1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Shared implementation of BlockFrequency for IR and Machine Instructions.
11 // See the documentation below for BlockFrequencyInfoImpl for details.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
16 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/Support/BlockFrequency.h"
25 #include "llvm/Support/BranchProbability.h"
26 #include "llvm/Support/DOTGraphTraits.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Format.h"
29 #include "llvm/Support/ScaledNumber.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <deque>
32 #include <list>
33 #include <string>
34 #include <vector>
35 
36 #define DEBUG_TYPE "block-freq"
37 
38 namespace llvm {
39 
40 class BasicBlock;
41 class BranchProbabilityInfo;
42 class Function;
43 class Loop;
44 class LoopInfo;
45 class MachineBasicBlock;
46 class MachineBranchProbabilityInfo;
47 class MachineFunction;
48 class MachineLoop;
49 class MachineLoopInfo;
50 
51 namespace bfi_detail {
52 
53 struct IrreducibleGraph;
54 
55 // This is part of a workaround for a GCC 4.7 crash on lambdas.
56 template <class BT> struct BlockEdgesAdder;
57 
58 /// \brief Mass of a block.
59 ///
60 /// This class implements a sort of fixed-point fraction always between 0.0 and
61 /// 1.0.  getMass() == UINT64_MAX indicates a value of 1.0.
62 ///
63 /// Masses can be added and subtracted.  Simple saturation arithmetic is used,
64 /// so arithmetic operations never overflow or underflow.
65 ///
66 /// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
67 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
68 /// quite, maximum precision).
69 ///
70 /// Masses can be scaled by \a BranchProbability at maximum precision.
71 class BlockMass {
72   uint64_t Mass;
73 
74 public:
BlockMass()75   BlockMass() : Mass(0) {}
BlockMass(uint64_t Mass)76   explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
77 
getEmpty()78   static BlockMass getEmpty() { return BlockMass(); }
getFull()79   static BlockMass getFull() { return BlockMass(UINT64_MAX); }
80 
getMass()81   uint64_t getMass() const { return Mass; }
82 
isFull()83   bool isFull() const { return Mass == UINT64_MAX; }
isEmpty()84   bool isEmpty() const { return !Mass; }
85 
86   bool operator!() const { return isEmpty(); }
87 
88   /// \brief Add another mass.
89   ///
90   /// Adds another mass, saturating at \a isFull() rather than overflowing.
91   BlockMass &operator+=(BlockMass X) {
92     uint64_t Sum = Mass + X.Mass;
93     Mass = Sum < Mass ? UINT64_MAX : Sum;
94     return *this;
95   }
96 
97   /// \brief Subtract another mass.
98   ///
99   /// Subtracts another mass, saturating at \a isEmpty() rather than
100   /// undeflowing.
101   BlockMass &operator-=(BlockMass X) {
102     uint64_t Diff = Mass - X.Mass;
103     Mass = Diff > Mass ? 0 : Diff;
104     return *this;
105   }
106 
107   BlockMass &operator*=(BranchProbability P) {
108     Mass = P.scale(Mass);
109     return *this;
110   }
111 
112   bool operator==(BlockMass X) const { return Mass == X.Mass; }
113   bool operator!=(BlockMass X) const { return Mass != X.Mass; }
114   bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
115   bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
116   bool operator<(BlockMass X) const { return Mass < X.Mass; }
117   bool operator>(BlockMass X) const { return Mass > X.Mass; }
118 
119   /// \brief Convert to scaled number.
120   ///
121   /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
122   /// gives slightly above 0.0.
123   ScaledNumber<uint64_t> toScaled() const;
124 
125   void dump() const;
126   raw_ostream &print(raw_ostream &OS) const;
127 };
128 
129 inline BlockMass operator+(BlockMass L, BlockMass R) {
130   return BlockMass(L) += R;
131 }
132 inline BlockMass operator-(BlockMass L, BlockMass R) {
133   return BlockMass(L) -= R;
134 }
135 inline BlockMass operator*(BlockMass L, BranchProbability R) {
136   return BlockMass(L) *= R;
137 }
138 inline BlockMass operator*(BranchProbability L, BlockMass R) {
139   return BlockMass(R) *= L;
140 }
141 
142 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
143   return X.print(OS);
144 }
145 
146 } // end namespace bfi_detail
147 
148 template <> struct isPodLike<bfi_detail::BlockMass> {
149   static const bool value = true;
150 };
151 
152 /// \brief Base class for BlockFrequencyInfoImpl
153 ///
154 /// BlockFrequencyInfoImplBase has supporting data structures and some
155 /// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
156 /// the block type (or that call such algorithms) are skipped here.
157 ///
158 /// Nevertheless, the majority of the overall algorithm documention lives with
159 /// BlockFrequencyInfoImpl.  See there for details.
160 class BlockFrequencyInfoImplBase {
161 public:
162   typedef ScaledNumber<uint64_t> Scaled64;
163   typedef bfi_detail::BlockMass BlockMass;
164 
165   /// \brief Representative of a block.
166   ///
167   /// This is a simple wrapper around an index into the reverse-post-order
168   /// traversal of the blocks.
169   ///
170   /// Unlike a block pointer, its order has meaning (location in the
171   /// topological sort) and it's class is the same regardless of block type.
172   struct BlockNode {
173     typedef uint32_t IndexType;
174     IndexType Index;
175 
176     bool operator==(const BlockNode &X) const { return Index == X.Index; }
177     bool operator!=(const BlockNode &X) const { return Index != X.Index; }
178     bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
179     bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
180     bool operator<(const BlockNode &X) const { return Index < X.Index; }
181     bool operator>(const BlockNode &X) const { return Index > X.Index; }
182 
183     BlockNode() : Index(UINT32_MAX) {}
184     BlockNode(IndexType Index) : Index(Index) {}
185 
186     bool isValid() const { return Index <= getMaxIndex(); }
187     static size_t getMaxIndex() { return UINT32_MAX - 1; }
188   };
189 
190   /// \brief Stats about a block itself.
