, Register rd, Register rs); 760 void rotr(Register rd, Register rt, uint16_t sa); 761 void rotrv(Register rd, Register rt, Register rs); 762 763 // ------------Memory-instructions------------- 764 765 void lb(Register rd, const MemOperand& rs); 766 void lbu(Register rd, const MemOperand& rs); 767 void lh(Register rd, const MemOperand& rs); 768 void lhu(Register rd, const MemOperand& rs); 769 void lw(Register rd, const MemOperand& rs); 770 void lwl(Register rd, const MemOperand& rs); 771 void lwr(Register rd, const MemOperand& rs); 772 void sb(Register rd, const MemOperand& rs); 773 void sh(Register rd, const MemOperand& rs); 774 void sw(Register rd, const MemOperand& rs); 775 void swl(Register rd, const MemOperand& rs); 776 void swr(Register rd, const MemOperand& rs); 777 778 779 // ---------PC-Relative-instructions----------- 780 781 void addiupc(Register rs, int32_t imm19); 782 void lwpc(Register rs, int32_t offset19); 783 void auipc(Register rs, int16_t imm16); 784 void aluipc(Register rs, int16_t imm16); 785 786 787 // ----------------Prefetch-------------------- 788 789 void pref(int32_t hint, const MemOperand& rs); 790 791 792 // -------------Misc-instructions-------------- 793 794 // Break / Trap instructions. 795 void break_(uint32_t code, bool break_as_stop = false); 796 void stop(const char* msg, uint32_t code = kMaxStopCode); 797 void tge(Register rs, Register rt, uint16_t code); 798 void tgeu(Register rs, Register rt, uint16_t code); 799 void tlt(Register rs, Register rt, uint16_t code); 800 void tltu(Register rs, Register rt, uint16_t code); 801 void teq(Register rs, Register rt, uint16_t code); 802 void tne(Register rs, Register rt, uint16_t code); 803 804 // Memory barrier instruction. 805 void sync(); 806 807 // Move from HI/LO register. 808 void mfhi(Register rd); 809 void mflo(Register rd); 810 811 // Set on less than. 812 void slt(Register rd, Register rs, Register rt); 813 void sltu(Register rd, Register rs, Register rt); 814 void slti(Register rd, Register rs, int32_t j); 815 void sltiu(Register rd, Register rs, int32_t j); 816 817 // Conditional move. 818 void movz(Register rd, Register rs, Register rt); 819 void movn(Register rd, Register rs, Register rt); 820 void movt(Register rd, Register rs, uint16_t cc = 0); 821 void movf(Register rd, Register rs, uint16_t cc = 0); 822 823 void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 824 void sel_s(FPURegister fd, FPURegister fs, FPURegister ft); 825 void sel_d(FPURegister fd, FPURegister fs, FPURegister ft); 826 void seleqz(Register rd, Register rs, Register rt); 827 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs, 828 FPURegister ft); 829 void selnez(Register rd, Register rs, Register rt); 830 void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs, 831 FPURegister ft); 832 void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft); 833 void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft); 834 void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft); 835 void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft); 836 837 void movz_s(FPURegister fd, FPURegister fs, Register rt); 838 void movz_d(FPURegister fd, FPURegister fs, Register rt); 839 void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); 840 void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); 841 void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); 842 void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); 843 void movn_s(FPURegister fd, FPURegister fs, Register rt); 844 void movn_d(FPURegister fd, FPURegister fs, Register rt); 845 // Bit twiddling. 