1 //===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file provides helpers for the implementation of
11 /// a TargetTransformInfo-conforming class.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
16 #define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
17 
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/IR/Type.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 
27 namespace llvm {
28 
29 /// \brief Base class for use as a mix-in that aids implementing
30 /// a TargetTransformInfo-compatible class.
31 class TargetTransformInfoImplBase {
32 protected:
33   typedef TargetTransformInfo TTI;
34 
35   const DataLayout &DL;
36 
TargetTransformInfoImplBase(const DataLayout & DL)37   explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
38 
39 public:
40   // Provide value semantics. MSVC requires that we spell all of these out.
TargetTransformInfoImplBase(const TargetTransformInfoImplBase & Arg)41   TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
42       : DL(Arg.DL) {}
TargetTransformInfoImplBase(TargetTransformInfoImplBase && Arg)43   TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
44 
getDataLayout()45   const DataLayout &getDataLayout() const { return DL; }
46 
getOperationCost(unsigned Opcode,Type * Ty,Type * OpTy)47   unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
48     switch (Opcode) {
49     default:
50       // By default, just classify everything as 'basic'.
51       return TTI::TCC_Basic;
52 
53     case Instruction::GetElementPtr:
54       llvm_unreachable("Use getGEPCost for GEP operations!");
55 
56     case Instruction::BitCast:
57       assert(OpTy && "Cast instructions must provide the operand type");
58       if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
59         // Identity and pointer-to-pointer casts are free.
60         return TTI::TCC_Free;
61 
62       // Otherwise, the default basic cost is used.
63       return TTI::TCC_Basic;
64 
65     case Instruction::FDiv:
66     case Instruction::FRem:
67     case Instruction::SDiv:
68     case Instruction::SRem:
69     case Instruction::UDiv:
70     case Instruction::URem:
71       return TTI::TCC_Expensive;
72 
73     case Instruction::IntToPtr: {
74       // An inttoptr cast is free so long as the input is a legal integer type
75       // which doesn't contain values outside the range of a pointer.
76       unsigned OpSize = OpTy->getScalarSizeInBits();
77       if (DL.isLegalInteger(OpSize) &&
78           OpSize <= DL.getPointerTypeSizeInBits(Ty))
79         return TTI::TCC_Free;
80 
81       // Otherwise it's not a no-op.
82       return TTI::TCC_Basic;
83     }
84     case Instruction::PtrToInt: {
85       // A ptrtoint cast is free so long as the result is large enough to store
86       // the pointer, and a legal integer type.
87       unsigned DestSize = Ty->getScalarSizeInBits();
88       if (DL.isLegalInteger(DestSize) &&
89           DestSize >= DL.getPointerTypeSizeInBits(OpTy))
90         return TTI::TCC_Free;
91 
92       // Otherwise it's not a no-op.
93       return TTI::TCC_Basic;
94     }
95     case Instruction::Trunc:
96       // trunc to a native type is free (assuming the target has compare and
97       // shift-right of the same width).
98       if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
99         return TTI::TCC_Free;
100 
101       return TTI::TCC_Basic;
102     }
103   }
104 
getGEPCost(Type * PointeeType,const Value * Ptr,ArrayRef<const Value * > Operands)105   int getGEPCost(Type *PointeeType, const Value *Ptr,
106                  ArrayRef<const Value *> Operands) {
107     // In the basic model, we just assume that all-constant GEPs will be folded
108     // into their uses via addressing modes.
109     for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
110       if (!isa<Constant>(Operands[Idx]))
111         return TTI::TCC_Basic;
112 
113     return TTI::TCC_Free;
114   }
115 
getCallCost(FunctionType * FTy,int NumArgs)116   unsigned getCallCost(FunctionType *FTy, int NumArgs) {
117     assert(FTy && "FunctionType must be provided to this routine.");
118 
119     // The target-independent implementation just measures the size of the
120     // function by approximating that each argument will take on average one
121     // instruction to prepare.
122 
123     if (NumArgs < 0)
124       // Set the argument number to the number of explicit arguments in the
125       // function.
