1 ; 2 ; jidctfst.asm - fast integer IDCT (SSE2) 3 ; 4 ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5 ; 6 ; Based on the x86 SIMD extension for IJG JPEG library 7 ; Copyright (C) 1999-2006, MIYASAKA Masaru. 8 ; For conditions of distribution and use, see copyright notice in jsimdext.inc 9 ; 10 ; This file should be assembled with NASM (Netwide Assembler), 11 ; can *not* be assembled with Microsoft's MASM or any compatible 12 ; assembler (including Borland's Turbo Assembler). 13 ; NASM is available from http://nasm.sourceforge.net/ or 14 ; http://sourceforge.net/project/showfiles.php?group_id=6208 15 ; 16 ; This file contains a fast, not so accurate integer implementation of 17 ; the inverse DCT (Discrete Cosine Transform). The following code is 18 ; based directly on the IJG's original jidctfst.c; see the jidctfst.c 19 ; for more details. 20 ; 21 ; [TAB8] 22 23 %include "jsimdext.inc" 24 %include "jdct.inc" 25 26 ; -------------------------------------------------------------------------- 27 28 %define CONST_BITS 8 ; 14 is also OK. 29 %define PASS1_BITS 2 30 31 %if IFAST_SCALE_BITS != PASS1_BITS 32 %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'." 33 %endif 34 35 %if CONST_BITS == 8 36 F_1_082 equ 277 ; FIX(1.082392200) 37 F_1_414 equ 362 ; FIX(1.414213562) 38 F_1_847 equ 473 ; FIX(1.847759065) 39 F_2_613 equ 669 ; FIX(2.613125930) 40 F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1) 41 %else 42 ; NASM cannot do compile-time arithmetic on floating-point constants. 43 %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) 44 F_1_082 equ DESCALE(1162209775,30-CONST_BITS) ; FIX(1.082392200) 45 F_1_414 equ DESCALE(1518500249,30-CONST_BITS) ; FIX(1.414213562) 46 F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) 47 F_2_613 equ DESCALE(2805822602,30-CONST_BITS) ; FIX(2.613125930) 48 F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1) 49 %endif 50 51 ; -------------------------------------------------------------------------- 52 SECTION SEG_CONST 53 54 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) 55 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) 56 57 %define PRE_MULTIPLY_SCALE_BITS 2 58 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) 59 60 alignz 16 61 global EXTN(jconst_idct_ifast_sse2) 62 63 EXTN(jconst_idct_ifast_sse2): 64 65 PW_F1414 times 8 dw F_1_414 << CONST_SHIFT 66 PW_F1847 times 8 dw F_1_847 << CONST_SHIFT 67 PW_MF1613 times 8 dw -F_1_613 << CONST_SHIFT 68 PW_F1082 times 8 dw F_1_082 << CONST_SHIFT 69 PB_CENTERJSAMP times 16 db CENTERJSAMPLE 70 71 alignz 16 72 73 ; -------------------------------------------------------------------------- 74 SECTION SEG_TEXT 75 BITS 32 76 ; 77 ; Perform dequantization and inverse DCT on one block of coefficients. 