1 //===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -*- C++ -*-=========//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines some loop transformation utilities.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
15 #define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
16 
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/EHPersonalities.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/IRBuilder.h"
22 
23 namespace llvm {
24 class AliasSet;
25 class AliasSetTracker;
26 class AssumptionCache;
27 class BasicBlock;
28 class DataLayout;
29 class DominatorTree;
30 class Loop;
31 class LoopInfo;
32 class Pass;
33 class PredicatedScalarEvolution;
34 class PredIteratorCache;
35 class ScalarEvolution;
36 class SCEV;
37 class TargetLibraryInfo;
38 
39 /// \brief Captures loop safety information.
40 /// It keep information for loop & its header may throw exception.
41 struct LoopSafetyInfo {
42   bool MayThrow;       // The current loop contains an instruction which
43                        // may throw.
44   bool HeaderMayThrow; // Same as previous, but specific to loop header
45   // Used to update funclet bundle operands.
46   DenseMap<BasicBlock *, ColorVector> BlockColors;
LoopSafetyInfoLoopSafetyInfo47   LoopSafetyInfo() : MayThrow(false), HeaderMayThrow(false) {}
48 };
49 
50 /// The RecurrenceDescriptor is used to identify recurrences variables in a
51 /// loop. Reduction is a special case of recurrence that has uses of the
52 /// recurrence variable outside the loop. The method isReductionPHI identifies
53 /// reductions that are basic recurrences.
54 ///
55 /// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
56 /// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
57 /// array[i]; } is a summation of array elements. Basic recurrences are a
58 /// special case of chains of recurrences (CR). See ScalarEvolution for CR
59 /// references.
60 
61 /// This struct holds information about recurrence variables.
62 class RecurrenceDescriptor {
63 
64 public:
65   /// This enum represents the kinds of recurrences that we support.
66   enum RecurrenceKind {
67     RK_NoRecurrence,  ///< Not a recurrence.
68     RK_IntegerAdd,    ///< Sum of integers.
69     RK_IntegerMult,   ///< Product of integers.
70     RK_IntegerOr,     ///< Bitwise or logical OR of numbers.
71     RK_IntegerAnd,    ///< Bitwise or logical AND of numbers.
72     RK_IntegerXor,    ///< Bitwise or logical XOR of numbers.
73     RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
74     RK_FloatAdd,      ///< Sum of floats.
75     RK_FloatMult,     ///< Product of floats.
76     RK_FloatMinMax    ///< Min/max implemented in terms of select(cmp()).
77   };
78 
79   // This enum represents the kind of minmax recurrence.
80   enum MinMaxRecurrenceKind {
81     MRK_Invalid,
82     MRK_UIntMin,
83     MRK_UIntMax,
84     MRK_SIntMin,
85     MRK_SIntMax,
86     MRK_FloatMin,
87     MRK_FloatMax
88   };
89 
RecurrenceDescriptor()90   RecurrenceDescriptor()
91       : StartValue(nullptr), LoopExitInstr(nullptr), Kind(RK_NoRecurrence),
92         MinMaxKind(MRK_Invalid), UnsafeAlgebraInst(nullptr),
93         RecurrenceType(nullptr), IsSigned(false) {}
94 
RecurrenceDescriptor(Value * Start,Instruction * Exit,RecurrenceKind K,MinMaxRecurrenceKind MK,Instruction * UAI,Type * RT,bool Signed,SmallPtrSetImpl<Instruction * > & CI)95   RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurrenceKind K,
96                        MinMaxRecurrenceKind MK, Instruction *UAI, Type *RT,
97                        bool Signed, SmallPtrSetImpl<Instruction *> &CI)
98       : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK),
99         UnsafeAlgebraInst(UAI), RecurrenceType(RT), IsSigned(Signed) {
100     CastInsts.insert(CI.begin(), CI.end());
101   }
102 
103   /// This POD struct holds information about a potential recurrence operation.
104   class InstDesc {
105 
106   public:
107     InstDesc(bool IsRecur, Instruction *I, Instruction *UAI = nullptr)
IsRecurrence(IsRecur)108         : IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid),
109           UnsafeAlgebraInst(UAI) {}
110 
111     InstDesc(Instruction *I, MinMaxRecurrenceKind K, Instruction *UAI = nullptr)
IsRecurrence(true)112         : IsRecurrence(true), PatternLastInst(I), MinMaxKind(K),
113           UnsafeAlgebraInst(UAI) {}
114 
isRecurrence()115     bool isRecurrence() { return IsRecurrence; }
116 
hasUnsafeAlgebra()117     bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
118 
getUnsafeAlgebraInst()119     Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
120 
getMinMaxKind()121     MinMaxRecurrenceKind getMinMaxKind() { return MinMaxKind; }
122 
getPatternInst()123     Instruction *getPatternInst() { return PatternLastInst; }
124 
125   private:
126     // Is this instruction a recurrence candidate.