126       NumArgs = FTy->getNumParams();
127 
128     return TTI::TCC_Basic * (NumArgs + 1);
129   }
130 
getInliningThresholdMultiplier()131   unsigned getInliningThresholdMultiplier() { return 1; }
132 
getIntrinsicCost(Intrinsic::ID IID,Type * RetTy,ArrayRef<Type * > ParamTys)133   unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
134                             ArrayRef<Type *> ParamTys) {
135     switch (IID) {
136     default:
137       // Intrinsics rarely (if ever) have normal argument setup constraints.
138       // Model them as having a basic instruction cost.
139       // FIXME: This is wrong for libc intrinsics.
140       return TTI::TCC_Basic;
141 
142     case Intrinsic::annotation:
143     case Intrinsic::assume:
144     case Intrinsic::dbg_declare:
145     case Intrinsic::dbg_value:
146     case Intrinsic::invariant_start:
147     case Intrinsic::invariant_end:
148     case Intrinsic::lifetime_start:
149     case Intrinsic::lifetime_end:
150     case Intrinsic::objectsize:
151     case Intrinsic::ptr_annotation:
152     case Intrinsic::var_annotation:
153     case Intrinsic::experimental_gc_result:
154     case Intrinsic::experimental_gc_relocate:
155       // These intrinsics don't actually represent code after lowering.
156       return TTI::TCC_Free;
157     }
158   }
159 
hasBranchDivergence()160   bool hasBranchDivergence() { return false; }
161 
isSourceOfDivergence(const Value * V)162   bool isSourceOfDivergence(const Value *V) { return false; }
163 
isLoweredToCall(const Function * F)164   bool isLoweredToCall(const Function *F) {
165     // FIXME: These should almost certainly not be handled here, and instead
166     // handled with the help of TLI or the target itself. This was largely
167     // ported from existing analysis heuristics here so that such refactorings
168     // can take place in the future.
169 
170     if (F->isIntrinsic())
171       return false;
172 
173     if (F->hasLocalLinkage() || !F->hasName())
174       return true;
175 
176     StringRef Name = F->getName();
177 
178     // These will all likely lower to a single selection DAG node.
179     if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
180         Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
181         Name == "fmin" || Name == "fminf" || Name == "fminl" ||
182         Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
183         Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
184         Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
185       return false;
186 
187     // These are all likely to be optimized into something smaller.
188     if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
189         Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
190         Name == "floorf" || Name == "ceil" || Name == "round" ||
191         Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
192         Name == "llabs")
193       return false;
194 
195     return true;
196   }
197 
getUnrollingPreferences(Loop *,TTI::UnrollingPreferences &)198   void getUnrollingPreferences(Loop *, TTI::UnrollingPreferences &) {}
199 
isLegalAddImmediate(int64_t Imm)200   bool isLegalAddImmediate(int64_t Imm) { return false; }
201 
isLegalICmpImmediate(int64_t Imm)202   bool isLegalICmpImmediate(int64_t Imm) { return false; }
203 
isLegalAddressingMode(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace)204   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
205                              bool HasBaseReg, int64_t Scale,
206                              unsigned AddrSpace) {
207     // Guess that only reg and reg+reg addressing is allowed. This heuristic is
208     // taken from the implementation of LSR.
209     return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
210   }
211 
isLegalMaskedStore(Type * DataType)212   bool isLegalMaskedStore(Type *DataType) { return false; }
213 
isLegalMaskedLoad(Type * DataType)214   bool isLegalMaskedLoad(Type *DataType) { return false; }
215 
isLegalMaskedScatter(Type * DataType)216   bool isLegalMaskedScatter(Type *DataType) { return false; }
217 
isLegalMaskedGather(Type * DataType)218   bool isLegalMaskedGather(Type *DataType) { return false; }
219 
getScalingFactorCost(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace)220   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
221                            bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
222     // Guess that all legal addressing mode are free.
