1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.  Oracle designates this
9  * particular file as subject to the "Classpath" exception as provided
10  * by Oracle in the LICENSE file that accompanied this code.
11  *
12  * This code is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  * version 2 for more details (a copy is included in the LICENSE file that
16  * accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License version
19  * 2 along with this work; if not, write to the Free Software Foundation,
20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23  * or visit www.oracle.com if you need additional information or have any
24  * questions.
25  */
26 
27 package java.lang;
28 
29 import java.lang.annotation.Native;
30 import java.math.*;
31 
32 
33 /**
34  * The {@code Long} class wraps a value of the primitive type {@code
35  * long} in an object. An object of type {@code Long} contains a
36  * single field whose type is {@code long}.
37  *
38  * <p> In addition, this class provides several methods for converting
39  * a {@code long} to a {@code String} and a {@code String} to a {@code
40  * long}, as well as other constants and methods useful when dealing
41  * with a {@code long}.
42  *
43  * <p>Implementation note: The implementations of the "bit twiddling"
44  * methods (such as {@link #highestOneBit(long) highestOneBit} and
45  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
46  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
47  * Delight</i>, (Addison Wesley, 2002).
48  *
49  * @author  Lee Boynton
50  * @author  Arthur van Hoff
51  * @author  Josh Bloch
52  * @author  Joseph D. Darcy
53  * @since   JDK1.0
54  */
55 public final class Long extends Number implements Comparable<Long> {
56     /**
57      * A constant holding the minimum value a {@code long} can
58      * have, -2<sup>63</sup>.
59      */
60     @Native public static final long MIN_VALUE = 0x8000000000000000L;
61 
62     /**
63      * A constant holding the maximum value a {@code long} can
64      * have, 2<sup>63</sup>-1.
65      */
66     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
67 
68     /**
69      * The {@code Class} instance representing the primitive type
70      * {@code long}.
71      *
72      * @since   JDK1.1
73      */
74     @SuppressWarnings("unchecked")
75     public static final Class<Long>     TYPE = (Class<Long>) long[].class.getComponentType();
76 
77     /**
78      * Returns a string representation of the first argument in the
79      * radix specified by the second argument.
80      *
81      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
82      * or larger than {@code Character.MAX_RADIX}, then the radix
83      * {@code 10} is used instead.
84      *
85      * <p>If the first argument is negative, the first element of the
86      * result is the ASCII minus sign {@code '-'}
87      * ({@code '\u005Cu002d'}). If the first argument is not
88      * negative, no sign character appears in the result.
89      *
90      * <p>The remaining characters of the result represent the magnitude
91      * of the first argument. If the magnitude is zero, it is
92      * represented by a single zero character {@code '0'}
93      * ({@code '\u005Cu0030'}); otherwise, the first character of
94      * the representation of the magnitude will not be the zero
95      * character.  The following ASCII characters are used as digits:
96      *
97      * <blockquote>
98      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
99      * </blockquote>
100      *
101      * These are {@code '\u005Cu0030'} through
102      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
103      * {@code '\u005Cu007a'}. If {@code radix} is
104      * <var>N</var>, then the first <var>N</var> of these characters
105      * are used as radix-<var>N</var> digits in the order shown. Thus,
106      * the digits for hexadecimal (radix 16) are
107      * {@code 0123456789abcdef}. If uppercase letters are
108      * desired, the {@link java.lang.String#toUpperCase()} method may
109      * be called on the result:
110      *
111      * <blockquote>
112      *  {@code Long.toString(n, 16).toUpperCase()}
113      * </blockquote>
114      *
115      * @param   i       a {@code long} to be converted to a string.
116      * @param   radix   the radix to use in the string representation.
117      * @return  a string representation of the argument in the specified radix.
118      * @see     java.lang.Character#MAX_RADIX
119      * @see     java.lang.Character#MIN_RADIX
120      */
toString(long i, int radix)121     public static String toString(long i, int radix) {
122         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
123             radix = 10;
124         if (radix == 10)
125             return toString(i);
126         char[] buf = new char[65];
127         int charPos = 64;
128         boolean negative = (i < 0);
129 
130         if (!negative) {
131             i = -i;
132         }
133 
134         while (i <= -radix) {
135             buf[charPos--] = Integer.digits[(int)(-(i % radix))];
136             i = i / radix;
137         }
138         buf[charPos] = Integer.digits[(int)(-i)];
139 
140         if (negative) {
141             buf[--charPos] = '-';
142         }
143 
144         return new String(buf, charPos, (65 - charPos));
145     }
146 
147     /**
148      * Returns a string representation of the first argument as an
149      * unsigned integer value in the radix specified by the second
150      * argument.
151      *
152      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
153      * or larger than {@code Character.MAX_RADIX}, then the radix
154      * {@code 10} is used instead.
155      *
156      * <p>Note that since the first argument is treated as an unsigned
157      * value, no leading sign character is printed.
158      *
159      * <p>If the magnitude is zero, it is represented by a single zero
160      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
161      * the first character of the representation of the magnitude will
162      * not be the zero character.
163      *
164      * <p>The behavior of radixes and the characters used as digits
165      * are the same as {@link #toString(long, int) toString}.
166      *
167      * @param   i       an integer to be converted to an unsigned string.
168      * @param   radix   the radix to use in the string representation.
169      * @return  an unsigned string representation of the argument in the specified radix.
170      * @see     #toString(long, int)
171      * @since 1.8
172      */
toUnsignedString(long i, int radix)173     public static String toUnsignedString(long i, int radix) {
174         if (i >= 0)
175             return toString(i, radix);
176         else {
177             switch (radix) {
178             case 2:
179                 return toBinaryString(i);
180 
181             case 4:
182                 return toUnsignedString0(i, 2);
183 
184             case 8:
185                 return toOctalString(i);
186 
187             case 10:
188                 /*
189                  * We can get the effect of an unsigned division by 10
190                  * on a long value by first shifting right, yielding a
191                  * positive value, and then dividing by 5.  This
192                  * allows the last digit and preceding digits to be
193                  * isolated more quickly than by an initial conversion
194                  * to BigInteger.
195                  */
196                 long quot = (i >>> 1) / 5;
197                 long rem = i - quot * 10;
198                 return toString(quot) + rem;
199 
200             case 16:
201                 return toHexString(i);
202 
203             case 32:
204                 return toUnsignedString0(i, 5);
205 
206             default:
207                 return toUnsignedBigInteger(i).toString(radix);
208             }
209         }
210     }
211 
212     /**
213      * Return a BigInteger equal to the unsigned value of the
214      * argument.
215      */
toUnsignedBigInteger(long i)216     private static BigInteger toUnsignedBigInteger(long i) {
217         if (i >= 0L)
218             return BigInteger.valueOf(i);
219         else {
220             int upper = (int) (i >>> 32);
221             int lower = (int) i;
222 
223             // return (upper << 32) + lower
224             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
225                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
226         }
227     }
228 
229     /**
230      * Returns a string representation of the {@code long}
231      * argument as an unsigned integer in base&nbsp;16.
232      *
233      * <p>The unsigned {@code long} value is the argument plus
234      * 2<sup>64</sup> if the argument is negative; otherwise, it is
235      * equal to the argument.  This value is converted to a string of
236      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
237      * leading {@code 0}s.