191   struct FrequencyData {
192     Scaled64 Scaled;
193     uint64_t Integer;
194   };
195 
196   /// \brief Data about a loop.
197   ///
198   /// Contains the data necessary to represent a loop as a pseudo-node once it's
199   /// packaged.
200   struct LoopData {
201     typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
202     typedef SmallVector<BlockNode, 4> NodeList;
203     typedef SmallVector<BlockMass, 1> HeaderMassList;
204     LoopData *Parent;            ///< The parent loop.
205     bool IsPackaged;             ///< Whether this has been packaged.
206     uint32_t NumHeaders;         ///< Number of headers.
207     ExitMap Exits;               ///< Successor edges (and weights).
208     NodeList Nodes;              ///< Header and the members of the loop.
209     HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
210     BlockMass Mass;
211     Scaled64 Scale;
212 
213     LoopData(LoopData *Parent, const BlockNode &Header)
214         : Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header),
215           BackedgeMass(1) {}
216     template <class It1, class It2>
217     LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
218              It2 LastOther)
219         : Parent(Parent), IsPackaged(false), Nodes(FirstHeader, LastHeader) {
220       NumHeaders = Nodes.size();
221       Nodes.insert(Nodes.end(), FirstOther, LastOther);
222       BackedgeMass.resize(NumHeaders);
223     }
224     bool isHeader(const BlockNode &Node) const {
225       if (isIrreducible())
226         return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
227                                   Node);
228       return Node == Nodes[0];
229     }
230     BlockNode getHeader() const { return Nodes[0]; }
231     bool isIrreducible() const { return NumHeaders > 1; }
232 
233     HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
234       assert(isHeader(B) && "this is only valid on loop header blocks");
235       if (isIrreducible())
236         return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
237                Nodes.begin();
238       return 0;
239     }
240 
241     NodeList::const_iterator members_begin() const {
242       return Nodes.begin() + NumHeaders;
243     }
244     NodeList::const_iterator members_end() const { return Nodes.end(); }
245     iterator_range<NodeList::const_iterator> members() const {
246       return make_range(members_begin(), members_end());
247     }
248   };
249 
250   /// \brief Index of loop information.
251   struct WorkingData {
252     BlockNode Node; ///< This node.
253     LoopData *Loop; ///< The loop this block is inside.
254     BlockMass Mass; ///< Mass distribution from the entry block.
255 
256     WorkingData(const BlockNode &Node) : Node(Node), Loop(nullptr) {}
257 
258     bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
259     bool isDoubleLoopHeader() const {
260       return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
261              Loop->Parent->isHeader(Node);
262     }
263 
264     LoopData *getContainingLoop() const {
265       if (!isLoopHeader())
266         return Loop;
267       if (!isDoubleLoopHeader())
268         return Loop->Parent;
269       return Loop->Parent->Parent;
270     }
271 
272     /// \brief Resolve a node to its representative.
273     ///
274     /// Get the node currently representing Node, which could be a containing
275     /// loop.
276     ///
277     /// This function should only be called when distributing mass.  As long as
278     /// there are no irreducible edges to Node, then it will have complexity
279     /// O(1) in this context.
280     ///
281     /// In general, the complexity is O(L), where L is the number of loop
282     /// headers Node has been packaged into.  Since this method is called in
283     /// the context of distributing mass, L will be the number of loop headers
284     /// an early exit edge jumps out of.
285     BlockNode getResolvedNode() const {
286       auto L = getPackagedLoop();
287       return L ? L->getHeader() : Node;
288     }
289     LoopData *getPackagedLoop() const {
290       if (!Loop || !Loop->IsPackaged)
291         return nullptr;
292       auto L = Loop;
293       while (L->Parent && L->Parent->IsPackaged)
294         L = L->Parent;
295       return L;
296     }
297 
298     /// \brief Get the appropriate mass for a node.
299     ///
300     /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
301     /// has been packaged), returns the mass of its pseudo-node.  If it's a
302     /// node inside a packaged loop, it returns the loop's mass.
303     BlockMass &getMass() {
304       if (!isAPackage())
305         return Mass;
306       if (!isADoublePackage())
307         return Loop->Mass;
308       return Loop->Parent->Mass;
309     }
310 
311     /// \brief Has ContainingLoop been packaged up?
312     bool isPackaged() const { return getResolvedNode() != Node; }
313     /// \brief Has Loop been packaged up?
314     bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
315     /// \brief Has Loop been packaged up twice?
316     bool isADoublePackage() const {
317       return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
318     }
319   };
320 
321   /// \brief Unscaled probability weight.
322   ///
323   /// Probability weight for an edge in the graph (including the
324   /// successor/target node).
325   ///
326   /// All edges in the original function are 32-bit.  However, exit edges from
327   /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
328   /// space in general.
329   ///
330   /// In addition to the raw weight amount, Weight stores the type of the edge
331   /// in the current context (i.e., the context of the loop being processed).
332   /// Is this a local edge within the loop, an exit from the loop, or a
333   /// backedge to the loop header?
334   struct Weight {
335     enum DistType { Local, Exit, Backedge };
336     DistType Type;
337     BlockNode TargetNode;
338     uint64_t Amount;
339     Weight() : Type(Local), Amount(0) {}
340     Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
341         : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
342   };
343 
344   /// \brief Distribution of unscaled probability weight.
345   ///
346   /// Distribution of unscaled probability weight to a set of successors.
347   ///
348   /// This class collates the successor edge weights for later processing.
349   ///
350   /// \a DidOverflow indicates whether \a Total did overflow while adding to
351   /// the distribution.  It should never overflow twice.
352   struct Distribution {
353     typedef SmallVector<Weight, 4> WeightList;
354     WeightList Weights;    ///< Individual successor weights.
355     uint64_t Total;        ///< Sum of all weights.
356     bool DidOverflow;      ///< Whether \a Total did overflow.