223     if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
224                               Scale, AddrSpace))
225       return 0;
226     return -1;
227   }
228 
isTruncateFree(Type * Ty1,Type * Ty2)229   bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
230 
isProfitableToHoist(Instruction * I)231   bool isProfitableToHoist(Instruction *I) { return true; }
232 
isTypeLegal(Type * Ty)233   bool isTypeLegal(Type *Ty) { return false; }
234 
getJumpBufAlignment()235   unsigned getJumpBufAlignment() { return 0; }
236 
getJumpBufSize()237   unsigned getJumpBufSize() { return 0; }
238 
shouldBuildLookupTables()239   bool shouldBuildLookupTables() { return true; }
240 
enableAggressiveInterleaving(bool LoopHasReductions)241   bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
242 
enableInterleavedAccessVectorization()243   bool enableInterleavedAccessVectorization() { return false; }
244 
isFPVectorizationPotentiallyUnsafe()245   bool isFPVectorizationPotentiallyUnsafe() { return false; }
246 
allowsMisalignedMemoryAccesses(unsigned BitWidth,unsigned AddressSpace,unsigned Alignment,bool * Fast)247   bool allowsMisalignedMemoryAccesses(unsigned BitWidth,
248                                       unsigned AddressSpace,
249                                       unsigned Alignment,
250                                       bool *Fast) { return false; }
251 
getPopcntSupport(unsigned IntTyWidthInBit)252   TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
253     return TTI::PSK_Software;
254   }
255 
haveFastSqrt(Type * Ty)256   bool haveFastSqrt(Type *Ty) { return false; }
257 
getFPOpCost(Type * Ty)258   unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }
259 
getIntImmCodeSizeCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty)260   int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
261                             Type *Ty) {
262     return 0;
263   }
264 
getIntImmCost(const APInt & Imm,Type * Ty)265   unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
266 
getIntImmCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty)267   unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
268                          Type *Ty) {
269     return TTI::TCC_Free;
270   }
271 
getIntImmCost(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty)272   unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
273                          Type *Ty) {
274     return TTI::TCC_Free;
275   }
276 
getNumberOfRegisters(bool Vector)277   unsigned getNumberOfRegisters(bool Vector) { return 8; }
278 
getRegisterBitWidth(bool Vector)279   unsigned getRegisterBitWidth(bool Vector) { return 32; }
280 
getLoadStoreVecRegBitWidth(unsigned AddrSpace)281   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) { return 128; }
282 
getCacheLineSize()283   unsigned getCacheLineSize() { return 0; }
284 
getPrefetchDistance()285   unsigned getPrefetchDistance() { return 0; }
286 
getMinPrefetchStride()287   unsigned getMinPrefetchStride() { return 1; }
288 
getMaxPrefetchIterationsAhead()289   unsigned getMaxPrefetchIterationsAhead() { return UINT_MAX; }
290 
getMaxInterleaveFactor(unsigned VF)291   unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
292 
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::OperandValueKind Opd1Info,TTI::OperandValueKind Opd2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo)293   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
294                                   TTI::OperandValueKind Opd1Info,
295                                   TTI::OperandValueKind Opd2Info,
296                                   TTI::OperandValueProperties Opd1PropInfo,
297                                   TTI::OperandValueProperties Opd2PropInfo) {
298     return 1;
299   }
300 
getShuffleCost(TTI::ShuffleKind Kind,Type * Ty,int Index,Type * SubTp)301   unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
302                           Type *SubTp) {
303     return 1;
304   }
305 
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src)306   unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { return 1; }
307 
getExtractWithExtendCost(unsigned Opcode,Type * Dst,VectorType * VecTy,unsigned Index)308   unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
309                                     VectorType *VecTy, unsigned Index) {
310     return 1;
311   }
312 
getCFInstrCost(unsigned Opcode)313   unsigned getCFInstrCost(unsigned Opcode) { return 1; }
314 
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy)315   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
316     return 1;
317   }
318 
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)319   unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
320     return 1;
321   }
322 
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace)323   unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
324                            unsigned AddressSpace) {
325     return 1;
326   }
327 
getMaskedMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace)328   unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
329                                  unsigned AddressSpace) {
330     return 1;
331   }
332 
getGatherScatterOpCost(unsigned Opcode,Type * DataTy,Value * Ptr,bool VariableMask,unsigned Alignment)333   unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
