1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Shared implementation of BlockFrequency for IR and Machine Instructions. 11 // See the documentation below for BlockFrequencyInfoImpl for details. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H 16 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H 17 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/GraphTraits.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/Support/BlockFrequency.h" 25 #include "llvm/Support/BranchProbability.h" 26 #include "llvm/Support/DOTGraphTraits.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/Format.h" 29 #include "llvm/Support/ScaledNumber.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <deque> 32 #include <list> 33 #include <string> 34 #include <vector> 35 36 #define DEBUG_TYPE "block-freq" 37 38 namespace llvm { 39 40 class BasicBlock; 41 class BranchProbabilityInfo; 42 class Function; 43 class Loop; 44 class LoopInfo; 45 class MachineBasicBlock; 46 class MachineBranchProbabilityInfo; 47 class MachineFunction; 48 class MachineLoop; 49 class MachineLoopInfo; 50 51 namespace bfi_detail { 52 53 struct IrreducibleGraph; 54 55 // This is part of a workaround for a GCC 4.7 crash on lambdas. 56 template <class BT> struct BlockEdgesAdder; 57 58 /// \brief Mass of a block. 59 /// 60 /// This class implements a sort of fixed-point fraction always between 0.0 and 61 /// 1.0. getMass() == UINT64_MAX indicates a value of 1.0. 62 /// 63 /// Masses can be added and subtracted. Simple saturation arithmetic is used, 64 /// so arithmetic operations never overflow or underflow. 65 /// 66 /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses 67 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not 68 /// quite, maximum precision). 69 /// 70 /// Masses can be scaled by \a BranchProbability at maximum precision. 71 class BlockMass { 72 uint64_t Mass; 73 74 public: BlockMass()75 BlockMass() : Mass(0) {} BlockMass(uint64_t Mass)76 explicit BlockMass(uint64_t Mass) : Mass(Mass) {} 77 getEmpty()78 static BlockMass getEmpty() { return BlockMass(); } getFull()79 static BlockMass getFull() { return BlockMass(UINT64_MAX); } 80 getMass()81 uint64_t getMass() const { return Mass; } 82 isFull()83 bool isFull() const { return Mass == UINT64_MAX; } isEmpty()84 bool isEmpty() const { return !Mass; } 85 86 bool operator!() const { return isEmpty(); } 87 88 /// \brief Add another mass. 89 /// 90 /// Adds another mass, saturating at \a isFull() rather than overflowing. 91 BlockMass &operator+=(BlockMass X) { 92 uint64_t Sum = Mass + X.Mass; 93 Mass = Sum < Mass ? UINT64_MAX : Sum; 94 return *this; 95 } 96 97 /// \brief Subtract another mass. 98 /// 99 /// Subtracts another mass, saturating at \a isEmpty() rather than 100 /// undeflowing. 101 BlockMass &operator-=(BlockMass X) { 102 uint64_t Diff = Mass - X.Mass; 103 Mass = Diff > Mass ? 0 : Diff; 104 return *this; 105 } 106 107 BlockMass &operator*=(BranchProbability P) { 108 Mass = P.scale(Mass); 109 return *this; 110 } 111 112 bool operator==(BlockMass X) const { return Mass == X.Mass; } 113 bool operator!=(BlockMass X) const { return Mass != X.Mass; } 114 bool operator<=(BlockMass X) const { return Mass <= X.Mass; } 115 bool operator>=(BlockMass X) const { return Mass >= X.Mass; } 116 bool operator<(BlockMass X) const { return Mass < X.Mass; } 117 bool operator>(BlockMass X) const { return Mass > X.Mass; } 118 119 /// \brief Convert to scaled number. 120 /// 121 /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty() 122 /// gives slightly above 0.0. 123 ScaledNumber<uint64_t> toScaled() const; 124 125 void dump() const; 126 raw_ostream &print(raw_ostream &OS) const; 127 }; 128 129 inline BlockMass operator+(BlockMass L, BlockMass R) { 130 return BlockMass(L) += R; 131 } 132 inline BlockMass operator-(BlockMass L, BlockMass R) { 133 return BlockMass(L) -= R; 134 } 135 inline BlockMass operator*(BlockMass L, BranchProbability R) { 136 return BlockMass(L) *= R; 137 } 138 inline BlockMass operator*(BranchProbability L, BlockMass R) { 139 return BlockMass(R) *= L; 140 } 141 142 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) { 143 return X.print(OS); 144 } 145 146 } // end namespace bfi_detail 147 148 template <> struct isPodLike<bfi_detail::BlockMass> { 149 static const bool value = true; 150 }; 151 152 /// \brief Base class for BlockFrequencyInfoImpl 153 /// 154 /// BlockFrequencyInfoImplBase has supporting data structures and some 155 /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on 156 /// the block type (or that call such algorithms) are skipped here. 157 /// 158 /// Nevertheless, the majority of the overall algorithm documention lives with 159 /// BlockFrequencyInfoImpl. See there for details. 160 class BlockFrequencyInfoImplBase { 161 public: 162 typedef ScaledNumber<uint64_t> Scaled64; 163 typedef bfi_detail::BlockMass BlockMass; 164 165 /// \brief Representative of a block. 166 /// 167 /// This is a simple wrapper around an index into the reverse-post-order 168 /// traversal of the blocks. 169 /// 170 /// Unlike a block pointer, its order has meaning (location in the 171 /// topological sort) and it's class is the same regardless of block type. 172 struct BlockNode { 173 typedef uint32_t IndexType; 174 IndexType Index; 175 176 bool operator==(const BlockNode &X) const { return Index == X.Index; } 177 bool operator!=(const BlockNode &X) const { return Index != X.Index; } 178 bool operator<=(const BlockNode &X) const { return Index <= X.Index; } 179 bool operator>=(const BlockNode &X) const { return Index >= X.Index; } 180 bool operator<(const BlockNode &X) const { return Index < X.Index; } 181 bool operator>(const BlockNode &X) const { return Index > X.Index; } 182 183 BlockNode() : Index(UINT32_MAX) {} 184 BlockNode(IndexType Index) : Index(Index) {} 185 186 bool isValid() const { return Index <= getMaxIndex(); } 187 static size_t getMaxIndex() { return UINT32_MAX - 1; } 188 }; 189 190 /// \brief Stats about a block itself. 191 struct FrequencyData { 192 Scaled64 Scaled; 193 uint64_t Integer; 194 }; 195 196 /// \brief Data about a loop. 197 /// 198 /// Contains the data necessary to represent a loop as a pseudo-node once it's 199 /// packaged. 