238      *
239      * <p>The value of the argument can be recovered from the returned
240      * string {@code s} by calling {@link
241      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
242      * 16)}.
243      *
244      * <p>If the unsigned magnitude is zero, it is represented by a
245      * single zero character {@code '0'} ({@code '\u005Cu0030'});
246      * otherwise, the first character of the representation of the
247      * unsigned magnitude will not be the zero character. The
248      * following characters are used as hexadecimal digits:
249      *
250      * <blockquote>
251      *  {@code 0123456789abcdef}
252      * </blockquote>
253      *
254      * These are the characters {@code '\u005Cu0030'} through
255      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
256      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
257      * the {@link java.lang.String#toUpperCase()} method may be called
258      * on the result:
259      *
260      * <blockquote>
261      *  {@code Long.toHexString(n).toUpperCase()}
262      * </blockquote>
263      *
264      * @param   i   a {@code long} to be converted to a string.
265      * @return  the string representation of the unsigned {@code long}
266      *          value represented by the argument in hexadecimal
267      *          (base&nbsp;16).
268      * @see #parseUnsignedLong(String, int)
269      * @see #toUnsignedString(long, int)
270      * @since   JDK 1.0.2
271      */
toHexString(long i)272     public static String toHexString(long i) {
273         return toUnsignedString0(i, 4);
274     }
275 
276     /**
277      * Returns a string representation of the {@code long}
278      * argument as an unsigned integer in base&nbsp;8.
279      *
280      * <p>The unsigned {@code long} value is the argument plus
281      * 2<sup>64</sup> if the argument is negative; otherwise, it is
282      * equal to the argument.  This value is converted to a string of
283      * ASCII digits in octal (base&nbsp;8) with no extra leading
284      * {@code 0}s.
285      *
286      * <p>The value of the argument can be recovered from the returned
287      * string {@code s} by calling {@link
288      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
289      * 8)}.
290      *
291      * <p>If the unsigned magnitude is zero, it is represented by a
292      * single zero character {@code '0'} ({@code '\u005Cu0030'});
293      * otherwise, the first character of the representation of the
294      * unsigned magnitude will not be the zero character. The
295      * following characters are used as octal digits:
296      *
297      * <blockquote>
298      *  {@code 01234567}
299      * </blockquote>
300      *
301      * These are the characters {@code '\u005Cu0030'} through
302      * {@code '\u005Cu0037'}.
303      *
304      * @param   i   a {@code long} to be converted to a string.
305      * @return  the string representation of the unsigned {@code long}
306      *          value represented by the argument in octal (base&nbsp;8).
307      * @see #parseUnsignedLong(String, int)
308      * @see #toUnsignedString(long, int)
309      * @since   JDK 1.0.2
310      */
toOctalString(long i)311     public static String toOctalString(long i) {
312         return toUnsignedString0(i, 3);
313     }
314 
315     /**
316      * Returns a string representation of the {@code long}
317      * argument as an unsigned integer in base&nbsp;2.
318      *
319      * <p>The unsigned {@code long} value is the argument plus
320      * 2<sup>64</sup> if the argument is negative; otherwise, it is
321      * equal to the argument.  This value is converted to a string of
322      * ASCII digits in binary (base&nbsp;2) with no extra leading
323      * {@code 0}s.
324      *
325      * <p>The value of the argument can be recovered from the returned
326      * string {@code s} by calling {@link
327      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
328      * 2)}.
329      *
330      * <p>If the unsigned magnitude is zero, it is represented by a
331      * single zero character {@code '0'} ({@code '\u005Cu0030'});
332      * otherwise, the first character of the representation of the
333      * unsigned magnitude will not be the zero character. The
334      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
335      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
336      *
337      * @param   i   a {@code long} to be converted to a string.
338      * @return  the string representation of the unsigned {@code long}
339      *          value represented by the argument in binary (base&nbsp;2).
340      * @see #parseUnsignedLong(String, int)
341      * @see #toUnsignedString(long, int)
342      * @since   JDK 1.0.2
343      */
toBinaryString(long i)344     public static String toBinaryString(long i) {
345         return toUnsignedString0(i, 1);
346     }
347 
348     /**
349      * Format a long (treated as unsigned) into a String.
350      * @param val the value to format
351      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
352      */
toUnsignedString0(long val, int shift)353     static String toUnsignedString0(long val, int shift) {
354         // assert shift > 0 && shift <=5 : "Illegal shift value";
355         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
356         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
357         char[] buf = new char[chars];
358 
359         formatUnsignedLong(val, shift, buf, 0, chars);
360         return new String(buf);
361     }
362 
363     /**
364      * Format a long (treated as unsigned) into a character buffer.
365      * @param val the unsigned long to format
366      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
367      * @param buf the character buffer to write to
368      * @param offset the offset in the destination buffer to start at
369      * @param len the number of characters to write
370      * @return the lowest character location used
371      */
formatUnsignedLong(long val, int shift, char[] buf, int offset, int len)372      static int formatUnsignedLong(long val, int shift, char[] buf, int offset, int len) {
373         int charPos = len;
374         int radix = 1 << shift;
375         int mask = radix - 1;
376         do {
377             buf[offset + --charPos] = Integer.digits[((int) val) & mask];
378             val >>>= shift;
379         } while (val != 0 && charPos > 0);
380 
381         return charPos;
382     }
383 
384     /**
385      * Returns a {@code String} object representing the specified
386      * {@code long}.  The argument is converted to signed decimal
387      * representation and returned as a string, exactly as if the
388      * argument and the radix 10 were given as arguments to the {@link
389      * #toString(long, int)} method.
390      *
391      * @param   i   a {@code long} to be converted.
392      * @return  a string representation of the argument in base&nbsp;10.
393      */
toString(long i)394     public static String toString(long i) {
395         if (i == Long.MIN_VALUE)
396             return "-9223372036854775808";
397         int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
398         char[] buf = new char[size];
399         getChars(i, size, buf);
400         return new String(buf);
401     }
402 
403     /**
404      * Returns a string representation of the argument as an unsigned
405      * decimal value.
406      *
407      * The argument is converted to unsigned decimal representation
408      * and returned as a string exactly as if the argument and radix
409      * 10 were given as arguments to the {@link #toUnsignedString(long,
410      * int)} method.
411      *
412      * @param   i  an integer to be converted to an unsigned string.
413      * @return  an unsigned string representation of the argument.
414      * @see     #toUnsignedString(long, int)
415      * @since 1.8
416      */
toUnsignedString(long i)417     public static String toUnsignedString(long i) {
418         return toUnsignedString(i, 10);
419     }
420 
421     /**
422      * Places characters representing the integer i into the
423      * character array buf. The characters are placed into
424      * the buffer backwards starting with the least significant
425      * digit at the specified index (exclusive), and working
426      * backwards from there.