78 ; 79 ; GLOBAL(void) 80 ; jsimd_idct_ifast_sse2 (void *dct_table, JCOEFPTR coef_block, 81 ; JSAMPARRAY output_buf, JDIMENSION output_col) 82 ; 83 84 %define dct_table(b) (b)+8 ; jpeg_component_info *compptr 85 %define coef_block(b) (b)+12 ; JCOEFPTR coef_block 86 %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf 87 %define output_col(b) (b)+20 ; JDIMENSION output_col 88 89 %define original_ebp ebp+0 90 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] 91 %define WK_NUM 2 92 93 align 16 94 global EXTN(jsimd_idct_ifast_sse2) 95 96 EXTN(jsimd_idct_ifast_sse2): 97 push ebp 98 mov eax,esp ; eax = original ebp 99 sub esp, byte 4 100 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits 101 mov [esp],eax 102 mov ebp,esp ; ebp = aligned ebp 103 lea esp, [wk(0)] 104 pushpic ebx 105 ; push ecx ; unused 106 ; push edx ; need not be preserved 107 push esi 108 push edi 109 110 get_GOT ebx ; get GOT address 111 112 ; ---- Pass 1: process columns from input. 113 114 ; mov eax, [original_ebp] 115 mov edx, POINTER [dct_table(eax)] ; quantptr 116 mov esi, JCOEFPTR [coef_block(eax)] ; inptr 117 118 %ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2 119 mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] 120 or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] 121 jnz near .columnDCT 122 123 movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] 124 movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] 125 por xmm0, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] 126 por xmm1, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)] 127 por xmm0, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] 128 por xmm1, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] 129 por xmm0, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] 130 por xmm1,xmm0 131 packsswb xmm1,xmm1 132 packsswb xmm1,xmm1 133 movd eax,xmm1 134 test eax,eax 135 jnz short .columnDCT 136 137 ; -- AC terms all zero 138 139 movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] 140 pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] 141 142 movdqa xmm7,xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07) 143 punpcklwd xmm0,xmm0 ; xmm0=(00 00 01 01 02 02 03 03) 144 punpckhwd xmm7,xmm7 ; xmm7=(04 04 05 05 06 06 07 07) 145 146 pshufd xmm6,xmm0,0x00 ; xmm6=col0=(00 00 00 00 00 00 00 00) 147 pshufd xmm2,xmm0,0x55 ; xmm2=col1=(01 01 01 01 01 01 01 01) 148 pshufd xmm5,xmm0,0xAA ; xmm5=col2=(02 02 02 02 02 02 02 02) 149 pshufd xmm0,xmm0,0xFF ; xmm0=col3=(03 03 03 03 03 03 03 03) 150 pshufd xmm1,xmm7,0x00 ; xmm1=col4=(04 04 04 04 04 04 04 04) 151 pshufd xmm4,xmm7,0x55 ; xmm4=col5=(05 05 05 05 05 05 05 05) 152 pshufd xmm3,xmm7,0xAA ; xmm3=col6=(06 06 06 06 06 06 06 06) 153 pshufd xmm7,xmm7,0xFF ; xmm7=col7=(07 07 07 07 07 07 07 07) 154 155 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=col1 156 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=col3 157 jmp near .column_end 158 alignx 16,7 159 %endif 160 .columnDCT: 161 162 ; -- Even part 163 164 movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] 165 movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] 166 pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)] 167 pmullw xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)] 168 movdqa xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)] 169 movdqa xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] 170 pmullw xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)] 171 pmullw xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)] 172 173 movdqa xmm4,xmm0 174 