1 /*
2  * The copyright in this software is being made available under the 2-clauses
3  * BSD License, included below. This software may be subject to other third
4  * party and contributor rights, including patent rights, and no such rights
5  * are granted under this license.
6  *
7  * Copyright (c) 2008, Jerome Fimes, Communications & Systemes <jerome.fimes@c-s.fr>
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opj_includes.h"
33 
34 /**
35  * LUP decomposition
36  */
37 static OPJ_BOOL opj_lupDecompose(OPJ_FLOAT32 * matrix,
38                                  OPJ_UINT32 * permutations,
39                                  OPJ_FLOAT32 * p_swap_area,
40                                  OPJ_UINT32 nb_compo);
41 /**
42  * LUP solving
43  */
44 static void opj_lupSolve(OPJ_FLOAT32 * pResult,
45                          OPJ_FLOAT32* pMatrix,
46                          OPJ_FLOAT32* pVector,
47                          OPJ_UINT32* pPermutations,
48                          OPJ_UINT32 nb_compo,
49                          OPJ_FLOAT32 * p_intermediate_data);
50 
51 /**
52  *LUP inversion (call with the result of lupDecompose)
53  */
54 static void opj_lupInvert ( OPJ_FLOAT32 * pSrcMatrix,
55                             OPJ_FLOAT32 * pDestMatrix,
56                             OPJ_UINT32 nb_compo,
57                             OPJ_UINT32 * pPermutations,
58                             OPJ_FLOAT32 * p_src_temp,
59                             OPJ_FLOAT32 * p_dest_temp,
60                             OPJ_FLOAT32 * p_swap_area);
61 
62 /*
63 ==========================================================
64    Matric inversion interface
65 ==========================================================
66 */
67 /**
68  * Matrix inversion.
69  */
opj_matrix_inversion_f(OPJ_FLOAT32 * pSrcMatrix,OPJ_FLOAT32 * pDestMatrix,OPJ_UINT32 nb_compo)70 OPJ_BOOL opj_matrix_inversion_f(OPJ_FLOAT32 * pSrcMatrix,
71                                 OPJ_FLOAT32 * pDestMatrix,
72                                 OPJ_UINT32 nb_compo)
73 {
74 	OPJ_BYTE * l_data = 00;
75 	OPJ_UINT32 l_permutation_size = nb_compo * (OPJ_UINT32)sizeof(OPJ_UINT32);
76 	OPJ_UINT32 l_swap_size = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32);
77 	OPJ_UINT32 l_total_size = l_permutation_size + 3 * l_swap_size;
78 	OPJ_UINT32 * lPermutations = 00;
79 	OPJ_FLOAT32 * l_double_data = 00;
80 
81 	l_data = (OPJ_BYTE *) opj_malloc(l_total_size);
82 	if (l_data == 0) {
83 		return OPJ_FALSE;
84 	}
85 	lPermutations = (OPJ_UINT32 *) l_data;
86 	l_double_data = (OPJ_FLOAT32 *) (l_data + l_permutation_size);
87 	memset(lPermutations,0,l_permutation_size);
88 
89 	if(! opj_lupDecompose(pSrcMatrix,lPermutations,l_double_data,nb_compo)) {
90 		opj_free(l_data);
91 		return OPJ_FALSE;
92 	}
93 
94     opj_lupInvert(pSrcMatrix,pDestMatrix,nb_compo,lPermutations,l_double_data,l_double_data + nb_compo,l_double_data + 2*nb_compo);
95 	opj_free(l_data);
96 
97     return OPJ_TRUE;
98 }
99 
100 
101 /*
102 ==========================================================
103    Local functions
104 ==========================================================
105 */
opj_lupDecompose(OPJ_FLOAT32 * matrix,OPJ_UINT32 * permutations,OPJ_FLOAT32 * p_swap_area,OPJ_UINT32 nb_compo)106 static OPJ_BOOL opj_lupDecompose(OPJ_FLOAT32 * matrix,OPJ_UINT32 * permutations,