200 struct LoopData { 201 typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap; 202 typedef SmallVector<BlockNode, 4> NodeList; 203 typedef SmallVector<BlockMass, 1> HeaderMassList; 204 LoopData *Parent; ///< The parent loop. 205 bool IsPackaged; ///< Whether this has been packaged. 206 uint32_t NumHeaders; ///< Number of headers. 207 ExitMap Exits; ///< Successor edges (and weights). 208 NodeList Nodes; ///< Header and the members of the loop. 209 HeaderMassList BackedgeMass; ///< Mass returned to each loop header. 210 BlockMass Mass; 211 Scaled64 Scale; 212 213 LoopData(LoopData *Parent, const BlockNode &Header) 214 : Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header), 215 BackedgeMass(1) {} 216 template <class It1, class It2> 217 LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther, 218 It2 LastOther) 219 : Parent(Parent), IsPackaged(false), Nodes(FirstHeader, LastHeader) { 220 NumHeaders = Nodes.size(); 221 Nodes.insert(Nodes.end(), FirstOther, LastOther); 222 BackedgeMass.resize(NumHeaders); 223 } 224 bool isHeader(const BlockNode &Node) const { 225 if (isIrreducible()) 226 return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders, 227 Node); 228 return Node == Nodes[0]; 229 } 230 BlockNode getHeader() const { return Nodes[0]; } 231 bool isIrreducible() const { return NumHeaders > 1; } 232 233 HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) { 234 assert(isHeader(B) && "this is only valid on loop header blocks"); 235 if (isIrreducible()) 236 return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) - 237 Nodes.begin(); 238 return 0; 239 } 240 241 NodeList::const_iterator members_begin() const { 242 return Nodes.begin() + NumHeaders; 243 } 244 NodeList::const_iterator members_end() const { return Nodes.end(); } 245 iterator_range<NodeList::const_iterator> members() const { 246 return make_range(members_begin(), members_end()); 247 } 248 }; 249 250 /// \brief Index of loop information. 251 struct WorkingData { 252 BlockNode Node; ///< This node. 253 LoopData *Loop; ///< The loop this block is inside. 254 BlockMass Mass; ///< Mass distribution from the entry block. 255 256 WorkingData(const BlockNode &Node) : Node(Node), Loop(nullptr) {} 257 258 bool isLoopHeader() const { return Loop && Loop->isHeader(Node); } 259 bool isDoubleLoopHeader() const { 260 return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() && 261 Loop->Parent->isHeader(Node); 262 } 263 264 LoopData *getContainingLoop() const { 265 if (!isLoopHeader()) 266 return Loop; 267 if (!isDoubleLoopHeader()) 268 return Loop->Parent; 269 return Loop->Parent->Parent; 270 } 271 272 /// \brief Resolve a node to its representative. 273 /// 274 /// Get the node currently representing Node, which could be a containing 275 /// loop. 276 /// 277 /// This function should only be called when distributing mass. As long as 278 /// there are no irreducible edges to Node, then it will have complexity 279 /// O(1) in this context. 280 /// 281 /// In general, the complexity is O(L), where L is the number of loop 282 /// headers Node has been packaged into. Since this method is called in 283 /// the context of distributing mass, L will be the number of loop headers 284 /// an early exit edge jumps out of. 285 BlockNode getResolvedNode() const { 286 auto L = getPackagedLoop(); 287 return L ? L->getHeader() : Node; 288 } 289 LoopData *getPackagedLoop() const { 290 if (!Loop || !Loop->IsPackaged) 291 return nullptr; 292 auto L = Loop; 293 while (L->Parent && L->Parent->IsPackaged) 294 L = L->Parent; 295 return L; 296 } 297 298 /// \brief Get the appropriate mass for a node. 299 /// 300 /// Get appropriate mass for Node. If Node is a loop-header (whose loop 301 /// has been packaged), returns the mass of its pseudo-node. If it's a 302 /// node inside a packaged loop, it returns the loop's mass. 303 BlockMass &getMass() { 304 if (!isAPackage()) 305 return Mass; 306 if (!isADoublePackage()) 307 return Loop->Mass; 308 return Loop->Parent->Mass; 309 } 310 311 /// \brief Has ContainingLoop been packaged up? 312 bool isPackaged() const { return getResolvedNode() != Node; } 313 /// \brief Has Loop been packaged up? 314 bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; } 315 /// \brief Has Loop been packaged up twice? 316 bool isADoublePackage() const { 317 return isDoubleLoopHeader() && Loop->Parent->IsPackaged; 318 } 319 }; 320 321 /// \brief Unscaled probability weight. 322 /// 323 /// Probability weight for an edge in the graph (including the 324 /// successor/target node). 325 /// 326 /// All edges in the original function are 32-bit. However, exit edges from 327 /// loop packages are taken from 64-bit exit masses, so we need 64-bits of 328 /// space in general. 329 /// 330 /// In addition to the raw weight amount, Weight stores the type of the edge 331 /// in the current context (i.e., the context of the loop being processed). 332 /// Is this a local edge within the loop, an exit from the loop, or a 333 /// backedge to the loop header? 334 struct Weight { 335 enum DistType { Local, Exit, Backedge }; 336 DistType Type; 337 BlockNode TargetNode; 338 uint64_t Amount; 339 Weight() : Type(Local), Amount(0) {} 340 Weight(DistType Type, BlockNode TargetNode, uint64_t Amount) 341 : Type(Type), TargetNode(TargetNode), Amount(Amount) {} 342 }; 343 344 /// \brief Distribution of unscaled probability weight. 345 /// 346 /// Distribution of unscaled probability weight to a set of successors. 347 /// 348 /// This class collates the successor edge weights for later processing. 349 /// 350 /// \a DidOverflow indicates whether \a Total did overflow while adding to 351 /// the distribution. It should never overflow twice. 352 struct Distribution { 353 typedef SmallVector<Weight, 4> WeightList; 354 WeightList Weights; ///< Individual successor weights. 355 uint64_t Total; ///< Sum of all weights. 356 bool DidOverflow; ///< Whether \a Total did overflow. 357 358 Distribution() : Total(0), DidOverflow(false) {} 359 void addLocal(const BlockNode &Node, uint64_t Amount) { 360 add(Node, Amount, Weight::Local); 361 } 362 void addExit(const BlockNode &Node, uint64_t Amount) { 363 add(Node, Amount, Weight::Exit); 364 } 365 void addBackedge(const BlockNode &Node, uint64_t Amount) { 366 add(Node, Amount, Weight::Backedge); 367 } 368 369 /// \brief Normalize the distribution. 