357 
358     Distribution() : Total(0), DidOverflow(false) {}
359     void addLocal(const BlockNode &Node, uint64_t Amount) {
360       add(Node, Amount, Weight::Local);
361     }
362     void addExit(const BlockNode &Node, uint64_t Amount) {
363       add(Node, Amount, Weight::Exit);
364     }
365     void addBackedge(const BlockNode &Node, uint64_t Amount) {
366       add(Node, Amount, Weight::Backedge);
367     }
368 
369     /// \brief Normalize the distribution.
370     ///
371     /// Combines multiple edges to the same \a Weight::TargetNode and scales
372     /// down so that \a Total fits into 32-bits.
373     ///
374     /// This is linear in the size of \a Weights.  For the vast majority of
375     /// cases, adjacent edge weights are combined by sorting WeightList and
376     /// combining adjacent weights.  However, for very large edge lists an
377     /// auxiliary hash table is used.
378     void normalize();
379 
380   private:
381     void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
382   };
383 
384   /// \brief Data about each block.  This is used downstream.
385   std::vector<FrequencyData> Freqs;
386 
387   /// \brief Loop data: see initializeLoops().
388   std::vector<WorkingData> Working;
389 
390   /// \brief Indexed information about loops.
391   std::list<LoopData> Loops;
392 
393   /// \brief Add all edges out of a packaged loop to the distribution.
394   ///
395   /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
396   /// successor edge.
397   ///
398   /// \return \c true unless there's an irreducible backedge.
399   bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
400                                Distribution &Dist);
401 
402   /// \brief Add an edge to the distribution.
403   ///
404   /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
405   /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
406   /// every edge should be a local edge (since all the loops are packaged up).
407   ///
408   /// \return \c true unless aborted due to an irreducible backedge.
409   bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
410                  const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
411 
412   LoopData &getLoopPackage(const BlockNode &Head) {
413     assert(Head.Index < Working.size());
414     assert(Working[Head.Index].isLoopHeader());
415     return *Working[Head.Index].Loop;
416   }
417 
418   /// \brief Analyze irreducible SCCs.
419   ///
420   /// Separate irreducible SCCs from \c G, which is an explict graph of \c
421   /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
422   /// Insert them into \a Loops before \c Insert.
423   ///
424   /// \return the \c LoopData nodes representing the irreducible SCCs.
425   iterator_range<std::list<LoopData>::iterator>
426   analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
427                      std::list<LoopData>::iterator Insert);
428 
429   /// \brief Update a loop after packaging irreducible SCCs inside of it.
430   ///
431   /// Update \c OuterLoop.  Before finding irreducible control flow, it was
432   /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
433   /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
434   /// up need to be removed from \a OuterLoop::Nodes.
435   void updateLoopWithIrreducible(LoopData &OuterLoop);
436 
437   /// \brief Distribute mass according to a distribution.
438   ///
439   /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
440   /// backedges and exits are stored in its entry in Loops.
441   ///
442   /// Mass is distributed in parallel from two copies of the source mass.
443   void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
444                       Distribution &Dist);
445 
446   /// \brief Compute the loop scale for a loop.
447   void computeLoopScale(LoopData &Loop);
448 
449   /// Adjust the mass of all headers in an irreducible loop.
450   ///
451   /// Initially, irreducible loops are assumed to distribute their mass
452   /// equally among its headers. This can lead to wrong frequency estimates
453   /// since some headers may be executed more frequently than others.
454   ///
455   /// This adjusts header mass distribution so it matches the weights of
456   /// the backedges going into each of the loop headers.
457   void adjustLoopHeaderMass(LoopData &Loop);
458 
459   /// \brief Package up a loop.
460   void packageLoop(LoopData &Loop);
461 
462   /// \brief Unwrap loops.
463   void unwrapLoops();
464 
465   /// \brief Finalize frequency metrics.
466   ///
467   /// Calculates final frequencies and cleans up no-longer-needed data
468   /// structures.
469   void finalizeMetrics();
470 
471   /// \brief Clear all memory.
472   void clear();
473 
474   virtual std::string getBlockName(const BlockNode &Node) const;
475   std::string getLoopName(const LoopData &Loop) const;
476 
477   virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
478   void dump() const { print(dbgs()); }
479 
480   Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
481 
482   BlockFrequency getBlockFreq(const BlockNode &Node) const;
483   Optional<uint64_t> getBlockProfileCount(const Function &F,
484                                           const BlockNode &Node) const;
485 
486   void setBlockFreq(const BlockNode &Node, uint64_t Freq);
487 
488   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
489   raw_ostream &printBlockFreq(raw_ostream &OS,
490                               const BlockFrequency &Freq) const;
491 
492   uint64_t getEntryFreq() const {
493     assert(!Freqs.empty());
494     return Freqs[0].Integer;
495   }
496   /// \brief Virtual destructor.
497   ///
498   /// Need a virtual destructor to mask the compiler warning about
499   /// getBlockName().
500   virtual ~BlockFrequencyInfoImplBase() {}
501 };
502 
503 namespace bfi_detail {
504 template <class BlockT> struct TypeMap {};
505 template <> struct TypeMap<BasicBlock> {
506   typedef BasicBlock BlockT;
507   typedef Function FunctionT;
508   typedef BranchProbabilityInfo BranchProbabilityInfoT;
509   typedef Loop LoopT;
510   typedef LoopInfo LoopInfoT;
511 };
512 template <> struct TypeMap<MachineBasicBlock> {
513   typedef MachineBasicBlock BlockT;
514   typedef MachineFunction FunctionT;
515   typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
516   typedef MachineLoop LoopT;
517   typedef MachineLoopInfo LoopInfoT;
518 };
519 
520 /// \brief Get the name of a MachineBasicBlock.
521 ///
522 /// Get the name of a MachineBasicBlock.  It's templated so that including from
523 /// CodeGen is unnecessary (that would be a layering issue).
524 ///
525 /// This is used mainly for debug output.  The name is similar to
526 /// MachineBasicBlock::getFullName(), but skips the name of the function.