107                           OPJ_FLOAT32 * p_swap_area,
108                           OPJ_UINT32 nb_compo)
109 {
110 	OPJ_UINT32 * tmpPermutations = permutations;
111 	OPJ_UINT32 * dstPermutations;
112 	OPJ_UINT32 k2=0,t;
113 	OPJ_FLOAT32 temp;
114 	OPJ_UINT32 i,j,k;
115 	OPJ_FLOAT32 p;
116 	OPJ_UINT32 lLastColum = nb_compo - 1;
117 	OPJ_UINT32 lSwapSize = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32);
118 	OPJ_FLOAT32 * lTmpMatrix = matrix;
119 	OPJ_FLOAT32 * lColumnMatrix,* lDestMatrix;
120 	OPJ_UINT32 offset = 1;
121 	OPJ_UINT32 lStride = nb_compo-1;
122 
123 	/*initialize permutations */
124 	for (i = 0; i < nb_compo; ++i)
125 	{
126     	*tmpPermutations++ = i;
127 	}
128 	/* now make a pivot with column switch */
129 	tmpPermutations = permutations;
130 	for (k = 0; k < lLastColum; ++k) {
131 		p = 0.0;
132 
133 		/* take the middle element */
134 		lColumnMatrix = lTmpMatrix + k;
135 
136 		/* make permutation with the biggest value in the column */
137         for (i = k; i < nb_compo; ++i) {
138 			temp = ((*lColumnMatrix > 0) ? *lColumnMatrix : -(*lColumnMatrix));
139      		if (temp > p) {
140      			p = temp;
141      			k2 = i;
142      		}
143 			/* next line */
144 			lColumnMatrix += nb_compo;
145      	}
146 
147      	/* a whole rest of 0 -> non singular */
148      	if (p == 0.0) {
149     		return OPJ_FALSE;
150 		}
151 
152 		/* should we permute ? */
153 		if (k2 != k) {
154 			/*exchange of line */
155      		/* k2 > k */
156 			dstPermutations = tmpPermutations + k2 - k;
157 			/* swap indices */
158 			t = *tmpPermutations;
159      		*tmpPermutations = *dstPermutations;
160      		*dstPermutations = t;
161 
162 			/* and swap entire line. */
163 			lColumnMatrix = lTmpMatrix + (k2 - k) * nb_compo;
164 			memcpy(p_swap_area,lColumnMatrix,lSwapSize);
165 			memcpy(lColumnMatrix,lTmpMatrix,lSwapSize);
166 			memcpy(lTmpMatrix,p_swap_area,lSwapSize);
167 		}
168 
169 		/* now update data in the rest of the line and line after */
170 		lDestMatrix = lTmpMatrix + k;
171 		lColumnMatrix = lDestMatrix + nb_compo;
172 		/* take the middle element */
173 		temp = *(lDestMatrix++);
174 
175 		/* now compute up data (i.e. coeff up of the diagonal). */
176      	for (i = offset; i < nb_compo; ++i)  {
177 			/*lColumnMatrix; */
178 			/* divide the lower column elements by the diagonal value */
179 
180 			/* matrix[i][k] /= matrix[k][k]; */
181      		/* p = matrix[i][k] */
182 			p = *lColumnMatrix / temp;
183 			*(lColumnMatrix++) = p;
184 
185             for (j = /* k + 1 */ offset; j < nb_compo; ++j) {
186 				/* matrix[i][j] -= matrix[i][k] * matrix[k][j]; */
187      			*(lColumnMatrix++) -= p * (*(lDestMatrix++));
188 			}
189 			/* come back to the k+1th element */
190 			lDestMatrix -= lStride;
191 			/* go to kth element of the next line */
192 			lColumnMatrix += k;
193      	}
194 
195 		/* offset is now k+2 */
196 		++offset;
197 		/* 1 element less for stride */
198 		--lStride;
199 		/* next line */
200 		lTmpMatrix+=nb_compo;
201 		/* next permutation element */
202 		++tmpPermutations;
203 	}
204     return OPJ_TRUE;
205 }
206 