370 /// 371 /// Combines multiple edges to the same \a Weight::TargetNode and scales 372 /// down so that \a Total fits into 32-bits. 373 /// 374 /// This is linear in the size of \a Weights. For the vast majority of 375 /// cases, adjacent edge weights are combined by sorting WeightList and 376 /// combining adjacent weights. However, for very large edge lists an 377 /// auxiliary hash table is used. 378 void normalize(); 379 380 private: 381 void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type); 382 }; 383 384 /// \brief Data about each block. This is used downstream. 385 std::vector<FrequencyData> Freqs; 386 387 /// \brief Loop data: see initializeLoops(). 388 std::vector<WorkingData> Working; 389 390 /// \brief Indexed information about loops. 391 std::list<LoopData> Loops; 392 393 /// \brief Add all edges out of a packaged loop to the distribution. 394 /// 395 /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each 396 /// successor edge. 397 /// 398 /// \return \c true unless there's an irreducible backedge. 399 bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop, 400 Distribution &Dist); 401 402 /// \brief Add an edge to the distribution. 403 /// 404 /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the 405 /// edge is local/exit/backedge is in the context of LoopHead. Otherwise, 406 /// every edge should be a local edge (since all the loops are packaged up). 407 /// 408 /// \return \c true unless aborted due to an irreducible backedge. 409 bool addToDist(Distribution &Dist, const LoopData *OuterLoop, 410 const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight); 411 412 LoopData &getLoopPackage(const BlockNode &Head) { 413 assert(Head.Index < Working.size()); 414 assert(Working[Head.Index].isLoopHeader()); 415 return *Working[Head.Index].Loop; 416 } 417 418 /// \brief Analyze irreducible SCCs. 419 /// 420 /// Separate irreducible SCCs from \c G, which is an explict graph of \c 421 /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr). 422 /// Insert them into \a Loops before \c Insert. 423 /// 424 /// \return the \c LoopData nodes representing the irreducible SCCs. 425 iterator_range<std::list<LoopData>::iterator> 426 analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop, 427 std::list<LoopData>::iterator Insert); 428 429 /// \brief Update a loop after packaging irreducible SCCs inside of it. 430 /// 431 /// Update \c OuterLoop. Before finding irreducible control flow, it was 432 /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a 433 /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged 434 /// up need to be removed from \a OuterLoop::Nodes. 435 void updateLoopWithIrreducible(LoopData &OuterLoop); 436 437 /// \brief Distribute mass according to a distribution. 438 /// 439 /// Distributes the mass in Source according to Dist. If LoopHead.isValid(), 440 /// backedges and exits are stored in its entry in Loops. 441 /// 442 /// Mass is distributed in parallel from two copies of the source mass. 443 void distributeMass(const BlockNode &Source, LoopData *OuterLoop, 444 Distribution &Dist); 445 446 /// \brief Compute the loop scale for a loop. 447 void computeLoopScale(LoopData &Loop); 448 449 /// Adjust the mass of all headers in an irreducible loop. 450 /// 451 /// Initially, irreducible loops are assumed to distribute their mass 452 /// equally among its headers. This can lead to wrong frequency estimates 453 /// since some headers may be executed more frequently than others. 454 /// 455 /// This adjusts header mass distribution so it matches the weights of 456 /// the backedges going into each of the loop headers. 457 void adjustLoopHeaderMass(LoopData &Loop); 458 459 /// \brief Package up a loop. 460 void packageLoop(LoopData &Loop); 461 462 /// \brief Unwrap loops. 463 void unwrapLoops(); 464 465 /// \brief Finalize frequency metrics. 466 /// 467 /// Calculates final frequencies and cleans up no-longer-needed data 468 /// structures. 469 void finalizeMetrics(); 470 471 /// \brief Clear all memory. 472 void clear(); 473 474 virtual std::string getBlockName(const BlockNode &Node) const; 475 std::string getLoopName(const LoopData &Loop) const; 476 477 virtual raw_ostream &print(raw_ostream &OS) const { return OS; } 478 void dump() const { print(dbgs()); } 479 480 Scaled64 getFloatingBlockFreq(const BlockNode &Node) const; 481 482 BlockFrequency getBlockFreq(const BlockNode &Node) const; 483 Optional<uint64_t> getBlockProfileCount(const Function &F, 484 const BlockNode &Node) const; 485 486 void setBlockFreq(const BlockNode &Node, uint64_t Freq); 487 488 raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const; 489 raw_ostream &printBlockFreq(raw_ostream &OS, 490 const BlockFrequency &Freq) const; 491 492 uint64_t getEntryFreq() const { 493 assert(!Freqs.empty()); 494 return Freqs[0].Integer; 495 } 496 /// \brief Virtual destructor. 497 /// 498 /// Need a virtual destructor to mask the compiler warning about 499 /// getBlockName(). 500 virtual ~BlockFrequencyInfoImplBase() {} 501 }; 502 503 namespace bfi_detail { 504 template <class BlockT> struct TypeMap {}; 505 template <> struct TypeMap<BasicBlock> { 506 typedef BasicBlock BlockT; 507 typedef Function FunctionT; 508 typedef BranchProbabilityInfo BranchProbabilityInfoT; 509 typedef Loop LoopT; 510 typedef LoopInfo LoopInfoT; 511 }; 512 template <> struct TypeMap<MachineBasicBlock> { 513 typedef MachineBasicBlock BlockT; 514 typedef MachineFunction FunctionT; 515 typedef MachineBranchProbabilityInfo BranchProbabilityInfoT; 516 typedef MachineLoop LoopT; 517 typedef MachineLoopInfo LoopInfoT; 518 }; 519 520 /// \brief Get the name of a MachineBasicBlock. 521 /// 522 /// Get the name of a MachineBasicBlock. It's templated so that including from 523 /// CodeGen is unnecessary (that would be a layering issue). 524 /// 525 /// This is used mainly for debug output. The name is similar to 526 /// MachineBasicBlock::getFullName(), but skips the name of the function. 527 template <class BlockT> std::string getBlockName(const BlockT *BB) { 528 assert(BB && "Unexpected nullptr"); 529 auto MachineName = "BB" + Twine(BB->getNumber()); 530 if (BB->getBasicBlock()) 531 return (MachineName + "[" + BB->getName() + "]").str(); 532 return MachineName.str(); 533 } 534 /// \brief Get the name of a BasicBlock. 