427      *
428      * Will fail if i == Long.MIN_VALUE
429      */
getChars(long i, int index, char[] buf)430     static void getChars(long i, int index, char[] buf) {
431         long q;
432         int r;
433         int charPos = index;
434         char sign = 0;
435 
436         if (i < 0) {
437             sign = '-';
438             i = -i;
439         }
440 
441         // Get 2 digits/iteration using longs until quotient fits into an int
442         while (i > Integer.MAX_VALUE) {
443             q = i / 100;
444             // really: r = i - (q * 100);
445             r = (int)(i - ((q << 6) + (q << 5) + (q << 2)));
446             i = q;
447             buf[--charPos] = Integer.DigitOnes[r];
448             buf[--charPos] = Integer.DigitTens[r];
449         }
450 
451         // Get 2 digits/iteration using ints
452         int q2;
453         int i2 = (int)i;
454         while (i2 >= 65536) {
455             q2 = i2 / 100;
456             // really: r = i2 - (q * 100);
457             r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2));
458             i2 = q2;
459             buf[--charPos] = Integer.DigitOnes[r];
460             buf[--charPos] = Integer.DigitTens[r];
461         }
462 
463         // Fall thru to fast mode for smaller numbers
464         // assert(i2 <= 65536, i2);
465         for (;;) {
466             q2 = (i2 * 52429) >>> (16+3);
467             r = i2 - ((q2 << 3) + (q2 << 1));  // r = i2-(q2*10) ...
468             buf[--charPos] = Integer.digits[r];
469             i2 = q2;
470             if (i2 == 0) break;
471         }
472         if (sign != 0) {
473             buf[--charPos] = sign;
474         }
475     }
476 
477     // Requires positive x
stringSize(long x)478     static int stringSize(long x) {
479         long p = 10;
480         for (int i=1; i<19; i++) {
481             if (x < p)
482                 return i;
483             p = 10*p;
484         }
485         return 19;
486     }
487 
488     /**
489      * Parses the string argument as a signed {@code long} in the
490      * radix specified by the second argument. The characters in the
491      * string must all be digits of the specified radix (as determined
492      * by whether {@link java.lang.Character#digit(char, int)} returns
493      * a nonnegative value), except that the first character may be an
494      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
495      * indicate a negative value or an ASCII plus sign {@code '+'}
496      * ({@code '\u005Cu002B'}) to indicate a positive value. The
497      * resulting {@code long} value is returned.
498      *
499      * <p>Note that neither the character {@code L}
500      * ({@code '\u005Cu004C'}) nor {@code l}
501      * ({@code '\u005Cu006C'}) is permitted to appear at the end
502      * of the string as a type indicator, as would be permitted in
503      * Java programming language source code - except that either
504      * {@code L} or {@code l} may appear as a digit for a
505      * radix greater than or equal to 22.
506      *
507      * <p>An exception of type {@code NumberFormatException} is
508      * thrown if any of the following situations occurs:
509      * <ul>
510      *
511      * <li>The first argument is {@code null} or is a string of
512      * length zero.
513      *
514      * <li>The {@code radix} is either smaller than {@link
515      * java.lang.Character#MIN_RADIX} or larger than {@link
516      * java.lang.Character#MAX_RADIX}.
517      *
518      * <li>Any character of the string is not a digit of the specified
519      * radix, except that the first character may be a minus sign
520      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
521      * '+'} ({@code '\u005Cu002B'}) provided that the string is
522      * longer than length 1.
523      *
524      * <li>The value represented by the string is not a value of type
525      *      {@code long}.
526      * </ul>
527      *
528      * <p>Examples:
529      * <blockquote><pre>
530      * parseLong("0", 10) returns 0L
531      * parseLong("473", 10) returns 473L
532      * parseLong("+42", 10) returns 42L
533      * parseLong("-0", 10) returns 0L
534      * parseLong("-FF", 16) returns -255L
535      * parseLong("1100110", 2) returns 102L
536      * parseLong("99", 8) throws a NumberFormatException
537      * parseLong("Hazelnut", 10) throws a NumberFormatException
538      * parseLong("Hazelnut", 36) returns 1356099454469L
539      * </pre></blockquote>
540      *
541      * @param      s       the {@code String} containing the
542      *                     {@code long} representation to be parsed.
543      * @param      radix   the radix to be used while parsing {@code s}.
544      * @return     the {@code long} represented by the string argument in
545      *             the specified radix.
546      * @throws     NumberFormatException  if the string does not contain a
547      *             parsable {@code long}.
548      */
parseLong(String s, int radix)549     public static long parseLong(String s, int radix)
550               throws NumberFormatException
551     {
552         if (s == null) {
553             throw new NumberFormatException("null");
554         }
555 
556         if (radix < Character.MIN_RADIX) {
557             throw new NumberFormatException("radix " + radix +
558                                             " less than Character.MIN_RADIX");
559         }
560         if (radix > Character.MAX_RADIX) {
561             throw new NumberFormatException("radix " + radix +
562                                             " greater than Character.MAX_RADIX");
563         }
564 
565         long result = 0;
566         boolean negative = false;
567         int i = 0, len = s.length();
568         long limit = -Long.MAX_VALUE;
569         long multmin;
570         int digit;
571 
572         if (len > 0) {
573             char firstChar = s.charAt(0);
574             if (firstChar < '0') { // Possible leading "+" or "-"
575                 if (firstChar == '-') {
576                     negative = true;
577                     limit = Long.MIN_VALUE;
578                 } else if (firstChar != '+')
579                     throw NumberFormatException.forInputString(s);
580 
581                 if (len == 1) // Cannot have lone "+" or "-"
582                     throw NumberFormatException.forInputString(s);
583                 i++;
584             }
585             multmin = limit / radix;
586             while (i < len) {
587                 // Accumulating negatively avoids surprises near MAX_VALUE
588                 digit = Character.digit(s.charAt(i++),radix);
589                 if (digit < 0) {
590                     throw NumberFormatException.forInputString(s);
591                 }
592                 if (result < multmin) {
593                     throw NumberFormatException.forInputString(s);
594                 }
595                 result *= radix;
596                 if (result < limit + digit) {
597                     throw NumberFormatException.forInputString(s);
598                 }
599                 result -= digit;
600             }
601         } else {
602             throw NumberFormatException.forInputString(s);
603         }
604         return negative ? result : -result;
605     }
606 
607     /**
608      * Parses the string argument as a signed decimal {@code long}.
609      * The characters in the string must all be decimal digits, except
610      * that the first character may be an ASCII minus sign {@code '-'}
611      * ({@code \u005Cu002D'}) to indicate a negative value or an
612      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
613      * indicate a positive value. The resulting {@code long} value is
614      * returned, exactly as if the argument and the radix {@code 10}
615      * were given as arguments to the {@link
616      * #parseLong(java.lang.String, int)} method.
617      *
618      * <p>Note that neither the character {@code L}
619      * ({@code '\u005Cu004C'}) nor {@code l}
620      * ({@code '\u005Cu006C'}) is permitted to appear at the end
621      * of the string as a type indicator, as would be permitted in
622      * Java programming language source code.
623      *
624      * @param      s   a {@code String} containing the {@code long}
625      *             representation to be parsed
626      * @return     the {@code long} represented by the argument in
627      *             decimal.
628      * @throws     NumberFormatException  if the string does not contain a
629      *             parsable {@code long}.
