1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.  Oracle designates this
9  * particular file as subject to the "Classpath" exception as provided
10  * by Oracle in the LICENSE file that accompanied this code.
11  *
12  * This code is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  * version 2 for more details (a copy is included in the LICENSE file that
16  * accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License version
19  * 2 along with this work; if not, write to the Free Software Foundation,
20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23  * or visit www.oracle.com if you need additional information or have any
24  * questions.
25  */
26 
27 package java.lang;
28 
29 import sun.misc.FloatingDecimal;
30 import sun.misc.FloatConsts;
31 import sun.misc.DoubleConsts;
32 
33 /**
34  * The {@code Float} class wraps a value of primitive type
35  * {@code float} in an object. An object of type
36  * {@code Float} contains a single field whose type is
37  * {@code float}.
38  *
39  * <p>In addition, this class provides several methods for converting a
40  * {@code float} to a {@code String} and a
41  * {@code String} to a {@code float}, as well as other
42  * constants and methods useful when dealing with a
43  * {@code float}.
44  *
45  * @author  Lee Boynton
46  * @author  Arthur van Hoff
47  * @author  Joseph D. Darcy
48  * @since JDK1.0
49  */
50 public final class Float extends Number implements Comparable<Float> {
51     /**
52      * A constant holding the positive infinity of type
53      * {@code float}. It is equal to the value returned by
54      * {@code Float.intBitsToFloat(0x7f800000)}.
55      */
56     public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
57 
58     /**
59      * A constant holding the negative infinity of type
60      * {@code float}. It is equal to the value returned by
61      * {@code Float.intBitsToFloat(0xff800000)}.
62      */
63     public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
64 
65     /**
66      * A constant holding a Not-a-Number (NaN) value of type
67      * {@code float}.  It is equivalent to the value returned by
68      * {@code Float.intBitsToFloat(0x7fc00000)}.
69      */
70     public static final float NaN = 0.0f / 0.0f;
71 
72     /**
73      * A constant holding the largest positive finite value of type
74      * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
75      * It is equal to the hexadecimal floating-point literal
76      * {@code 0x1.fffffeP+127f} and also equal to
77      * {@code Float.intBitsToFloat(0x7f7fffff)}.
78      */
79     public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
80 
81     /**
82      * A constant holding the smallest positive normal value of type
83      * {@code float}, 2<sup>-126</sup>.  It is equal to the
84      * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
85      * equal to {@code Float.intBitsToFloat(0x00800000)}.
86      *
87      * @since 1.6
88      */
89     public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
90 
91     /**
92      * A constant holding the smallest positive nonzero value of type
93      * {@code float}, 2<sup>-149</sup>. It is equal to the
94      * hexadecimal floating-point literal {@code 0x0.000002P-126f}
95      * and also equal to {@code Float.intBitsToFloat(0x1)}.
96      */
97     public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
98 
99     /**
100      * Maximum exponent a finite {@code float} variable may have.  It
101      * is equal to the value returned by {@code
102      * Math.getExponent(Float.MAX_VALUE)}.
103      *
104      * @since 1.6
105      */
106     public static final int MAX_EXPONENT = 127;
107 
108     /**
109      * Minimum exponent a normalized {@code float} variable may have.
110      * It is equal to the value returned by {@code
111      * Math.getExponent(Float.MIN_NORMAL)}.
112      *
113      * @since 1.6
114      */
115     public static final int MIN_EXPONENT = -126;
116 
117     /**
118      * The number of bits used to represent a {@code float} value.
119      *
120      * @since 1.5
121      */
122     public static final int SIZE = 32;
123 
124     /**
125      * The number of bytes used to represent a {@code float} value.
126      *
127      * @since 1.8
128      */
129     public static final int BYTES = SIZE / Byte.SIZE;
130 
131     /**
132      * The {@code Class} instance representing the primitive type
133      * {@code float}.
134      *
135      * @since JDK1.1
136      */
137     @SuppressWarnings("unchecked")
138     public static final Class<Float> TYPE = (Class<Float>) float[].class.getComponentType();
139 
140     /**
141      * Returns a string representation of the {@code float}
142      * argument. All characters mentioned below are ASCII characters.
143      * <ul>
144      * <li>If the argument is NaN, the result is the string
145      * "{@code NaN}".