opj_lupSolve(OPJ_FLOAT32 * pResult,OPJ_FLOAT32 * pMatrix,OPJ_FLOAT32 * pVector,OPJ_UINT32 * pPermutations,OPJ_UINT32 nb_compo,OPJ_FLOAT32 * p_intermediate_data)207 static void opj_lupSolve (OPJ_FLOAT32 * pResult,
208                    OPJ_FLOAT32 * pMatrix,
209                    OPJ_FLOAT32 * pVector,
210                    OPJ_UINT32* pPermutations,
211                    OPJ_UINT32 nb_compo,OPJ_FLOAT32 * p_intermediate_data)
212 {
213 	OPJ_INT32 k;
214     OPJ_UINT32 i,j;
215 	OPJ_FLOAT32 sum;
216 	OPJ_FLOAT32 u;
217     OPJ_UINT32 lStride = nb_compo+1;
218 	OPJ_FLOAT32 * lCurrentPtr;
219 	OPJ_FLOAT32 * lIntermediatePtr;
220 	OPJ_FLOAT32 * lDestPtr;
221 	OPJ_FLOAT32 * lTmpMatrix;
222 	OPJ_FLOAT32 * lLineMatrix = pMatrix;
223 	OPJ_FLOAT32 * lBeginPtr = pResult + nb_compo - 1;
224 	OPJ_FLOAT32 * lGeneratedData;
225 	OPJ_UINT32 * lCurrentPermutationPtr = pPermutations;
226 
227 
228 	lIntermediatePtr = p_intermediate_data;
229 	lGeneratedData = p_intermediate_data + nb_compo - 1;
230 
231     for (i = 0; i < nb_compo; ++i) {
232        	sum = 0.0;
233 		lCurrentPtr = p_intermediate_data;
234 		lTmpMatrix = lLineMatrix;
235         for (j = 1; j <= i; ++j)
236 		{
237 			/* sum += matrix[i][j-1] * y[j-1]; */
238         	sum += (*(lTmpMatrix++)) * (*(lCurrentPtr++));
239         }
240 		/*y[i] = pVector[pPermutations[i]] - sum; */
241         *(lIntermediatePtr++) = pVector[*(lCurrentPermutationPtr++)] - sum;
242 		lLineMatrix += nb_compo;
243 	}
244 
245 	/* we take the last point of the matrix */
246 	lLineMatrix = pMatrix + nb_compo*nb_compo - 1;
247 
248 	/* and we take after the last point of the destination vector */
249 	lDestPtr = pResult + nb_compo;
250 
251 
252     assert(nb_compo != 0);
253 	for (k = (OPJ_INT32)nb_compo - 1; k != -1 ; --k) {
254 		sum = 0.0;
255 		lTmpMatrix = lLineMatrix;
256         u = *(lTmpMatrix++);
257 		lCurrentPtr = lDestPtr--;
258         for (j = (OPJ_UINT32)(k + 1); j < nb_compo; ++j) {
259 			/* sum += matrix[k][j] * x[j] */
260         	sum += (*(lTmpMatrix++)) * (*(lCurrentPtr++));
261 		}
262 		/*x[k] = (y[k] - sum) / u; */
263         *(lBeginPtr--) = (*(lGeneratedData--) - sum) / u;
264 		lLineMatrix -= lStride;
265 	}
266 }
267 
268 
opj_lupInvert(OPJ_FLOAT32 * pSrcMatrix,OPJ_FLOAT32 * pDestMatrix,OPJ_UINT32 nb_compo,OPJ_UINT32 * pPermutations,OPJ_FLOAT32 * p_src_temp,OPJ_FLOAT32 * p_dest_temp,OPJ_FLOAT32 * p_swap_area)269 static void opj_lupInvert (OPJ_FLOAT32 * pSrcMatrix,
270                     OPJ_FLOAT32 * pDestMatrix,
271                     OPJ_UINT32 nb_compo,
272                     OPJ_UINT32 * pPermutations,
273                     OPJ_FLOAT32 * p_src_temp,
274                     OPJ_FLOAT32 * p_dest_temp,
275                     OPJ_FLOAT32 * p_swap_area )
276 {
277 	OPJ_UINT32 j,i;
278 	OPJ_FLOAT32 * lCurrentPtr;
279 	OPJ_FLOAT32 * lLineMatrix = pDestMatrix;
280 	OPJ_UINT32 lSwapSize = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32);
281 
282 	for (j = 0; j < nb_compo; ++j) {
283 		lCurrentPtr = lLineMatrix++;
284         memset(p_src_temp,0,lSwapSize);
285     	p_src_temp[j] = 1.0;
286 		opj_lupSolve(p_dest_temp,pSrcMatrix,p_src_temp, pPermutations, nb_compo , p_swap_area);
287 
288 		for (i = 0; i < nb_compo; ++i) {
289     		*(lCurrentPtr) = p_dest_temp[i];
290 			lCurrentPtr+=nb_compo;
291     	}
292     }
293 }
294 
295