527 template <class BlockT> std::string getBlockName(const BlockT *BB) {
528   assert(BB && "Unexpected nullptr");
529   auto MachineName = "BB" + Twine(BB->getNumber());
530   if (BB->getBasicBlock())
531     return (MachineName + "[" + BB->getName() + "]").str();
532   return MachineName.str();
533 }
534 /// \brief Get the name of a BasicBlock.
535 template <> inline std::string getBlockName(const BasicBlock *BB) {
536   assert(BB && "Unexpected nullptr");
537   return BB->getName().str();
538 }
539 
540 /// \brief Graph of irreducible control flow.
541 ///
542 /// This graph is used for determining the SCCs in a loop (or top-level
543 /// function) that has irreducible control flow.
544 ///
545 /// During the block frequency algorithm, the local graphs are defined in a
546 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
547 /// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
548 /// latter only has successor information.
549 ///
550 /// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
551 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
552 /// and it explicitly lists predecessors and successors.  The initialization
553 /// that relies on \c MachineBasicBlock is defined in the header.
554 struct IrreducibleGraph {
555   typedef BlockFrequencyInfoImplBase BFIBase;
556 
557   BFIBase &BFI;
558 
559   typedef BFIBase::BlockNode BlockNode;
560   struct IrrNode {
561     BlockNode Node;
562     unsigned NumIn;
563     std::deque<const IrrNode *> Edges;
564     IrrNode(const BlockNode &Node) : Node(Node), NumIn(0) {}
565 
566     typedef std::deque<const IrrNode *>::const_iterator iterator;
567     iterator pred_begin() const { return Edges.begin(); }
568     iterator succ_begin() const { return Edges.begin() + NumIn; }
569     iterator pred_end() const { return succ_begin(); }
570     iterator succ_end() const { return Edges.end(); }
571   };
572   BlockNode Start;
573   const IrrNode *StartIrr;
574   std::vector<IrrNode> Nodes;
575   SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
576 
577   /// \brief Construct an explicit graph containing irreducible control flow.
578   ///
579   /// Construct an explicit graph of the control flow in \c OuterLoop (or the
580   /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
581   /// addBlockEdges to add block successors that have not been packaged into
582   /// loops.
583   ///
584   /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
585   /// user of this.
586   template <class BlockEdgesAdder>
587   IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
588                    BlockEdgesAdder addBlockEdges)
589       : BFI(BFI), StartIrr(nullptr) {
590     initialize(OuterLoop, addBlockEdges);
591   }
592 
593   template <class BlockEdgesAdder>
594   void initialize(const BFIBase::LoopData *OuterLoop,
595                   BlockEdgesAdder addBlockEdges);
596   void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
597   void addNodesInFunction();
598   void addNode(const BlockNode &Node) {
599     Nodes.emplace_back(Node);
600     BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
601   }
602   void indexNodes();
603   template <class BlockEdgesAdder>
604   void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
605                 BlockEdgesAdder addBlockEdges);
606   void addEdge(IrrNode &Irr, const BlockNode &Succ,
607                const BFIBase::LoopData *OuterLoop);
608 };
609 template <class BlockEdgesAdder>
610 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
611                                   BlockEdgesAdder addBlockEdges) {
612   if (OuterLoop) {
613     addNodesInLoop(*OuterLoop);
614     for (auto N : OuterLoop->Nodes)
615       addEdges(N, OuterLoop, addBlockEdges);
616   } else {
617     addNodesInFunction();
618     for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
619       addEdges(Index, OuterLoop, addBlockEdges);
620   }
621   StartIrr = Lookup[Start.Index];
622 }
623 template <class BlockEdgesAdder>
624 void IrreducibleGraph::addEdges(const BlockNode &Node,
625                                 const BFIBase::LoopData *OuterLoop,
626                                 BlockEdgesAdder addBlockEdges) {
627   auto L = Lookup.find(Node.Index);
628   if (L == Lookup.end())
629     return;
630   IrrNode &Irr = *L->second;
631   const auto &Working = BFI.Working[Node.Index];
632 
633   if (Working.isAPackage())
634     for (const auto &I : Working.Loop->Exits)
635       addEdge(Irr, I.first, OuterLoop);
636   else
637     addBlockEdges(*this, Irr, OuterLoop);
638 }
639 }
640 
641 /// \brief Shared implementation for block frequency analysis.
642 ///
643 /// This is a shared implementation of BlockFrequencyInfo and
644 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
645 /// blocks.
646 ///
647 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
648 /// which is called the header.  A given loop, L, can have sub-loops, which are
649 /// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
650 /// consists of a single block that does not have a self-edge.)
651 ///
652 /// In addition to loops, this algorithm has limited support for irreducible
653 /// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
654 /// discovered on they fly, and modelled as loops with multiple headers.
655 ///
656 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
657 /// nodes that are targets of a backedge within it (excluding backedges within
658 /// true sub-loops).  Block frequency calculations act as if a block is
659 /// inserted that intercepts all the edges to the headers.  All backedges and
660 /// entries point to this block.  Its successors are the headers, which split
661 /// the frequency evenly.
662 ///
663 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
664 /// separates mass distribution from loop scaling, and dithers to eliminate
665 /// probability mass loss.
666 ///
667 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
668 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
669 /// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
670 /// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
671 /// reverse-post order.  This gives two advantages:  it's easy to compare the
672 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
673 /// by vectors.
674 ///
675 /// This algorithm is O(V+E), unless there is irreducible control flow, in
676 /// which case it's O(V*E) in the worst case.
677 ///
678 /// These are the main stages:
679 ///
680 ///  0. Reverse post-order traversal (\a initializeRPOT()).
681 ///
682 ///     Run a single post-order traversal and save it (in reverse) in RPOT.
683 ///     All other stages make use of this ordering.  Save a lookup from BlockT
684 ///     to BlockNode (the index into RPOT) in Nodes.
685 ///
686 ///  1. Loop initialization (\a initializeLoops()).