146      * <li>Otherwise, the result is a string that represents the sign and
147      *     magnitude (absolute value) of the argument. If the sign is
148      *     negative, the first character of the result is
149      *     '{@code -}' ({@code '\u005Cu002D'}); if the sign is
150      *     positive, no sign character appears in the result. As for
151      *     the magnitude <i>m</i>:
152      * <ul>
153      * <li>If <i>m</i> is infinity, it is represented by the characters
154      *     {@code "Infinity"}; thus, positive infinity produces
155      *     the result {@code "Infinity"} and negative infinity
156      *     produces the result {@code "-Infinity"}.
157      * <li>If <i>m</i> is zero, it is represented by the characters
158      *     {@code "0.0"}; thus, negative zero produces the result
159      *     {@code "-0.0"} and positive zero produces the result
160      *     {@code "0.0"}.
161      * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
162      *      less than 10<sup>7</sup>, then it is represented as the
163      *      integer part of <i>m</i>, in decimal form with no leading
164      *      zeroes, followed by '{@code .}'
165      *      ({@code '\u005Cu002E'}), followed by one or more
166      *      decimal digits representing the fractional part of
167      *      <i>m</i>.
168      * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
169      *      equal to 10<sup>7</sup>, then it is represented in
170      *      so-called "computerized scientific notation." Let <i>n</i>
171      *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
172      *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
173      *      be the mathematically exact quotient of <i>m</i> and
174      *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
175      *      The magnitude is then represented as the integer part of
176      *      <i>a</i>, as a single decimal digit, followed by
177      *      '{@code .}' ({@code '\u005Cu002E'}), followed by
178      *      decimal digits representing the fractional part of
179      *      <i>a</i>, followed by the letter '{@code E}'
180      *      ({@code '\u005Cu0045'}), followed by a representation
181      *      of <i>n</i> as a decimal integer, as produced by the
182      *      method {@link java.lang.Integer#toString(int)}.
183      *
184      * </ul>
185      * </ul>
186      * How many digits must be printed for the fractional part of
187      * <i>m</i> or <i>a</i>? There must be at least one digit
188      * to represent the fractional part, and beyond that as many, but
189      * only as many, more digits as are needed to uniquely distinguish
190      * the argument value from adjacent values of type
191      * {@code float}. That is, suppose that <i>x</i> is the
192      * exact mathematical value represented by the decimal
193      * representation produced by this method for a finite nonzero
194      * argument <i>f</i>. Then <i>f</i> must be the {@code float}
195      * value nearest to <i>x</i>; or, if two {@code float} values are
196      * equally close to <i>x</i>, then <i>f</i> must be one of
197      * them and the least significant bit of the significand of
198      * <i>f</i> must be {@code 0}.
199      *
200      * <p>To create localized string representations of a floating-point
201      * value, use subclasses of {@link java.text.NumberFormat}.
202      *
203      * @param   f   the float to be converted.
204      * @return a string representation of the argument.
205      */
toString(float f)206     public static String toString(float f) {
207         return FloatingDecimal.toJavaFormatString(f);
208     }
209 
210     /**
211      * Returns a hexadecimal string representation of the
212      * {@code float} argument. All characters mentioned below are
213      * ASCII characters.
214      *
215      * <ul>
216      * <li>If the argument is NaN, the result is the string
217      *     "{@code NaN}".
218      * <li>Otherwise, the result is a string that represents the sign and
219      * magnitude (absolute value) of the argument. If the sign is negative,
220      * the first character of the result is '{@code -}'
221      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
222      * appears in the result. As for the magnitude <i>m</i>:
223      *
224      * <ul>
225      * <li>If <i>m</i> is infinity, it is represented by the string
226      * {@code "Infinity"}; thus, positive infinity produces the
227      * result {@code "Infinity"} and negative infinity produces
228      * the result {@code "-Infinity"}.
229      *
230      * <li>If <i>m</i> is zero, it is represented by the string
231      * {@code "0x0.0p0"}; thus, negative zero produces the result
232      * {@code "-0x0.0p0"} and positive zero produces the result
233      * {@code "0x0.0p0"}.
234      *
235      * <li>If <i>m</i> is a {@code float} value with a
236      * normalized representation, substrings are used to represent the
237      * significand and exponent fields.  The significand is
238      * represented by the characters {@code "0x1."}
239      * followed by a lowercase hexadecimal representation of the rest
240      * of the significand as a fraction.  Trailing zeros in the
241      * hexadecimal representation are removed unless all the digits
242      * are zero, in which case a single zero is used. Next, the
243      * exponent is represented by {@code "p"} followed
244      * by a decimal string of the unbiased exponent as if produced by
245      * a call to {@link Integer#toString(int) Integer.toString} on the
246      * exponent value.