movdqa xmm5,xmm1 175 psubw xmm0,xmm2 ; xmm0=tmp11 176 psubw xmm1,xmm3 177 paddw xmm4,xmm2 ; xmm4=tmp10 178 paddw xmm5,xmm3 ; xmm5=tmp13 179 180 psllw xmm1,PRE_MULTIPLY_SCALE_BITS 181 pmulhw xmm1,[GOTOFF(ebx,PW_F1414)] 182 psubw xmm1,xmm5 ; xmm1=tmp12 183 184 movdqa xmm6,xmm4 185 movdqa xmm7,xmm0 186 psubw xmm4,xmm5 ; xmm4=tmp3 187 psubw xmm0,xmm1 ; xmm0=tmp2 188 paddw xmm6,xmm5 ; xmm6=tmp0 189 paddw xmm7,xmm1 ; xmm7=tmp1 190 191 movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=tmp3 192 movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=tmp2 193 194 ; -- Odd part 195 196 movdqa xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] 197 movdqa xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] 198 pmullw xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)] 199 pmullw xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)] 200 movdqa xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] 201 movdqa xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] 202 pmullw xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)] 203 pmullw xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)] 204 205 movdqa xmm4,xmm2 206 movdqa xmm0,xmm5 207 psubw xmm2,xmm1 ; xmm2=z12 208 psubw xmm5,xmm3 ; xmm5=z10 209 paddw xmm4,xmm1 ; xmm4=z11 210 paddw xmm0,xmm3 ; xmm0=z13 211 212 movdqa xmm1,xmm5 ; xmm1=z10(unscaled) 213 psllw xmm2,PRE_MULTIPLY_SCALE_BITS 214 psllw xmm5,PRE_MULTIPLY_SCALE_BITS 215 216 movdqa xmm3,xmm4 217 psubw xmm4,xmm0 218 paddw xmm3,xmm0 ; xmm3=tmp7 219 220 psllw xmm4,PRE_MULTIPLY_SCALE_BITS 221 pmulhw xmm4,[GOTOFF(ebx,PW_F1414)] ; xmm4=tmp11 222 223 ; To avoid overflow... 224 ; 225 ; (Original) 226 ; tmp12 = -2.613125930 * z10 + z5; 227 ; 228 ; (This implementation) 229 ; tmp12 = (-1.613125930 - 1) * z10 + z5; 230 ; = -1.613125930 * z10 - z10 + z5; 231 232 movdqa xmm0,xmm5 233 paddw xmm5,xmm2 234 pmulhw xmm5,[GOTOFF(ebx,PW_F1847)] ; xmm5=z5 235 pmulhw xmm0,[GOTOFF(ebx,PW_MF1613)] 236 pmulhw xmm2,[GOTOFF(ebx,PW_F1082)] 237 psubw xmm0,xmm1 238 psubw xmm2,xmm5 ; xmm2=tmp10 239 paddw xmm0,xmm5 ; xmm0=tmp12 240 241 ; -- Final output stage 242 243 psubw xmm0,xmm3 ; xmm0=tmp6 244 movdqa xmm1,xmm6 245 movdqa xmm5,xmm7 246 paddw xmm6,xmm3 ; xmm6=data0=(00 01 02 03 04 05 06 07) 247 paddw xmm7,xmm0 ; xmm7=data1=(10 11 12 13 14 15 16 17) 248 psubw xmm1,xmm3 ; xmm1=data7=(70 71 72 73 74 75 76 77) 249 psubw xmm5,xmm0 ; xmm5=data6=(60 61 62 63 64 65 66 67) 250 psubw xmm4,xmm0 ; xmm4=tmp5 251 252 movdqa xmm3,xmm6 ; transpose coefficients(phase 1) 253 punpcklwd xmm6,xmm7 ; xmm6=(00 10 01 11 02 12 03 13) 254 punpckhwd xmm3,xmm7 ; xmm3=(04 14 05 15 06 16 07 17) 255 movdqa xmm0,xmm5 ; transpose coefficients(phase 1) 256 punpcklwd xmm5,xmm1 ; xmm5=(60 70 61 71 62 72 63 73) 257 punpckhwd xmm0,xmm1 ; xmm0=(64 74 65 75 66 76 67 77) 258 259 movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 260 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp3 261 262 movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(60 70 61 71 62 72 63 73) 263 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(64 74 65 75 66 76 67 77) 264 265 paddw xmm2,xmm4 ; xmm2=tmp4 266 movdqa xmm5,xmm7 267 movdqa xmm0,xmm1 