535 template <> inline std::string getBlockName(const BasicBlock *BB) { 536 assert(BB && "Unexpected nullptr"); 537 return BB->getName().str(); 538 } 539 540 /// \brief Graph of irreducible control flow. 541 /// 542 /// This graph is used for determining the SCCs in a loop (or top-level 543 /// function) that has irreducible control flow. 544 /// 545 /// During the block frequency algorithm, the local graphs are defined in a 546 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock 547 /// graphs for most edges, but getting others from \a LoopData::ExitMap. The 548 /// latter only has successor information. 549 /// 550 /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use 551 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator), 552 /// and it explicitly lists predecessors and successors. The initialization 553 /// that relies on \c MachineBasicBlock is defined in the header. 554 struct IrreducibleGraph { 555 typedef BlockFrequencyInfoImplBase BFIBase; 556 557 BFIBase &BFI; 558 559 typedef BFIBase::BlockNode BlockNode; 560 struct IrrNode { 561 BlockNode Node; 562 unsigned NumIn; 563 std::deque<const IrrNode *> Edges; 564 IrrNode(const BlockNode &Node) : Node(Node), NumIn(0) {} 565 566 typedef std::deque<const IrrNode *>::const_iterator iterator; 567 iterator pred_begin() const { return Edges.begin(); } 568 iterator succ_begin() const { return Edges.begin() + NumIn; } 569 iterator pred_end() const { return succ_begin(); } 570 iterator succ_end() const { return Edges.end(); } 571 }; 572 BlockNode Start; 573 const IrrNode *StartIrr; 574 std::vector<IrrNode> Nodes; 575 SmallDenseMap<uint32_t, IrrNode *, 4> Lookup; 576 577 /// \brief Construct an explicit graph containing irreducible control flow. 578 /// 579 /// Construct an explicit graph of the control flow in \c OuterLoop (or the 580 /// top-level function, if \c OuterLoop is \c nullptr). Uses \c 581 /// addBlockEdges to add block successors that have not been packaged into 582 /// loops. 583 /// 584 /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected 585 /// user of this. 586 template <class BlockEdgesAdder> 587 IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop, 588 BlockEdgesAdder addBlockEdges) 589 : BFI(BFI), StartIrr(nullptr) { 590 initialize(OuterLoop, addBlockEdges); 591 } 592 593 template <class BlockEdgesAdder> 594 void initialize(const BFIBase::LoopData *OuterLoop, 595 BlockEdgesAdder addBlockEdges); 596 void addNodesInLoop(const BFIBase::LoopData &OuterLoop); 597 void addNodesInFunction(); 598 void addNode(const BlockNode &Node) { 599 Nodes.emplace_back(Node); 600 BFI.Working[Node.Index].getMass() = BlockMass::getEmpty(); 601 } 602 void indexNodes(); 603 template <class BlockEdgesAdder> 604 void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop, 605 BlockEdgesAdder addBlockEdges); 606 void addEdge(IrrNode &Irr, const BlockNode &Succ, 607 const BFIBase::LoopData *OuterLoop); 608 }; 609 template <class BlockEdgesAdder> 610 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop, 611 BlockEdgesAdder addBlockEdges) { 612 if (OuterLoop) { 613 addNodesInLoop(*OuterLoop); 614 for (auto N : OuterLoop->Nodes) 615 addEdges(N, OuterLoop, addBlockEdges); 616 } else { 617 addNodesInFunction(); 618 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) 619 addEdges(Index, OuterLoop, addBlockEdges); 620 } 621 StartIrr = Lookup[Start.Index]; 622 } 623 template <class BlockEdgesAdder> 624 void IrreducibleGraph::addEdges(const BlockNode &Node, 625 const BFIBase::LoopData *OuterLoop, 626 BlockEdgesAdder addBlockEdges) { 627 auto L = Lookup.find(Node.Index); 628 if (L == Lookup.end()) 629 return; 630 IrrNode &Irr = *L->second; 631 const auto &Working = BFI.Working[Node.Index]; 632 633 if (Working.isAPackage()) 634 for (const auto &I : Working.Loop->Exits) 635 addEdge(Irr, I.first, OuterLoop); 636 else 637 addBlockEdges(*this, Irr, OuterLoop); 638 } 639 } 640 641 /// \brief Shared implementation for block frequency analysis. 642 /// 643 /// This is a shared implementation of BlockFrequencyInfo and 644 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of 645 /// blocks. 646 /// 647 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block, 648 /// which is called the header. A given loop, L, can have sub-loops, which are 649 /// loops within the subgraph of L that exclude its header. (A "trivial" SCC 650 /// consists of a single block that does not have a self-edge.) 651 /// 652 /// In addition to loops, this algorithm has limited support for irreducible 653 /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are 654 /// discovered on they fly, and modelled as loops with multiple headers. 655 /// 656 /// The headers of irreducible sub-SCCs consist of its entry blocks and all 657 /// nodes that are targets of a backedge within it (excluding backedges within 658 /// true sub-loops). Block frequency calculations act as if a block is 659 /// inserted that intercepts all the edges to the headers. All backedges and 660 /// entries point to this block. Its successors are the headers, which split 661 /// the frequency evenly. 662 /// 663 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision, 664 /// separates mass distribution from loop scaling, and dithers to eliminate 665 /// probability mass loss. 666 /// 667 /// The implementation is split between BlockFrequencyInfoImpl, which knows the 668 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and 669 /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a 670 /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in 671 /// reverse-post order. This gives two advantages: it's easy to compare the 672 /// relative ordering of two nodes, and maps keyed on BlockT can be represented 673 /// by vectors. 674 /// 675 /// This algorithm is O(V+E), unless there is irreducible control flow, in 676 /// which case it's O(V*E) in the worst case. 677 /// 678 /// These are the main stages: 679 /// 680 /// 0. Reverse post-order traversal (\a initializeRPOT()). 681 /// 682 /// Run a single post-order traversal and save it (in reverse) in RPOT. 683 /// All other stages make use of this ordering. Save a lookup from BlockT 684 /// to BlockNode (the index into RPOT) in Nodes. 