1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.  Oracle designates this
9  * particular file as subject to the "Classpath" exception as provided
10  * by Oracle in the LICENSE file that accompanied this code.
11  *
12  * This code is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  * version 2 for more details (a copy is included in the LICENSE file that
16  * accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License version
19  * 2 along with this work; if not, write to the Free Software Foundation,
20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23  * or visit www.oracle.com if you need additional information or have any
24  * questions.
25  */
26 
27 package java.lang;
28 import dalvik.annotation.optimization.FastNative;
29 import java.util.Random;
30 
31 import sun.misc.FloatConsts;
32 import sun.misc.DoubleConsts;
33 
34 /**
35  * The class {@code Math} contains methods for performing basic
36  * numeric operations such as the elementary exponential, logarithm,
37  * square root, and trigonometric functions.
38  *
39  * <p>Unlike some of the numeric methods of class
40  * {@code StrictMath}, all implementations of the equivalent
41  * functions of class {@code Math} are not defined to return the
42  * bit-for-bit same results.  This relaxation permits
43  * better-performing implementations where strict reproducibility is
44  * not required.
45  *
46  * <p>By default many of the {@code Math} methods simply call
47  * the equivalent method in {@code StrictMath} for their
48  * implementation.  Code generators are encouraged to use
49  * platform-specific native libraries or microprocessor instructions,
50  * where available, to provide higher-performance implementations of
51  * {@code Math} methods.  Such higher-performance
52  * implementations still must conform to the specification for
53  * {@code Math}.
54  *
55  * <p>The quality of implementation specifications concern two
56  * properties, accuracy of the returned result and monotonicity of the
57  * method.  Accuracy of the floating-point {@code Math} methods is
58  * measured in terms of <i>ulps</i>, units in the last place.  For a
59  * given floating-point format, an {@linkplain #ulp(double) ulp} of a
60  * specific real number value is the distance between the two
61  * floating-point values bracketing that numerical value.  When
62  * discussing the accuracy of a method as a whole rather than at a
63  * specific argument, the number of ulps cited is for the worst-case
64  * error at any argument.  If a method always has an error less than
65  * 0.5 ulps, the method always returns the floating-point number
66  * nearest the exact result; such a method is <i>correctly
67  * rounded</i>.  A correctly rounded method is generally the best a
68  * floating-point approximation can be; however, it is impractical for
69  * many floating-point methods to be correctly rounded.  Instead, for
70  * the {@code Math} class, a larger error bound of 1 or 2 ulps is
71  * allowed for certain methods.  Informally, with a 1 ulp error bound,
72  * when the exact result is a representable number, the exact result
73  * should be returned as the computed result; otherwise, either of the
74  * two floating-point values which bracket the exact result may be
75  * returned.  For exact results large in magnitude, one of the
76  * endpoints of the bracket may be infinite.  Besides accuracy at
77  * individual arguments, maintaining proper relations between the
78  * method at different arguments is also important.  Therefore, most
79  * methods with more than 0.5 ulp errors are required to be
80  * <i>semi-monotonic</i>: whenever the mathematical function is
81  * non-decreasing, so is the floating-point approximation, likewise,
82  * whenever the mathematical function is non-increasing, so is the
83  * floating-point approximation.  Not all approximations that have 1
84  * ulp accuracy will automatically meet the monotonicity requirements.
85  *
86  * <p>
87  * The platform uses signed two's complement integer arithmetic with
88  * int and long primitive types.  The developer should choose
89  * the primitive type to ensure that arithmetic operations consistently
90  * produce correct results, which in some cases means the operations
91  * will not overflow the range of values of the computation.
92  * The best practice is to choose the primitive type and algorithm to avoid
93  * overflow. In cases where the size is {@code int} or {@code long} and
94  * overflow errors need to be detected, the methods {@code addExact},
95  * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact}
96  * throw an {@code ArithmeticException} when the results overflow.
97  * For other arithmetic operations such as divide, absolute value,
98  * increment, decrement, and negation overflow occurs only with
99  * a specific minimum or maximum value and should be checked against
100  * the minimum or maximum as appropriate.
101  *
102  * @author  unascribed
103  * @author  Joseph D. Darcy
104  * @since   JDK1.0
105  */
106 
107 public final class Math {
108 
109     /**
110      * Don't let anyone instantiate this class.
111      */
Math()112     private Math() {}
113 
114     /**
115      * The {@code double} value that is closer than any other to
116      * <i>e</i>, the base of the natural logarithms.
117      */
118     public static final double E = 2.7182818284590452354;
119 
120     /**
121      * The {@code double} value that is closer than any other to
122      * <i>pi</i>, the ratio of the circumference of a circle to its
123      * diameter.
124      */
125     public static final double PI = 3.14159265358979323846;
126 
127     /**
128      * Returns the trigonometric sine of an angle.  Special cases:
129      * <ul><li>If the argument is NaN or an infinity, then the
130      * result is NaN.
131      * <li>If the argument is zero, then the result is a zero with the
132      * same sign as the argument.</ul>
133      *
134      * <p>The computed result must be within 1 ulp of the exact result.
135      * Results must be semi-monotonic.
136      *
137      * @param   a   an angle, in radians.
138      * @return  the sine of the argument.
139      */
140     @FastNative
sin(double a)141     public static native double sin(double a);
142 
143     /**
144      * Returns the trigonometric cosine of an angle. Special cases:
145      * <ul><li>If the argument is NaN or an infinity, then the
146      * result is NaN.</ul>
147      *
148      * <p>The computed result must be within 1 ulp of the exact result.
149      * Results must be semi-monotonic.
150      *
151      * @param   a   an angle, in radians.
152      * @return  the cosine of the argument.
153      */
154     @FastNative
cos(double a)155     public static native double cos(double a);
156 
157     /**
158      * Returns the trigonometric tangent of an angle.  Special cases:
159      * <ul><li>If the argument is NaN or an infinity, then the result
160      * is NaN.
161      * <li>If the argument is zero, then the result is a zero with the
162      * same sign as the argument.</ul>
163      *
164      * <p>The computed result must be within 1 ulp of the exact result.
165      * Results must be semi-monotonic.
166      *
167      * @param   a   an angle, in radians.
168      * @return  the tangent of the argument.
169      */
170     @FastNative
tan(double a)171     public static native double tan(double a);
172 
173     /**
174      * Returns the arc sine of a value; the returned angle is in the
175      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
176      * <ul><li>If the argument is NaN or its absolute value is greater
177      * than 1, then the result is NaN.
178      * <li>If the argument is zero, then the result is a zero with the
179      * same sign as the argument.</ul>
180      *
181      * <p>The computed result must be within 1 ulp of the exact result.
182      * Results must be semi-monotonic.
183      *
184      * @param   a   the value whose arc sine is to be returned.
185      * @return  the arc sine of the argument.
186      */
187     @FastNative
asin(double a)188     public static native double asin(double a);
189 
190     /**
191      * Returns the arc cosine of a value; the returned angle is in the
192      * range 0.0 through <i>pi</i>.  Special case:
193      * <ul><li>If the argument is NaN or its absolute value is greater
194      * than 1, then the result is NaN.</ul>
195      *
196      * <p>The computed result must be within 1 ulp of the exact result.
197      * Results must be semi-monotonic.
198      *
199      * @param   a   the value whose arc cosine is to be returned.
200      * @return  the arc cosine of the argument.
201      */
202     @FastNative
acos(double a)203     public static native double acos(double a);
204 
205     /**
206      * Returns the arc tangent of a value; the returned angle is in the
207      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
208      * <ul><li>If the argument is NaN, then the result is NaN.
209      * <li>If the argument is zero, then the result is a zero with the
210      * same sign as the argument.</ul>
211      *
212      * <p>The computed result must be within 1 ulp of the exact result.
213      * Results must be semi-monotonic.
214      *
215      * @param   a   the value whose arc tangent is to be returned.
216      * @return  the arc tangent of the argument.
217      */
218     @FastNative
atan(double a)219     public static native double atan(double a);
220 
221     /**
222      * Converts an angle measured in degrees to an approximately
223      * equivalent angle measured in radians.  The conversion from
224      * degrees to radians is generally inexact.
225      *
226      * @param   angdeg   an angle, in degrees
227      * @return  the measurement of the angle {@code angdeg}
228      *          in radians.
229      * @since   1.2
230      */
toRadians(double angdeg)231     public static double toRadians(double angdeg) {
232         return angdeg / 180.0 * PI;
233     }
234 
235     /**
236      * Converts an angle measured in radians to an approximately
237      * equivalent angle measured in degrees.  The conversion from
238      * radians to degrees is generally inexact; users should
239      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
240      * equal {@code 0.0}.
241      *
242      * @param   angrad   an angle, in radians
243      * @return  the measurement of the angle {@code angrad}
244      *          in degrees.