247      *
248      * <li>If <i>m</i> is a {@code float} value with a subnormal
249      * representation, the significand is represented by the
250      * characters {@code "0x0."} followed by a
251      * hexadecimal representation of the rest of the significand as a
252      * fraction.  Trailing zeros in the hexadecimal representation are
253      * removed. Next, the exponent is represented by
254      * {@code "p-126"}.  Note that there must be at
255      * least one nonzero digit in a subnormal significand.
256      *
257      * </ul>
258      *
259      * </ul>
260      *
261      * <table border>
262      * <caption>Examples</caption>
263      * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
264      * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
265      * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
266      * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
267      * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
268      * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
269      * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
270      * <tr><td>{@code Float.MAX_VALUE}</td>
271      *     <td>{@code 0x1.fffffep127}</td>
272      * <tr><td>{@code Minimum Normal Value}</td>
273      *     <td>{@code 0x1.0p-126}</td>
274      * <tr><td>{@code Maximum Subnormal Value}</td>
275      *     <td>{@code 0x0.fffffep-126}</td>
276      * <tr><td>{@code Float.MIN_VALUE}</td>
277      *     <td>{@code 0x0.000002p-126}</td>
278      * </table>
279      * @param   f   the {@code float} to be converted.
280      * @return a hex string representation of the argument.
281      * @since 1.5
282      * @author Joseph D. Darcy
283      */
toHexString(float f)284     public static String toHexString(float f) {
285         if (Math.abs(f) < FloatConsts.MIN_NORMAL
286             &&  f != 0.0f ) {// float subnormal
287             // Adjust exponent to create subnormal double, then
288             // replace subnormal double exponent with subnormal float
289             // exponent
290             String s = Double.toHexString(Math.scalb((double)f,
291                                                      /* -1022+126 */
292                                                      DoubleConsts.MIN_EXPONENT-
293                                                      FloatConsts.MIN_EXPONENT));
294             return s.replaceFirst("p-1022$", "p-126");
295         }
296         else // double string will be the same as float string
297             return Double.toHexString(f);
298     }
299 
300     /**
301      * Returns a {@code Float} object holding the
302      * {@code float} value represented by the argument string
303      * {@code s}.
304      *
305      * <p>If {@code s} is {@code null}, then a
306      * {@code NullPointerException} is thrown.
307      *
308      * <p>Leading and trailing whitespace characters in {@code s}
309      * are ignored.  Whitespace is removed as if by the {@link
310      * String#trim} method; that is, both ASCII space and control
311      * characters are removed. The rest of {@code s} should
312      * constitute a <i>FloatValue</i> as described by the lexical
313      * syntax rules:
314      *
315      * <blockquote>
316      * <dl>
317      * <dt><i>FloatValue:</i>
318      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
319      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
320      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
321      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
322      * <dd><i>SignedInteger</i>
323      * </dl>
324      *
325      * <dl>
326      * <dt><i>HexFloatingPointLiteral</i>:
327      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
328      * </dl>
329      *
330      * <dl>
331      * <dt><i>HexSignificand:</i>
332      * <dd><i>HexNumeral</i>
333      * <dd><i>HexNumeral</i> {@code .}
334      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
335      *     </i>{@code .}<i> HexDigits</i>
336      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
337      *     </i>{@code .} <i>HexDigits</i>
338      * </dl>
339      *
340      * <dl>
341      * <dt><i>BinaryExponent:</i>
342      * <dd><i>BinaryExponentIndicator SignedInteger</i>
343      * </dl>
344      *
345      * <dl>
346      * <dt><i>BinaryExponentIndicator:</i>
347      * <dd>{@code p}
348      * <dd>{@code P}
349      * </dl>
350      *
351      * </blockquote>
352      *
353      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
354      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
355      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
356      * sections of
357      * <cite>The Java&trade; Language Specification</cite>,
358      * except that underscores are not accepted between digits.