334                                   bool VariableMask,
335                                   unsigned Alignment) {
336     return 1;
337   }
338 
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,unsigned Alignment,unsigned AddressSpace)339   unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
340                                       unsigned Factor,
341                                       ArrayRef<unsigned> Indices,
342                                       unsigned Alignment,
343                                       unsigned AddressSpace) {
344     return 1;
345   }
346 
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Type * > Tys,FastMathFlags FMF)347   unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
348                                  ArrayRef<Type *> Tys, FastMathFlags FMF) {
349     return 1;
350   }
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Value * > Args,FastMathFlags FMF)351   unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
352                                  ArrayRef<Value *> Args, FastMathFlags FMF) {
353     return 1;
354   }
355 
getCallInstrCost(Function * F,Type * RetTy,ArrayRef<Type * > Tys)356   unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
357     return 1;
358   }
359 
getNumberOfParts(Type * Tp)360   unsigned getNumberOfParts(Type *Tp) { return 0; }
361 
getAddressComputationCost(Type * Tp,bool)362   unsigned getAddressComputationCost(Type *Tp, bool) { return 0; }
363 
getReductionCost(unsigned,Type *,bool)364   unsigned getReductionCost(unsigned, Type *, bool) { return 1; }
365 
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys)366   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
367 
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)368   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
369     return false;
370   }
371 
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType)372   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
373                                            Type *ExpectedType) {
374     return nullptr;
375   }
376 
areInlineCompatible(const Function * Caller,const Function * Callee)377   bool areInlineCompatible(const Function *Caller,
378                            const Function *Callee) const {
379     return (Caller->getFnAttribute("target-cpu") ==
380             Callee->getFnAttribute("target-cpu")) &&
381            (Caller->getFnAttribute("target-features") ==
382             Callee->getFnAttribute("target-features"));
383   }
384 };
385 
386 /// \brief CRTP base class for use as a mix-in that aids implementing
387 /// a TargetTransformInfo-compatible class.
388 template <typename T>
389 class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
390 private:
391   typedef TargetTransformInfoImplBase BaseT;
392 
393 protected:
TargetTransformInfoImplCRTPBase(const DataLayout & DL)394   explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
395 
396 public:
397   // Provide value semantics. MSVC requires that we spell all of these out.
TargetTransformInfoImplCRTPBase(const TargetTransformInfoImplCRTPBase & Arg)398   TargetTransformInfoImplCRTPBase(const TargetTransformInfoImplCRTPBase &Arg)
399       : BaseT(static_cast<const BaseT &>(Arg)) {}
TargetTransformInfoImplCRTPBase(TargetTransformInfoImplCRTPBase && Arg)400   TargetTransformInfoImplCRTPBase(TargetTransformInfoImplCRTPBase &&Arg)
401       : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
402 
403   using BaseT::getCallCost;
404 
getCallCost(const Function * F,int NumArgs)405   unsigned getCallCost(const Function *F, int NumArgs) {
406     assert(F && "A concrete function must be provided to this routine.");
407 
408     if (NumArgs < 0)
409       // Set the argument number to the number of explicit arguments in the
410       // function.
411       NumArgs = F->arg_size();
412 
413     if (Intrinsic::ID IID = F->getIntrinsicID()) {
414       FunctionType *FTy = F->getFunctionType();
415       SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
416       return static_cast<T *>(this)
417           ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
418     }
419 
420     if (!static_cast<T *>(this)->isLoweredToCall(F))
421       return TTI::TCC_Basic; // Give a basic cost if it will be lowered
422                              // directly.
423 
424     return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs);
425   }
426 
getCallCost(const Function * F,ArrayRef<const Value * > Arguments)427   unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) {
428     // Simply delegate to generic handling of the call.
429     // FIXME: We should use instsimplify or something else to catch calls which
430     // will constant fold with these arguments.
431     return static_cast<T *>(this)->getCallCost(F, Arguments.size());
432   }
433 
434   using BaseT::getGEPCost;
435 
getGEPCost(Type * PointeeType,const Value * Ptr,ArrayRef<const Value * > Operands)436   int getGEPCost(Type *PointeeType, const Value *Ptr,
437                  ArrayRef<const Value *> Operands) {
438     const GlobalValue *BaseGV = nullptr;
439     if (Ptr != nullptr) {
440       // TODO: will remove this when pointers have an opaque type.