245      * @since   1.2
246      */
toDegrees(double angrad)247     public static double toDegrees(double angrad) {
248         return angrad * 180.0 / PI;
249     }
250 
251     /**
252      * Returns Euler's number <i>e</i> raised to the power of a
253      * {@code double} value.  Special cases:
254      * <ul><li>If the argument is NaN, the result is NaN.
255      * <li>If the argument is positive infinity, then the result is
256      * positive infinity.
257      * <li>If the argument is negative infinity, then the result is
258      * positive zero.</ul>
259      *
260      * <p>The computed result must be within 1 ulp of the exact result.
261      * Results must be semi-monotonic.
262      *
263      * @param   a   the exponent to raise <i>e</i> to.
264      * @return  the value <i>e</i><sup>{@code a}</sup>,
265      *          where <i>e</i> is the base of the natural logarithms.
266      */
267     @FastNative
exp(double a)268     public static native double exp(double a);
269 
270     /**
271      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
272      * value.  Special cases:
273      * <ul><li>If the argument is NaN or less than zero, then the result
274      * is NaN.
275      * <li>If the argument is positive infinity, then the result is
276      * positive infinity.
277      * <li>If the argument is positive zero or negative zero, then the
278      * result is negative infinity.</ul>
279      *
280      * <p>The computed result must be within 1 ulp of the exact result.
281      * Results must be semi-monotonic.
282      *
283      * @param   a   a value
284      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
285      *          {@code a}.
286      */
287     @FastNative
log(double a)288     public static native double log(double a);
289 
290     /**
291      * Returns the base 10 logarithm of a {@code double} value.
292      * Special cases:
293      *
294      * <ul><li>If the argument is NaN or less than zero, then the result
295      * is NaN.
296      * <li>If the argument is positive infinity, then the result is
297      * positive infinity.
298      * <li>If the argument is positive zero or negative zero, then the
299      * result is negative infinity.
300      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
301      * integer <i>n</i>, then the result is <i>n</i>.
302      * </ul>
303      *
304      * <p>The computed result must be within 1 ulp of the exact result.
305      * Results must be semi-monotonic.
306      *
307      * @param   a   a value
308      * @return  the base 10 logarithm of  {@code a}.
309      * @since 1.5
310      */
311     @FastNative
log10(double a)312     public static native double log10(double a);
313 
314     /**
315      * Returns the correctly rounded positive square root of a
316      * {@code double} value.
317      * Special cases:
318      * <ul><li>If the argument is NaN or less than zero, then the result
319      * is NaN.
320      * <li>If the argument is positive infinity, then the result is positive
321      * infinity.
322      * <li>If the argument is positive zero or negative zero, then the
323      * result is the same as the argument.</ul>
324      * Otherwise, the result is the {@code double} value closest to
325      * the true mathematical square root of the argument value.
326      *
327      * @param   a   a value.
328      * @return  the positive square root of {@code a}.
329      *          If the argument is NaN or less than zero, the result is NaN.
330      */
331     @FastNative
sqrt(double a)332     public static native double sqrt(double a);
333 
334 
335     /**
336      * Returns the cube root of a {@code double} value.  For
337      * positive finite {@code x}, {@code cbrt(-x) ==
338      * -cbrt(x)}; that is, the cube root of a negative value is
339      * the negative of the cube root of that value's magnitude.
340      *
341      * Special cases:
342      *
343      * <ul>
344      *
345      * <li>If the argument is NaN, then the result is NaN.
346      *
347      * <li>If the argument is infinite, then the result is an infinity
348      * with the same sign as the argument.
349      *
350      * <li>If the argument is zero, then the result is a zero with the
351      * same sign as the argument.
352      *
353      * </ul>
354      *
355      * <p>The computed result must be within 1 ulp of the exact result.
356      *
357      * @param   a   a value.
358      * @return  the cube root of {@code a}.
359      * @since 1.5
360      */
361     @FastNative
cbrt(double a)362     public static native double cbrt(double a);
363 
364     /**
365      * Computes the remainder operation on two arguments as prescribed
366      * by the IEEE 754 standard.
367      * The remainder value is mathematically equal to
368      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
369      * where <i>n</i> is the mathematical integer closest to the exact
370      * mathematical value of the quotient {@code f1/f2}, and if two
371      * mathematical integers are equally close to {@code f1/f2},
372      * then <i>n</i> is the integer that is even. If the remainder is
373      * zero, its sign is the same as the sign of the first argument.
374      * Special cases:
375      * <ul><li>If either argument is NaN, or the first argument is infinite,
376      * or the second argument is positive zero or negative zero, then the
377      * result is NaN.
378      * <li>If the first argument is finite and the second argument is
379      * infinite, then the result is the same as the first argument.</ul>
380      *
381      * @param   f1   the dividend.
382      * @param   f2   the divisor.
383      * @return  the remainder when {@code f1} is divided by
384      *          {@code f2}.
385      */
386     @FastNative
IEEEremainder(double f1, double f2)387     public static native double IEEEremainder(double f1, double f2);
388 
389     /**
390      * Returns the smallest (closest to negative infinity)
391      * {@code double} value that is greater than or equal to the
392      * argument and is equal to a mathematical integer. Special cases:
393      * <ul><li>If the argument value is already equal to a
394      * mathematical integer, then the result is the same as the
395      * argument.  <li>If the argument is NaN or an infinity or
396      * positive zero or negative zero, then the result is the same as
397      * the argument.  <li>If the argument value is less than zero but
398      * greater than -1.0, then the result is negative zero.</ul> Note
399      * that the value of {@code Math.ceil(x)} is exactly the
400      * value of {@code -Math.floor(-x)}.
401      *
402      *
403      * @param   a   a value.
404      * @return  the smallest (closest to negative infinity)
405      *          floating-point value that is greater than or equal to
406      *          the argument and is equal to a mathematical integer.
407      */
408     @FastNative
ceil(double a)409     public static native double ceil(double a);
410 
411     /**
412      * Returns the largest (closest to positive infinity)
413      * {@code double} value that is less than or equal to the
414      * argument and is equal to a mathematical integer. Special cases:
415      * <ul><li>If the argument value is already equal to a
416      * mathematical integer, then the result is the same as the
417      * argument.  <li>If the argument is NaN or an infinity or
418      * positive zero or negative zero, then the result is the same as
419      * the argument.</ul>
420      *
421      * @param   a   a value.
422      * @return  the largest (closest to positive infinity)
423      *          floating-point value that less than or equal to the argument
424      *          and is equal to a mathematical integer.
425      */
426     @FastNative
floor(double a)427     public static native double floor(double a);
428 
429     /**
430      * Returns the {@code double} value that is closest in value
431      * to the argument and is equal to a mathematical integer. If two
432      * {@code double} values that are mathematical integers are
433      * equally close, the result is the integer value that is
434      * even. Special cases:
435      * <ul><li>If the argument value is already equal to a mathematical
436      * integer, then the result is the same as the argument.
437      * <li>If the argument is NaN or an infinity or positive zero or negative
438      * zero, then the result is the same as the argument.</ul>
439      *
440      * @param   a   a {@code double} value.
441      * @return  the closest floating-point value to {@code a} that is
442      *          equal to a mathematical integer.
443      */
444     @FastNative
rint(double a)445     public static native double rint(double a);
446 
447     /**
448      * Returns the angle <i>theta</i> from the conversion of rectangular
449      * coordinates ({@code x},&nbsp;{@code y}) to polar
450      * coordinates (r,&nbsp;<i>theta</i>).
451      * This method computes the phase <i>theta</i> by computing an arc tangent
452      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
453      * cases:
454      * <ul><li>If either argument is NaN, then the result is NaN.
455      * <li>If the first argument is positive zero and the second argument
456      * is positive, or the first argument is positive and finite and the
457      * second argument is positive infinity, then the result is positive
458      * zero.
459      * <li>If the first argument is negative zero and the second argument
460      * is positive, or the first argument is negative and finite and the
461      * second argument is positive infinity, then the result is negative zero.
462      * <li>If the first argument is positive zero and the second argument
463      * is negative, or the first argument is positive and finite and the
464      * second argument is negative infinity, then the result is the
465      * {@code double} value closest to <i>pi</i>.
466      * <li>If the first argument is negative zero and the second argument
467      * is negative, or the first argument is negative and finite and the
468      * second argument is negative infinity, then the result is the
469      * {@code double} value closest to -<i>pi</i>.
470      * <li>If the first argument is positive and the second argument is
471      * positive zero or negative zero, or the first argument is positive
472      * infinity and the second argument is finite, then the result is the
473      * {@code double} value closest to <i>pi</i>/2.