687 ///
688 ///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
689 ///     the algorithm.  In particular, store the immediate members of each loop
690 ///     in reverse post-order.
691 ///
692 ///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
693 ///
694 ///     For each loop (bottom-up), distribute mass through the DAG resulting
695 ///     from ignoring backedges and treating sub-loops as a single pseudo-node.
696 ///     Track the backedge mass distributed to the loop header, and use it to
697 ///     calculate the loop scale (number of loop iterations).  Immediate
698 ///     members that represent sub-loops will already have been visited and
699 ///     packaged into a pseudo-node.
700 ///
701 ///     Distributing mass in a loop is a reverse-post-order traversal through
702 ///     the loop.  Start by assigning full mass to the Loop header.  For each
703 ///     node in the loop:
704 ///
705 ///         - Fetch and categorize the weight distribution for its successors.
706 ///           If this is a packaged-subloop, the weight distribution is stored
707 ///           in \a LoopData::Exits.  Otherwise, fetch it from
708 ///           BranchProbabilityInfo.
709 ///
710 ///         - Each successor is categorized as \a Weight::Local, a local edge
711 ///           within the current loop, \a Weight::Backedge, a backedge to the
712 ///           loop header, or \a Weight::Exit, any successor outside the loop.
713 ///           The weight, the successor, and its category are stored in \a
714 ///           Distribution.  There can be multiple edges to each successor.
715 ///
716 ///         - If there's a backedge to a non-header, there's an irreducible SCC.
717 ///           The usual flow is temporarily aborted.  \a
718 ///           computeIrreducibleMass() finds the irreducible SCCs within the
719 ///           loop, packages them up, and restarts the flow.
720 ///
721 ///         - Normalize the distribution:  scale weights down so that their sum
722 ///           is 32-bits, and coalesce multiple edges to the same node.
723 ///
724 ///         - Distribute the mass accordingly, dithering to minimize mass loss,
725 ///           as described in \a distributeMass().
726 ///
727 ///     In the case of irreducible loops, instead of a single loop header,
728 ///     there will be several. The computation of backedge masses is similar
729 ///     but instead of having a single backedge mass, there will be one
730 ///     backedge per loop header. In these cases, each backedge will carry
731 ///     a mass proportional to the edge weights along the corresponding
732 ///     path.
733 ///
734 ///     At the end of propagation, the full mass assigned to the loop will be
735 ///     distributed among the loop headers proportionally according to the
736 ///     mass flowing through their backedges.
737 ///
738 ///     Finally, calculate the loop scale from the accumulated backedge mass.
739 ///
740 ///  3. Distribute mass in the function (\a computeMassInFunction()).
741 ///
742 ///     Finally, distribute mass through the DAG resulting from packaging all
743 ///     loops in the function.  This uses the same algorithm as distributing
744 ///     mass in a loop, except that there are no exit or backedge edges.
745 ///
746 ///  4. Unpackage loops (\a unwrapLoops()).
747 ///
748 ///     Initialize each block's frequency to a floating point representation of
749 ///     its mass.
750 ///
751 ///     Visit loops top-down, scaling the frequencies of its immediate members
752 ///     by the loop's pseudo-node's frequency.
753 ///
754 ///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
755 ///
756 ///     Using the min and max frequencies as a guide, translate floating point
757 ///     frequencies to an appropriate range in uint64_t.
758 ///
759 /// It has some known flaws.
760 ///
761 ///   - The model of irreducible control flow is a rough approximation.
762 ///
763 ///     Modelling irreducible control flow exactly involves setting up and
764 ///     solving a group of infinite geometric series.  Such precision is
765 ///     unlikely to be worthwhile, since most of our algorithms give up on
766 ///     irreducible control flow anyway.
767 ///
768 ///     Nevertheless, we might find that we need to get closer.  Here's a sort
769 ///     of TODO list for the model with diminishing returns, to be completed as
770 ///     necessary.
771 ///
772 ///       - The headers for the \a LoopData representing an irreducible SCC
773 ///         include non-entry blocks.  When these extra blocks exist, they
774 ///         indicate a self-contained irreducible sub-SCC.  We could treat them
775 ///         as sub-loops, rather than arbitrarily shoving the problematic
776 ///         blocks into the headers of the main irreducible SCC.
777 ///
778 ///       - Entry frequencies are assumed to be evenly split between the
779 ///         headers of a given irreducible SCC, which is the only option if we
780 ///         need to compute mass in the SCC before its parent loop.  Instead,
781 ///         we could partially compute mass in the parent loop, and stop when
782 ///         we get to the SCC.  Here, we have the correct ratio of entry
783 ///         masses, which we can use to adjust their relative frequencies.
784 ///         Compute mass in the SCC, and then continue propagation in the
785 ///         parent.
786 ///
787 ///       - We can propagate mass iteratively through the SCC, for some fixed
788 ///         number of iterations.  Each iteration starts by assigning the entry
789 ///         blocks their backedge mass from the prior iteration.  The final
790 ///         mass for each block (and each exit, and the total backedge mass
791 ///         used for computing loop scale) is the sum of all iterations.
792 ///         (Running this until fixed point would "solve" the geometric
793 ///         series by simulation.)
794 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
795   typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
796   typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
797   typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
798   BranchProbabilityInfoT;
799   typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
800   typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;
801 
802   // This is part of a workaround for a GCC 4.7 crash on lambdas.
803   friend struct bfi_detail::BlockEdgesAdder<BT>;
804 
805   typedef GraphTraits<const BlockT *> Successor;
806   typedef GraphTraits<Inverse<const BlockT *>> Predecessor;
807 
808   const BranchProbabilityInfoT *BPI;
809   const LoopInfoT *LI;
810   const FunctionT *F;
811 
812   // All blocks in reverse postorder.