441       assert(Ptr->getType()->getScalarType()->getPointerElementType() ==
442                  PointeeType &&
443              "explicit pointee type doesn't match operand's pointee type");
444       BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
445     }
446     bool HasBaseReg = (BaseGV == nullptr);
447     int64_t BaseOffset = 0;
448     int64_t Scale = 0;
449 
450     // Assumes the address space is 0 when Ptr is nullptr.
451     unsigned AS =
452         (Ptr == nullptr ? 0 : Ptr->getType()->getPointerAddressSpace());
453     auto GTI = gep_type_begin(PointeeType, AS, Operands);
454     for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
455       // We assume that the cost of Scalar GEP with constant index and the
456       // cost of Vector GEP with splat constant index are the same.
457       const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
458       if (!ConstIdx)
459         if (auto Splat = getSplatValue(*I))
460           ConstIdx = dyn_cast<ConstantInt>(Splat);
461       if (isa<SequentialType>(*GTI)) {
462         int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
463         if (ConstIdx)
464           BaseOffset += ConstIdx->getSExtValue() * ElementSize;
465         else {
466           // Needs scale register.
467           if (Scale != 0)
468             // No addressing mode takes two scale registers.
469             return TTI::TCC_Basic;
470           Scale = ElementSize;
471         }
472       } else {
473         StructType *STy = cast<StructType>(*GTI);
474         // For structures the index is always splat or scalar constant
475         assert(ConstIdx && "Unexpected GEP index");
476         uint64_t Field = ConstIdx->getZExtValue();
477         BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
478       }
479     }
480 
481     if (static_cast<T *>(this)->isLegalAddressingMode(
482             PointerType::get(*GTI, AS), const_cast<GlobalValue *>(BaseGV),
483             BaseOffset, HasBaseReg, Scale, AS)) {
484       return TTI::TCC_Free;
485     }
486     return TTI::TCC_Basic;
487   }
488 
489   using BaseT::getIntrinsicCost;
490 
getIntrinsicCost(Intrinsic::ID IID,Type * RetTy,ArrayRef<const Value * > Arguments)491   unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
492                             ArrayRef<const Value *> Arguments) {
493     // Delegate to the generic intrinsic handling code. This mostly provides an
494     // opportunity for targets to (for example) special case the cost of
495     // certain intrinsics based on constants used as arguments.
496     SmallVector<Type *, 8> ParamTys;
497     ParamTys.reserve(Arguments.size());
498     for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
499       ParamTys.push_back(Arguments[Idx]->getType());
500     return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys);
501   }
502 
getUserCost(const User * U)503   unsigned getUserCost(const User *U) {
504     if (isa<PHINode>(U))
505       return TTI::TCC_Free; // Model all PHI nodes as free.
506 
507     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
508       SmallVector<Value *, 4> Indices(GEP->idx_begin(), GEP->idx_end());
509       return static_cast<T *>(this)->getGEPCost(
510           GEP->getSourceElementType(), GEP->getPointerOperand(), Indices);
511     }
512 
513     if (auto CS = ImmutableCallSite(U)) {
514       const Function *F = CS.getCalledFunction();
515       if (!F) {
516         // Just use the called value type.
517         Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
518         return static_cast<T *>(this)
519             ->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
520       }
521 
522       SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
523       return static_cast<T *>(this)->getCallCost(F, Arguments);
524     }
525 
526     if (const CastInst *CI = dyn_cast<CastInst>(U)) {
527       // Result of a cmp instruction is often extended (to be used by other
528       // cmp instructions, logical or return instructions). These are usually
529       // nop on most sane targets.
530       if (isa<CmpInst>(CI->getOperand(0)))
531         return TTI::TCC_Free;
532     }
533 
534     return static_cast<T *>(this)->getOperationCost(
535         Operator::getOpcode(U), U->getType(),
536         U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
537   }
538 };
539 }
540 
541 #endif
542