846 void clz(Register rd, Register rs); 847 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size); 848 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size); 849 void bitswap(Register rd, Register rt); 850 void align(Register rd, Register rs, Register rt, uint8_t bp); 851 852 void wsbh(Register rd, Register rt); 853 void seh(Register rd, Register rt); 854 void seb(Register rd, Register rt); 855 856 // --------Coprocessor-instructions---------------- 857 858 // Load, store, and move. 859 void lwc1(FPURegister fd, const MemOperand& src); 860 void ldc1(FPURegister fd, const MemOperand& src); 861 862 void swc1(FPURegister fs, const MemOperand& dst); 863 void sdc1(FPURegister fs, const MemOperand& dst); 864 865 void mtc1(Register rt, FPURegister fs); 866 void mthc1(Register rt, FPURegister fs); 867 868 void mfc1(Register rt, FPURegister fs); 869 void mfhc1(Register rt, FPURegister fs); 870 871 void ctc1(Register rt, FPUControlRegister fs); 872 void cfc1(Register rt, FPUControlRegister fs); 873 874 // Arithmetic. 875 void add_s(FPURegister fd, FPURegister fs, FPURegister ft); 876 void add_d(FPURegister fd, FPURegister fs, FPURegister ft); 877 void sub_s(FPURegister fd, FPURegister fs, FPURegister ft); 878 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft); 879 void mul_s(FPURegister fd, FPURegister fs, FPURegister ft); 880 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft); 881 void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 882 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 883 void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 884 void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 885 void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft); 886 void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft); 887 void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft); 888 void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft); 889 void div_s(FPURegister fd, FPURegister fs, FPURegister ft); 890 void div_d(FPURegister fd, FPURegister fs, FPURegister ft); 891 void abs_s(FPURegister fd, FPURegister fs); 892 void abs_d(FPURegister fd, FPURegister fs); 893 void mov_d(FPURegister fd, FPURegister fs); 894 void mov_s(FPURegister fd, FPURegister fs); 895 void neg_s(FPURegister fd, FPURegister fs); 896 void neg_d(FPURegister fd, FPURegister fs); 897 void sqrt_s(FPURegister fd, FPURegister fs); 898 void sqrt_d(FPURegister fd, FPURegister fs); 899 void rsqrt_s(FPURegister fd, FPURegister fs); 900 void rsqrt_d(FPURegister fd, FPURegister fs); 901 void recip_d(FPURegister fd, FPURegister fs); 902 void recip_s(FPURegister fd, FPURegister fs); 903 904 // Conversion. 905 void cvt_w_s(FPURegister fd, FPURegister fs); 906 void cvt_w_d(FPURegister fd, FPURegister fs); 907 void trunc_w_s(FPURegister fd, FPURegister fs); 908 void trunc_w_d(FPURegister fd, FPURegister fs); 909 void round_w_s(FPURegister fd, FPURegister fs); 910 void round_w_d(FPURegister fd, FPURegister fs); 911 void floor_w_s(FPURegister fd, FPURegister fs); 912 void floor_w_d(FPURegister fd, FPURegister fs); 913 void ceil_w_s(FPURegister fd, FPURegister fs); 914 void ceil_w_d(FPURegister fd, FPURegister fs); 915 void rint_s(FPURegister fd, FPURegister fs); 916 void rint_d(FPURegister fd, FPURegister fs); 917 void rint(SecondaryField fmt, FPURegister fd, FPURegister fs); 918 919 void cvt_l_s(FPURegister fd, FPURegister fs); 920 void cvt_l_d(FPURegister fd, FPURegister fs); 921 void trunc_l_s(FPURegister fd, FPURegister fs); 922 void trunc_l_d(FPURegister fd, FPURegister fs); 923 void round_l_s(FPURegister fd, FPURegister fs); 924 void round_l_d(FPURegister fd, FPURegister fs); 925 void floor_l_s(FPURegister fd, FPURegister fs); 926 void floor_l_d(FPURegister fd, FPURegister fs); 927 void ceil_l_s(FPURegister fd, FPURegister fs); 928 void ceil_l_d(FPURegister fd, FPURegister fs); 929 930 void class_s(FPURegister fd, FPURegister fs); 931 void class_d(FPURegister fd, FPURegister fs); 932 933 void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 934 void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 935 void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 936 void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 937 void min_s(FPURegister fd, FPURegister fs, FPURegister ft); 938 void min_d(FPURegister fd, FPURegister fs, FPURegister ft); 939 void max_s(FPURegister fd, FPURegister fs, FPURegister ft); 940 void max_d(FPURegister