630      */
parseLong(String s)631     public static long parseLong(String s) throws NumberFormatException {
632         return parseLong(s, 10);
633     }
634 
635     /**
636      * Parses the string argument as an unsigned {@code long} in the
637      * radix specified by the second argument.  An unsigned integer
638      * maps the values usually associated with negative numbers to
639      * positive numbers larger than {@code MAX_VALUE}.
640      *
641      * The characters in the string must all be digits of the
642      * specified radix (as determined by whether {@link
643      * java.lang.Character#digit(char, int)} returns a nonnegative
644      * value), except that the first character may be an ASCII plus
645      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
646      * integer value is returned.
647      *
648      * <p>An exception of type {@code NumberFormatException} is
649      * thrown if any of the following situations occurs:
650      * <ul>
651      * <li>The first argument is {@code null} or is a string of
652      * length zero.
653      *
654      * <li>The radix is either smaller than
655      * {@link java.lang.Character#MIN_RADIX} or
656      * larger than {@link java.lang.Character#MAX_RADIX}.
657      *
658      * <li>Any character of the string is not a digit of the specified
659      * radix, except that the first character may be a plus sign
660      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
661      * string is longer than length 1.
662      *
663      * <li>The value represented by the string is larger than the
664      * largest unsigned {@code long}, 2<sup>64</sup>-1.
665      *
666      * </ul>
667      *
668      *
669      * @param      s   the {@code String} containing the unsigned integer
670      *                  representation to be parsed
671      * @param      radix   the radix to be used while parsing {@code s}.
672      * @return     the unsigned {@code long} represented by the string
673      *             argument in the specified radix.
674      * @throws     NumberFormatException if the {@code String}
675      *             does not contain a parsable {@code long}.
676      * @since 1.8
677      */
parseUnsignedLong(String s, int radix)678     public static long parseUnsignedLong(String s, int radix)
679                 throws NumberFormatException {
680         if (s == null)  {
681             throw new NumberFormatException("null");
682         }
683 
684         int len = s.length();
685         if (len > 0) {
686             char firstChar = s.charAt(0);
687             if (firstChar == '-') {
688                 throw new
689                     NumberFormatException(String.format("Illegal leading minus sign " +
690                                                        "on unsigned string %s.", s));
691             } else {
692                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
693                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
694                     return parseLong(s, radix);
695                 }
696 
697                 // No need for range checks on len due to testing above.
698                 long first = parseLong(s.substring(0, len - 1), radix);
699                 int second = Character.digit(s.charAt(len - 1), radix);
700                 if (second < 0) {
701                     throw new NumberFormatException("Bad digit at end of " + s);
702                 }
703                 long result = first * radix + second;
704                 if (compareUnsigned(result, first) < 0) {
705                     /*
706                      * The maximum unsigned value, (2^64)-1, takes at
707                      * most one more digit to represent than the
708                      * maximum signed value, (2^63)-1.  Therefore,
709                      * parsing (len - 1) digits will be appropriately
710                      * in-range of the signed parsing.  In other
711                      * words, if parsing (len -1) digits overflows
712                      * signed parsing, parsing len digits will
713                      * certainly overflow unsigned parsing.
714                      *
715                      * The compareUnsigned check above catches
716                      * situations where an unsigned overflow occurs
717                      * incorporating the contribution of the final
718                      * digit.
719                      */
720                     throw new NumberFormatException(String.format("String value %s exceeds " +
721                                                                   "range of unsigned long.", s));
722                 }
723                 return result;
724             }
725         } else {
726             throw NumberFormatException.forInputString(s);
727         }
728     }
729 
730     /**
731      * Parses the string argument as an unsigned decimal {@code long}. The
732      * characters in the string must all be decimal digits, except
733      * that the first character may be an an ASCII plus sign {@code
734      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
735      * is returned, exactly as if the argument and the radix 10 were
736      * given as arguments to the {@link
737      * #parseUnsignedLong(java.lang.String, int)} method.
738      *
739      * @param s   a {@code String} containing the unsigned {@code long}
740      *            representation to be parsed
741      * @return    the unsigned {@code long} value represented by the decimal string argument
742      * @throws    NumberFormatException  if the string does not contain a
743      *            parsable unsigned integer.
744      * @since 1.8
745      */
parseUnsignedLong(String s)746     public static long parseUnsignedLong(String s) throws NumberFormatException {
747         return parseUnsignedLong(s, 10);
748     }
749 
750     /**
751      * Returns a {@code Long} object holding the value
752      * extracted from the specified {@code String} when parsed
753      * with the radix given by the second argument.  The first
754      * argument is interpreted as representing a signed
755      * {@code long} in the radix specified by the second
756      * argument, exactly as if the arguments were given to the {@link
757      * #parseLong(java.lang.String, int)} method. The result is a
758      * {@code Long} object that represents the {@code long}
759      * value specified by the string.
760      *
761      * <p>In other words, this method returns a {@code Long} object equal
762      * to the value of:
763      *
764      * <blockquote>
765      *  {@code new Long(Long.parseLong(s, radix))}
766      * </blockquote>
767      *
768      * @param      s       the string to be parsed
769      * @param      radix   the radix to be used in interpreting {@code s}
770      * @return     a {@code Long} object holding the value
771      *             represented by the string argument in the specified
772      *             radix.
773      * @throws     NumberFormatException  If the {@code String} does not
774      *             contain a parsable {@code long}.
775      */
valueOf(String s, int radix)776     public static Long valueOf(String s, int radix) throws NumberFormatException {
777         return Long.valueOf(parseLong(s, radix));
778     }
779 
780     /**
781      * Returns a {@code Long} object holding the value
782      * of the specified {@code String}. The argument is
783      * interpreted as representing a signed decimal {@code long},
784      * exactly as if the argument were given to the {@link
785      * #parseLong(java.lang.String)} method. The result is a
786      * {@code Long} object that represents the integer value
787      * specified by the string.
788      *
789      * <p>In other words, this method returns a {@code Long} object
790      * equal to the value of:
791      *
792      * <blockquote>
793      *  {@code new Long(Long.parseLong(s))}
794      * </blockquote>
795      *
796      * @param      s   the string to be parsed.
797      * @return     a {@code Long} object holding the value
798      *             represented by the string argument.
799      * @throws     NumberFormatException  If the string cannot be parsed
800      *             as a {@code long}.
801      */
valueOf(String s)802     public static Long valueOf(String s) throws NumberFormatException
803     {
804         return Long.valueOf(parseLong(s, 10));
805     }
806 
807     private static class LongCache {
LongCache()808         private LongCache(){}
809 
810         static final Long cache[] = new Long[-(-128) + 127 + 1];
811 
812         static {
813             for(int i = 0; i < cache.length; i++)
814                 cache[i] = new Long(i - 128);
815         }
816     }
817 
818     /**
819      * Returns a {@code Long} instance representing the specified
820      * {@code long} value.
821      * If a new {@code Long} instance is not required, this method
822      * should generally be used in preference to the constructor
823      * {@link #Long(long)}, as this method is likely to yield
824      * significantly better space and time performance by caching
825      * frequently requested values.
826      *
827      * Note that unlike the {@linkplain Integer#valueOf(int)
828      * corresponding method} in the {@code Integer} class, this method
829      * is <em>not</em> required to cache values within a particular
830      * range.