359      * If {@code s} does not have the form of
360      * a <i>FloatValue</i>, then a {@code NumberFormatException}
361      * is thrown. Otherwise, {@code s} is regarded as
362      * representing an exact decimal value in the usual
363      * "computerized scientific notation" or as an exact
364      * hexadecimal value; this exact numerical value is then
365      * conceptually converted to an "infinitely precise"
366      * binary value that is then rounded to type {@code float}
367      * by the usual round-to-nearest rule of IEEE 754 floating-point
368      * arithmetic, which includes preserving the sign of a zero
369      * value.
370      *
371      * Note that the round-to-nearest rule also implies overflow and
372      * underflow behaviour; if the exact value of {@code s} is large
373      * enough in magnitude (greater than or equal to ({@link
374      * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
375      * rounding to {@code float} will result in an infinity and if the
376      * exact value of {@code s} is small enough in magnitude (less
377      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
378      * result in a zero.
379      *
380      * Finally, after rounding a {@code Float} object representing
381      * this {@code float} value is returned.
382      *
383      * <p>To interpret localized string representations of a
384      * floating-point value, use subclasses of {@link
385      * java.text.NumberFormat}.
386      *
387      * <p>Note that trailing format specifiers, specifiers that
388      * determine the type of a floating-point literal
389      * ({@code 1.0f} is a {@code float} value;
390      * {@code 1.0d} is a {@code double} value), do
391      * <em>not</em> influence the results of this method.  In other
392      * words, the numerical value of the input string is converted
393      * directly to the target floating-point type.  In general, the
394      * two-step sequence of conversions, string to {@code double}
395      * followed by {@code double} to {@code float}, is
396      * <em>not</em> equivalent to converting a string directly to
397      * {@code float}.  For example, if first converted to an
398      * intermediate {@code double} and then to
399      * {@code float}, the string<br>
400      * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
401      * results in the {@code float} value
402      * {@code 1.0000002f}; if the string is converted directly to
403      * {@code float}, <code>1.000000<b>1</b>f</code> results.
404      *
405      * <p>To avoid calling this method on an invalid string and having
406      * a {@code NumberFormatException} be thrown, the documentation
407      * for {@link Double#valueOf Double.valueOf} lists a regular
408      * expression which can be used to screen the input.
409      *
410      * @param   s   the string to be parsed.
411      * @return  a {@code Float} object holding the value
412      *          represented by the {@code String} argument.
413      * @throws  NumberFormatException  if the string does not contain a
414      *          parsable number.
415      */
valueOf(String s)416     public static Float valueOf(String s) throws NumberFormatException {
417         return new Float(parseFloat(s));
418     }
419 
420     /**
421      * Returns a {@code Float} instance representing the specified
422      * {@code float} value.
423      * If a new {@code Float} instance is not required, this method
424      * should generally be used in preference to the constructor
425      * {@link #Float(float)}, as this method is likely to yield
426      * significantly better space and time performance by caching
427      * frequently requested values.
428      *
429      * @param  f a float value.
430      * @return a {@code Float} instance representing {@code f}.
431      * @since  1.5
432      */
valueOf(float f)433     public static Float valueOf(float f) {
434         return new Float(f);
435     }
436 
437     /**
438      * Returns a new {@code float} initialized to the value
439      * represented by the specified {@code String}, as performed
440      * by the {@code valueOf} method of class {@code Float}.
441      *
442      * @param  s the string to be parsed.
443      * @return the {@code float} value represented by the string
444      *         argument.
445      * @throws NullPointerException  if the string is null
446      * @throws NumberFormatException if the string does not contain a
447      *               parsable {@code float}.
448      * @see    java.lang.Float#valueOf(String)
449      * @since 1.2
450      */
parseFloat(String s)451     public static float parseFloat(String s) throws NumberFormatException {
452         return FloatingDecimal.parseFloat(s);
453     }
454 
455     /**
456      * Returns {@code true} if the specified number is a
457      * Not-a-Number (NaN) value, {@code false} otherwise.
458      *
459      * @param   v   the value to be tested.
460      * @return  {@code true} if the argument is NaN;
461      *          {@code false} otherwise.
462      */
isNaN(float v)463     public static boolean isNaN(float v) {
464         return (v != v);
465     }
466 
467     /**
468      * Returns {@code true} if the specified number is infinitely
469      * large in magnitude, {@code false} otherwise.
470      *
471      * @param   v   the value to be tested.
472      * @return  {@code true} if the argument is positive infinity or
473      *          negative infinity; {@code false} otherwise.