685 /// 686 /// 1. Loop initialization (\a initializeLoops()). 687 /// 688 /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of 689 /// the algorithm. In particular, store the immediate members of each loop 690 /// in reverse post-order. 691 /// 692 /// 2. Calculate mass and scale in loops (\a computeMassInLoops()). 693 /// 694 /// For each loop (bottom-up), distribute mass through the DAG resulting 695 /// from ignoring backedges and treating sub-loops as a single pseudo-node. 696 /// Track the backedge mass distributed to the loop header, and use it to 697 /// calculate the loop scale (number of loop iterations). Immediate 698 /// members that represent sub-loops will already have been visited and 699 /// packaged into a pseudo-node. 700 /// 701 /// Distributing mass in a loop is a reverse-post-order traversal through 702 /// the loop. Start by assigning full mass to the Loop header. For each 703 /// node in the loop: 704 /// 705 /// - Fetch and categorize the weight distribution for its successors. 706 /// If this is a packaged-subloop, the weight distribution is stored 707 /// in \a LoopData::Exits. Otherwise, fetch it from 708 /// BranchProbabilityInfo. 709 /// 710 /// - Each successor is categorized as \a Weight::Local, a local edge 711 /// within the current loop, \a Weight::Backedge, a backedge to the 712 /// loop header, or \a Weight::Exit, any successor outside the loop. 713 /// The weight, the successor, and its category are stored in \a 714 /// Distribution. There can be multiple edges to each successor. 715 /// 716 /// - If there's a backedge to a non-header, there's an irreducible SCC. 717 /// The usual flow is temporarily aborted. \a 718 /// computeIrreducibleMass() finds the irreducible SCCs within the 719 /// loop, packages them up, and restarts the flow. 720 /// 721 /// - Normalize the distribution: scale weights down so that their sum 722 /// is 32-bits, and coalesce multiple edges to the same node. 723 /// 724 /// - Distribute the mass accordingly, dithering to minimize mass loss, 725 /// as described in \a distributeMass(). 726 /// 727 /// In the case of irreducible loops, instead of a single loop header, 728 /// there will be several. The computation of backedge masses is similar 729 /// but instead of having a single backedge mass, there will be one 730 /// backedge per loop header. In these cases, each backedge will carry 731 /// a mass proportional to the edge weights along the corresponding 732 /// path. 733 /// 734 /// At the end of propagation, the full mass assigned to the loop will be 735 /// distributed among the loop headers proportionally according to the 736 /// mass flowing through their backedges. 737 /// 738 /// Finally, calculate the loop scale from the accumulated backedge mass. 739 /// 740 /// 3. Distribute mass in the function (\a computeMassInFunction()). 741 /// 742 /// Finally, distribute mass through the DAG resulting from packaging all 743 /// loops in the function. This uses the same algorithm as distributing 744 /// mass in a loop, except that there are no exit or backedge edges. 745 /// 746 /// 4. Unpackage loops (\a unwrapLoops()). 747 /// 748 /// Initialize each block's frequency to a floating point representation of 749 /// its mass. 750 /// 751 /// Visit loops top-down, scaling the frequencies of its immediate members 752 /// by the loop's pseudo-node's frequency. 753 /// 754 /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()). 755 /// 756 /// Using the min and max frequencies as a guide, translate floating point 757 /// frequencies to an appropriate range in uint64_t. 758 /// 759 /// It has some known flaws. 760 /// 761 /// - The model of irreducible control flow is a rough approximation. 762 /// 763 /// Modelling irreducible control flow exactly involves setting up and 764 /// solving a group of infinite geometric series. Such precision is 765 /// unlikely to be worthwhile, since most of our algorithms give up on 766 /// irreducible control flow anyway. 767 /// 768 /// Nevertheless, we might find that we need to get closer. Here's a sort 769 /// of TODO list for the model with diminishing returns, to be completed as 770 /// necessary. 771 /// 772 /// - The headers for the \a LoopData representing an irreducible SCC 773 /// include non-entry blocks. When these extra blocks exist, they 774 /// indicate a self-contained irreducible sub-SCC. We could treat them 775 /// as sub-loops, rather than arbitrarily shoving the problematic 776 /// blocks into the headers of the main irreducible SCC. 777 /// 778 /// - Entry frequencies are assumed to be evenly split between the 779 /// headers of a given irreducible SCC, which is the only option if we 780 /// need to compute mass in the SCC before its parent loop. Instead, 781 /// we could partially compute mass in the parent loop, and stop when 782 /// we get to the SCC. Here, we have the correct ratio of entry 783 /// masses, which we can use to adjust their relative frequencies. 784 /// Compute mass in the SCC, and then continue propagation in the 785 /// parent. 786 /// 787 /// - We can propagate mass iteratively through the SCC, for some fixed 788 /// number of iterations. Each iteration starts by assigning the entry 789 /// blocks their backedge mass from the prior iteration. The final 790 /// mass for each block (and each exit, and the total backedge mass 791 /// used for computing loop scale) is the sum of all iterations. 792 /// (Running this until fixed point would "solve" the geometric 793 /// series by simulation.) 794 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase { 795 typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT; 796 typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT; 797 typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT 798 BranchProbabilityInfoT; 799 typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT; 800 typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT; 801 802 // This is part of a workaround for a GCC 4.7 crash on lambdas. 