831      *
832      * @param  l a long value.
833      * @return a {@code Long} instance representing {@code l}.
834      * @since  1.5
835      */
valueOf(long l)836     public static Long valueOf(long l) {
837         final int offset = 128;
838         if (l >= -128 && l <= 127) { // will cache
839             return LongCache.cache[(int)l + offset];
840         }
841         return new Long(l);
842     }
843 
844     /**
845      * Decodes a {@code String} into a {@code Long}.
846      * Accepts decimal, hexadecimal, and octal numbers given by the
847      * following grammar:
848      *
849      * <blockquote>
850      * <dl>
851      * <dt><i>DecodableString:</i>
852      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
853      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
854      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
855      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
856      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
857      *
858      * <dt><i>Sign:</i>
859      * <dd>{@code -}
860      * <dd>{@code +}
861      * </dl>
862      * </blockquote>
863      *
864      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
865      * are as defined in section 3.10.1 of
866      * <cite>The Java&trade; Language Specification</cite>,
867      * except that underscores are not accepted between digits.
868      *
869      * <p>The sequence of characters following an optional
870      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
871      * "{@code #}", or leading zero) is parsed as by the {@code
872      * Long.parseLong} method with the indicated radix (10, 16, or 8).
873      * This sequence of characters must represent a positive value or
874      * a {@link NumberFormatException} will be thrown.  The result is
875      * negated if first character of the specified {@code String} is
876      * the minus sign.  No whitespace characters are permitted in the
877      * {@code String}.
878      *
879      * @param     nm the {@code String} to decode.
880      * @return    a {@code Long} object holding the {@code long}
881      *            value represented by {@code nm}
882      * @throws    NumberFormatException  if the {@code String} does not
883      *            contain a parsable {@code long}.
884      * @see java.lang.Long#parseLong(String, int)
885      * @since 1.2
886      */
decode(String nm)887     public static Long decode(String nm) throws NumberFormatException {
888         int radix = 10;
889         int index = 0;
890         boolean negative = false;
891         Long result;
892 
893         if (nm.length() == 0)
894             throw new NumberFormatException("Zero length string");
895         char firstChar = nm.charAt(0);
896         // Handle sign, if present
897         if (firstChar == '-') {
898             negative = true;
899             index++;
900         } else if (firstChar == '+')
901             index++;
902 
903         // Handle radix specifier, if present
904         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
905             index += 2;
906             radix = 16;
907         }
908         else if (nm.startsWith("#", index)) {
909             index ++;
910             radix = 16;
911         }
912         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
913             index ++;
914             radix = 8;
915         }
916 
917         if (nm.startsWith("-", index) || nm.startsWith("+", index))
918             throw new NumberFormatException("Sign character in wrong position");
919 
920         try {
921             result = Long.valueOf(nm.substring(index), radix);
922             result = negative ? Long.valueOf(-result.longValue()) : result;
923         } catch (NumberFormatException e) {
924             // If number is Long.MIN_VALUE, we'll end up here. The next line
925             // handles this case, and causes any genuine format error to be
926             // rethrown.
927             String constant = negative ? ("-" + nm.substring(index))
928                                        : nm.substring(index);
929             result = Long.valueOf(constant, radix);
930         }
931         return result;
932     }
933 
934     /**
935      * The value of the {@code Long}.
936      *
937      * @serial
938      */
939     private final long value;
940 
941     /**
942      * Constructs a newly allocated {@code Long} object that
943      * represents the specified {@code long} argument.
944      *
945      * @param   value   the value to be represented by the
946      *          {@code Long} object.
947      */
Long(long value)948     public Long(long value) {
949         this.value = value;
950     }
951 
952     /**
953      * Constructs a newly allocated {@code Long} object that
954      * represents the {@code long} value indicated by the
955      * {@code String} parameter. The string is converted to a
956      * {@code long} value in exactly the manner used by the
957      * {@code parseLong} method for radix 10.
958      *
959      * @param      s   the {@code String} to be converted to a
960      *             {@code Long}.
961      * @throws     NumberFormatException  if the {@code String} does not
962      *             contain a parsable {@code long}.
963      * @see        java.lang.Long#parseLong(java.lang.String, int)
964      */
Long(String s)965     public Long(String s) throws NumberFormatException {
966         this.value = parseLong(s, 10);
967     }
968 
969     /**
970      * Returns the value of this {@code Long} as a {@code byte} after
971      * a narrowing primitive conversion.
972      * @jls 5.1.3 Narrowing Primitive Conversions
973      */
byteValue()974     public byte byteValue() {
975         return (byte)value;
976     }
977 
978     /**
979      * Returns the value of this {@code Long} as a {@code short} after
980      * a narrowing primitive conversion.
981      * @jls 5.1.3 Narrowing Primitive Conversions
982      */
shortValue()983     public short shortValue() {
984         return (short)value;
985     }
986 
987     /**
988      * Returns the value of this {@code Long} as an {@code int} after
989      * a narrowing primitive conversion.
990      * @jls 5.1.3 Narrowing Primitive Conversions
991      */
intValue()992     public int intValue() {
993         return (int)value;
994     }
995 
996     /**
997      * Returns the value of this {@code Long} as a
998      * {@code long} value.
999      */
longValue()1000     public long longValue() {
1001         return value;
1002     }
1003 
1004     /**
1005      * Returns the value of this {@code Long} as a {@code float} after
1006      * a widening primitive conversion.
1007      * @jls 5.1.2 Widening Primitive Conversions
1008      */
floatValue()1009     public float floatValue() {
1010         return (float)value;
1011     }
1012 
1013     /**
1014      * Returns the value of this {@code Long} as a {@code double}
1015      * after a widening primitive conversion.
1016      * @jls 5.1.2 Widening Primitive Conversions
1017      */
doubleValue()1018     public double doubleValue() {
1019         return (double)value;
1020     }
1021 
1022     /**
1023      * Returns a {@code String} object representing this
1024      * {@code Long}'s value.  The value is converted to signed
1025      * decimal representation and returned as a string, exactly as if
1026      * the {@code long} value were given as an argument to the
1027      * {@link java.lang.Long#toString(long)} method.
1028      *
1029      * @return  a string representation of the value of this object in
1030      *          base&nbsp;10.
1031      */
toString()1032     public String toString() {
1033         return toString(value);
1034     }
1035 
1036     /**
1037      * Returns a hash code for this {@code Long}. The result is
1038      * the exclusive OR of the two halves of the primitive
1039      * {@code long} value held by this {@code Long}
1040      * object. That is, the hashcode is the value of the expression:
1041      *
1042      * <blockquote>
1043      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1044      * </blockquote>
1045      *
1046      * @return  a hash code value for this object.
1047      */
1048     @Override
hashCode()1049     public int hashCode() {
1050         return Long.hashCode(value);
1051     }
1052 
1053     /**
1054      * Returns a hash code for a {@code long} value; compatible with
1055      * {@code Long.hashCode()}.
1056      *
1057      * @param value the value to hash
1058      * @return a hash code value for a {@code long} value.