268 paddw xmm7,xmm4 ; xmm7=data2=(20 21 22 23 24 25 26 27) 269 paddw xmm1,xmm2 ; xmm1=data4=(40 41 42 43 44 45 46 47) 270 psubw xmm5,xmm4 ; xmm5=data5=(50 51 52 53 54 55 56 57) 271 psubw xmm0,xmm2 ; xmm0=data3=(30 31 32 33 34 35 36 37) 272 273 movdqa xmm4,xmm7 ; transpose coefficients(phase 1) 274 punpcklwd xmm7,xmm0 ; xmm7=(20 30 21 31 22 32 23 33) 275 punpckhwd xmm4,xmm0 ; xmm4=(24 34 25 35 26 36 27 37) 276 movdqa xmm2,xmm1 ; transpose coefficients(phase 1) 277 punpcklwd xmm1,xmm5 ; xmm1=(40 50 41 51 42 52 43 53) 278 punpckhwd xmm2,xmm5 ; xmm2=(44 54 45 55 46 56 47 57) 279 280 movdqa xmm0,xmm3 ; transpose coefficients(phase 2) 281 punpckldq xmm3,xmm4 ; xmm3=(04 14 24 34 05 15 25 35) 282 punpckhdq xmm0,xmm4 ; xmm0=(06 16 26 36 07 17 27 37) 283 movdqa xmm5,xmm6 ; transpose coefficients(phase 2) 284 punpckldq xmm6,xmm7 ; xmm6=(00 10 20 30 01 11 21 31) 285 punpckhdq xmm5,xmm7 ; xmm5=(02 12 22 32 03 13 23 33) 286 287 movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(60 70 61 71 62 72 63 73) 288 movdqa xmm7, XMMWORD [wk(1)] ; xmm7=(64 74 65 75 66 76 67 77) 289 290 movdqa XMMWORD [wk(0)], xmm3 ; wk(0)=(04 14 24 34 05 15 25 35) 291 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(06 16 26 36 07 17 27 37) 292 293 movdqa xmm3,xmm1 ; transpose coefficients(phase 2) 294 punpckldq xmm1,xmm4 ; xmm1=(40 50 60 70 41 51 61 71) 295 punpckhdq xmm3,xmm4 ; xmm3=(42 52 62 72 43 53 63 73) 296 movdqa xmm0,xmm2 ; transpose coefficients(phase 2) 297 punpckldq xmm2,xmm7 ; xmm2=(44 54 64 74 45 55 65 75) 298 punpckhdq xmm0,xmm7 ; xmm0=(46 56 66 76 47 57 67 77) 299 300 movdqa xmm4,xmm6 ; transpose coefficients(phase 3) 301 punpcklqdq xmm6,xmm1 ; xmm6=col0=(00 10 20 30 40 50 60 70) 302 punpckhqdq xmm4,xmm1 ; xmm4=col1=(01 11 21 31 41 51 61 71) 303 movdqa xmm7,xmm5 ; transpose coefficients(phase 3) 304 punpcklqdq xmm5,xmm3 ; xmm5=col2=(02 12 22 32 42 52 62 72) 305 punpckhqdq xmm7,xmm3 ; xmm7=col3=(03 13 23 33 43 53 63 73) 306 307 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(04 14 24 34 05 15 25 35) 308 movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(06 16 26 36 07 17 27 37) 309 310 movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=col1 311 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=col3 312 313 movdqa xmm4,xmm1 ; transpose coefficients(phase 3) 314 punpcklqdq xmm1,xmm2 ; xmm1=col4=(04 14 24 34 44 54 64 74) 315 punpckhqdq xmm4,xmm2 ; xmm4=col5=(05 15 25 35 45 55 65 75) 316 movdqa xmm7,xmm3 ; transpose coefficients(phase 3) 317 punpcklqdq xmm3,xmm0 ; xmm3=col6=(06 16 26 36 46 56 66 76) 318 punpckhqdq xmm7,xmm0 ; xmm7=col7=(07 17 27 37 47 57 67 77) 319 .column_end: 320 321 ; -- Prefetch the next coefficient block 322 323 prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32] 324 prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32] 325 prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32] 326 prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32] 327 328 ; ---- Pass 2: process rows from work array, store into output array. 