474      */
isInfinite(float v)475     public static boolean isInfinite(float v) {
476         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
477     }
478 
479 
480     /**
481      * Returns {@code true} if the argument is a finite floating-point
482      * value; returns {@code false} otherwise (for NaN and infinity
483      * arguments).
484      *
485      * @param f the {@code float} value to be tested
486      * @return {@code true} if the argument is a finite
487      * floating-point value, {@code false} otherwise.
488      * @since 1.8
489      */
isFinite(float f)490      public static boolean isFinite(float f) {
491         return Math.abs(f) <= FloatConsts.MAX_VALUE;
492     }
493 
494     /**
495      * The value of the Float.
496      *
497      * @serial
498      */
499     private final float value;
500 
501     /**
502      * Constructs a newly allocated {@code Float} object that
503      * represents the primitive {@code float} argument.
504      *
505      * @param   value   the value to be represented by the {@code Float}.
506      */
Float(float value)507     public Float(float value) {
508         this.value = value;
509     }
510 
511     /**
512      * Constructs a newly allocated {@code Float} object that
513      * represents the argument converted to type {@code float}.
514      *
515      * @param   value   the value to be represented by the {@code Float}.
516      */
Float(double value)517     public Float(double value) {
518         this.value = (float)value;
519     }
520 
521     /**
522      * Constructs a newly allocated {@code Float} object that
523      * represents the floating-point value of type {@code float}
524      * represented by the string. The string is converted to a
525      * {@code float} value as if by the {@code valueOf} method.
526      *
527      * @param      s   a string to be converted to a {@code Float}.
528      * @throws  NumberFormatException  if the string does not contain a
529      *               parsable number.
530      * @see        java.lang.Float#valueOf(java.lang.String)
531      */
Float(String s)532     public Float(String s) throws NumberFormatException {
533         value = parseFloat(s);
534     }
535 
536     /**
537      * Returns {@code true} if this {@code Float} value is a
538      * Not-a-Number (NaN), {@code false} otherwise.
539      *
540      * @return  {@code true} if the value represented by this object is
541      *          NaN; {@code false} otherwise.
542      */
isNaN()543     public boolean isNaN() {
544         return isNaN(value);
545     }
546 
547     /**
548      * Returns {@code true} if this {@code Float} value is
549      * infinitely large in magnitude, {@code false} otherwise.
550      *
551      * @return  {@code true} if the value represented by this object is
552      *          positive infinity or negative infinity;
553      *          {@code false} otherwise.
554      */
isInfinite()555     public boolean isInfinite() {
556         return isInfinite(value);
557     }
558 
559     /**
560      * Returns a string representation of this {@code Float} object.
561      * The primitive {@code float} value represented by this object
562      * is converted to a {@code String} exactly as if by the method
563      * {@code toString} of one argument.
564      *
565      * @return  a {@code String} representation of this object.
566      * @see java.lang.Float#toString(float)
567      */
toString()568     public String toString() {
569         return Float.toString(value);
570     }
571 
572     /**
573      * Returns the value of this {@code Float} as a {@code byte} after
574      * a narrowing primitive conversion.
575      *
576      * @return  the {@code float} value represented by this object
577      *          converted to type {@code byte}
578      * @jls 5.1.3 Narrowing Primitive Conversions
579      */
byteValue()580     public byte byteValue() {
581         return (byte)value;
582     }
583 
584     /**
585      * Returns the value of this {@code Float} as a {@code short}
586      * after a narrowing primitive conversion.
587      *
588      * @return  the {@code float} value represented by this object
589      *          converted to type {@code short}
590      * @jls 5.1.3 Narrowing Primitive Conversions
591      * @since JDK1.1
592      */
shortValue()593     public short shortValue() {
594         return (short)value;
595     }
596 
597     /**
598      * Returns the value of this {@code Float} as an {@code int} after
599      * a narrowing primitive conversion.
600      *
601      * @return  the {@code float} value represented by this object
602      *          converted to type {@code int}
603      * @jls 5.1.3 Narrowing Primitive Conversions
604      */
intValue()605     public int intValue() {
606         return (int)value;
607     }
608 
609     /**
610      * Returns value of this {@code Float} as a {@code long} after a
611      * narrowing primitive conversion.
612      *
613      * @return  the {@code float} value represented by this object
614      *          converted to type {@code long}
615      * @jls 5.1.3 Narrowing Primitive Conversions
616      */
longValue()617     public long longValue() {
618         return (long)value;
619     }
620 
621     /**
622      * Returns the {@code float} value of this {@code Float} object.