1059      * @since 1.8
1060      */
hashCode(long value)1061     public static int hashCode(long value) {
1062         return (int)(value ^ (value >>> 32));
1063     }
1064 
1065     /**
1066      * Compares this object to the specified object.  The result is
1067      * {@code true} if and only if the argument is not
1068      * {@code null} and is a {@code Long} object that
1069      * contains the same {@code long} value as this object.
1070      *
1071      * @param   obj   the object to compare with.
1072      * @return  {@code true} if the objects are the same;
1073      *          {@code false} otherwise.
1074      */
equals(Object obj)1075     public boolean equals(Object obj) {
1076         if (obj instanceof Long) {
1077             return value == ((Long)obj).longValue();
1078         }
1079         return false;
1080     }
1081 
1082     /**
1083      * Determines the {@code long} value of the system property
1084      * with the specified name.
1085      *
1086      * <p>The first argument is treated as the name of a system
1087      * property.  System properties are accessible through the {@link
1088      * java.lang.System#getProperty(java.lang.String)} method. The
1089      * string value of this property is then interpreted as a {@code
1090      * long} value using the grammar supported by {@link Long#decode decode}
1091      * and a {@code Long} object representing this value is returned.
1092      *
1093      * <p>If there is no property with the specified name, if the
1094      * specified name is empty or {@code null}, or if the property
1095      * does not have the correct numeric format, then {@code null} is
1096      * returned.
1097      *
1098      * <p>In other words, this method returns a {@code Long} object
1099      * equal to the value of:
1100      *
1101      * <blockquote>
1102      *  {@code getLong(nm, null)}
1103      * </blockquote>
1104      *
1105      * @param   nm   property name.
1106      * @return  the {@code Long} value of the property.
1107      * @throws  SecurityException for the same reasons as
1108      *          {@link System#getProperty(String) System.getProperty}
1109      * @see     java.lang.System#getProperty(java.lang.String)
1110      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1111      */
getLong(String nm)1112     public static Long getLong(String nm) {
1113         return getLong(nm, null);
1114     }
1115 
1116     /**
1117      * Determines the {@code long} value of the system property
1118      * with the specified name.
1119      *
1120      * <p>The first argument is treated as the name of a system
1121      * property.  System properties are accessible through the {@link
1122      * java.lang.System#getProperty(java.lang.String)} method. The
1123      * string value of this property is then interpreted as a {@code
1124      * long} value using the grammar supported by {@link Long#decode decode}
1125      * and a {@code Long} object representing this value is returned.
1126      *
1127      * <p>The second argument is the default value. A {@code Long} object
1128      * that represents the value of the second argument is returned if there
1129      * is no property of the specified name, if the property does not have
1130      * the correct numeric format, or if the specified name is empty or null.
1131      *
1132      * <p>In other words, this method returns a {@code Long} object equal
1133      * to the value of:
1134      *
1135      * <blockquote>
1136      *  {@code getLong(nm, new Long(val))}
1137      * </blockquote>
1138      *
1139      * but in practice it may be implemented in a manner such as:
1140      *
1141      * <blockquote><pre>
1142      * Long result = getLong(nm, null);
1143      * return (result == null) ? new Long(val) : result;
1144      * </pre></blockquote>
1145      *
1146      * to avoid the unnecessary allocation of a {@code Long} object when
1147      * the default value is not needed.
1148      *
1149      * @param   nm    property name.
1150      * @param   val   default value.
1151      * @return  the {@code Long} value of the property.
1152      * @throws  SecurityException for the same reasons as
1153      *          {@link System#getProperty(String) System.getProperty}
1154      * @see     java.lang.System#getProperty(java.lang.String)
1155      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1156      */
getLong(String nm, long val)1157     public static Long getLong(String nm, long val) {
1158         Long result = Long.getLong(nm, null);
1159         return (result == null) ? Long.valueOf(val) : result;
1160     }
1161 
1162     /**
1163      * Returns the {@code long} value of the system property with
1164      * the specified name.  The first argument is treated as the name
1165      * of a system property.  System properties are accessible through
1166      * the {@link java.lang.System#getProperty(java.lang.String)}
1167      * method. The string value of this property is then interpreted
1168      * as a {@code long} value, as per the
1169      * {@link Long#decode decode} method, and a {@code Long} object
1170      * representing this value is returned; in summary:
1171      *
1172      * <ul>
1173      * <li>If the property value begins with the two ASCII characters
1174      * {@code 0x} or the ASCII character {@code #}, not followed by
1175      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1176      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1177      * with radix 16.
1178      * <li>If the property value begins with the ASCII character
1179      * {@code 0} followed by another character, it is parsed as
1180      * an octal integer exactly as by the method {@link
1181      * #valueOf(java.lang.String, int)} with radix 8.
1182      * <li>Otherwise the property value is parsed as a decimal
1183      * integer exactly as by the method
1184      * {@link #valueOf(java.lang.String, int)} with radix 10.
1185      * </ul>
1186      *
1187      * <p>Note that, in every case, neither {@code L}
1188      * ({@code '\u005Cu004C'}) nor {@code l}
1189      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1190      * of the property value as a type indicator, as would be
1191      * permitted in Java programming language source code.
1192      *
1193      * <p>The second argument is the default value. The default value is
1194      * returned if there is no property of the specified name, if the
1195      * property does not have the correct numeric format, or if the
1196      * specified name is empty or {@code null}.
1197      *
1198      * @param   nm   property name.
1199      * @param   val   default value.
1200      * @return  the {@code Long} value of the property.
1201      * @throws  SecurityException for the same reasons as
1202      *          {@link System#getProperty(String) System.getProperty}
1203      * @see     System#getProperty(java.lang.String)
1204      * @see     System#getProperty(java.lang.String, java.lang.String)
1205      */
getLong(String nm, Long val)1206     public static Long getLong(String nm, Long val) {
1207         String v = null;
1208         try {
1209             v = System.getProperty(nm);
1210         } catch (IllegalArgumentException | NullPointerException e) {
1211         }
1212         if (v != null) {
1213             try {
1214                 return Long.decode(v);
1215             } catch (NumberFormatException e) {
1216             }
1217         }
1218         return val;
1219     }
1220 
1221     /**
1222      * Compares two {@code Long} objects numerically.
1223      *
1224      * @param   anotherLong   the {@code Long} to be compared.
1225      * @return  the value {@code 0} if this {@code Long} is
1226      *          equal to the argument {@code Long}; a value less than
1227      *          {@code 0} if this {@code Long} is numerically less
1228      *          than the argument {@code Long}; and a value greater
1229      *          than {@code 0} if this {@code Long} is numerically
1230      *           greater than the argument {@code Long} (signed
1231      *           comparison).
1232      * @since   1.2
1233      */
compareTo(Long anotherLong)1234     public int compareTo(Long anotherLong) {
1235         return compare(this.value, anotherLong.value);
1236     }
1237 
1238     /**
1239      * Compares two {@code long} values numerically.
1240      * The value returned is identical to what would be returned by:
1241      * <pre>
1242      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1243      * </pre>
1244      *
1245      * @param  x the first {@code long} to compare
1246      * @param  y the second {@code long} to compare
1247      * @return the value {@code 0} if {@code x == y};
1248      *         a value less than {@code 0} if {@code x < y}; and
1249      *         a value greater than {@code 0} if {@code x > y}
1250      * @since 1.7
1251      */
compare(long x, long y)1252     public static int compare(long x, long y) {
1253         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1254     }
1255 
1256     /**
1257      * Compares two {@code long} values numerically treating the values
1258      * as unsigned.