813   std::vector<const BlockT *> RPOT;
814   DenseMap<const BlockT *, BlockNode> Nodes;
815 
816   typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;
817 
818   rpot_iterator rpot_begin() const { return RPOT.begin(); }
819   rpot_iterator rpot_end() const { return RPOT.end(); }
820 
821   size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
822 
823   BlockNode getNode(const rpot_iterator &I) const {
824     return BlockNode(getIndex(I));
825   }
826   BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
827 
828   const BlockT *getBlock(const BlockNode &Node) const {
829     assert(Node.Index < RPOT.size());
830     return RPOT[Node.Index];
831   }
832 
833   /// \brief Run (and save) a post-order traversal.
834   ///
835   /// Saves a reverse post-order traversal of all the nodes in \a F.
836   void initializeRPOT();
837 
838   /// \brief Initialize loop data.
839   ///
840   /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
841   /// each block to the deepest loop it's in, but we need the inverse.  For each
842   /// loop, we store in reverse post-order its "immediate" members, defined as
843   /// the header, the headers of immediate sub-loops, and all other blocks in
844   /// the loop that are not in sub-loops.
845   void initializeLoops();
846 
847   /// \brief Propagate to a block's successors.
848   ///
849   /// In the context of distributing mass through \c OuterLoop, divide the mass
850   /// currently assigned to \c Node between its successors.
851   ///
852   /// \return \c true unless there's an irreducible backedge.
853   bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
854 
855   /// \brief Compute mass in a particular loop.
856   ///
857   /// Assign mass to \c Loop's header, and then for each block in \c Loop in
858   /// reverse post-order, distribute mass to its successors.  Only visits nodes
859   /// that have not been packaged into sub-loops.
860   ///
861   /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
862   /// \return \c true unless there's an irreducible backedge.
863   bool computeMassInLoop(LoopData &Loop);
864 
865   /// \brief Try to compute mass in the top-level function.
866   ///
867   /// Assign mass to the entry block, and then for each block in reverse
868   /// post-order, distribute mass to its successors.  Skips nodes that have
869   /// been packaged into loops.
870   ///
871   /// \pre \a computeMassInLoops() has been called.
872   /// \return \c true unless there's an irreducible backedge.
873   bool tryToComputeMassInFunction();
874 
875   /// \brief Compute mass in (and package up) irreducible SCCs.
876   ///
877   /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
878   /// of \c Insert), and call \a computeMassInLoop() on each of them.
879   ///
880   /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
881   ///
882   /// \pre \a computeMassInLoop() has been called for each subloop of \c
883   /// OuterLoop.
884   /// \pre \c Insert points at the last loop successfully processed by \a
885   /// computeMassInLoop().
886   /// \pre \c OuterLoop has irreducible SCCs.
887   void computeIrreducibleMass(LoopData *OuterLoop,
888                               std::list<LoopData>::iterator Insert);
889 
890   /// \brief Compute mass in all loops.
891   ///
892   /// For each loop bottom-up, call \a computeMassInLoop().
893   ///
894   /// \a computeMassInLoop() aborts (and returns \c false) on loops that
895   /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
896   /// re-enter \a computeMassInLoop().
897   ///
898   /// \post \a computeMassInLoop() has returned \c true for every loop.
899   void computeMassInLoops();
900 
901   /// \brief Compute mass in the top-level function.
902   ///
903   /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
904   /// compute mass in the top-level function.
905   ///
906   /// \post \a tryToComputeMassInFunction() has returned \c true.
907   void computeMassInFunction();
908 
909   std::string getBlockName(const BlockNode &Node) const override {
910     return bfi_detail::getBlockName(getBlock(Node));
911   }
912 
913 public:
914   const FunctionT *getFunction() const { return F; }
915 
916   void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
917                  const LoopInfoT &LI);
918   BlockFrequencyInfoImpl() : BPI(nullptr), LI(nullptr), F(nullptr) {}
919 
920   using BlockFrequencyInfoImplBase::getEntryFreq;
921   BlockFrequency getBlockFreq(const BlockT *BB) const {
922     return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
923   }
924   Optional<uint64_t> getBlockProfileCount(const Function &F,
925                                           const BlockT *BB) const {
926     return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB));
927   }
928   void setBlockFreq(const BlockT *BB, uint64_t Freq);
929   Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
930     return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
931   }
932 
933   const BranchProbabilityInfoT &getBPI() const { return *BPI; }
934 
935   /// \brief Print the frequencies for the current function.
936   ///
937   /// Prints the frequencies for the blocks in the current function.
938   ///
939   /// Blocks are printed in the natural iteration order of the function, rather
940   /// than reverse post-order.  This provides two advantages:  writing -analyze
941   /// tests is easier (since blocks come out in source order), and even
942   /// unreachable blocks are printed.
943   ///
944   /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
945   /// we need to override it here.
946   raw_ostream &print(raw_ostream &OS) const override;
947   using BlockFrequencyInfoImplBase::dump;
948 
949   using BlockFrequencyInfoImplBase::printBlockFreq;
950   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
951     return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
952   }
953 };
954 
955 template <class BT>
956 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
957                                            const BranchProbabilityInfoT &BPI,
958                                            const LoopInfoT &LI) {
959   // Save the parameters.
960   this->BPI = &BPI;
961   this->LI = &LI;
962   this->F = &F;
963 
964   // Clean up left-over data structures.
965   BlockFrequencyInfoImplBase::clear();
966   RPOT.clear();
967   Nodes.clear();
968 
969   // Initialize.
970   DEBUG(dbgs() << "\nblock-frequency: " << F.getName() << "\n================="
971                << std::string(F.getName().size(), '=') << "\n");
972   initializeRPOT();
973   initializeLoops();
974 
975   // Visit loops in post-order to find the local mass distribution, and then do
976   // the full function.
977   computeMassInLoops();
978   computeMassInFunction();
979   unwrapLoops();
980   finalizeMetrics();
981 }
982 
983 template <class BT>
984 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
985   if (Nodes.count(BB))
986     BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
987   else {
988     // If BB is a newly added block after BFI is done, we need to create a new
989     // BlockNode for it assigned with a new index. The index can be determined
990     // by the size of Freqs.