fd, FPURegister fs, FPURegister ft); 941 void mina_s(FPURegister fd, FPURegister fs, FPURegister ft); 942 void mina_d(FPURegister fd, FPURegister fs, FPURegister ft); 943 void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft); 944 void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft); 945 946 void cvt_s_w(FPURegister fd, FPURegister fs); 947 void cvt_s_l(FPURegister fd, FPURegister fs); 948 void cvt_s_d(FPURegister fd, FPURegister fs); 949 950 void cvt_d_w(FPURegister fd, FPURegister fs); 951 void cvt_d_l(FPURegister fd, FPURegister fs); 952 void cvt_d_s(FPURegister fd, FPURegister fs); 953 954 // Conditions and branches for MIPSr6. 955 void cmp(FPUCondition cond, SecondaryField fmt, 956 FPURegister fd, FPURegister ft, FPURegister fs); 957 void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); 958 void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); 959 960 void bc1eqz(int16_t offset, FPURegister ft); bc1eqz(Label * L,FPURegister ft)961 inline void bc1eqz(Label* L, FPURegister ft) { 962 bc1eqz(shifted_branch_offset(L), ft); 963 } 964 void bc1nez(int16_t offset, FPURegister ft); bc1nez(Label * L,FPURegister ft)965 inline void bc1nez(Label* L, FPURegister ft) { 966 bc1nez(shifted_branch_offset(L), ft); 967 } 968 969 // Conditions and branches for non MIPSr6. 970 void c(FPUCondition cond, SecondaryField fmt, 971 FPURegister ft, FPURegister fs, uint16_t cc = 0); 972 void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); 973 void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); 974 975 void bc1f(int16_t offset, uint16_t cc = 0); 976 inline void bc1f(Label* L, uint16_t cc = 0) { 977 bc1f(shifted_branch_offset(L), cc); 978 } 979 void bc1t(int16_t offset, uint16_t cc = 0); 980 inline void bc1t(Label* L, uint16_t cc = 0) { 981 bc1t(shifted_branch_offset(L), cc); 982 } 983 void fcmp(FPURegister src1, const double src2, FPUCondition cond); 984 985 // Check the code size generated from label to here. SizeOfCodeGeneratedSince(Label * label)986 int SizeOfCodeGeneratedSince(Label* label) { 987 return pc_offset() - label->pos(); 988 } 989 990 // Check the number of instructions generated from label to here. InstructionsGeneratedSince(Label * label)991 int InstructionsGeneratedSince(Label* label) { 992 return SizeOfCodeGeneratedSince(label) / kInstrSize; 993 } 994 995 // Class for scoping postponing the trampoline pool generation. 996 class BlockTrampolinePoolScope { 997 public: BlockTrampolinePoolScope(Assembler * assem)998 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) { 999 assem_->StartBlockTrampolinePool(); 1000 } ~BlockTrampolinePoolScope()1001 ~BlockTrampolinePoolScope() { 1002 assem_->EndBlockTrampolinePool(); 1003 } 1004 1005 private: 1006 Assembler* assem_; 1007 1008 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope); 1009 }; 1010 1011 // Class for postponing the assembly buffer growth. Typically used for 1012 // sequences of instructions that must be emitted as a unit, before 1013 // buffer growth (and relocation) can occur. 1014 // This blocking scope is not nestable. 1015 class BlockGrowBufferScope { 1016 public: BlockGrowBufferScope(Assembler * assem)1017 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) { 1018 assem_->StartBlockGrowBuffer(); 1019 } ~BlockGrowBufferScope()1020 ~BlockGrowBufferScope() { 1021 assem_->EndBlockGrowBuffer(); 1022 } 1023 1024 private: 1025 Assembler* assem_; 1026 1027 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope); 1028 }; 1029 1030 // Debugging. 1031 1032 // Mark generator continuation. 1033 void RecordGeneratorContinuation(); 1034 1035 // Mark address of a debug break slot. 1036 void RecordDebugBreakSlot(RelocInfo::Mode mode); 1037 1038 // Record the AST id of the CallIC being compiled, so that it can be placed 1039 // in the relocation information. SetRecordedAstId(TypeFeedbackId ast_id)1040 void SetRecordedAstId(TypeFeedbackId ast_id) { 1041 DCHECK(recorded_ast_id_.IsNone()); 1042 recorded_ast_id_ = ast_id; 1043 } 1044 RecordedAstId()1045 TypeFeedbackId RecordedAstId() { 1046 DCHECK(!recorded_ast_id_.IsNone()); 1047 return recorded_ast_id_; 1048 } 1049 ClearRecordedAstId()1050 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); } 1051 1052 // Record a comment relocation entry that can be used by a disassembler. 