329 330 mov eax, [original_ebp] 331 mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) 332 mov eax, JDIMENSION [output_col(eax)] 333 334 ; -- Even part 335 336 ; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6 337 338 movdqa xmm2,xmm6 339 movdqa xmm0,xmm5 340 psubw xmm6,xmm1 ; xmm6=tmp11 341 psubw xmm5,xmm3 342 paddw xmm2,xmm1 ; xmm2=tmp10 343 paddw xmm0,xmm3 ; xmm0=tmp13 344 345 psllw xmm5,PRE_MULTIPLY_SCALE_BITS 346 pmulhw xmm5,[GOTOFF(ebx,PW_F1414)] 347 psubw xmm5,xmm0 ; xmm5=tmp12 348 349 movdqa xmm1,xmm2 350 movdqa xmm3,xmm6 351 psubw xmm2,xmm0 ; xmm2=tmp3 352 psubw xmm6,xmm5 ; xmm6=tmp2 353 paddw xmm1,xmm0 ; xmm1=tmp0 354 paddw xmm3,xmm5 ; xmm3=tmp1 355 356 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=col1 357 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=col3 358 359 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp3 360 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp2 361 362 ; -- Odd part 363 364 ; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7 365 366 movdqa xmm2,xmm0 367 movdqa xmm6,xmm4 368 psubw xmm0,xmm7 ; xmm0=z12 369 psubw xmm4,xmm5 ; xmm4=z10 370 paddw xmm2,xmm7 ; xmm2=z11 371 paddw xmm6,xmm5 ; xmm6=z13 372 373 movdqa xmm7,xmm4 ; xmm7=z10(unscaled) 374 psllw xmm0,PRE_MULTIPLY_SCALE_BITS 375 psllw xmm4,PRE_MULTIPLY_SCALE_BITS 376 377 movdqa xmm5,xmm2 378 psubw xmm2,xmm6 379 paddw xmm5,xmm6 ; xmm5=tmp7 380 381 psllw xmm2,PRE_MULTIPLY_SCALE_BITS 382 pmulhw xmm2,[GOTOFF(ebx,PW_F1414)] ; xmm2=tmp11 383 384 ; To avoid overflow... 385 ; 386 ; (Original) 387 ; tmp12 = -2.613125930 * z10 + z5; 388 ; 389 ; (This implementation) 390 ; tmp12 = (-1.613125930 - 1) * z10 + z5; 391 ; = -1.613125930 * z10 - z10 + z5; 392 393 movdqa xmm6,xmm4 394 paddw xmm4,xmm0 395 pmulhw xmm4,[GOTOFF(ebx,PW_F1847)] ; xmm4=z5 396 pmulhw xmm6,[GOTOFF(ebx,PW_MF1613)] 397 pmulhw xmm0,[GOTOFF(ebx,PW_F1082)] 398 psubw xmm6,xmm7 399 psubw xmm0,xmm4 ; xmm0=tmp10 400 paddw xmm6,xmm4 ; xmm6=tmp12 401 402 ; -- Final output stage 403 404 psubw xmm6,xmm5 ; xmm6=tmp6 405 movdqa xmm7,xmm1 406 movdqa xmm4,xmm3 407 paddw xmm1,xmm5 ; xmm1=data0=(00 10 20 30 40 50 60 70) 408 paddw xmm3,xmm6 ; xmm3=data1=(01 11 21 31 41 51 61 71) 409 psraw xmm1,(PASS1_BITS+3) ; descale 410 psraw xmm3,(PASS1_BITS+3) ; descale 411 psubw xmm7,xmm5 ; xmm7=data7=(07 17 27 37 47 57 67 77) 412 psubw xmm4,xmm6 ; xmm4=data6=(06 16 26 36 46 56 66 76) 413 psraw xmm7,(PASS1_BITS+3) ; descale 414 psraw xmm4,(PASS1_BITS+3) ; descale 415 psubw xmm2,xmm6 ; xmm2=tmp5 416 417 packsswb xmm1,xmm4 ; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) 418 packsswb xmm3,xmm7 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) 419 420 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp2 421 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=tmp3 422 423 paddw xmm0,xmm2 ; xmm0=tmp4 424 movdqa xmm4,xmm5 425 movdqa xmm7,xmm6 426 paddw xmm5,xmm2 ; xmm5=data2=(02 12 22 32 42 52 62 72) 427 paddw xmm6,xmm0 ; xmm6=data4=(04 14 24 34 44 54 64 74) 428 psraw xmm5,(PASS1_BITS+3) ; descale 429 psraw xmm6,(PASS1_BITS+3) ; descale 430 psubw xmm4,xmm2 ; xmm4=data5=(05 15 25 35 45 55 65 75) 431 psubw xmm7,xmm0 ; xmm7=data3=(03 13 23 33 43 53 63 73) 432 psraw xmm4,(PASS1_BITS+3) ; descale 433 psraw xmm7,(PASS1_BITS+3) ; descale 434 435 movdqa xmm2,[GOTOFF(ebx,PB_CENTERJSAMP)] ; xmm2=[PB_CENTERJSAMP] 