1 //===- Dominators.h - Dominator Info Calculation ----------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DominatorTree class, which provides fast and efficient
11 // dominance queries.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_DOMINATORS_H
16 #define LLVM_IR_DOMINATORS_H
17 
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/PassManager.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/GenericDomTree.h"
25 
26 namespace llvm {
27 
28 class Function;
29 class BasicBlock;
30 class raw_ostream;
31 
32 extern template class DomTreeNodeBase<BasicBlock>;
33 extern template class DominatorTreeBase<BasicBlock>;
34 
35 extern template void Calculate<Function, BasicBlock *>(
36     DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F);
37 extern template void Calculate<Function, Inverse<BasicBlock *>>(
38     DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT,
39     Function &F);
40 
41 typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
42 
43 class BasicBlockEdge {
44   const BasicBlock *Start;
45   const BasicBlock *End;
46 public:
BasicBlockEdge(const BasicBlock * Start_,const BasicBlock * End_)47   BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) :
48     Start(Start_), End(End_) { }
getStart()49   const BasicBlock *getStart() const {
50     return Start;
51   }
getEnd()52   const BasicBlock *getEnd() const {
53     return End;
54   }
55   bool isSingleEdge() const;
56 };
57 
58 template <> struct DenseMapInfo<BasicBlockEdge> {
59   static unsigned getHashValue(const BasicBlockEdge *V);
60   typedef DenseMapInfo<const BasicBlock *> BBInfo;
61   static inline BasicBlockEdge getEmptyKey() {
62     return BasicBlockEdge(BBInfo::getEmptyKey(), BBInfo::getEmptyKey());
63   }
64   static inline BasicBlockEdge getTombstoneKey() {
65     return BasicBlockEdge(BBInfo::getTombstoneKey(), BBInfo::getTombstoneKey());
66   }
67 
68   static unsigned getHashValue(const BasicBlockEdge &Edge) {
69     return hash_combine(BBInfo::getHashValue(Edge.getStart()),
70                         BBInfo::getHashValue(Edge.getEnd()));
71   }
72   static bool isEqual(const BasicBlockEdge &LHS, const BasicBlockEdge &RHS) {
73     return BBInfo::isEqual(LHS.getStart(), RHS.getStart()) &&
74            BBInfo::isEqual(LHS.getEnd(), RHS.getEnd());
75   }
76 };
77 
78 /// \brief Concrete subclass of DominatorTreeBase that is used to compute a
79 /// normal dominator tree.
80 ///
81 /// Definition: A block is said to be forward statically reachable if there is
82 /// a path from the entry of the function to the block.  A statically reachable
83 /// block may become statically unreachable during optimization.
84 ///
85 /// A forward unreachable block may appear in the dominator tree, or it may
86 /// not.  If it does, dominance queries will return results as if all reachable
87 /// blocks dominate it.  When asking for a Node corresponding to a potentially
88 /// unreachable block, calling code must handle the case where the block was
89 /// unreachable and the result of getNode() is nullptr.
90 ///
91 /// Generally, a block known to be unreachable when the dominator tree is
92 /// constructed will not be in the tree.  One which becomes unreachable after
93 /// the dominator tree is initially constructed may still exist in the tree,
94 /// even if the tree is properly updated. Calling code should not rely on the
95 /// preceding statements; this is stated only to assist human understanding.
96 class DominatorTree : public DominatorTreeBase<BasicBlock> {
97 public:
98   typedef DominatorTreeBase<BasicBlock> Base;
99 
100   DominatorTree() : DominatorTreeBase<BasicBlock>(false) {}
101   explicit DominatorTree(Function &F) : DominatorTreeBase<BasicBlock>(false) {
102     recalculate(F);
103   }
104 
105   DominatorTree(DominatorTree &&Arg)
106       : Base(std::move(static_cast<Base &>(Arg))) {}
107   DominatorTree &operator=(DominatorTree &&RHS) {
108     Base::operator=(std::move(static_cast<Base &>(RHS)));
109     return *this;
110   }
111 
112   /// \brief Returns *false* if the other dominator tree matches this dominator
113   /// tree.
114   inline bool compare(const DominatorTree &Other) const {
115     const DomTreeNode *R = getRootNode();
116     const DomTreeNode *OtherR = Other.getRootNode();
117 
118     if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
119       return true;
120 
121     if (Base::compare(Other))
122       return true;
123 
124     return false;
125   }
126 
127   // Ensure base-class overloads are visible.
128   using Base::dominates;
129 
130   /// \brief Return true if Def dominates a use in User.
131   ///
132   /// This performs the special checks necessary if Def and User are in the same
133   /// basic block. Note that Def doesn't dominate a use in Def itself!