1259      *
1260      * @param  x the first {@code long} to compare
1261      * @param  y the second {@code long} to compare
1262      * @return the value {@code 0} if {@code x == y}; a value less
1263      *         than {@code 0} if {@code x < y} as unsigned values; and
1264      *         a value greater than {@code 0} if {@code x > y} as
1265      *         unsigned values
1266      * @since 1.8
1267      */
compareUnsigned(long x, long y)1268     public static int compareUnsigned(long x, long y) {
1269         return compare(x + MIN_VALUE, y + MIN_VALUE);
1270     }
1271 
1272 
1273     /**
1274      * Returns the unsigned quotient of dividing the first argument by
1275      * the second where each argument and the result is interpreted as
1276      * an unsigned value.
1277      *
1278      * <p>Note that in two's complement arithmetic, the three other
1279      * basic arithmetic operations of add, subtract, and multiply are
1280      * bit-wise identical if the two operands are regarded as both
1281      * being signed or both being unsigned.  Therefore separate {@code
1282      * addUnsigned}, etc. methods are not provided.
1283      *
1284      * @param dividend the value to be divided
1285      * @param divisor the value doing the dividing
1286      * @return the unsigned quotient of the first argument divided by
1287      * the second argument
1288      * @see #remainderUnsigned
1289      * @since 1.8
1290      */
divideUnsigned(long dividend, long divisor)1291     public static long divideUnsigned(long dividend, long divisor) {
1292         if (divisor < 0L) { // signed comparison
1293             // Answer must be 0 or 1 depending on relative magnitude
1294             // of dividend and divisor.
1295             return (compareUnsigned(dividend, divisor)) < 0 ? 0L :1L;
1296         }
1297 
1298         if (dividend > 0) //  Both inputs non-negative
1299             return dividend/divisor;
1300         else {
1301             /*
1302              * For simple code, leveraging BigInteger.  Longer and faster
1303              * code written directly in terms of operations on longs is
1304              * possible; see "Hacker's Delight" for divide and remainder
1305              * algorithms.
1306              */
1307             return toUnsignedBigInteger(dividend).
1308                 divide(toUnsignedBigInteger(divisor)).longValue();
1309         }
1310     }
1311 
1312     /**
1313      * Returns the unsigned remainder from dividing the first argument
1314      * by the second where each argument and the result is interpreted
1315      * as an unsigned value.
1316      *
1317      * @param dividend the value to be divided
1318      * @param divisor the value doing the dividing
1319      * @return the unsigned remainder of the first argument divided by
1320      * the second argument
1321      * @see #divideUnsigned
1322      * @since 1.8
1323      */
remainderUnsigned(long dividend, long divisor)1324     public static long remainderUnsigned(long dividend, long divisor) {
1325         if (dividend > 0 && divisor > 0) { // signed comparisons
1326             return dividend % divisor;
1327         } else {
1328             if (compareUnsigned(dividend, divisor) < 0) // Avoid explicit check for 0 divisor
1329                 return dividend;
1330             else
1331                 return toUnsignedBigInteger(dividend).
1332                     remainder(toUnsignedBigInteger(divisor)).longValue();
1333         }
1334     }
1335 
1336     // Bit Twiddling
1337 
1338     /**
1339      * The number of bits used to represent a {@code long} value in two's
1340      * complement binary form.
1341      *
1342      * @since 1.5
1343      */
1344     @Native public static final int SIZE = 64;
1345 
1346     /**
1347      * The number of bytes used to represent a {@code long} value in two's
1348      * complement binary form.
1349      *
1350      * @since 1.8
1351      */
1352     public static final int BYTES = SIZE / Byte.SIZE;
1353 
1354     /**
1355      * Returns a {@code long} value with at most a single one-bit, in the
1356      * position of the highest-order ("leftmost") one-bit in the specified
1357      * {@code long} value.  Returns zero if the specified value has no
1358      * one-bits in its two's complement binary representation, that is, if it
1359      * is equal to zero.
1360      *
1361      * @param i the value whose highest one bit is to be computed
1362      * @return a {@code long} value with a single one-bit, in the position
1363      *     of the highest-order one-bit in the specified value, or zero if
1364      *     the specified value is itself equal to zero.
1365      * @since 1.5
1366      */
highestOneBit(long i)1367     public static long highestOneBit(long i) {
1368         // HD, Figure 3-1
1369         i |= (i >>  1);
1370         i |= (i >>  2);
1371         i |= (i >>  4);
1372         i |= (i >>  8);
1373         i |= (i >> 16);
1374         i |= (i >> 32);
1375         return i - (i >>> 1);
1376     }
1377 
1378     /**
1379      * Returns a {@code long} value with at most a single one-bit, in the
1380      * position of the lowest-order ("rightmost") one-bit in the specified
1381      * {@code long} value.  Returns zero if the specified value has no
1382      * one-bits in its two's complement binary representation, that is, if it
1383      * is equal to zero.
1384      *
1385      * @param i the value whose lowest one bit is to be computed
1386      * @return a {@code long} value with a single one-bit, in the position
1387      *     of the lowest-order one-bit in the specified value, or zero if
1388      *     the specified value is itself equal to zero.
1389      * @since 1.5
1390      */
lowestOneBit(long i)1391     public static long lowestOneBit(long i) {
1392         // HD, Section 2-1
1393         return i & -i;
1394     }
1395 
1396     /**
1397      * Returns the number of zero bits preceding the highest-order
1398      * ("leftmost") one-bit in the two's complement binary representation
1399      * of the specified {@code long} value.  Returns 64 if the
1400      * specified value has no one-bits in its two's complement representation,
1401      * in other words if it is equal to zero.
1402      *
1403      * <p>Note that this method is closely related to the logarithm base 2.
1404      * For all positive {@code long} values x:
1405      * <ul>
1406      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1407      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1408      * </ul>
1409      *
1410      * @param i the value whose number of leading zeros is to be computed
1411      * @return the number of zero bits preceding the highest-order
1412      *     ("leftmost") one-bit in the two's complement binary representation
1413      *     of the specified {@code long} value, or 64 if the value
1414      *     is equal to zero.
1415      * @since 1.5
1416      */
numberOfLeadingZeros(long i)1417     public static int numberOfLeadingZeros(long i) {
1418         // HD, Figure 5-6
1419          if (i == 0)
1420             return 64;
1421         int n = 1;
1422         int x = (int)(i >>> 32);
1423         if (x == 0) { n += 32; x = (int)i; }
1424         if (x >>> 16 == 0) { n += 16; x <<= 16; }
1425         if (x >>> 24 == 0) { n +=  8; x <<=  8; }
1426         if (x >>> 28 == 0) { n +=  4; x <<=  4; }
1427         if (x >>> 30 == 0) { n +=  2; x <<=  2; }
1428         n -= x >>> 31;
1429         return n;
1430     }
1431 
1432     /**
1433      * Returns the number of zero bits following the lowest-order ("rightmost")
1434      * one-bit in the two's complement binary representation of the specified
1435      * {@code long} value.  Returns 64 if the specified value has no
1436      * one-bits in its two's complement representation, in other words if it is
1437      * equal to zero.