436 437 packsswb xmm5,xmm6 ; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74) 438 packsswb xmm7,xmm4 ; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75) 439 440 paddb xmm1,xmm2 441 paddb xmm3,xmm2 442 paddb xmm5,xmm2 443 paddb xmm7,xmm2 444 445 movdqa xmm0,xmm1 ; transpose coefficients(phase 1) 446 punpcklbw xmm1,xmm3 ; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71) 447 punpckhbw xmm0,xmm3 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77) 448 movdqa xmm6,xmm5 ; transpose coefficients(phase 1) 449 punpcklbw xmm5,xmm7 ; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73) 450 punpckhbw xmm6,xmm7 ; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75) 451 452 movdqa xmm4,xmm1 ; transpose coefficients(phase 2) 453 punpcklwd xmm1,xmm5 ; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) 454 punpckhwd xmm4,xmm5 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73) 455 movdqa xmm2,xmm6 ; transpose coefficients(phase 2) 456 punpcklwd xmm6,xmm0 ; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) 457 punpckhwd xmm2,xmm0 ; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77) 458 459 movdqa xmm3,xmm1 ; transpose coefficients(phase 3) 460 punpckldq xmm1,xmm6 ; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) 461 punpckhdq xmm3,xmm6 ; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) 462 movdqa xmm7,xmm4 ; transpose coefficients(phase 3) 463 punpckldq xmm4,xmm2 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) 464 punpckhdq xmm7,xmm2 ; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) 465 466 pshufd xmm5,xmm1,0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) 467 pshufd xmm0,xmm3,0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) 468 pshufd xmm6,xmm4,0x4E ; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) 469 pshufd xmm2,xmm7,0x4E ; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) 470 471 mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] 472 mov esi, JSAMPROW [edi+2*SIZEOF_JSAMPROW] 473 movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm1 474 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm3 475 mov edx, JSAMPROW [edi+4*SIZEOF_JSAMPROW] 476 mov esi, JSAMPROW [edi+6*SIZEOF_JSAMPROW] 477 movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm4 478 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm7 479 480 mov edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] 481 mov esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW] 482 movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm5 483 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm0 484 mov edx, JSAMPROW [edi+5*SIZEOF_JSAMPROW] 485 mov esi, JSAMPROW [edi+7*SIZEOF_JSAMPROW] 486 movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6 487 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm2 488 489 pop edi 490 pop esi 491 ; pop edx ; need not be preserved 492 ; pop ecx ; unused 493 poppic ebx 494 mov esp,ebp ; esp <- aligned ebp 495 pop esp ; esp <- original ebp 496 pop ebp 497 ret 498 499 ; For some reason, the OS X linker does not honor the request to align the 500 ; segment unless we do this. 501 align 16 502