803 friend struct bfi_detail::BlockEdgesAdder<BT>; 804 805 typedef GraphTraits<const BlockT *> Successor; 806 typedef GraphTraits<Inverse<const BlockT *>> Predecessor; 807 808 const BranchProbabilityInfoT *BPI; 809 const LoopInfoT *LI; 810 const FunctionT *F; 811 812 // All blocks in reverse postorder. 813 std::vector<const BlockT *> RPOT; 814 DenseMap<const BlockT *, BlockNode> Nodes; 815 816 typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator; 817 818 rpot_iterator rpot_begin() const { return RPOT.begin(); } 819 rpot_iterator rpot_end() const { return RPOT.end(); } 820 821 size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); } 822 823 BlockNode getNode(const rpot_iterator &I) const { 824 return BlockNode(getIndex(I)); 825 } 826 BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); } 827 828 const BlockT *getBlock(const BlockNode &Node) const { 829 assert(Node.Index < RPOT.size()); 830 return RPOT[Node.Index]; 831 } 832 833 /// \brief Run (and save) a post-order traversal. 834 /// 835 /// Saves a reverse post-order traversal of all the nodes in \a F. 836 void initializeRPOT(); 837 838 /// \brief Initialize loop data. 839 /// 840 /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from 841 /// each block to the deepest loop it's in, but we need the inverse. For each 842 /// loop, we store in reverse post-order its "immediate" members, defined as 843 /// the header, the headers of immediate sub-loops, and all other blocks in 844 /// the loop that are not in sub-loops. 845 void initializeLoops(); 846 847 /// \brief Propagate to a block's successors. 848 /// 849 /// In the context of distributing mass through \c OuterLoop, divide the mass 850 /// currently assigned to \c Node between its successors. 851 /// 852 /// \return \c true unless there's an irreducible backedge. 853 bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node); 854 855 /// \brief Compute mass in a particular loop. 856 /// 857 /// Assign mass to \c Loop's header, and then for each block in \c Loop in 858 /// reverse post-order, distribute mass to its successors. Only visits nodes 859 /// that have not been packaged into sub-loops. 860 /// 861 /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop. 862 /// \return \c true unless there's an irreducible backedge. 863 bool computeMassInLoop(LoopData &Loop); 864 865 /// \brief Try to compute mass in the top-level function. 866 /// 867 /// Assign mass to the entry block, and then for each block in reverse 868 /// post-order, distribute mass to its successors. Skips nodes that have 869 /// been packaged into loops. 870 /// 871 /// \pre \a computeMassInLoops() has been called. 872 /// \return \c true unless there's an irreducible backedge. 873 bool tryToComputeMassInFunction(); 874 875 /// \brief Compute mass in (and package up) irreducible SCCs. 876 /// 877 /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front 878 /// of \c Insert), and call \a computeMassInLoop() on each of them. 879 /// 880 /// If \c OuterLoop is \c nullptr, it refers to the top-level function. 881 /// 882 /// \pre \a computeMassInLoop() has been called for each subloop of \c 883 /// OuterLoop. 884 /// \pre \c Insert points at the last loop successfully processed by \a 885 /// computeMassInLoop(). 886 /// \pre \c OuterLoop has irreducible SCCs. 887 void computeIrreducibleMass(LoopData *OuterLoop, 888 std::list<LoopData>::iterator Insert); 889 890 /// \brief Compute mass in all loops. 891 /// 892 /// For each loop bottom-up, call \a computeMassInLoop(). 893 /// 894 /// \a computeMassInLoop() aborts (and returns \c false) on loops that 895 /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then 896 /// re-enter \a computeMassInLoop(). 897 /// 898 /// \post \a computeMassInLoop() has returned \c true for every loop. 899 void computeMassInLoops(); 900 901 /// \brief Compute mass in the top-level function. 902 /// 903 /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to 904 /// compute mass in the top-level function. 905 /// 906 /// \post \a tryToComputeMassInFunction() has returned \c true. 907 void computeMassInFunction(); 908 909 std::string getBlockName(const BlockNode &Node) const override { 910 return bfi_detail::getBlockName(getBlock(Node)); 911 } 912 913 public: 914 const FunctionT *getFunction() const { return F; } 915 916 void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI, 917 const LoopInfoT &LI); 918 BlockFrequencyInfoImpl() : BPI(nullptr), LI(nullptr), F(nullptr) {} 919 920 using BlockFrequencyInfoImplBase::getEntryFreq; 921 BlockFrequency getBlockFreq(const BlockT *BB) const { 922 return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB)); 923 } 924 Optional<uint64_t> getBlockProfileCount(const Function &F, 925 const BlockT *BB) const { 926 return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB)); 927 } 928 void setBlockFreq(const BlockT *BB, uint64_t Freq); 929 Scaled64 getFloatingBlockFreq(const BlockT *BB) const { 930 return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB)); 931 } 932 933 const BranchProbabilityInfoT &getBPI() const { return *BPI; } 934 935 /// \brief Print the frequencies for the current function. 936 /// 937 /// Prints the frequencies for the blocks in the current function. 938 /// 939 /// Blocks are printed in the natural iteration order of the function, rather 940 /// than reverse post-order. This provides two advantages: writing -analyze 941 /// tests is easier (since blocks come out in source order), and even 942 /// unreachable blocks are printed. 943 /// 944 /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so 945 /// we need to override it here. 946 raw_ostream &print(raw_ostream &OS) const override; 947 using BlockFrequencyInfoImplBase::dump; 948 949 using BlockFrequencyInfoImplBase::printBlockFreq; 950 raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const { 951 return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB)); 952 } 953 }; 954 955 template <class BT> 956 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F, 957 const BranchProbabilityInfoT &BPI, 958 const LoopInfoT &LI) { 959 // Save the parameters. 960 this->BPI = &BPI; 961 this->LI = &LI; 962 this->F = &F; 963 964 // Clean up left-over data structures. 965 BlockFrequencyInfoImplBase::clear(); 966 RPOT.clear(); 967 Nodes.clear(); 968 969 // Initialize. 