991     BlockNode NewNode(Freqs.size());
992     Nodes[BB] = NewNode;
993     Freqs.emplace_back();
994     BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
995   }
996 }
997 
998 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
999   const BlockT *Entry = &F->front();
1000   RPOT.reserve(F->size());
1001   std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
1002   std::reverse(RPOT.begin(), RPOT.end());
1003 
1004   assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
1005          "More nodes in function than Block Frequency Info supports");
1006 
1007   DEBUG(dbgs() << "reverse-post-order-traversal\n");
1008   for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
1009     BlockNode Node = getNode(I);
1010     DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
1011     Nodes[*I] = Node;
1012   }
1013 
1014   Working.reserve(RPOT.size());
1015   for (size_t Index = 0; Index < RPOT.size(); ++Index)
1016     Working.emplace_back(Index);
1017   Freqs.resize(RPOT.size());
1018 }
1019 
1020 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
1021   DEBUG(dbgs() << "loop-detection\n");
1022   if (LI->empty())
1023     return;
1024 
1025   // Visit loops top down and assign them an index.
1026   std::deque<std::pair<const LoopT *, LoopData *>> Q;
1027   for (const LoopT *L : *LI)
1028     Q.emplace_back(L, nullptr);
1029   while (!Q.empty()) {
1030     const LoopT *Loop = Q.front().first;
1031     LoopData *Parent = Q.front().second;
1032     Q.pop_front();
1033 
1034     BlockNode Header = getNode(Loop->getHeader());
1035     assert(Header.isValid());
1036 
1037     Loops.emplace_back(Parent, Header);
1038     Working[Header.Index].Loop = &Loops.back();
1039     DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
1040 
1041     for (const LoopT *L : *Loop)
1042       Q.emplace_back(L, &Loops.back());
1043   }
1044 
1045   // Visit nodes in reverse post-order and add them to their deepest containing
1046   // loop.
1047   for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1048     // Loop headers have already been mostly mapped.
1049     if (Working[Index].isLoopHeader()) {
1050       LoopData *ContainingLoop = Working[Index].getContainingLoop();
1051       if (ContainingLoop)
1052         ContainingLoop->Nodes.push_back(Index);
1053       continue;
1054     }
1055 
1056     const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1057     if (!Loop)
1058       continue;
1059 
1060     // Add this node to its containing loop's member list.
1061     BlockNode Header = getNode(Loop->getHeader());
1062     assert(Header.isValid());
1063     const auto &HeaderData = Working[Header.Index];
1064     assert(HeaderData.isLoopHeader());
1065 
1066     Working[Index].Loop = HeaderData.Loop;
1067     HeaderData.Loop->Nodes.push_back(Index);
1068     DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1069                  << ": member = " << getBlockName(Index) << "\n");
1070   }
1071 }
1072 
1073 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1074   // Visit loops with the deepest first, and the top-level loops last.
1075   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1076     if (computeMassInLoop(*L))
1077       continue;
1078     auto Next = std::next(L);
1079     computeIrreducibleMass(&*L, L.base());
1080     L = std::prev(Next);
1081     if (computeMassInLoop(*L))
1082       continue;
1083     llvm_unreachable("unhandled irreducible control flow");
1084   }
1085 }
1086 
1087 template <class BT>
1088 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1089   // Compute mass in loop.
1090   DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1091 
1092   if (Loop.isIrreducible()) {
1093     BlockMass Remaining = BlockMass::getFull();
1094     for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1095       auto &Mass = Working[Loop.Nodes[H].Index].getMass();
1096       Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H);
1097       Remaining -= Mass;
1098     }
1099     for (const BlockNode &M : Loop.Nodes)
1100       if (!propagateMassToSuccessors(&Loop, M))
1101         llvm_unreachable("unhandled irreducible control flow");
1102 
1103     adjustLoopHeaderMass(Loop);
1104   } else {
1105     Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1106     if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1107       llvm_unreachable("irreducible control flow to loop header!?");
1108     for (const BlockNode &M : Loop.members())
1109       if (!propagateMassToSuccessors(&Loop, M))
1110         // Irreducible backedge.
1111         return false;
1112   }
1113 
1114   computeLoopScale(Loop);
1115   packageLoop(Loop);
1116   return true;
1117 }
1118 
1119 template <class BT>
1120 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1121   // Compute mass in function.
1122   DEBUG(dbgs() << "compute-mass-in-function\n");
1123   assert(!Working.empty() && "no blocks in function");
1124   assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1125 
1126   Working[0].getMass() = BlockMass::getFull();
1127   for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1128     // Check for nodes that have been packaged.
1129     BlockNode Node = getNode(I);
1130     if (Working[Node.Index].isPackaged())
1131       continue;
1132 
1133     if (!propagateMassToSuccessors(nullptr, Node))
1134       return false;
1135   }
1136   return true;
1137 }
1138 
1139 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1140   if (tryToComputeMassInFunction())
1141     return;
1142   computeIrreducibleMass(nullptr, Loops.begin());
1143   if (tryToComputeMassInFunction())
1144     return;
1145   llvm_unreachable("unhandled irreducible control flow");
1146 }
1147 
1148 /// \note This should be a lambda, but that crashes GCC 4.7.
1149 namespace bfi_detail {
1150 template <class BT> struct BlockEdgesAdder {
1151   typedef BT BlockT;
1152   typedef BlockFrequencyInfoImplBase::LoopData LoopData;
1153   typedef GraphTraits<const BlockT *> Successor;
1154 
1155   const BlockFrequencyInfoImpl<BT> &BFI;
1156   explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
1157       : BFI(BFI) {}
1158   void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1159                   const LoopData *OuterLoop) {
1160     const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1161     for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB);
1162          I != E; ++I)
1163       G.addEdge(Irr, BFI.getNode(*I), OuterLoop);
1164   }
1165 };
1166 }
1167 template <class BT>
1168 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1169     LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1170   DEBUG(dbgs() << "analyze-irreducible-in-";
1171         if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n";
1172         else dbgs() << "function\n");
1173 
1174   using namespace bfi_detail;
1175   // Ideally, addBlockEdges() would be declared here as a lambda, but that
1176   // crashes GCC 4.7.