127     bool IsRecurrence;
128     // The last instruction in a min/max pattern (select of the select(icmp())
129     // pattern), or the current recurrence instruction otherwise.
130     Instruction *PatternLastInst;
131     // If this is a min/max pattern the comparison predicate.
132     MinMaxRecurrenceKind MinMaxKind;
133     // Recurrence has unsafe algebra.
134     Instruction *UnsafeAlgebraInst;
135   };
136 
137   /// Returns a struct describing if the instruction 'I' can be a recurrence
138   /// variable of type 'Kind'. If the recurrence is a min/max pattern of
139   /// select(icmp()) this function advances the instruction pointer 'I' from the
140   /// compare instruction to the select instruction and stores this pointer in
141   /// 'PatternLastInst' member of the returned struct.
142   static InstDesc isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
143                                     InstDesc &Prev, bool HasFunNoNaNAttr);
144 
145   /// Returns true if instruction I has multiple uses in Insts
146   static bool hasMultipleUsesOf(Instruction *I,
147                                 SmallPtrSetImpl<Instruction *> &Insts);
148 
149   /// Returns true if all uses of the instruction I is within the Set.
150   static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
151 
152   /// Returns a struct describing if the instruction if the instruction is a
153   /// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
154   /// or max(X, Y).
155   static InstDesc isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev);
156 
157   /// Returns identity corresponding to the RecurrenceKind.
158   static Constant *getRecurrenceIdentity(RecurrenceKind K, Type *Tp);
159 
160   /// Returns the opcode of binary operation corresponding to the
161   /// RecurrenceKind.
162   static unsigned getRecurrenceBinOp(RecurrenceKind Kind);
163 
164   /// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
165   static Value *createMinMaxOp(IRBuilder<> &Builder, MinMaxRecurrenceKind RK,
166                                Value *Left, Value *Right);
167 
168   /// Returns true if Phi is a reduction of type Kind and adds it to the
169   /// RecurrenceDescriptor.
170   static bool AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop,
171                               bool HasFunNoNaNAttr,
172                               RecurrenceDescriptor &RedDes);
173 
174   /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor is
175   /// returned in RedDes.
176   static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
177                              RecurrenceDescriptor &RedDes);
178 
179   /// Returns true if Phi is a first-order recurrence. A first-order recurrence
180   /// is a non-reduction recurrence relation in which the value of the
181   /// recurrence in the current loop iteration equals a value defined in the
182   /// previous iteration.
183   static bool isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
184                                      DominatorTree *DT);
185 
getRecurrenceKind()186   RecurrenceKind getRecurrenceKind() { return Kind; }
187 
getMinMaxRecurrenceKind()188   MinMaxRecurrenceKind getMinMaxRecurrenceKind() { return MinMaxKind; }
189 
getRecurrenceStartValue()190   TrackingVH<Value> getRecurrenceStartValue() { return StartValue; }
191 
getLoopExitInstr()192   Instruction *getLoopExitInstr() { return LoopExitInstr; }
193 
194   /// Returns true if the recurrence has unsafe algebra which requires a relaxed
195   /// floating-point model.
hasUnsafeAlgebra()196   bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
197 
198   /// Returns first unsafe algebra instruction in the PHI node's use-chain.
getUnsafeAlgebraInst()199   Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
200 
201   /// Returns true if the recurrence kind is an integer kind.
202   static bool isIntegerRecurrenceKind(RecurrenceKind Kind);
203 
204   /// Returns true if the recurrence kind is a floating point kind.
205   static bool isFloatingPointRecurrenceKind(RecurrenceKind Kind);
206 
207   /// Returns true if the recurrence kind is an arithmetic kind.
208   static bool isArithmeticRecurrenceKind(RecurrenceKind Kind);
209 
210   /// Determines if Phi may have been type-promoted. If Phi has a single user
211   /// that ANDs the Phi with a type mask, return the user. RT is updated to
212   /// account for the narrower bit width represented by the mask, and the AND
213   /// instruction is added to CI.
214   static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
215                                      SmallPtrSetImpl<Instruction *> &Visited,
216                                      SmallPtrSetImpl<Instruction *> &CI);
217 
218   /// Returns true if all the source operands of a recurrence are either
219   /// SExtInsts or ZExtInsts. This function is intended to be used with
220   /// lookThroughAnd to determine if the recurrence has been type-promoted. The
221   /// source operands are added to CI, and IsSigned is updated to indicate if
222   /// all source operands are SExtInsts.