970 DEBUG(dbgs() << "\nblock-frequency: " << F.getName() << "\n=================" 971 << std::string(F.getName().size(), '=') << "\n"); 972 initializeRPOT(); 973 initializeLoops(); 974 975 // Visit loops in post-order to find the local mass distribution, and then do 976 // the full function. 977 computeMassInLoops(); 978 computeMassInFunction(); 979 unwrapLoops(); 980 finalizeMetrics(); 981 } 982 983 template <class BT> 984 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) { 985 if (Nodes.count(BB)) 986 BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq); 987 else { 988 // If BB is a newly added block after BFI is done, we need to create a new 989 // BlockNode for it assigned with a new index. The index can be determined 990 // by the size of Freqs. 991 BlockNode NewNode(Freqs.size()); 992 Nodes[BB] = NewNode; 993 Freqs.emplace_back(); 994 BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq); 995 } 996 } 997 998 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() { 999 const BlockT *Entry = &F->front(); 1000 RPOT.reserve(F->size()); 1001 std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT)); 1002 std::reverse(RPOT.begin(), RPOT.end()); 1003 1004 assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() && 1005 "More nodes in function than Block Frequency Info supports"); 1006 1007 DEBUG(dbgs() << "reverse-post-order-traversal\n"); 1008 for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) { 1009 BlockNode Node = getNode(I); 1010 DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n"); 1011 Nodes[*I] = Node; 1012 } 1013 1014 Working.reserve(RPOT.size()); 1015 for (size_t Index = 0; Index < RPOT.size(); ++Index) 1016 Working.emplace_back(Index); 1017 Freqs.resize(RPOT.size()); 1018 } 1019 1020 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() { 1021 DEBUG(dbgs() << "loop-detection\n"); 1022 if (LI->empty()) 1023 return; 1024 1025 // Visit loops top down and assign them an index. 1026 std::deque<std::pair<const LoopT *, LoopData *>> Q; 1027 for (const LoopT *L : *LI) 1028 Q.emplace_back(L, nullptr); 1029 while (!Q.empty()) { 1030 const LoopT *Loop = Q.front().first; 1031 LoopData *Parent = Q.front().second; 1032 Q.pop_front(); 1033 1034 BlockNode Header = getNode(Loop->getHeader()); 1035 assert(Header.isValid()); 1036 1037 Loops.emplace_back(Parent, Header); 1038 Working[Header.Index].Loop = &Loops.back(); 1039 DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n"); 1040 1041 for (const LoopT *L : *Loop) 1042 Q.emplace_back(L, &Loops.back()); 1043 } 1044 1045 // Visit nodes in reverse post-order and add them to their deepest containing 1046 // loop. 1047 for (size_t Index = 0; Index < RPOT.size(); ++Index) { 1048 // Loop headers have already been mostly mapped. 1049 if (Working[Index].isLoopHeader()) { 1050 LoopData *ContainingLoop = Working[Index].getContainingLoop(); 1051 if (ContainingLoop) 1052 ContainingLoop->Nodes.push_back(Index); 1053 continue; 1054 } 1055 1056 const LoopT *Loop = LI->getLoopFor(RPOT[Index]); 1057 if (!Loop) 1058 continue; 1059 1060 // Add this node to its containing loop's member list. 1061 BlockNode Header = getNode(Loop->getHeader()); 1062 assert(Header.isValid()); 1063 const auto &HeaderData = Working[Header.Index]; 1064 assert(HeaderData.isLoopHeader()); 1065 1066 Working[Index].Loop = HeaderData.Loop; 1067 HeaderData.Loop->Nodes.push_back(Index); 1068 DEBUG(dbgs() << " - loop = " << getBlockName(Header) 1069 << ": member = " << getBlockName(Index) << "\n"); 1070 } 1071 } 1072 1073 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() { 1074 // Visit loops with the deepest first, and the top-level loops last. 1075 for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) { 1076 if (computeMassInLoop(*L)) 1077 continue; 1078 auto Next = std::next(L); 1079 computeIrreducibleMass(&*L, L.base()); 1080 L = std::prev(Next); 1081 if (computeMassInLoop(*L)) 1082 continue; 1083 llvm_unreachable("unhandled irreducible control flow"); 1084 } 1085 } 1086 1087 template <class BT> 1088 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) { 1089 // Compute mass in loop. 1090 DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n"); 1091 1092 if (Loop.isIrreducible()) { 1093 BlockMass Remaining = BlockMass::getFull(); 1094 for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { 1095 auto &Mass = Working[Loop.Nodes[H].Index].getMass(); 1096 Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H); 1097 Remaining -= Mass; 1098 } 1099 for (const BlockNode &M : Loop.Nodes) 1100 if (!propagateMassToSuccessors(&Loop, M)) 1101 llvm_unreachable("unhandled irreducible control flow"); 1102 1103 adjustLoopHeaderMass(Loop); 1104 } else { 1105 Working[Loop.getHeader().Index].getMass() = BlockMass::getFull(); 1106 if (!propagateMassToSuccessors(&Loop, Loop.getHeader())) 1107 llvm_unreachable("irreducible control flow to loop header!?"); 1108 for (const BlockNode &M : Loop.members()) 1109 if (!propagateMassToSuccessors(&Loop, M)) 1110 // Irreducible backedge. 1111 return false; 1112 } 1113 1114 computeLoopScale(Loop); 1115 packageLoop(Loop); 1116 return true; 1117 } 1118 1119 template <class BT> 1120 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() { 1121 // Compute mass in function. 1122 DEBUG(dbgs() << "compute-mass-in-function\n"); 1123 assert(!Working.empty() && "no blocks in function"); 1124 assert(!Working[0].isLoopHeader() && "entry block is a loop header"); 1125 1126 Working[0].getMass() = BlockMass::getFull(); 1127 for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) { 1128 // Check for nodes that have been packaged. 1129 BlockNode Node = getNode(I); 1130 if (Working[Node.Index].isPackaged()) 1131 continue; 1132 1133 if (!propagateMassToSuccessors(nullptr, Node)) 1134 return false; 1135 } 1136 return true; 1137 } 1138 1139 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() { 1140 if (tryToComputeMassInFunction()) 1141 return; 1142 computeIrreducibleMass(nullptr, Loops.begin()); 1143 if (tryToComputeMassInFunction()) 1144 return; 1145 llvm_unreachable("unhandled irreducible control flow"); 1146 } 1147 1148 /// \note This should be a lambda, but that crashes GCC 4.7. 