1053 // Use --code-comments to enable. 1054 void RecordComment(const char* msg); 1055 1056 // Record a deoptimization reason that can be used by a log or cpu profiler. 1057 // Use --trace-deopt to enable. 1058 void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position, 1059 int id); 1060 1061 static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc, 1062 intptr_t pc_delta); 1063 1064 // Writes a single byte or word of data in the code stream. Used for 1065 // inline tables, e.g., jump-tables. 1066 void db(uint8_t data); 1067 void dd(uint32_t data); 1068 void dq(uint64_t data); dp(uintptr_t data)1069 void dp(uintptr_t data) { dd(data); } 1070 void dd(Label* label); 1071 1072 // Postpone the generation of the trampoline pool for the specified number of 1073 // instructions. 1074 void BlockTrampolinePoolFor(int instructions); 1075 1076 // Check if there is less than kGap bytes available in the buffer. 1077 // If this is the case, we need to grow the buffer before emitting 1078 // an instruction or relocation information. overflow()1079 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } 1080 1081 // Get the number of bytes available in the buffer. available_space()1082 inline int available_space() const { return reloc_info_writer.pos() - pc_; } 1083 1084 // Read/patch instructions. instr_at(byte * pc)1085 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); } instr_at_put(byte * pc,Instr instr)1086 static void instr_at_put(byte* pc, Instr instr) { 1087 *reinterpret_cast<Instr*>(pc) = instr; 1088 } instr_at(int pos)1089 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); } instr_at_put(int pos,Instr instr)1090 void instr_at_put(int pos, Instr instr) { 1091 *reinterpret_cast<Instr*>(buffer_ + pos) = instr; 1092 } 1093 1094 // Check if an instruction is a branch of some kind. 1095 static bool IsBranch(Instr instr); 1096 static bool IsBc(Instr instr); 1097 static bool IsBzc(Instr instr); 1098 static bool IsBeq(Instr instr); 1099 static bool IsBne(Instr instr); 1100 static bool IsBeqzc(Instr instr); 1101 static bool IsBnezc(Instr instr); 1102 static bool IsBeqc(Instr instr); 1103 static bool IsBnec(Instr instr); 1104 static bool IsJicOrJialc(Instr instr); 1105 1106 static bool IsJump(Instr instr); 1107 static bool IsJ(Instr instr); 1108 static bool IsLui(Instr instr); 1109 static bool IsOri(Instr instr); 1110 1111 static bool IsJal(Instr instr); 1112 static bool IsJr(Instr instr); 1113 static bool IsJalr(Instr instr); 1114 1115 static bool IsNop(Instr instr, unsigned int type); 1116 static bool IsPop(Instr instr); 1117 static bool IsPush(Instr instr); 1118 static bool IsLwRegFpOffset(Instr instr); 1119 static bool IsSwRegFpOffset(Instr instr); 1120 static bool IsLwRegFpNegOffset(Instr instr); 1121 static bool IsSwRegFpNegOffset(Instr instr); 1122 1123 static Register GetRtReg(Instr instr); 1124 static Register GetRsReg(Instr instr); 1125 static Register GetRdReg(Instr instr); 1126 1127 static uint32_t GetRt(Instr instr); 1128 static uint32_t GetRtField(Instr instr); 1129 static uint32_t GetRs(Instr instr); 1130 static uint32_t GetRsField(Instr instr); 1131 static uint32_t GetRd(Instr instr); 1132 static uint32_t GetRdField(Instr instr); 1133 static uint32_t GetSa(Instr instr); 1134 static uint32_t GetSaField(Instr instr); 1135 static uint32_t GetOpcodeField(Instr instr); 1136 static uint32_t GetFunction(Instr instr); 1137 static uint32_t GetFunctionField(Instr instr); 1138 static uint32_t GetImmediate16(Instr instr); 1139 static uint32_t GetLabelConst(Instr instr); 1140 1141 static int32_t GetBranchOffset(Instr instr); 1142 static bool IsLw(Instr instr); 1143 static int16_t GetLwOffset(Instr instr); 1144 static int16_t GetJicOrJialcOffset(Instr