223   static bool getSourceExtensionKind(Instruction *Start, Instruction *Exit,
224                                      Type *RT, bool &IsSigned,
225                                      SmallPtrSetImpl<Instruction *> &Visited,
226                                      SmallPtrSetImpl<Instruction *> &CI);
227 
228   /// Returns the type of the recurrence. This type can be narrower than the
229   /// actual type of the Phi if the recurrence has been type-promoted.
getRecurrenceType()230   Type *getRecurrenceType() { return RecurrenceType; }
231 
232   /// Returns a reference to the instructions used for type-promoting the
233   /// recurrence.
getCastInsts()234   SmallPtrSet<Instruction *, 8> &getCastInsts() { return CastInsts; }
235 
236   /// Returns true if all source operands of the recurrence are SExtInsts.
isSigned()237   bool isSigned() { return IsSigned; }
238 
239 private:
240   // The starting value of the recurrence.
241   // It does not have to be zero!
242   TrackingVH<Value> StartValue;
243   // The instruction who's value is used outside the loop.
244   Instruction *LoopExitInstr;
245   // The kind of the recurrence.
246   RecurrenceKind Kind;
247   // If this a min/max recurrence the kind of recurrence.
248   MinMaxRecurrenceKind MinMaxKind;
249   // First occurance of unasfe algebra in the PHI's use-chain.
250   Instruction *UnsafeAlgebraInst;
251   // The type of the recurrence.
252   Type *RecurrenceType;
253   // True if all source operands of the recurrence are SExtInsts.
254   bool IsSigned;
255   // Instructions used for type-promoting the recurrence.
256   SmallPtrSet<Instruction *, 8> CastInsts;
257 };
258 
259 /// A struct for saving information about induction variables.
260 class InductionDescriptor {
261 public:
262   /// This enum represents the kinds of inductions that we support.
263   enum InductionKind {
264     IK_NoInduction,  ///< Not an induction variable.
265     IK_IntInduction, ///< Integer induction variable. Step = C.
266     IK_PtrInduction  ///< Pointer induction var. Step = C / sizeof(elem).
267   };
268 
269 public:
270   /// Default constructor - creates an invalid induction.
InductionDescriptor()271   InductionDescriptor()
272       : StartValue(nullptr), IK(IK_NoInduction), Step(nullptr) {}
273 
274   /// Get the consecutive direction. Returns:
275   ///   0 - unknown or non-consecutive.
276   ///   1 - consecutive and increasing.
277   ///  -1 - consecutive and decreasing.
278   int getConsecutiveDirection() const;
279 
280   /// Compute the transformed value of Index at offset StartValue using step
281   /// StepValue.
282   /// For integer induction, returns StartValue + Index * StepValue.
283   /// For pointer induction, returns StartValue[Index * StepValue].
284   /// FIXME: The newly created binary instructions should contain nsw/nuw
285   /// flags, which can be found from the original scalar operations.
286   Value *transform(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
287                    const DataLayout& DL) const;
288 
getStartValue()289   Value *getStartValue() const { return StartValue; }
getKind()290   InductionKind getKind() const { return IK; }
getStep()291   const SCEV *getStep() const { return Step; }
292   ConstantInt *getConstIntStepValue() const;
293 
294   /// Returns true if \p Phi is an induction. If \p Phi is an induction,
295   /// the induction descriptor \p D will contain the data describing this
296   /// induction. If by some other means the caller has a better SCEV
297   /// expression for \p Phi than the one returned by the ScalarEvolution
298   /// analysis, it can be passed through \p Expr.
299   static bool isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
300                              InductionDescriptor &D,
301                              const SCEV *Expr = nullptr);
302 
303   /// Returns true if \p Phi is an induction, in the context associated with
304   /// the run-time predicate of PSE. If \p Assume is true, this can add further
305   /// SCEV predicates to \p PSE in order to prove that \p Phi is an induction.
306   /// If \p Phi is an induction, \p D will contain the data describing this
307   /// induction.
308   static bool isInductionPHI(PHINode *Phi, PredicatedScalarEvolution &PSE,
309                              InductionDescriptor &D, bool Assume = false);
310 
311 private:
312   /// Private constructor - used by \c isInductionPHI.
313   InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step);
314 
315   /// Start value.
316   TrackingVH<Value> StartValue;
317   /// Induction kind.
318   InductionKind IK;
319   /// Step value.
320   const SCEV *Step;
321 };
322 
323 BasicBlock *InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
324                                    bool PreserveLCSSA);
325 
326 /// \brief Put loop into LCSSA form.