1149 namespace bfi_detail { 1150 template <class BT> struct BlockEdgesAdder { 1151 typedef BT BlockT; 1152 typedef BlockFrequencyInfoImplBase::LoopData LoopData; 1153 typedef GraphTraits<const BlockT *> Successor; 1154 1155 const BlockFrequencyInfoImpl<BT> &BFI; 1156 explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI) 1157 : BFI(BFI) {} 1158 void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr, 1159 const LoopData *OuterLoop) { 1160 const BlockT *BB = BFI.RPOT[Irr.Node.Index]; 1161 for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB); 1162 I != E; ++I) 1163 G.addEdge(Irr, BFI.getNode(*I), OuterLoop); 1164 } 1165 }; 1166 } 1167 template <class BT> 1168 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass( 1169 LoopData *OuterLoop, std::list<LoopData>::iterator Insert) { 1170 DEBUG(dbgs() << "analyze-irreducible-in-"; 1171 if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n"; 1172 else dbgs() << "function\n"); 1173 1174 using namespace bfi_detail; 1175 // Ideally, addBlockEdges() would be declared here as a lambda, but that 1176 // crashes GCC 4.7. 1177 BlockEdgesAdder<BT> addBlockEdges(*this); 1178 IrreducibleGraph G(*this, OuterLoop, addBlockEdges); 1179 1180 for (auto &L : analyzeIrreducible(G, OuterLoop, Insert)) 1181 computeMassInLoop(L); 1182 1183 if (!OuterLoop) 1184 return; 1185 updateLoopWithIrreducible(*OuterLoop); 1186 } 1187 1188 // A helper function that converts a branch probability into weight. 1189 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) { 1190 return Prob.getNumerator(); 1191 } 1192 1193 template <class BT> 1194 bool 1195 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop, 1196 const BlockNode &Node) { 1197 DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n"); 1198 // Calculate probability for successors. 1199 Distribution Dist; 1200 if (auto *Loop = Working[Node.Index].getPackagedLoop()) { 1201 assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop"); 1202 if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist)) 1203 // Irreducible backedge. 1204 return false; 1205 } else { 1206 const BlockT *BB = getBlock(Node); 1207 for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB); 1208 SI != SE; ++SI) 1209 if (!addToDist(Dist, OuterLoop, Node, getNode(*SI), 1210 getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI)))) 1211 // Irreducible backedge. 1212 return false; 1213 } 1214 1215 // Distribute mass to successors, saving exit and backedge data in the 1216 // loop header. 1217 distributeMass(Node, OuterLoop, Dist); 1218 return true; 1219 } 1220 1221 template <class BT> 1222 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const { 1223 if (!F) 1224 return OS; 1225 OS << "block-frequency-info: " << F->getName() << "\n"; 1226 for (const BlockT &BB : *F) { 1227 OS << " - " << bfi_detail::getBlockName(&BB) << ": float = "; 1228 getFloatingBlockFreq(&BB).print(OS, 5) 1229 << ", int = " << getBlockFreq(&BB).getFrequency() << "\n"; 1230 } 1231 1232 // Add an extra newline for readability. 1233 OS << "\n"; 1234 return OS; 1235 } 1236 1237 // Graph trait base class for block frequency information graph 1238 // viewer. 1239 1240 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count }; 1241 1242 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT> 1243 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits { 1244 explicit BFIDOTGraphTraitsBase(bool isSimple = false) 1245 : DefaultDOTGraphTraits(isSimple) {} 1246 1247 typedef GraphTraits<BlockFrequencyInfoT *> GTraits; 1248 typedef typename GTraits::NodeType NodeType; 1249 typedef typename GTraits::ChildIteratorType EdgeIter; 1250 typedef typename GTraits::nodes_iterator NodeIter; 1251 1252 uint64_t MaxFrequency = 0; 1253 static std::string getGraphName(const BlockFrequencyInfoT *G) { 1254 return G->getFunction()->getName(); 1255 } 1256 1257 std::string getNodeAttributes(const NodeType *Node, 1258 const BlockFrequencyInfoT *Graph, 1259 unsigned HotPercentThreshold = 0) { 1260 std::string Result; 1261 if (!HotPercentThreshold) 1262 return Result; 1263 1264 // Compute MaxFrequency on the fly: 1265 if (!MaxFrequency) { 1266 for (NodeIter I = GTraits::nodes_begin(Graph), 1267 E = GTraits::nodes_end(Graph); 1268 I != E; ++I) { 1269 NodeType &N = *I; 1270 MaxFrequency = 1271 std::max(MaxFrequency, Graph->getBlockFreq(&N).getFrequency()); 1272 } 1273 } 1274 BlockFrequency Freq = Graph->getBlockFreq(Node); 1275 BlockFrequency HotFreq = 1276 (BlockFrequency(MaxFrequency) * 1277 BranchProbability::getBranchProbability(HotPercentThreshold, 100)); 1278 1279 if (Freq < HotFreq) 1280 return Result; 1281 1282 raw_string_ostream OS(Result); 1283 OS << "color=\"red\""; 1284 OS.flush(); 1285 return Result; 1286 } 1287 1288 std::string getNodeLabel(const NodeType *Node, 1289 const BlockFrequencyInfoT *Graph, GVDAGType GType) { 1290 std::string Result; 1291 raw_string_ostream OS(Result); 1292 1293 OS << Node->getName().str() << " : "; 1294 switch (GType) { 1295 case GVDT_Fraction: 1296 Graph->printBlockFreq(OS, Node); 1297 break; 1298 case GVDT_Integer: 1299 OS << Graph->getBlockFreq(Node).getFrequency(); 1300 break; 1301 case GVDT_Count: { 1302 auto Count = Graph->getBlockProfileCount(Node); 1303 if (Count) 1304 OS << Count.getValue(); 1305 else 1306 OS << "Unknown"; 1307 break; 1308 } 1309 case GVDT_None: 1310 llvm_unreachable("If we are not supposed to render a graph we should " 1311 "never reach this point."); 1312 } 1313 return Result; 1314 } 1315 1316 std::string getEdgeAttributes(const NodeType *Node, EdgeIter EI, 1317 const BlockFrequencyInfoT *BFI, 1318 const BranchProbabilityInfoT *BPI, 1319 unsigned HotPercentThreshold = 0) { 1320 std::string Str; 1321 if (!BPI) 1322 return Str; 1323 1324 BranchProbability BP = BPI->getEdgeProbability(Node, EI); 1325 uint32_t N = BP.getNumerator(); 1326 uint32_t D = BP.getDenominator(); 1327 double Percent = 100.0 * N / D; 1328 raw_string_ostream OS(Str); 1329 OS << format("label=\"%.1f%%\"", Percent); 1330 1331 if (HotPercentThreshold) { 1332 BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP; 1333 BlockFrequency HotFreq = BlockFrequency(MaxFrequency) * 1334 BranchProbability(HotPercentThreshold, 100); 1335 1336 if (EFreq >= HotFreq) { 1337 OS << ",color=\"red\""; 1338 } 1339 } 1340 1341 OS.flush(); 1342 return Str; 1343 } 1344 }; 1345 1346 } // end namespace llvm 1347 1348 #undef DEBUG_TYPE 1349 1350 #endif 1351