1177   BlockEdgesAdder<BT> addBlockEdges(*this);
1178   IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1179 
1180   for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1181     computeMassInLoop(L);
1182 
1183   if (!OuterLoop)
1184     return;
1185   updateLoopWithIrreducible(*OuterLoop);
1186 }
1187 
1188 // A helper function that converts a branch probability into weight.
1189 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
1190   return Prob.getNumerator();
1191 }
1192 
1193 template <class BT>
1194 bool
1195 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1196                                                       const BlockNode &Node) {
1197   DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1198   // Calculate probability for successors.
1199   Distribution Dist;
1200   if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1201     assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1202     if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1203       // Irreducible backedge.
1204       return false;
1205   } else {
1206     const BlockT *BB = getBlock(Node);
1207     for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
1208          SI != SE; ++SI)
1209       if (!addToDist(Dist, OuterLoop, Node, getNode(*SI),
1210                      getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
1211         // Irreducible backedge.
1212         return false;
1213   }
1214 
1215   // Distribute mass to successors, saving exit and backedge data in the
1216   // loop header.
1217   distributeMass(Node, OuterLoop, Dist);
1218   return true;
1219 }
1220 
1221 template <class BT>
1222 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
1223   if (!F)
1224     return OS;
1225   OS << "block-frequency-info: " << F->getName() << "\n";
1226   for (const BlockT &BB : *F) {
1227     OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
1228     getFloatingBlockFreq(&BB).print(OS, 5)
1229         << ", int = " << getBlockFreq(&BB).getFrequency() << "\n";
1230   }
1231 
1232   // Add an extra newline for readability.
1233   OS << "\n";
1234   return OS;
1235 }
1236 
1237 // Graph trait base class for block frequency information graph
1238 // viewer.
1239 
1240 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
1241 
1242 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
1243 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
1244   explicit BFIDOTGraphTraitsBase(bool isSimple = false)
1245       : DefaultDOTGraphTraits(isSimple) {}
1246 
1247   typedef GraphTraits<BlockFrequencyInfoT *> GTraits;
1248   typedef typename GTraits::NodeType NodeType;
1249   typedef typename GTraits::ChildIteratorType EdgeIter;
1250   typedef typename GTraits::nodes_iterator NodeIter;
1251 
1252   uint64_t MaxFrequency = 0;
1253   static std::string getGraphName(const BlockFrequencyInfoT *G) {
1254     return G->getFunction()->getName();
1255   }
1256 
1257   std::string getNodeAttributes(const NodeType *Node,
1258                                 const BlockFrequencyInfoT *Graph,
1259                                 unsigned HotPercentThreshold = 0) {
1260     std::string Result;
1261     if (!HotPercentThreshold)
1262       return Result;
1263 
1264     // Compute MaxFrequency on the fly:
1265     if (!MaxFrequency) {
1266       for (NodeIter I = GTraits::nodes_begin(Graph),
1267                     E = GTraits::nodes_end(Graph);
1268            I != E; ++I) {
1269         NodeType &N = *I;
1270         MaxFrequency =
1271             std::max(MaxFrequency, Graph->getBlockFreq(&N).getFrequency());
1272       }
1273     }
1274     BlockFrequency Freq = Graph->getBlockFreq(Node);
1275     BlockFrequency HotFreq =
1276         (BlockFrequency(MaxFrequency) *
1277          BranchProbability::getBranchProbability(HotPercentThreshold, 100));
1278 
1279     if (Freq < HotFreq)
1280       return Result;
1281 
1282     raw_string_ostream OS(Result);
1283     OS << "color=\"red\"";
1284     OS.flush();
1285     return Result;
1286   }
1287 
1288   std::string getNodeLabel(const NodeType *Node,
1289                            const BlockFrequencyInfoT *Graph, GVDAGType GType) {
1290     std::string Result;
1291     raw_string_ostream OS(Result);
1292 
1293     OS << Node->getName().str() << " : ";
1294     switch (GType) {
1295     case GVDT_Fraction:
1296       Graph->printBlockFreq(OS, Node);
1297       break;
1298     case GVDT_Integer:
1299       OS << Graph->getBlockFreq(Node).getFrequency();
1300       break;
1301     case GVDT_Count: {
1302       auto Count = Graph->getBlockProfileCount(Node);
1303       if (Count)
1304         OS << Count.getValue();
1305       else
1306         OS << "Unknown";
1307       break;
1308     }
1309     case GVDT_None:
1310       llvm_unreachable("If we are not supposed to render a graph we should "
1311                        "never reach this point.");
1312     }
1313     return Result;
1314   }
1315 
1316   std::string getEdgeAttributes(const NodeType *Node, EdgeIter EI,
1317                                 const BlockFrequencyInfoT *BFI,
1318                                 const BranchProbabilityInfoT *BPI,
1319                                 unsigned HotPercentThreshold = 0) {
1320     std::string Str;
1321     if (!BPI)
1322       return Str;
1323 
1324     BranchProbability BP = BPI->getEdgeProbability(Node, EI);
1325     uint32_t N = BP.getNumerator();
1326     uint32_t D = BP.getDenominator();
1327     double Percent = 100.0 * N / D;
1328     raw_string_ostream OS(Str);
1329     OS << format("label=\"%.1f%%\"", Percent);
1330 
1331     if (HotPercentThreshold) {
1332       BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
1333       BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
1334                                BranchProbability(HotPercentThreshold, 100);
1335 
1336       if (EFreq >= HotFreq) {
1337         OS << ",color=\"red\"";
1338       }
1339     }
1340 
1341     OS.flush();
1342     return Str;
1343   }
1344 };
1345 
1346 } // end namespace llvm
1347 
1348 #undef DEBUG_TYPE
1349 
1350 #endif
1351