474      * <li>If the first argument is negative and the second argument is
475      * positive zero or negative zero, or the first argument is negative
476      * infinity and the second argument is finite, then the result is the
477      * {@code double} value closest to -<i>pi</i>/2.
478      * <li>If both arguments are positive infinity, then the result is the
479      * {@code double} value closest to <i>pi</i>/4.
480      * <li>If the first argument is positive infinity and the second argument
481      * is negative infinity, then the result is the {@code double}
482      * value closest to 3*<i>pi</i>/4.
483      * <li>If the first argument is negative infinity and the second argument
484      * is positive infinity, then the result is the {@code double} value
485      * closest to -<i>pi</i>/4.
486      * <li>If both arguments are negative infinity, then the result is the
487      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
488      *
489      * <p>The computed result must be within 2 ulps of the exact result.
490      * Results must be semi-monotonic.
491      *
492      * @param   y   the ordinate coordinate
493      * @param   x   the abscissa coordinate
494      * @return  the <i>theta</i> component of the point
495      *          (<i>r</i>,&nbsp;<i>theta</i>)
496      *          in polar coordinates that corresponds to the point
497      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
498      */
499     @FastNative
atan2(double y, double x)500     public static native double atan2(double y, double x);
501 
502     /**
503      * Returns the value of the first argument raised to the power of the
504      * second argument. Special cases:
505      *
506      * <ul><li>If the second argument is positive or negative zero, then the
507      * result is 1.0.
508      * <li>If the second argument is 1.0, then the result is the same as the
509      * first argument.
510      * <li>If the second argument is NaN, then the result is NaN.
511      * <li>If the first argument is NaN and the second argument is nonzero,
512      * then the result is NaN.
513      *
514      * <li>If
515      * <ul>
516      * <li>the absolute value of the first argument is greater than 1
517      * and the second argument is positive infinity, or
518      * <li>the absolute value of the first argument is less than 1 and
519      * the second argument is negative infinity,
520      * </ul>
521      * then the result is positive infinity.
522      *
523      * <li>If
524      * <ul>
525      * <li>the absolute value of the first argument is greater than 1 and
526      * the second argument is negative infinity, or
527      * <li>the absolute value of the
528      * first argument is less than 1 and the second argument is positive
529      * infinity,
530      * </ul>
531      * then the result is positive zero.
532      *
533      * <li>If the absolute value of the first argument equals 1 and the
534      * second argument is infinite, then the result is NaN.
535      *
536      * <li>If
537      * <ul>
538      * <li>the first argument is positive zero and the second argument
539      * is greater than zero, or
540      * <li>the first argument is positive infinity and the second
541      * argument is less than zero,
542      * </ul>
543      * then the result is positive zero.
544      *
545      * <li>If
546      * <ul>
547      * <li>the first argument is positive zero and the second argument
548      * is less than zero, or
549      * <li>the first argument is positive infinity and the second
550      * argument is greater than zero,
551      * </ul>
552      * then the result is positive infinity.
553      *
554      * <li>If
555      * <ul>
556      * <li>the first argument is negative zero and the second argument
557      * is greater than zero but not a finite odd integer, or
558      * <li>the first argument is negative infinity and the second
559      * argument is less than zero but not a finite odd integer,
560      * </ul>
561      * then the result is positive zero.
562      *
563      * <li>If
564      * <ul>
565      * <li>the first argument is negative zero and the second argument
566      * is a positive finite odd integer, or
567      * <li>the first argument is negative infinity and the second
568      * argument is a negative finite odd integer,
569      * </ul>
570      * then the result is negative zero.
571      *
572      * <li>If
573      * <ul>
574      * <li>the first argument is negative zero and the second argument
575      * is less than zero but not a finite odd integer, or
576      * <li>the first argument is negative infinity and the second
577      * argument is greater than zero but not a finite odd integer,
578      * </ul>
579      * then the result is positive infinity.
580      *
581      * <li>If
582      * <ul>
583      * <li>the first argument is negative zero and the second argument
584      * is a negative finite odd integer, or
585      * <li>the first argument is negative infinity and the second
586      * argument is a positive finite odd integer,
587      * </ul>
588      * then the result is negative infinity.
589      *
590      * <li>If the first argument is finite and less than zero
591      * <ul>
592      * <li> if the second argument is a finite even integer, the
593      * result is equal to the result of raising the absolute value of
594      * the first argument to the power of the second argument
595      *
596      * <li>if the second argument is a finite odd integer, the result
597      * is equal to the negative of the result of raising the absolute
598      * value of the first argument to the power of the second
599      * argument
600      *
601      * <li>if the second argument is finite and not an integer, then
602      * the result is NaN.
603      * </ul>
604      *
605      * <li>If both arguments are integers, then the result is exactly equal
606      * to the mathematical result of raising the first argument to the power
607      * of the second argument if that result can in fact be represented
608      * exactly as a {@code double} value.</ul>
609      *
610      * <p>(In the foregoing descriptions, a floating-point value is
611      * considered to be an integer if and only if it is finite and a
612      * fixed point of the method {@link #ceil ceil} or,
613      * equivalently, a fixed point of the method {@link #floor
614      * floor}. A value is a fixed point of a one-argument
615      * method if and only if the result of applying the method to the
616      * value is equal to the value.)
617      *
618      * <p>The computed result must be within 1 ulp of the exact result.
619      * Results must be semi-monotonic.
620      *
621      * @param   a   the base.
622      * @param   b   the exponent.
623      * @return  the value {@code a}<sup>{@code b}</sup>.
624      */
625     @FastNative
pow(double a, double b)626     public static native double pow(double a, double b);
627 
628     /**
629      * Returns the closest {@code int} to the argument, with ties
630      * rounding to positive infinity.
631      *
632      * <p>
633      * Special cases:
634      * <ul><li>If the argument is NaN, the result is 0.
635      * <li>If the argument is negative infinity or any value less than or
636      * equal to the value of {@code Integer.MIN_VALUE}, the result is
637      * equal to the value of {@code Integer.MIN_VALUE}.
638      * <li>If the argument is positive infinity or any value greater than or
639      * equal to the value of {@code Integer.MAX_VALUE}, the result is
640      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
641      *
642      * @param   a   a floating-point value to be rounded to an integer.
643      * @return  the value of the argument rounded to the nearest
644      *          {@code int} value.
645      * @see     java.lang.Integer#MAX_VALUE
646      * @see     java.lang.Integer#MIN_VALUE
647      */
round(float a)648     public static int round(float a) {
649         int intBits = Float.floatToRawIntBits(a);
650         int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK)
651                 >> (FloatConsts.SIGNIFICAND_WIDTH - 1);
652         int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2
653                 + FloatConsts.EXP_BIAS) - biasedExp;
654         if ((shift & -32) == 0) { // shift >= 0 && shift < 32
655             // a is a finite number such that pow(2,-32) <= ulp(a) < 1
656             int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK)
657                     | (FloatConsts.SIGNIF_BIT_MASK + 1));
658             if (intBits < 0) {
659                 r = -r;
660             }
661             // In the comments below each Java expression evaluates to the value
662             // the corresponding mathematical expression:
663             // (r) evaluates to a / ulp(a)
664             // (r >> shift) evaluates to floor(a * 2)
665             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
666             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
667             return ((r >> shift) + 1) >> 1;
668         } else {
669             // a is either
670             // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2
671             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
672             // - an infinity or NaN
673             return (int) a;
674         }
675     }
676 
677     /**
678      * Returns the closest {@code long} to the argument, with ties
679      * rounding to positive infinity.
680      *
681      * <p>Special cases:
682      * <ul><li>If the argument is NaN, the result is 0.
683      * <li>If the argument is negative infinity or any value less than or
684      * equal to the value of {@code Long.MIN_VALUE}, the result is
685      * equal to the value of {@code Long.MIN_VALUE}.
686      * <li>If the argument is positive infinity or any value greater than or
687      * equal to the value of {@code Long.MAX_VALUE}, the result is
688      * equal to the value of {@code Long.MAX_VALUE}.</ul>
689      *
690      * @param   a   a floating-point value to be rounded to a
691      *          {@code long}.
692      * @return  the value of the argument rounded to the nearest
693      *          {@code long} value.