instr); 1145 static int16_t GetLuiOffset(Instr instr); 1146 static Instr SetLwOffset(Instr instr, int16_t offset); 1147 1148 static bool IsSw(Instr instr); 1149 static Instr SetSwOffset(Instr instr, int16_t offset); 1150 static bool IsAddImmediate(Instr instr); 1151 static Instr SetAddImmediateOffset(Instr instr, int16_t offset); 1152 static uint32_t CreateTargetAddress(Instr instr_lui, Instr instr_jic); 1153 static void UnpackTargetAddress(uint32_t address, int16_t& lui_offset, 1154 int16_t& jic_offset); 1155 static void UnpackTargetAddressUnsigned(uint32_t address, 1156 uint32_t& lui_offset, 1157 uint32_t& jic_offset); 1158 1159 static bool IsAndImmediate(Instr instr); 1160 static bool IsEmittedConstant(Instr instr); 1161 1162 void CheckTrampolinePool(); 1163 PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1164 void PatchConstantPoolAccessInstruction(int pc_offset, int offset, 1165 ConstantPoolEntry::Access access, 1166 ConstantPoolEntry::Type type) { 1167 // No embedded constant pool support. 1168 UNREACHABLE(); 1169 } 1170 IsPrevInstrCompactBranch()1171 bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; } 1172 UnboundLabelsCount()1173 inline int UnboundLabelsCount() { return unbound_labels_count_; } 1174 1175 protected: 1176 // Load Scaled Address instruction. 1177 void lsa(Register rd, Register rt, Register rs, uint8_t sa); 1178 1179 // Helpers. 1180 void LoadRegPlusOffsetToAt(const MemOperand& src); 1181 int32_t LoadRegPlusUpperOffsetPartToAt(const MemOperand& src); 1182 int32_t LoadUpperOffsetForTwoMemoryAccesses(const MemOperand& src); 1183 1184 // Relocation for a type-recording IC has the AST id added to it. This 1185 // member variable is a way to pass the information from the call site to 1186 // the relocation info. 1187 TypeFeedbackId recorded_ast_id_; 1188 buffer_space()1189 int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; } 1190 1191 // Decode branch instruction at pos and return branch target pos. 1192 int target_at(int pos, bool is_internal); 1193 1194 // Patch branch instruction at pos to branch to given branch target pos. 1195 void target_at_put(int pos, int target_pos, bool is_internal); 1196 1197 // Say if we need to relocate with this mode. 1198 bool MustUseReg(RelocInfo::Mode rmode); 1199 1200 // Record reloc info for current pc_. 1201 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); 1202 1203 // Block the emission of the trampoline pool before pc_offset. BlockTrampolinePoolBefore(int pc_offset)1204 void BlockTrampolinePoolBefore(int pc_offset) { 1205 if (no_trampoline_pool_before_ < pc_offset) 1206 no_trampoline_pool_before_ = pc_offset; 1207 } 1208 StartBlockTrampolinePool()1209 void StartBlockTrampolinePool() { 1210 trampoline_pool_blocked_nesting_++; 1211 } 1212 EndBlockTrampolinePool()1213 void EndBlockTrampolinePool() { 1214 trampoline_pool_blocked_nesting_--; 1215 } 1216 is_trampoline_pool_blocked()1217 bool is_trampoline_pool_blocked() const { 1218 return trampoline_pool_blocked_nesting_ > 0; 1219 } 1220 has_exception()1221 bool has_exception() const { 1222 return internal_trampoline_exception_; 1223 } 1224 1225 void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi); 1226 is_trampoline_emitted()1227 bool is_trampoline_emitted() const { 1228 return trampoline_emitted_; 1229 } 1230 1231 // Temporarily block automatic assembly buffer growth. StartBlockGrowBuffer()1232 void StartBlockGrowBuffer() { 1233 DCHECK(!block_buffer_growth_); 1234 block_buffer_growth_ = true; 1235 } 1236 EndBlockGrowBuffer()1237 void EndBlockGrowBuffer() { 1238 DCHECK(block_buffer_growth_); 1239 block_buffer_growth_ = false; 1240 } 1241 is_buffer_growth_blocked()1242 bool is_buffer_growth_blocked() const { 1243 return block_buffer_growth_; 1244 } 1245 EmitForbiddenSlotInstruction()1246 void EmitForbiddenSlotInstruction() { 1247 if (IsPrevInstrCompactBranch()) { 1248 nop(); 1249 } 1250 } 1251 1252 inline void CheckTrampolinePoolQuick(int extra_instructions = 0); 1253 1254 inline void CheckBuffer(); 1255 1256 private: 1257 inline static void set_target_internal_reference_encoded_at(Address pc, 1258 Address target); 1259 1260 // Buffer size and constant pool distance are checked together at regular 1261 // intervals of kBufferCheckInterval emitted bytes. 