623      *
624      * @return the {@code float} value represented by this object
625      */
floatValue()626     public float floatValue() {
627         return value;
628     }
629 
630     /**
631      * Returns the value of this {@code Float} as a {@code double}
632      * after a widening primitive conversion.
633      *
634      * @return the {@code float} value represented by this
635      *         object converted to type {@code double}
636      * @jls 5.1.2 Widening Primitive Conversions
637      */
doubleValue()638     public double doubleValue() {
639         return (double)value;
640     }
641 
642     /**
643      * Returns a hash code for this {@code Float} object. The
644      * result is the integer bit representation, exactly as produced
645      * by the method {@link #floatToIntBits(float)}, of the primitive
646      * {@code float} value represented by this {@code Float}
647      * object.
648      *
649      * @return a hash code value for this object.
650      */
651     @Override
hashCode()652     public int hashCode() {
653         return Float.hashCode(value);
654     }
655 
656     /**
657      * Returns a hash code for a {@code float} value; compatible with
658      * {@code Float.hashCode()}.
659      *
660      * @param value the value to hash
661      * @return a hash code value for a {@code float} value.
662      * @since 1.8
663      */
hashCode(float value)664     public static int hashCode(float value) {
665         return floatToIntBits(value);
666     }
667 
668     /**
669 
670      * Compares this object against the specified object.  The result
671      * is {@code true} if and only if the argument is not
672      * {@code null} and is a {@code Float} object that
673      * represents a {@code float} with the same value as the
674      * {@code float} represented by this object. For this
675      * purpose, two {@code float} values are considered to be the
676      * same if and only if the method {@link #floatToIntBits(float)}
677      * returns the identical {@code int} value when applied to
678      * each.
679      *
680      * <p>Note that in most cases, for two instances of class
681      * {@code Float}, {@code f1} and {@code f2}, the value
682      * of {@code f1.equals(f2)} is {@code true} if and only if
683      *
684      * <blockquote><pre>
685      *   f1.floatValue() == f2.floatValue()
686      * </pre></blockquote>
687      *
688      * <p>also has the value {@code true}. However, there are two exceptions:
689      * <ul>
690      * <li>If {@code f1} and {@code f2} both represent
691      *     {@code Float.NaN}, then the {@code equals} method returns
692      *     {@code true}, even though {@code Float.NaN==Float.NaN}
693      *     has the value {@code false}.
694      * <li>If {@code f1} represents {@code +0.0f} while
695      *     {@code f2} represents {@code -0.0f}, or vice
696      *     versa, the {@code equal} test has the value
697      *     {@code false}, even though {@code 0.0f==-0.0f}
698      *     has the value {@code true}.
699      * </ul>
700      *
701      * This definition allows hash tables to operate properly.
702      *
703      * @param obj the object to be compared
704      * @return  {@code true} if the objects are the same;
705      *          {@code false} otherwise.
706      * @see java.lang.Float#floatToIntBits(float)
707      */
equals(Object obj)708     public boolean equals(Object obj) {
709         return (obj instanceof Float)
710                && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
711     }
712 
713     /**
714      * Returns a representation of the specified floating-point value
715      * according to the IEEE 754 floating-point "single format" bit
716      * layout.
717      *
718      * <p>Bit 31 (the bit that is selected by the mask
719      * {@code 0x80000000}) represents the sign of the floating-point
720      * number.
721      * Bits 30-23 (the bits that are selected by the mask
722      * {@code 0x7f800000}) represent the exponent.
723      * Bits 22-0 (the bits that are selected by the mask
724      * {@code 0x007fffff}) represent the significand (sometimes called
725      * the mantissa) of the floating-point number.
726      *
727      * <p>If the argument is positive infinity, the result is
728      * {@code 0x7f800000}.
729      *
730      * <p>If the argument is negative infinity, the result is
731      * {@code 0xff800000}.
732      *
733      * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
734      *
735      * <p>In all cases, the result is an integer that, when given to the
736      * {@link #intBitsToFloat(int)} method, will produce a floating-point
737      * value the same as the argument to {@code floatToIntBits}
738      * (except all NaN values are collapsed to a single
739      * "canonical" NaN value).
740      *
741      * @param   value   a floating-point number.
742      * @return the bits that represent the floating-point number.