327 ///
328 /// Looks at all instructions in the loop which have uses outside of the
329 /// current loop. For each, an LCSSA PHI node is inserted and the uses outside
330 /// the loop are rewritten to use this node.
331 ///
332 /// LoopInfo and DominatorTree are required and preserved.
333 ///
334 /// If ScalarEvolution is passed in, it will be preserved.
335 ///
336 /// Returns true if any modifications are made to the loop.
337 bool formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution *SE);
338 
339 /// \brief Put a loop nest into LCSSA form.
340 ///
341 /// This recursively forms LCSSA for a loop nest.
342 ///
343 /// LoopInfo and DominatorTree are required and preserved.
344 ///
345 /// If ScalarEvolution is passed in, it will be preserved.
346 ///
347 /// Returns true if any modifications are made to the loop.
348 bool formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
349                           ScalarEvolution *SE);
350 
351 /// \brief Walk the specified region of the CFG (defined by all blocks
352 /// dominated by the specified block, and that are in the current loop) in
353 /// reverse depth first order w.r.t the DominatorTree. This allows us to visit
354 /// uses before definitions, allowing us to sink a loop body in one pass without
355 /// iteration. Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree,
356 /// DataLayout, TargetLibraryInfo, Loop, AliasSet information for all
357 /// instructions of the loop and loop safety information as arguments.
358 /// It returns changed status.
359 bool sinkRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
360                 TargetLibraryInfo *, Loop *, AliasSetTracker *,
361                 LoopSafetyInfo *);
362 
363 /// \brief Walk the specified region of the CFG (defined by all blocks
364 /// dominated by the specified block, and that are in the current loop) in depth
365 /// first order w.r.t the DominatorTree.  This allows us to visit definitions
366 /// before uses, allowing us to hoist a loop body in one pass without iteration.
367 /// Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree, DataLayout,
368 /// TargetLibraryInfo, Loop, AliasSet information for all instructions of the
369 /// loop and loop safety information as arguments. It returns changed status.
370 bool hoistRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
371                  TargetLibraryInfo *, Loop *, AliasSetTracker *,
372                  LoopSafetyInfo *);
373 
374 /// \brief Try to promote memory values to scalars by sinking stores out of
375 /// the loop and moving loads to before the loop.  We do this by looping over
376 /// the stores in the loop, looking for stores to Must pointers which are
377 /// loop invariant. It takes AliasSet, Loop exit blocks vector, loop exit blocks
378 /// insertion point vector, PredIteratorCache, LoopInfo, DominatorTree, Loop,
379 /// AliasSet information for all instructions of the loop and loop safety
380 /// information as arguments. It returns changed status.
381 bool promoteLoopAccessesToScalars(AliasSet &, SmallVectorImpl<BasicBlock *> &,
382                                   SmallVectorImpl<Instruction *> &,
383                                   PredIteratorCache &, LoopInfo *,
384                                   DominatorTree *, const TargetLibraryInfo *,
385                                   Loop *, AliasSetTracker *, LoopSafetyInfo *);
386 
387 /// \brief Computes safety information for a loop
388 /// checks loop body & header for the possibility of may throw
389 /// exception, it takes LoopSafetyInfo and loop as argument.
390 /// Updates safety information in LoopSafetyInfo argument.
391 void computeLoopSafetyInfo(LoopSafetyInfo *, Loop *);
392 
393 /// Returns true if the instruction in a loop is guaranteed to execute at least
394 /// once.
395 bool isGuaranteedToExecute(const Instruction &Inst, const DominatorTree *DT,
396                            const Loop *CurLoop,
397                            const LoopSafetyInfo *SafetyInfo);
398 
399 /// \brief Returns the instructions that use values defined in the loop.
400 SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L);
401 
402 /// \brief Find string metadata for loop
403 ///
404 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
405 /// operand or null otherwise.  If the string metadata is not found return
406 /// Optional's not-a-value.
407 Optional<const MDOperand *> findStringMetadataForLoop(Loop *TheLoop,
408                                                       StringRef Name);
409 
410 /// \brief Set input string into loop metadata by keeping other values intact.
411 void addStringMetadataToLoop(Loop *TheLoop, const char *MDString,
412                              unsigned V = 0);
413 
414 /// Helper to consistently add the set of standard passes to a loop pass's \c
415 /// AnalysisUsage.
416 ///
417 /// All loop passes should call this as part of implementing their \c
418 /// getAnalysisUsage.
419 void getLoopAnalysisUsage(AnalysisUsage &AU);
420 }
421 
422 #endif
423