694      * @see     java.lang.Long#MAX_VALUE
695      * @see     java.lang.Long#MIN_VALUE
696      */
round(double a)697     public static long round(double a) {
698         long longBits = Double.doubleToRawLongBits(a);
699         long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK)
700                 >> (DoubleConsts.SIGNIFICAND_WIDTH - 1);
701         long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2
702                 + DoubleConsts.EXP_BIAS) - biasedExp;
703         if ((shift & -64) == 0) { // shift >= 0 && shift < 64
704             // a is a finite number such that pow(2,-64) <= ulp(a) < 1
705             long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK)
706                     | (DoubleConsts.SIGNIF_BIT_MASK + 1));
707             if (longBits < 0) {
708                 r = -r;
709             }
710             // In the comments below each Java expression evaluates to the value
711             // the corresponding mathematical expression:
712             // (r) evaluates to a / ulp(a)
713             // (r >> shift) evaluates to floor(a * 2)
714             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
715             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
716             return ((r >> shift) + 1) >> 1;
717         } else {
718             // a is either
719             // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2
720             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
721             // - an infinity or NaN
722             return (long) a;
723         }
724     }
725 
726     private static final class RandomNumberGeneratorHolder {
727         static final Random randomNumberGenerator = new Random();
728     }
729 
730     /**
731      * Returns a {@code double} value with a positive sign, greater
732      * than or equal to {@code 0.0} and less than {@code 1.0}.
733      * Returned values are chosen pseudorandomly with (approximately)
734      * uniform distribution from that range.
735      *
736      * <p>When this method is first called, it creates a single new
737      * pseudorandom-number generator, exactly as if by the expression
738      *
739      * <blockquote>{@code new java.util.Random()}</blockquote>
740      *
741      * This new pseudorandom-number generator is used thereafter for
742      * all calls to this method and is used nowhere else.
743      *
744      * <p>This method is properly synchronized to allow correct use by
745      * more than one thread. However, if many threads need to generate
746      * pseudorandom numbers at a great rate, it may reduce contention
747      * for each thread to have its own pseudorandom-number generator.
748      *
749      * @return  a pseudorandom {@code double} greater than or equal
750      * to {@code 0.0} and less than {@code 1.0}.
751      * @see Random#nextDouble()
752      */
random()753     public static double random() {
754         return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();
755     }
756 
757     /**
758      * Set the seed for the pseudo random generator used by {@link #random()}
759      * and {@link #randomIntInternal()}.
760      *
761      * @hide for internal use only.
762      */
setRandomSeedInternal(long seed)763     public static void setRandomSeedInternal(long seed) {
764         RandomNumberGeneratorHolder.randomNumberGenerator.setSeed(seed);
765     }
766 
767     /**
768      * @hide for internal use only.
769      */
randomIntInternal()770     public static int randomIntInternal() {
771         return RandomNumberGeneratorHolder.randomNumberGenerator.nextInt();
772     }
773 
774     /**
775      * @hide for internal use only.
776      */
randomLongInternal()777     public static long randomLongInternal() {
778         return RandomNumberGeneratorHolder.randomNumberGenerator.nextLong();
779     }
780 
781     /**
782      * Returns the sum of its arguments,
783      * throwing an exception if the result overflows an {@code int}.
784      *
785      * @param x the first value
786      * @param y the second value
787      * @return the result
788      * @throws ArithmeticException if the result overflows an int
789      * @since 1.8
790      */
addExact(int x, int y)791     public static int addExact(int x, int y) {
792         int r = x + y;
793         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
794         if (((x ^ r) & (y ^ r)) < 0) {
795             throw new ArithmeticException("integer overflow");
796         }
797         return r;
798     }
799 
800     /**
801      * Returns the sum of its arguments,
802      * throwing an exception if the result overflows a {@code long}.
803      *
804      * @param x the first value
805      * @param y the second value
806      * @return the result
807      * @throws ArithmeticException if the result overflows a long
808      * @since 1.8
809      */
addExact(long x, long y)810     public static long addExact(long x, long y) {
811         long r = x + y;
812         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
813         if (((x ^ r) & (y ^ r)) < 0) {
814             throw new ArithmeticException("long overflow");
815         }
816         return r;
817     }
818 
819     /**
820      * Returns the difference of the arguments,
821      * throwing an exception if the result overflows an {@code int}.
822      *
823      * @param x the first value
824      * @param y the second value to subtract from the first
825      * @return the result
826      * @throws ArithmeticException if the result overflows an int
827      * @since 1.8
828      */
subtractExact(int x, int y)829     public static int subtractExact(int x, int y) {
830         int r = x - y;
831         // HD 2-12 Overflow iff the arguments have different signs and
832         // the sign of the result is different than the sign of x
833         if (((x ^ y) & (x ^ r)) < 0) {
834             throw new ArithmeticException("integer overflow");
835         }
836         return r;
837     }
838 
839     /**
840      * Returns the difference of the arguments,
841      * throwing an exception if the result overflows a {@code long}.
842      *
843      * @param x the first value
844      * @param y the second value to subtract from the first
845      * @return the result
846      * @throws ArithmeticException if the result overflows a long
847      * @since 1.8
848      */
subtractExact(long x, long y)849     public static long subtractExact(long x, long y) {
850         long r = x - y;
851         // HD 2-12 Overflow iff the arguments have different signs and
852         // the sign of the result is different than the sign of x
853         if (((x ^ y) & (x ^ r)) < 0) {
854             throw new ArithmeticException("long overflow");
855         }
856         return r;
857     }
858 
859     /**
860      * Returns the product of the arguments,
861      * throwing an exception if the result overflows an {@code int}.
862      *
863      * @param x the first value
864      * @param y the second value
865      * @return the result
866      * @throws ArithmeticException if the result overflows an int
867      * @since 1.8
868      */
multiplyExact(int x, int y)869     public static int multiplyExact(int x, int y) {
870         long r = (long)x * (long)y;
871         if ((int)r != r) {
872             throw new ArithmeticException("integer overflow");
873         }
874         return (int)r;
875     }
876 
877     /**
878      * Returns the product of the arguments,
879      * throwing an exception if the result overflows a {@code long}.
880      *
881      * @param x the first value
882      * @param y the second value
883      * @return the result
884      * @throws ArithmeticException if the result overflows a long
885      * @since 1.8
886      */
multiplyExact(long x, long y)887     public static long multiplyExact(long x, long y) {
888         long r = x * y;
889         long ax = Math.abs(x);
890         long ay = Math.abs(y);
891         if (((ax | ay) >>> 31 != 0)) {
892             // Some bits greater than 2^31 that might cause overflow
893             // Check the result using the divide operator
894             // and check for the special case of Long.MIN_VALUE * -1
895            if (((y != 0) && (r / y != x)) ||
896                (x == Long.MIN_VALUE && y == -1)) {
897                 throw new ArithmeticException("long overflow");
898             }
899         }
900         return r;
901     }
902 
903     /**
904      * Returns the argument incremented by one, throwing an exception if the
905      * result overflows an {@code int}.
906      *
907      * @param a the value to increment
908      * @return the result
909      * @throws ArithmeticException if the result overflows an int
910      * @since 1.8
911      */
incrementExact(int a)912     public static int incrementExact(int a) {
913         if (a == Integer.MAX_VALUE) {
914             throw new ArithmeticException("integer overflow");
915         }
916 
917         return a + 1;
918     }
919 
920     /**
921      * Returns the argument incremented by one, throwing an exception if the
922      * result overflows a {@code long}.
923      *
924      * @param a the value to increment
925      * @return the result
926      * @throws ArithmeticException if the result overflows a long
927      * @since 1.8
928      */
incrementExact(long a)929     public static long incrementExact(long a) {
930         if (a == Long.MAX_VALUE) {
931             throw new ArithmeticException("long overflow");
932         }
933 
934         return a + 1L;
935     }
936 
937     /**
938      * Returns the argument decremented by one, throwing an exception if the
939      * result overflows an {@code int}.
940      *
941      * @param a the value to decrement
942      * @return the result
943      * @throws ArithmeticException if the result overflows an int
944      * @since 1.8
945      */
decrementExact(int a)946     public static int decrementExact(int a) {
947         if (a == Integer.MIN_VALUE) {
948             throw new ArithmeticException("integer overflow");
949         }
950 
951         return a - 1;
952     }
953 
954     /**
955      * Returns the argument decremented by one, throwing an exception if the
956      * result overflows a {@code long}.
957      *
958      * @param a the value to decrement
959      * @return the result
960      * @throws ArithmeticException if the result overflows a long
961      * @since 1.8
962      */
decrementExact(long a)963     public static long decrementExact(long a) {
964         if (a == Long.MIN_VALUE) {
965             throw new ArithmeticException("long overflow");
966         }
967 
968         return a - 1L;
969     }
970 
971     /**
972      * Returns the negation of the argument, throwing an exception if the
973      * result overflows an {@code int}.
974      *
975      * @param a the value to negate
976      * @return the result
977      * @throws ArithmeticException if the result overflows an int
978      * @since 1.8
979      */
negateExact(int a)980     public static int negateExact(int a) {
981         if (a == Integer.MIN_VALUE) {
982             throw new ArithmeticException("integer overflow");
983         }
984 
985         return -a;
986     }
987 
988     /**
989      * Returns the negation of the argument, throwing an exception if the
990      * result overflows a {@code long}.