743      */
floatToIntBits(float value)744     public static int floatToIntBits(float value) {
745         int result = floatToRawIntBits(value);
746         // Check for NaN based on values of bit fields, maximum
747         // exponent and nonzero significand.
748         if ( ((result & FloatConsts.EXP_BIT_MASK) ==
749               FloatConsts.EXP_BIT_MASK) &&
750              (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
751             result = 0x7fc00000;
752         return result;
753     }
754 
755     /**
756      * Returns a representation of the specified floating-point value
757      * according to the IEEE 754 floating-point "single format" bit
758      * layout, preserving Not-a-Number (NaN) values.
759      *
760      * <p>Bit 31 (the bit that is selected by the mask
761      * {@code 0x80000000}) represents the sign of the floating-point
762      * number.
763      * Bits 30-23 (the bits that are selected by the mask
764      * {@code 0x7f800000}) represent the exponent.
765      * Bits 22-0 (the bits that are selected by the mask
766      * {@code 0x007fffff}) represent the significand (sometimes called
767      * the mantissa) of the floating-point number.
768      *
769      * <p>If the argument is positive infinity, the result is
770      * {@code 0x7f800000}.
771      *
772      * <p>If the argument is negative infinity, the result is
773      * {@code 0xff800000}.
774      *
775      * <p>If the argument is NaN, the result is the integer representing
776      * the actual NaN value.  Unlike the {@code floatToIntBits}
777      * method, {@code floatToRawIntBits} does not collapse all the
778      * bit patterns encoding a NaN to a single "canonical"
779      * NaN value.
780      *
781      * <p>In all cases, the result is an integer that, when given to the
782      * {@link #intBitsToFloat(int)} method, will produce a
783      * floating-point value the same as the argument to
784      * {@code floatToRawIntBits}.
785      *
786      * @param   value   a floating-point number.
787      * @return the bits that represent the floating-point number.
788      * @since 1.3
789      */
floatToRawIntBits(float value)790     public static native int floatToRawIntBits(float value);
791 
792     /**
793      * Returns the {@code float} value corresponding to a given
794      * bit representation.
795      * The argument is considered to be a representation of a
796      * floating-point value according to the IEEE 754 floating-point
797      * "single format" bit layout.
798      *
799      * <p>If the argument is {@code 0x7f800000}, the result is positive
800      * infinity.
801      *
802      * <p>If the argument is {@code 0xff800000}, the result is negative
803      * infinity.
804      *
805      * <p>If the argument is any value in the range
806      * {@code 0x7f800001} through {@code 0x7fffffff} or in
807      * the range {@code 0xff800001} through
808      * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
809      * floating-point operation provided by Java can distinguish
810      * between two NaN values of the same type with different bit
811      * patterns.  Distinct values of NaN are only distinguishable by
812      * use of the {@code Float.floatToRawIntBits} method.
813      *
814      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
815      * values that can be computed from the argument:
816      *
817      * <blockquote><pre>{@code
818      * int s = ((bits >> 31) == 0) ? 1 : -1;
819      * int e = ((bits >> 23) & 0xff);
820      * int m = (e == 0) ?
821      *                 (bits & 0x7fffff) << 1 :
822      *                 (bits & 0x7fffff) | 0x800000;
823      * }</pre></blockquote>
824      *
825      * Then the floating-point result equals the value of the mathematical
826      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
827      *
828      * <p>Note that this method may not be able to return a
829      * {@code float} NaN with exactly same bit pattern as the
830      * {@code int} argument.  IEEE 754 distinguishes between two
831      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
832      * differences between the two kinds of NaN are generally not
833      * visible in Java.  Arithmetic operations on signaling NaNs turn
834      * them into quiet NaNs with a different, but often similar, bit
835      * pattern.  However, on some processors merely copying a
836      * signaling NaN also performs that conversion.  In particular,
837      * copying a signaling NaN to return it to the calling method may
838      * perform this conversion.  So {@code intBitsToFloat} may
839      * not be able to return a {@code float} with a signaling NaN
840      * bit pattern.  Consequently, for some {@code int} values,
841      * {@code floatToRawIntBits(intBitsToFloat(start))} may
842      * <i>not</i> equal {@code start}.  Moreover, which
843      * particular bit patterns represent signaling NaNs is platform
844      * dependent; although all NaN bit patterns, quiet or signaling,
845      * must be in the NaN range identified above.
846      *
847      * @param   bits   an integer.
848      * @return  the {@code float} floating-point value with the same bit
849      *          pattern.