1262 static const int kBufferCheckInterval = 1*KB/2; 1263 1264 // Code generation. 1265 // The relocation writer's position is at least kGap bytes below the end of 1266 // the generated instructions. This is so that multi-instruction sequences do 1267 // not have to check for overflow. The same is true for writes of large 1268 // relocation info entries. 1269 static const int kGap = 32; 1270 1271 1272 // Repeated checking whether the trampoline pool should be emitted is rather 1273 // expensive. By default we only check again once a number of instructions 1274 // has been generated. 1275 static const int kCheckConstIntervalInst = 32; 1276 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize; 1277 1278 int next_buffer_check_; // pc offset of next buffer check. 1279 1280 // Emission of the trampoline pool may be blocked in some code sequences. 1281 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero. 1282 int no_trampoline_pool_before_; // Block emission before this pc offset. 1283 1284 // Keep track of the last emitted pool to guarantee a maximal distance. 1285 int last_trampoline_pool_end_; // pc offset of the end of the last pool. 1286 1287 // Automatic growth of the assembly buffer may be blocked for some sequences. 1288 bool block_buffer_growth_; // Block growth when true. 1289 1290 // Relocation information generation. 1291 // Each relocation is encoded as a variable size value. 1292 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; 1293 RelocInfoWriter reloc_info_writer; 1294 1295 // The bound position, before this we cannot do instruction elimination. 1296 int last_bound_pos_; 1297 1298 // Readable constants for compact branch handling in emit() 1299 enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true }; 1300 1301 // Code emission. 1302 void GrowBuffer(); 1303 inline void emit(Instr x, 1304 CompactBranchType is_compact_branch = CompactBranchType::NO); 1305 inline void emit(uint64_t x); 1306 inline void CheckForEmitInForbiddenSlot(); 1307 template <typename T> 1308 inline void EmitHelper(T x); 1309 inline void EmitHelper(Instr x, CompactBranchType is_compact_branch); 1310 1311 // Instruction generation. 1312 // We have 3 different kind of encoding layout on MIPS. 1313 // However due to many different types of objects encoded in the same fields 1314 // we have quite a few aliases for each mode. 1315 // Using the same structure to refer to Register and FPURegister would spare a 1316 // few aliases, but mixing both does not look clean to me. 1317 // Anyway we could surely implement this differently. 1318 1319 void GenInstrRegister(Opcode opcode, 1320 Register rs, 1321 Register rt, 1322 Register rd, 1323 uint16_t sa = 0, 1324 SecondaryField func = NULLSF); 1325 1326 void GenInstrRegister(Opcode opcode, 1327 Register rs, 1328 Register rt, 1329 uint16_t msb, 1330 uint16_t lsb, 1331 SecondaryField func); 1332 1333 void GenInstrRegister(Opcode opcode, 1334 SecondaryField fmt, 1335 FPURegister ft, 1336 FPURegister fs, 1337 FPURegister fd, 1338 SecondaryField func = NULLSF); 1339 1340 void GenInstrRegister(Opcode opcode, 1341 FPURegister fr, 1342 FPURegister ft, 1343 FPURegister fs, 1344 FPURegister fd, 1345 SecondaryField func = NULLSF); 1346 1347 void GenInstrRegister(Opcode opcode, 1348 SecondaryField fmt, 1349 Register rt, 1350 FPURegister fs, 1351 FPURegister fd, 1352 SecondaryField func = NULLSF); 1353 1354 void GenInstrRegister(Opcode opcode, 1355 SecondaryField fmt, 1356 Register rt, 1357 FPUControlRegister fs, 1358 SecondaryField func = NULLSF); 1359 1360 void GenInstrImmediate( 1361 Opcode opcode, Register rs, Register rt, int32_t j, 1362 CompactBranchType is_compact_branch = CompactBranchType::NO); 1363 void GenInstrImmediate( 1364 Opcode opcode, Register rs, SecondaryField