991      *
992      * @param a the value to negate
993      * @return the result
994      * @throws ArithmeticException if the result overflows a long
995      * @since 1.8
996      */
negateExact(long a)997     public static long negateExact(long a) {
998         if (a == Long.MIN_VALUE) {
999             throw new ArithmeticException("long overflow");
1000         }
1001 
1002         return -a;
1003     }
1004 
1005     /**
1006      * Returns the value of the {@code long} argument;
1007      * throwing an exception if the value overflows an {@code int}.
1008      *
1009      * @param value the long value
1010      * @return the argument as an int
1011      * @throws ArithmeticException if the {@code argument} overflows an int
1012      * @since 1.8
1013      */
toIntExact(long value)1014     public static int toIntExact(long value) {
1015         if ((int)value != value) {
1016             throw new ArithmeticException("integer overflow");
1017         }
1018         return (int)value;
1019     }
1020 
1021     /**
1022      * Returns the largest (closest to positive infinity)
1023      * {@code int} value that is less than or equal to the algebraic quotient.
1024      * There is one special case, if the dividend is the
1025      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
1026      * then integer overflow occurs and
1027      * the result is equal to the {@code Integer.MIN_VALUE}.
1028      * <p>
1029      * Normal integer division operates under the round to zero rounding mode
1030      * (truncation).  This operation instead acts under the round toward
1031      * negative infinity (floor) rounding mode.
1032      * The floor rounding mode gives different results than truncation
1033      * when the exact result is negative.
1034      * <ul>
1035      *   <li>If the signs of the arguments are the same, the results of
1036      *       {@code floorDiv} and the {@code /} operator are the same.  <br>
1037      *       For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li>
1038      *   <li>If the signs of the arguments are different,  the quotient is negative and
1039      *       {@code floorDiv} returns the integer less than or equal to the quotient
1040      *       and the {@code /} operator returns the integer closest to zero.<br>
1041      *       For example, {@code floorDiv(-4, 3) == -2},
1042      *       whereas {@code (-4 / 3) == -1}.
1043      *   </li>
1044      * </ul>
1045      * <p>
1046      *
1047      * @param x the dividend
1048      * @param y the divisor
1049      * @return the largest (closest to positive infinity)
1050      * {@code int} value that is less than or equal to the algebraic quotient.
1051      * @throws ArithmeticException if the divisor {@code y} is zero
1052      * @see #floorMod(int, int)
1053      * @see #floor(double)
1054      * @since 1.8
1055      */
floorDiv(int x, int y)1056     public static int floorDiv(int x, int y) {
1057         int r = x / y;
1058         // if the signs are different and modulo not zero, round down
1059         if ((x ^ y) < 0 && (r * y != x)) {
1060             r--;
1061         }
1062         return r;
1063     }
1064 
1065     /**
1066      * Returns the largest (closest to positive infinity)
1067      * {@code long} value that is less than or equal to the algebraic quotient.
1068      * There is one special case, if the dividend is the
1069      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1070      * then integer overflow occurs and
1071      * the result is equal to the {@code Long.MIN_VALUE}.
1072      * <p>
1073      * Normal integer division operates under the round to zero rounding mode
1074      * (truncation).  This operation instead acts under the round toward
1075      * negative infinity (floor) rounding mode.
1076      * The floor rounding mode gives different results than truncation
1077      * when the exact result is negative.
1078      * <p>
1079      * For examples, see {@link #floorDiv(int, int)}.
1080      *
1081      * @param x the dividend
1082      * @param y the divisor
1083      * @return the largest (closest to positive infinity)
1084      * {@code long} value that is less than or equal to the algebraic quotient.
1085      * @throws ArithmeticException if the divisor {@code y} is zero
1086      * @see #floorMod(long, long)
1087      * @see #floor(double)
1088      * @since 1.8
1089      */
floorDiv(long x, long y)1090     public static long floorDiv(long x, long y) {
1091         long r = x / y;
1092         // if the signs are different and modulo not zero, round down
1093         if ((x ^ y) < 0 && (r * y != x)) {
1094             r--;
1095         }
1096         return r;
1097     }
1098 
1099     /**
1100      * Returns the floor modulus of the {@code int} arguments.
1101      * <p>
1102      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1103      * has the same sign as the divisor {@code y}, and
1104      * is in the range of {@code -abs(y) < r < +abs(y)}.
1105      *
1106      * <p>
1107      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1108      * <ul>
1109      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1110      * </ul>
1111      * <p>
1112      * The difference in values between {@code floorMod} and
1113      * the {@code %} operator is due to the difference between
1114      * {@code floorDiv} that returns the integer less than or equal to the quotient
1115      * and the {@code /} operator that returns the integer closest to zero.
1116      * <p>
1117      * Examples:
1118      * <ul>
1119      *   <li>If the signs of the arguments are the same, the results
1120      *       of {@code floorMod} and the {@code %} operator are the same.  <br>
1121      *       <ul>
1122      *       <li>{@code floorMod(4, 3) == 1}; &nbsp; and {@code (4 % 3) == 1}</li>
1123      *       </ul>
1124      *   <li>If the signs of the arguments are different, the results differ from the {@code %} operator.<br>
1125      *      <ul>
1126      *      <li>{@code floorMod(+4, -3) == -2}; &nbsp; and {@code (+4 % -3) == +1} </li>
1127      *      <li>{@code floorMod(-4, +3) == +2}; &nbsp; and {@code (-4 % +3) == -1} </li>
1128      *      <li>{@code floorMod(-4, -3) == -1}; &nbsp; and {@code (-4 % -3) == -1 } </li>
1129      *      </ul>
1130      *   </li>
1131      * </ul>
1132      * <p>
1133      * If the signs of arguments are unknown and a positive modulus
1134      * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}.
1135      *
1136      * @param x the dividend
1137      * @param y the divisor
1138      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1139      * @throws ArithmeticException if the divisor {@code y} is zero
1140      * @see #floorDiv(int, int)
1141      * @since 1.8
1142      */
floorMod(int x, int y)1143     public static int floorMod(int x, int y) {
1144         int r = x - floorDiv(x, y) * y;
1145         return r;
1146     }
1147 
1148     /**
1149      * Returns the floor modulus of the {@code long} arguments.
1150      * <p>
1151      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1152      * has the same sign as the divisor {@code y}, and
1153      * is in the range of {@code -abs(y) < r < +abs(y)}.
1154      *
1155      * <p>
1156      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1157      * <ul>
1158      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1159      * </ul>
1160      * <p>
1161      * For examples, see {@link #floorMod(int, int)}.
1162      *
1163      * @param x the dividend
1164      * @param y the divisor
1165      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1166      * @throws ArithmeticException if the divisor {@code y} is zero
1167      * @see #floorDiv(long, long)
1168      * @since 1.8
1169      */
floorMod(long x, long y)1170     public static long floorMod(long x, long y) {
1171         return x - floorDiv(x, y) * y;
1172     }
1173 
1174     /**
1175      * Returns the absolute value of an {@code int} value.
1176      * If the argument is not negative, the argument is returned.
1177      * If the argument is negative, the negation of the argument is returned.
1178      *
1179      * <p>Note that if the argument is equal to the value of
1180      * {@link Integer#MIN_VALUE}, the most negative representable
1181      * {@code int} value, the result is that same value, which is
1182      * negative.
1183      *
1184      * @param   a   the argument whose absolute value is to be determined
1185      * @return  the absolute value of the argument.
1186      */
abs(int a)1187     public static int abs(int a) {
1188         return (a < 0) ? -a : a;
1189     }
1190 
1191     /**
1192      * Returns the absolute value of a {@code long} value.
1193      * If the argument is not negative, the argument is returned.
1194      * If the argument is negative, the negation of the argument is returned.
1195      *
1196      * <p>Note that if the argument is equal to the value of
1197      * {@link Long#MIN_VALUE}, the most negative representable
1198      * {@code long} value, the result is that same value, which
1199      * is negative.
1200      *
1201      * @param   a   the argument whose absolute value is to be determined
1202      * @return  the absolute value of the argument.
1203      */
abs(long a)1204     public static long abs(long a) {
1205         return (a < 0) ? -a : a;
1206     }
1207 
1208     /**
1209      * Returns the absolute value of a {@code float} value.
1210      * If the argument is not negative, the argument is returned.
1211      * If the argument is negative, the negation of the argument is returned.
1212      * Special cases:
1213      * <ul><li>If the argument is positive zero or negative zero, the
1214      * result is positive zero.
1215      * <li>If the argument is infinite, the result is positive infinity.
1216      * <li>If the argument is NaN, the result is NaN.</ul>
1217      * In other words, the result is the same as the value of the expression:
1218      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
1219      *
1220      * @param   a   the argument whose absolute value is to be determined
1221      * @return  the absolute value of the argument.