134   bool dominates(const Instruction *Def, const Use &U) const;
135   bool dominates(const Instruction *Def, const Instruction *User) const;
136   bool dominates(const Instruction *Def, const BasicBlock *BB) const;
137   bool dominates(const BasicBlockEdge &BBE, const Use &U) const;
138   bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const;
139 
140   // Ensure base class overloads are visible.
141   using Base::isReachableFromEntry;
142 
143   /// \brief Provide an overload for a Use.
144   bool isReachableFromEntry(const Use &U) const;
145 
146   /// \brief Verify the correctness of the domtree by re-computing it.
147   ///
148   /// This should only be used for debugging as it aborts the program if the
149   /// verification fails.
150   void verifyDomTree() const;
151 };
152 
153 //===-------------------------------------
154 // DominatorTree GraphTraits specializations so the DominatorTree can be
155 // iterable by generic graph iterators.
156 
157 template <class Node, class ChildIterator> struct DomTreeGraphTraitsBase {
158   typedef Node NodeType;
159   typedef ChildIterator ChildIteratorType;
160   typedef df_iterator<Node *, SmallPtrSet<NodeType *, 8>> nodes_iterator;
161 
162   static NodeType *getEntryNode(NodeType *N) { return N; }
163   static inline ChildIteratorType child_begin(NodeType *N) {
164     return N->begin();
165   }
166   static inline ChildIteratorType child_end(NodeType *N) { return N->end(); }
167 
168   static nodes_iterator nodes_begin(NodeType *N) {
169     return df_begin(getEntryNode(N));
170   }
171 
172   static nodes_iterator nodes_end(NodeType *N) {
173     return df_end(getEntryNode(N));
174   }
175 };
176 
177 template <>
178 struct GraphTraits<DomTreeNode *>
179     : public DomTreeGraphTraitsBase<DomTreeNode, DomTreeNode::iterator> {};
180 
181 template <>
182 struct GraphTraits<const DomTreeNode *>
183     : public DomTreeGraphTraitsBase<const DomTreeNode,
184                                     DomTreeNode::const_iterator> {};
185 
186 template <> struct GraphTraits<DominatorTree*>
187   : public GraphTraits<DomTreeNode*> {
188   static NodeType *getEntryNode(DominatorTree *DT) {
189     return DT->getRootNode();
190   }
191 
192   static nodes_iterator nodes_begin(DominatorTree *N) {
193     return df_begin(getEntryNode(N));
194   }
195 
196   static nodes_iterator nodes_end(DominatorTree *N) {
197     return df_end(getEntryNode(N));
198   }
199 };
200 
201 /// \brief Analysis pass which computes a \c DominatorTree.
202 class DominatorTreeAnalysis : public AnalysisInfoMixin<DominatorTreeAnalysis> {
203   friend AnalysisInfoMixin<DominatorTreeAnalysis>;
204   static char PassID;
205 
206 public:
207   /// \brief Provide the result typedef for this analysis pass.
208   typedef DominatorTree Result;
209 
210   /// \brief Run the analysis pass over a function and produce a dominator tree.
211   DominatorTree run(Function &F, AnalysisManager<Function> &);
212 };
213 
214 /// \brief Printer pass for the \c DominatorTree.
215 class DominatorTreePrinterPass
216     : public PassInfoMixin<DominatorTreePrinterPass> {
217   raw_ostream &OS;
218 
219 public:
220   explicit DominatorTreePrinterPass(raw_ostream &OS);
221   PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
222 };
223 
224 /// \brief Verifier pass for the \c DominatorTree.
225 struct DominatorTreeVerifierPass : PassInfoMixin<DominatorTreeVerifierPass> {
226   PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
227 };
228 
229 /// \brief Legacy analysis pass which computes a \c DominatorTree.
230 class DominatorTreeWrapperPass : public FunctionPass {
231   DominatorTree DT;
232 
233 public:
234   static char ID;
235 
236   DominatorTreeWrapperPass() : FunctionPass(ID) {
237     initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry());
238   }
239 
240   DominatorTree &getDomTree() { return DT; }
241   const DominatorTree &getDomTree() const { return DT; }
242 
243   bool runOnFunction(Function &F) override;
244 
245   void verifyAnalysis() const override;
246 
247   void getAnalysisUsage(AnalysisUsage &AU) const override {
248     AU.setPreservesAll();
249   }
250 
251   void releaseMemory() override { DT.releaseMemory(); }
252 
253   void print(raw_ostream &OS, const Module *M = nullptr) const override;
254 };
255 
256 } // End llvm namespace
257 
258 #endif
259