850      */
intBitsToFloat(int bits)851     public static native float intBitsToFloat(int bits);
852 
853     /**
854      * Compares two {@code Float} objects numerically.  There are
855      * two ways in which comparisons performed by this method differ
856      * from those performed by the Java language numerical comparison
857      * operators ({@code <, <=, ==, >=, >}) when
858      * applied to primitive {@code float} values:
859      *
860      * <ul><li>
861      *          {@code Float.NaN} is considered by this method to
862      *          be equal to itself and greater than all other
863      *          {@code float} values
864      *          (including {@code Float.POSITIVE_INFINITY}).
865      * <li>
866      *          {@code 0.0f} is considered by this method to be greater
867      *          than {@code -0.0f}.
868      * </ul>
869      *
870      * This ensures that the <i>natural ordering</i> of {@code Float}
871      * objects imposed by this method is <i>consistent with equals</i>.
872      *
873      * @param   anotherFloat   the {@code Float} to be compared.
874      * @return  the value {@code 0} if {@code anotherFloat} is
875      *          numerically equal to this {@code Float}; a value
876      *          less than {@code 0} if this {@code Float}
877      *          is numerically less than {@code anotherFloat};
878      *          and a value greater than {@code 0} if this
879      *          {@code Float} is numerically greater than
880      *          {@code anotherFloat}.
881      *
882      * @since   1.2
883      * @see Comparable#compareTo(Object)
884      */
compareTo(Float anotherFloat)885     public int compareTo(Float anotherFloat) {
886         return Float.compare(value, anotherFloat.value);
887     }
888 
889     /**
890      * Compares the two specified {@code float} values. The sign
891      * of the integer value returned is the same as that of the
892      * integer that would be returned by the call:
893      * <pre>
894      *    new Float(f1).compareTo(new Float(f2))
895      * </pre>
896      *
897      * @param   f1        the first {@code float} to compare.
898      * @param   f2        the second {@code float} to compare.
899      * @return  the value {@code 0} if {@code f1} is
900      *          numerically equal to {@code f2}; a value less than
901      *          {@code 0} if {@code f1} is numerically less than
902      *          {@code f2}; and a value greater than {@code 0}
903      *          if {@code f1} is numerically greater than
904      *          {@code f2}.
905      * @since 1.4
906      */
compare(float f1, float f2)907     public static int compare(float f1, float f2) {
908         if (f1 < f2)
909             return -1;           // Neither val is NaN, thisVal is smaller
910         if (f1 > f2)
911             return 1;            // Neither val is NaN, thisVal is larger
912 
913         // Cannot use floatToRawIntBits because of possibility of NaNs.
914         int thisBits    = Float.floatToIntBits(f1);
915         int anotherBits = Float.floatToIntBits(f2);
916 
917         return (thisBits == anotherBits ?  0 : // Values are equal
918                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
919                  1));                          // (0.0, -0.0) or (NaN, !NaN)
920     }
921 
922     /**
923      * Adds two {@code float} values together as per the + operator.
924      *
925      * @param a the first operand
926      * @param b the second operand
927      * @return the sum of {@code a} and {@code b}
928      * @jls 4.2.4 Floating-Point Operations
929      * @see java.util.function.BinaryOperator
930      * @since 1.8
931      */
sum(float a, float b)932     public static float sum(float a, float b) {
933         return a + b;
934     }
935 
936     /**
937      * Returns the greater of two {@code float} values
938      * as if by calling {@link Math#max(float, float) Math.max}.
939      *
940      * @param a the first operand
941      * @param b the second operand
942      * @return the greater of {@code a} and {@code b}
943      * @see java.util.function.BinaryOperator
944      * @since 1.8
945      */
max(float a, float b)946     public static float max(float a, float b) {
947         return Math.max(a, b);
948     }
949 
950     /**
951      * Returns the smaller of two {@code float} values
952      * as if by calling {@link Math#min(float, float) Math.min}.
953      *
954      * @param a the first operand
955      * @param b the second operand
956      * @return the smaller of {@code a} and {@code b}
957      * @see java.util.function.BinaryOperator
958      * @since 1.8
959      */
min(float a, float b)960     public static float min(float a, float b) {
961         return Math.min(a, b);
962     }
963 
964     /** use serialVersionUID from JDK 1.0.2 for interoperability */
965     private static final long serialVersionUID = -2671257302660747028L;
966 }
967