1222      */
abs(float a)1223     public static float abs(float a) {
1224         // Note, as a "quality of implementation", rather than pure "spec compliance",
1225         // we require that Math.abs() clears the sign bit (but changes nothing else)
1226         // for all numbers, including NaN (signaling NaN may become quiet though).
1227         return Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a));
1228     }
1229 
1230     /**
1231      * Returns the absolute value of a {@code double} value.
1232      * If the argument is not negative, the argument is returned.
1233      * If the argument is negative, the negation of the argument is returned.
1234      * Special cases:
1235      * <ul><li>If the argument is positive zero or negative zero, the result
1236      * is positive zero.
1237      * <li>If the argument is infinite, the result is positive infinity.
1238      * <li>If the argument is NaN, the result is NaN.</ul>
1239      * In other words, the result is the same as the value of the expression:
1240      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
1241      *
1242      * @param   a   the argument whose absolute value is to be determined
1243      * @return  the absolute value of the argument.
1244      */
abs(double a)1245     public static double abs(double a) {
1246         // Note, as a "quality of implementation", rather than pure "spec compliance",
1247         // we require that Math.abs() clears the sign bit (but changes nothing else)
1248         // for all numbers, including NaN (signaling NaN may become quiet though).
1249         return Double.longBitsToDouble(0x7fffffffffffffffL & Double.doubleToRawLongBits(a));
1250     }
1251 
1252     /**
1253      * Returns the greater of two {@code int} values. That is, the
1254      * result is the argument closer to the value of
1255      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
1256      * the result is that same value.
1257      *
1258      * @param   a   an argument.
1259      * @param   b   another argument.
1260      * @return  the larger of {@code a} and {@code b}.
1261      */
max(int a, int b)1262     public static int max(int a, int b) {
1263         return (a >= b) ? a : b;
1264     }
1265 
1266     /**
1267      * Returns the greater of two {@code long} values. That is, the
1268      * result is the argument closer to the value of
1269      * {@link Long#MAX_VALUE}. If the arguments have the same value,
1270      * the result is that same value.
1271      *
1272      * @param   a   an argument.
1273      * @param   b   another argument.
1274      * @return  the larger of {@code a} and {@code b}.
1275      */
max(long a, long b)1276     public static long max(long a, long b) {
1277         return (a >= b) ? a : b;
1278     }
1279 
1280     // Use raw bit-wise conversions on guaranteed non-NaN arguments.
1281     private static long negativeZeroFloatBits  = Float.floatToRawIntBits(-0.0f);
1282     private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d);
1283 
1284     /**
1285      * Returns the greater of two {@code float} values.  That is,
1286      * the result is the argument closer to positive infinity. If the
1287      * arguments have the same value, the result is that same
1288      * value. If either value is NaN, then the result is NaN.  Unlike
1289      * the numerical comparison operators, this method considers
1290      * negative zero to be strictly smaller than positive zero. If one
1291      * argument is positive zero and the other negative zero, the
1292      * result is positive zero.
1293      *
1294      * @param   a   an argument.
1295      * @param   b   another argument.
1296      * @return  the larger of {@code a} and {@code b}.
1297      */
max(float a, float b)1298     public static float max(float a, float b) {
1299         if (a != a)
1300             return a;   // a is NaN
1301         if ((a == 0.0f) &&
1302             (b == 0.0f) &&
1303             (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) {
1304             // Raw conversion ok since NaN can't map to -0.0.
1305             return b;
1306         }
1307         return (a >= b) ? a : b;
1308     }
1309 
1310     /**
1311      * Returns the greater of two {@code double} values.  That
1312      * is, the result is the argument closer to positive infinity. If
1313      * the arguments have the same value, the result is that same
1314      * value. If either value is NaN, then the result is NaN.  Unlike
1315      * the numerical comparison operators, this method considers
1316      * negative zero to be strictly smaller than positive zero. If one
1317      * argument is positive zero and the other negative zero, the
1318      * result is positive zero.
1319      *
1320      * @param   a   an argument.
1321      * @param   b   another argument.
1322      * @return  the larger of {@code a} and {@code b}.
1323      */
max(double a, double b)1324     public static double max(double a, double b) {
1325         if (a != a)
1326             return a;   // a is NaN
1327         if ((a == 0.0d) &&
1328             (b == 0.0d) &&
1329             (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) {
1330             // Raw conversion ok since NaN can't map to -0.0.
1331             return b;
1332         }
1333         return (a >= b) ? a : b;
1334     }
1335 
1336     /**
1337      * Returns the smaller of two {@code int} values. That is,
1338      * the result the argument closer to the value of
1339      * {@link Integer#MIN_VALUE}.  If the arguments have the same
1340      * value, the result is that same value.
1341      *
1342      * @param   a   an argument.
1343      * @param   b   another argument.
1344      * @return  the smaller of {@code a} and {@code b}.
1345      */
min(int a, int b)1346     public static int min(int a, int b) {
1347         return (a <= b) ? a : b;
1348     }
1349 
1350     /**
1351      * Returns the smaller of two {@code long} values. That is,
1352      * the result is the argument closer to the value of
1353      * {@link Long#MIN_VALUE}. If the arguments have the same
1354      * value, the result is that same value.
1355      *
1356      * @param   a   an argument.
1357      * @param   b   another argument.
1358      * @return  the smaller of {@code a} and {@code b}.
1359      */
min(long a, long b)1360     public static long min(long a, long b) {
1361         return (a <= b) ? a : b;
1362     }
1363 
1364     /**
1365      * Returns the smaller of two {@code float} values.  That is,
1366      * the result is the value closer to negative infinity. If the
1367      * arguments have the same value, the result is that same
1368      * value. If either value is NaN, then the result is NaN.  Unlike
1369      * the numerical comparison operators, this method considers
1370      * negative zero to be strictly smaller than positive zero.  If
1371      * one argument is positive zero and the other is negative zero,
1372      * the result is negative zero.
1373      *
1374      * @param   a   an argument.
1375      * @param   b   another argument.
1376      * @return  the smaller of {@code a} and {@code b}.
1377      */
min(float a, float b)1378     public static float min(float a, float b) {
1379         if (a != a)
1380             return a;   // a is NaN
1381         if ((a == 0.0f) &&
1382             (b == 0.0f) &&
1383             (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) {
1384             // Raw conversion ok since NaN can't map to -0.0.
1385             return b;
1386         }
1387         return (a <= b) ? a : b;
1388     }
1389 
1390     /**
1391      * Returns the smaller of two {@code double} values.  That
1392      * is, the result is the value closer to negative infinity. If the
1393      * arguments have the same value, the result is that same
1394      * value. If either value is NaN, then the result is NaN.  Unlike
1395      * the numerical comparison operators, this method considers
1396      * negative zero to be strictly smaller than positive zero. If one
1397      * argument is positive zero and the other is negative zero, the
1398      * result is negative zero.
1399      *
1400      * @param   a   an argument.
1401      * @param   b   another argument.
1402      * @return  the smaller of {@code a} and {@code b}.
1403      */
min(double a, double b)1404     public static double min(double a, double b) {
1405         if (a != a)
1406             return a;   // a is NaN
1407         if ((a == 0.0d) &&
1408             (b == 0.0d) &&
1409             (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) {
1410             // Raw conversion ok since NaN can't map to -0.0.
1411             return b;
1412         }
1413         return (a <= b) ? a : b;
1414     }
1415 
1416     /**
1417      * Returns the size of an ulp of the argument.  An ulp, unit in
1418      * the last place, of a {@code double} value is the positive
1419      * distance between this floating-point value and the {@code
1420      * double} value next larger in magnitude.  Note that for non-NaN
1421      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1422      *
1423      * <p>Special Cases:
1424      * <ul>
1425      * <li> If the argument is NaN, then the result is NaN.
1426      * <li> If the argument is positive or negative infinity, then the
1427      * result is positive infinity.
1428      * <li> If the argument is positive or negative zero, then the result is
1429      * {@code Double.MIN_VALUE}.
1430      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
1431      * the result is equal to 2<sup>971</sup>.