SF, int32_t j, 1365 CompactBranchType is_compact_branch = CompactBranchType::NO); 1366 void GenInstrImmediate( 1367 Opcode opcode, Register r1, FPURegister r2, int32_t j, 1368 CompactBranchType is_compact_branch = CompactBranchType::NO); 1369 void GenInstrImmediate( 1370 Opcode opcode, Register rs, int32_t offset21, 1371 CompactBranchType is_compact_branch = CompactBranchType::NO); 1372 void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21); 1373 void GenInstrImmediate( 1374 Opcode opcode, int32_t offset26, 1375 CompactBranchType is_compact_branch = CompactBranchType::NO); 1376 1377 1378 void GenInstrJump(Opcode opcode, 1379 uint32_t address); 1380 1381 1382 // Labels. 1383 void print(Label* L); 1384 void bind_to(Label* L, int pos); 1385 void next(Label* L, bool is_internal); 1386 1387 // One trampoline consists of: 1388 // - space for trampoline slots, 1389 // - space for labels. 1390 // 1391 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize. 1392 // Space for trampoline slots preceeds space for labels. Each label is of one 1393 // instruction size, so total amount for labels is equal to 1394 // label_count * kInstrSize. 1395 class Trampoline { 1396 public: Trampoline()1397 Trampoline() { 1398 start_ = 0; 1399 next_slot_ = 0; 1400 free_slot_count_ = 0; 1401 end_ = 0; 1402 } Trampoline(int start,int slot_count)1403 Trampoline(int start, int slot_count) { 1404 start_ = start; 1405 next_slot_ = start; 1406 free_slot_count_ = slot_count; 1407 end_ = start + slot_count * kTrampolineSlotsSize; 1408 } start()1409 int start() { 1410 return start_; 1411 } end()1412 int end() { 1413 return end_; 1414 } take_slot()1415 int take_slot() { 1416 int trampoline_slot = kInvalidSlotPos; 1417 if (free_slot_count_ <= 0) { 1418 // We have run out of space on trampolines. 1419 // Make sure we fail in debug mode, so we become aware of each case 1420 // when this happens. 1421 DCHECK(0); 1422 // Internal exception will be caught. 1423 } else { 1424 trampoline_slot = next_slot_; 1425 free_slot_count_--; 1426 next_slot_ += kTrampolineSlotsSize; 1427 } 1428 return trampoline_slot; 1429 } 1430 1431 private: 1432 int start_; 1433 int end_; 1434 int next_slot_; 1435 int free_slot_count_; 1436 }; 1437 1438 int32_t get_trampoline_entry(int32_t pos); 1439 int unbound_labels_count_; 1440 // If trampoline is emitted, generated code is becoming large. As this is 1441 // already a slow case which can possibly break our code generation for the 1442 // extreme case, we use this information to trigger different mode of 1443 // branch instruction generation, where we use jump instructions rather 1444 // than regular branch instructions. 1445 bool trampoline_emitted_; 1446 #ifdef _MIPS_ARCH_MIPS32R6 1447 static const int kTrampolineSlotsSize = 2 * kInstrSize; 1448 #else 1449 static const int kTrampolineSlotsSize = 4 * kInstrSize; 1450 #endif 1451 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; 1452 static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1; 1453 static const int kInvalidSlotPos = -1; 1454 1455 // Internal reference positions, required for unbounded internal reference 1456 // labels. 1457 std::set<int> internal_reference_positions_; 1458 EmittedCompactBranchInstruction()1459 void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; } ClearCompactBranchState()1460 void ClearCompactBranchState() { prev_instr_compact_branch_ = false; } 1461 bool prev_instr_compact_branch_ = false; 1462 1463 Trampoline trampoline_; 1464 bool internal_trampoline_exception_; 1465 1466 friend class RegExpMacroAssemblerMIPS; 1467 friend class RelocInfo; 1468 friend class CodePatcher; 1469 friend class BlockTrampolinePoolScope; 1470 friend class EnsureSpace; 1471 }; 1472 1473 1474 class EnsureSpace BASE_EMBEDDED { 1475 public: EnsureSpace(Assembler * assembler)1476 explicit EnsureSpace(Assembler* assembler) { 1477 assembler->CheckBuffer(); 1478 } 1479 }; 1480 1481 } // namespace internal 1482 } // namespace v8 1483 1484 #endif // V8_ARM_ASSEMBLER_MIPS_H_ 1485