1438      *
1439      * @param i the value whose number of trailing zeros is to be computed
1440      * @return the number of zero bits following the lowest-order ("rightmost")
1441      *     one-bit in the two's complement binary representation of the
1442      *     specified {@code long} value, or 64 if the value is equal
1443      *     to zero.
1444      * @since 1.5
1445      */
numberOfTrailingZeros(long i)1446     public static int numberOfTrailingZeros(long i) {
1447         // HD, Figure 5-14
1448         int x, y;
1449         if (i == 0) return 64;
1450         int n = 63;
1451         y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);
1452         y = x <<16; if (y != 0) { n = n -16; x = y; }
1453         y = x << 8; if (y != 0) { n = n - 8; x = y; }
1454         y = x << 4; if (y != 0) { n = n - 4; x = y; }
1455         y = x << 2; if (y != 0) { n = n - 2; x = y; }
1456         return n - ((x << 1) >>> 31);
1457     }
1458 
1459     /**
1460      * Returns the number of one-bits in the two's complement binary
1461      * representation of the specified {@code long} value.  This function is
1462      * sometimes referred to as the <i>population count</i>.
1463      *
1464      * @param i the value whose bits are to be counted
1465      * @return the number of one-bits in the two's complement binary
1466      *     representation of the specified {@code long} value.
1467      * @since 1.5
1468      */
bitCount(long i)1469      public static int bitCount(long i) {
1470         // HD, Figure 5-14
1471         i = i - ((i >>> 1) & 0x5555555555555555L);
1472         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1473         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1474         i = i + (i >>> 8);
1475         i = i + (i >>> 16);
1476         i = i + (i >>> 32);
1477         return (int)i & 0x7f;
1478      }
1479 
1480     /**
1481      * Returns the value obtained by rotating the two's complement binary
1482      * representation of the specified {@code long} value left by the
1483      * specified number of bits.  (Bits shifted out of the left hand, or
1484      * high-order, side reenter on the right, or low-order.)
1485      *
1486      * <p>Note that left rotation with a negative distance is equivalent to
1487      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1488      * distance)}.  Note also that rotation by any multiple of 64 is a
1489      * no-op, so all but the last six bits of the rotation distance can be
1490      * ignored, even if the distance is negative: {@code rotateLeft(val,
1491      * distance) == rotateLeft(val, distance & 0x3F)}.
1492      *
1493      * @param i the value whose bits are to be rotated left
1494      * @param distance the number of bit positions to rotate left
1495      * @return the value obtained by rotating the two's complement binary
1496      *     representation of the specified {@code long} value left by the
1497      *     specified number of bits.
1498      * @since 1.5
1499      */
rotateLeft(long i, int distance)1500     public static long rotateLeft(long i, int distance) {
1501         return (i << distance) | (i >>> -distance);
1502     }
1503 
1504     /**
1505      * Returns the value obtained by rotating the two's complement binary
1506      * representation of the specified {@code long} value right by the
1507      * specified number of bits.  (Bits shifted out of the right hand, or
1508      * low-order, side reenter on the left, or high-order.)
1509      *
1510      * <p>Note that right rotation with a negative distance is equivalent to
1511      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1512      * distance)}.  Note also that rotation by any multiple of 64 is a
1513      * no-op, so all but the last six bits of the rotation distance can be
1514      * ignored, even if the distance is negative: {@code rotateRight(val,
1515      * distance) == rotateRight(val, distance & 0x3F)}.
1516      *
1517      * @param i the value whose bits are to be rotated right
1518      * @param distance the number of bit positions to rotate right
1519      * @return the value obtained by rotating the two's complement binary
1520      *     representation of the specified {@code long} value right by the
1521      *     specified number of bits.
1522      * @since 1.5
1523      */
rotateRight(long i, int distance)1524     public static long rotateRight(long i, int distance) {
1525         return (i >>> distance) | (i << -distance);
1526     }
1527 
1528     /**
1529      * Returns the value obtained by reversing the order of the bits in the
1530      * two's complement binary representation of the specified {@code long}
1531      * value.
1532      *
1533      * @param i the value to be reversed
1534      * @return the value obtained by reversing order of the bits in the
1535      *     specified {@code long} value.
1536      * @since 1.5
1537      */
reverse(long i)1538     public static long reverse(long i) {
1539         // HD, Figure 7-1
1540         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1541         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1542         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1543         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1544         i = (i << 48) | ((i & 0xffff0000L) << 16) |
1545             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1546         return i;
1547     }
1548 
1549     /**
1550      * Returns the signum function of the specified {@code long} value.  (The
1551      * return value is -1 if the specified value is negative; 0 if the
1552      * specified value is zero; and 1 if the specified value is positive.)
1553      *
1554      * @param i the value whose signum is to be computed
1555      * @return the signum function of the specified {@code long} value.
1556      * @since 1.5
1557      */
signum(long i)1558     public static int signum(long i) {
1559         // HD, Section 2-7
1560         return (int) ((i >> 63) | (-i >>> 63));
1561     }
1562 
1563     /**
1564      * Returns the value obtained by reversing the order of the bytes in the
1565      * two's complement representation of the specified {@code long} value.
1566      *
1567      * @param i the value whose bytes are to be reversed
1568      * @return the value obtained by reversing the bytes in the specified
1569      *     {@code long} value.
1570      * @since 1.5
1571      */
reverseBytes(long i)1572     public static long reverseBytes(long i) {
1573         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1574         return (i << 48) | ((i & 0xffff0000L) << 16) |
1575             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1576     }
1577 
1578     /**
1579      * Adds two {@code long} values together as per the + operator.
1580      *
1581      * @param a the first operand
1582      * @param b the second operand
1583      * @return the sum of {@code a} and {@code b}
1584      * @see java.util.function.BinaryOperator
1585      * @since 1.8
1586      */
sum(long a, long b)1587     public static long sum(long a, long b) {
1588         return a + b;
1589     }
1590 
1591     /**
1592      * Returns the greater of two {@code long} values
1593      * as if by calling {@link Math#max(long, long) Math.max}.
1594      *
1595      * @param a the first operand
1596      * @param b the second operand
1597      * @return the greater of {@code a} and {@code b}
1598      * @see java.util.function.BinaryOperator
1599      * @since 1.8
1600      */
max(long a, long b)1601     public static long max(long a, long b) {
1602         return Math.max(a, b);
1603     }
1604 
1605     /**
1606      * Returns the smaller of two {@code long} values
1607      * as if by calling {@link Math#min(long, long) Math.min}.
1608      *
1609      * @param a the first operand
1610      * @param b the second operand
1611      * @return the smaller of {@code a} and {@code b}
1612      * @see java.util.function.BinaryOperator
1613      * @since 1.8
1614      */
min(long a, long b)1615     public static long min(long a, long b) {
1616         return Math.min(a, b);
1617     }
1618 
1619     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1620     @Native private static final long serialVersionUID = 4290774380558885855L;
1621 }
1622