1432      * </ul>
1433      *
1434      * @param d the floating-point value whose ulp is to be returned
1435      * @return the size of an ulp of the argument
1436      * @author Joseph D. Darcy
1437      * @since 1.5
1438      */
ulp(double d)1439     public static double ulp(double d) {
1440         int exp = getExponent(d);
1441 
1442         switch(exp) {
1443         case DoubleConsts.MAX_EXPONENT+1:       // NaN or infinity
1444             return Math.abs(d);
1445 
1446         case DoubleConsts.MIN_EXPONENT-1:       // zero or subnormal
1447             return Double.MIN_VALUE;
1448 
1449         default:
1450             assert exp <= DoubleConsts.MAX_EXPONENT && exp >= DoubleConsts.MIN_EXPONENT;
1451 
1452             // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1453             exp = exp - (DoubleConsts.SIGNIFICAND_WIDTH-1);
1454             if (exp >= DoubleConsts.MIN_EXPONENT) {
1455                 return powerOfTwoD(exp);
1456             }
1457             else {
1458                 // return a subnormal result; left shift integer
1459                 // representation of Double.MIN_VALUE appropriate
1460                 // number of positions
1461                 return Double.longBitsToDouble(1L <<
1462                 (exp - (DoubleConsts.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1)) ));
1463             }
1464         }
1465     }
1466 
1467     /**
1468      * Returns the size of an ulp of the argument.  An ulp, unit in
1469      * the last place, of a {@code float} value is the positive
1470      * distance between this floating-point value and the {@code
1471      * float} value next larger in magnitude.  Note that for non-NaN
1472      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1473      *
1474      * <p>Special Cases:
1475      * <ul>
1476      * <li> If the argument is NaN, then the result is NaN.
1477      * <li> If the argument is positive or negative infinity, then the
1478      * result is positive infinity.
1479      * <li> If the argument is positive or negative zero, then the result is
1480      * {@code Float.MIN_VALUE}.
1481      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
1482      * the result is equal to 2<sup>104</sup>.
1483      * </ul>
1484      *
1485      * @param f the floating-point value whose ulp is to be returned
1486      * @return the size of an ulp of the argument
1487      * @author Joseph D. Darcy
1488      * @since 1.5
1489      */
ulp(float f)1490     public static float ulp(float f) {
1491         int exp = getExponent(f);
1492 
1493         switch(exp) {
1494         case FloatConsts.MAX_EXPONENT+1:        // NaN or infinity
1495             return Math.abs(f);
1496 
1497         case FloatConsts.MIN_EXPONENT-1:        // zero or subnormal
1498             return FloatConsts.MIN_VALUE;
1499 
1500         default:
1501             assert exp <= FloatConsts.MAX_EXPONENT && exp >= FloatConsts.MIN_EXPONENT;
1502 
1503             // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1504             exp = exp - (FloatConsts.SIGNIFICAND_WIDTH-1);
1505             if (exp >= FloatConsts.MIN_EXPONENT) {
1506                 return powerOfTwoF(exp);
1507             }
1508             else {
1509                 // return a subnormal result; left shift integer
1510                 // representation of FloatConsts.MIN_VALUE appropriate
1511                 // number of positions
1512                 return Float.intBitsToFloat(1 <<
1513                 (exp - (FloatConsts.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1)) ));
1514             }
1515         }
1516     }
1517 
1518     /**
1519      * Returns the signum function of the argument; zero if the argument
1520      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
1521      * argument is less than zero.
1522      *
1523      * <p>Special Cases:
1524      * <ul>
1525      * <li> If the argument is NaN, then the result is NaN.
1526      * <li> If the argument is positive zero or negative zero, then the
1527      *      result is the same as the argument.
1528      * </ul>
1529      *
1530      * @param d the floating-point value whose signum is to be returned
1531      * @return the signum function of the argument
1532      * @author Joseph D. Darcy
1533      * @since 1.5
1534      */
signum(double d)1535     public static double signum(double d) {
1536         return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d);
1537     }
1538 
1539     /**
1540      * Returns the signum function of the argument; zero if the argument
1541      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1542      * argument is less than zero.
1543      *
1544      * <p>Special Cases:
1545      * <ul>
1546      * <li> If the argument is NaN, then the result is NaN.
1547      * <li> If the argument is positive zero or negative zero, then the
1548      *      result is the same as the argument.
1549      * </ul>
1550      *
1551      * @param f the floating-point value whose signum is to be returned
1552      * @return the signum function of the argument
1553      * @author Joseph D. Darcy
1554      * @since 1.5
1555      */
signum(float f)1556     public static float signum(float f) {
1557         return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f);
1558     }
1559 
1560     /**
1561      * Returns the hyperbolic sine of a {@code double} value.
1562      * The hyperbolic sine of <i>x</i> is defined to be
1563      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1564      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1565      *
1566      * <p>Special cases:
1567      * <ul>
1568      *
1569      * <li>If the argument is NaN, then the result is NaN.
1570      *
1571      * <li>If the argument is infinite, then the result is an infinity
1572      * with the same sign as the argument.
1573      *
1574      * <li>If the argument is zero, then the result is a zero with the
1575      * same sign as the argument.
1576      *
1577      * </ul>
1578      *
1579      * <p>The computed result must be within 2.5 ulps of the exact result.
1580      *
1581      * @param   x The number whose hyperbolic sine is to be returned.
1582      * @return  The hyperbolic sine of {@code x}.
1583      * @since 1.5
1584      */
1585     @FastNative
sinh(double x)1586     public static native double sinh(double x);
1587 
1588     /**
1589      * Returns the hyperbolic cosine of a {@code double} value.
1590      * The hyperbolic cosine of <i>x</i> is defined to be
1591      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1592      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1593      *
1594      * <p>Special cases:
1595      * <ul>
1596      *
1597      * <li>If the argument is NaN, then the result is NaN.
1598      *
1599      * <li>If the argument is infinite, then the result is positive
1600      * infinity.
1601      *
1602      * <li>If the argument is zero, then the result is {@code 1.0}.
1603      *
1604      * </ul>
1605      *
1606      * <p>The computed result must be within 2.5 ulps of the exact result.
1607      *
1608      * @param   x The number whose hyperbolic cosine is to be returned.
1609      * @return  The hyperbolic cosine of {@code x}.
1610      * @since 1.5
1611      */
1612     @FastNative
cosh(double x)1613     public static native double cosh(double x);
1614 
1615     /**
1616      * Returns the hyperbolic tangent of a {@code double} value.
1617      * The hyperbolic tangent of <i>x</i> is defined to be
1618      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1619      * in other words, {@linkplain Math#sinh
1620      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1621      * that the absolute value of the exact tanh is always less than
1622      * 1.
1623      *
1624      * <p>Special cases:
1625      * <ul>
1626      *
1627      * <li>If the argument is NaN, then the result is NaN.
1628      *
1629      * <li>If the argument is zero, then the result is a zero with the
1630      * same sign as the argument.
1631      *
1632      * <li>If the argument is positive infinity, then the result is
1633      * {@code +1.0}.
1634      *
1635      * <li>If the argument is negative infinity, then the result is
1636      * {@code -1.0}.
1637      *
1638      * </ul>
1639      *
1640      * <p>The computed result must be within 2.5 ulps of the exact result.
1641      * The result of {@code tanh} for any finite input must have
1642      * an absolute value less than or equal to 1.  Note that once the
1643      * exact result of tanh is within 1/2 of an ulp of the limit value
1644      * of &plusmn;1, correctly signed &plusmn;{@code 1.0} should
1645      * be returned.
1646      *
1647      * @param   x The number whose hyperbolic tangent is to be returned.
1648      * @return  The hyperbolic tangent of {@code x}.
1649      * @since 1.5
1650      */
1651     @FastNative
tanh(double x)1652     public static native double tanh(double x);
1653 
1654     /**
1655      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1656      * without intermediate overflow or underflow.
1657      *
1658      * <p>Special cases:
1659      * <ul>
1660      *
1661      * <li> If either argument is infinite, then the result
1662      * is positive infinity.
1663      *
1664      * <li> If either argument is NaN and neither argument is infinite,
1665      * then the result is NaN.
1666      *
1667      * </ul>
1668      *
1669      * <p>The computed result must be within 1 ulp of the exact
1670      * result.  If one parameter is held constant, the results must be
1671      * semi-monotonic in the other parameter.
1672      *
1673      * @param x a value
1674      * @param y a value
1675      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1676      * without intermediate overflow or underflow
1677      * @since 1.5
1678      */
1679     @FastNative
hypot(double x, double y)1680     public static native double hypot(double x, double y);
1681 
1682     /**
1683      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1684      * <i>x</i> near 0, the exact sum of
1685      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1686      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1687      *
1688      * <p>Special cases:
1689      * <ul>
1690      * <li>If the argument is NaN, the result is NaN.
1691      *
1692      * <li>If the argument is positive infinity, then the result is
1693      * positive infinity.
1694      *
1695      * <li>If the argument is negative infinity, then the result is
1696      * -1.0.
1697      *
1698      * <li>If the argument is zero, then the result is a zero with the
1699      * same sign as the argument.
1700      *
1701      * </ul>
1702      *
1703      * <p>The computed result must be within 1 ulp of the exact result.
1704      * Results must be semi-monotonic.  The result of
1705      * {@code expm1} for any finite input must be greater than or
1706      * equal to {@code -1.0}.  Note that once the exact result of
1707      * <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1 is within 1/2
1708      * ulp of the limit value -1, {@code -1.0} should be
1709      * returned.
1710      *
1711      * @param   x   the exponent to raise <i>e</i> to in the computation of
1712      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1713      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1714      * @since 1.5
1715      */
1716     @FastNative
expm1(double x)1717     public static native double expm1(double x);
1718 
1719     /**
1720      * Returns the natural logarithm of the sum of the argument and 1.
1721      * Note that for small values {@code x}, the result of
1722      * {@code log1p(x)} is much closer to the true result of ln(1
1723      * + {@code x}) than the floating-point evaluation of
1724      * {@code log(1.0+x)}.
1725      *
1726      * <p>Special cases:
1727      *
1728      * <ul>
1729      *
1730      * <li>If the argument is NaN or less than -1, then the result is
1731      * NaN.
1732      *
1733      * <li>If the argument is positive infinity, then the result is
1734      * positive infinity.
1735      *
1736      * <li>If the argument is negative one, then the result is
1737      * negative infinity.
1738      *
1739      * <li>If the argument is zero, then the result is a zero with the
1740      * same sign as the argument.
1741      *
1742      * </ul>
1743      *
1744      * <p>The computed result must be within 1 ulp of the exact result.
1745      * Results must be semi-monotonic.
1746      *
1747      * @param   x   a value
1748      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1749      * log of {@code x}&nbsp;+&nbsp;1
1750      * @since 1.5
1751      */
1752     @FastNative
log1p(double x)1753     public static native double log1p(double x);
1754 
1755     /**
1756      * Returns the first floating-point argument with the sign of the
1757      * second floating-point argument.  Note that unlike the {@link
1758      * StrictMath#copySign(double, double) StrictMath.copySign}
1759      * method, this method does not require NaN {@code sign}
1760      * arguments to be treated as positive values; implementations are
1761      * permitted to treat some NaN arguments as positive and other NaN
1762      * arguments as negative to allow greater performance.
1763      *
1764      * @param magnitude  the parameter providing the magnitude of the result
1765      * @param sign   the parameter providing the sign of the result
1766      * @return a value with the magnitude of {@code magnitude}
1767      * and the sign of {@code sign}.
1768      * @since 1.6
1769      */
copySign(double magnitude, double sign)1770     public static double copySign(double magnitude, double sign) {
1771         return Double.longBitsToDouble((Double.doubleToRawLongBits(sign) &
1772                                         (DoubleConsts.SIGN_BIT_MASK)) |
1773                                        (Double.doubleToRawLongBits(magnitude) &
1774                                         (DoubleConsts.EXP_BIT_MASK |
1775                                          DoubleConsts.SIGNIF_BIT_MASK)));
1776     }
1777 
1778     /**
1779      * Returns the first floating-point argument with the sign of the
1780      * second floating-point argument.  Note that unlike the {@link
1781      * StrictMath#copySign(float, float) StrictMath.copySign}
1782      * method, this method does not require NaN {@code sign}
1783      * arguments to be treated as positive values; implementations are
1784      * permitted to treat some NaN arguments as positive and other NaN
1785      * arguments as negative to allow greater performance.
1786      *
1787      * @param magnitude  the parameter providing the magnitude of the result
1788      * @param sign   the parameter providing the sign of the result
1789      * @return a value with the magnitude of {@code magnitude}
1790      * and the sign of {@code sign}.
1791      * @since 1.6
1792      */
copySign(float magnitude, float sign)1793     public static float copySign(float magnitude, float sign) {
1794         return Float.intBitsToFloat((Float.floatToRawIntBits(sign) &
1795                                      (FloatConsts.SIGN_BIT_MASK)) |
1796                                     (Float.floatToRawIntBits(magnitude) &
1797                                      (FloatConsts.EXP_BIT_MASK |
1798                                       FloatConsts.SIGNIF_BIT_MASK)));
1799     }
1800 
1801     /**
1802      * Returns the unbiased exponent used in the representation of a
1803      * {@code float}.  Special cases:
1804      *
1805      * <ul>
1806      * <li>If the argument is NaN or infinite, then the result is
1807      * {@link Float#MAX_EXPONENT} + 1.
1808      * <li>If the argument is zero or subnormal, then the result is
1809      * {@link Float#MIN_EXPONENT} -1.
1810      * </ul>
1811      * @param f a {@code float} value
1812      * @return the unbiased exponent of the argument
1813      * @since 1.6
1814      */
getExponent(float f)1815     public static int getExponent(float f) {
1816         /*
1817          * Bitwise convert f to integer, mask out exponent bits, shift
1818          * to the right and then subtract out float's bias adjust to
1819          * get true exponent value
1820          */
1821         return ((Float.floatToRawIntBits(f) & FloatConsts.EXP_BIT_MASK) >>
1822                 (FloatConsts.SIGNIFICAND_WIDTH - 1)) - FloatConsts.EXP_BIAS;
1823     }
1824 
1825     /**
1826      * Returns the unbiased exponent used in the representation of a
1827      * {@code double}.  Special cases:
1828      *
1829      * <ul>
1830      * <li>If the argument is NaN or infinite, then the result is
1831      * {@link Double#MAX_EXPONENT} + 1.
1832      * <li>If the argument is zero or subnormal, then the result is
1833      * {@link Double#MIN_EXPONENT} -1.
1834      * </ul>
1835      * @param d a {@code double} value
1836      * @return the unbiased exponent of the argument
1837      * @since 1.6
1838      */
getExponent(double d)1839     public static int getExponent(double d) {
1840         /*
1841          * Bitwise convert d to long, mask out exponent bits, shift
1842          * to the right and then subtract out double's bias adjust to
1843          * get true exponent value.
1844          */
1845         return (int)(((Double.doubleToRawLongBits(d) & DoubleConsts.EXP_BIT_MASK) >>
1846                       (DoubleConsts.SIGNIFICAND_WIDTH - 1)) - DoubleConsts.EXP_BIAS);
1847     }
1848 
1849     /**
1850      * Returns the floating-point number adjacent to the first
1851      * argument in the direction of the second argument.  If both
1852      * arguments compare as equal the second argument is returned.
1853      *
1854      * <p>
1855      * Special cases:
1856      * <ul>
1857      * <li> If either argument is a NaN, then NaN is returned.
1858      *
1859      * <li> If both arguments are signed zeros, {@code direction}
1860      * is returned unchanged (as implied by the requirement of
1861      * returning the second argument if the arguments compare as
1862      * equal).
1863      *
1864      * <li> If {@code start} is
1865      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1866      * has a value such that the result should have a smaller
1867      * magnitude, then a zero with the same sign as {@code start}
1868      * is returned.
1869      *
1870      * <li> If {@code start} is infinite and
1871      * {@code direction} has a value such that the result should
1872      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1873      * same sign as {@code start} is returned.
1874      *
1875      * <li> If {@code start} is equal to &plusmn;
1876      * {@link Double#MAX_VALUE} and {@code direction} has a
1877      * value such that the result should have a larger magnitude, an
1878      * infinity with same sign as {@code start} is returned.
1879      * </ul>
1880      *
1881      * @param start  starting floating-point value
1882      * @param direction value indicating which of
1883      * {@code start}'s neighbors or {@code start} should
1884      * be returned
1885      * @return The floating-point number adjacent to {@code start} in the
1886      * direction of {@code direction}.
1887      * @since 1.6
1888      */
nextAfter(double start, double direction)1889     public static double nextAfter(double start, double direction) {
1890         /*
1891          * The cases:
1892          *
1893          * nextAfter(+infinity, 0)  == MAX_VALUE
1894          * nextAfter(+infinity, +infinity)  == +infinity
1895          * nextAfter(-infinity, 0)  == -MAX_VALUE
1896          * nextAfter(-infinity, -infinity)  == -infinity
1897          *
1898          * are naturally handled without any additional testing
1899          */
1900 
1901         // First check for NaN values
1902         if (Double.isNaN(start) || Double.isNaN(direction)) {
1903             // return a NaN derived from the input NaN(s)
1904             return start + direction;
1905         } else if (start == direction) {
1906             return direction;
1907         } else {        // start > direction or start < direction
1908             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
1909             // then bitwise convert start to integer.
1910             long transducer = Double.doubleToRawLongBits(start + 0.0d);
1911 
1912             /*
1913              * IEEE 754 floating-point numbers are lexicographically
1914              * ordered if treated as signed- magnitude integers .
1915              * Since Java's integers are two's complement,
1916              * incrementing" the two's complement representation of a
1917              * logically negative floating-point value *decrements*
1918              * the signed-magnitude representation. Therefore, when
1919              * the integer representation of a floating-point values
1920              * is less than zero, the adjustment to the representation
1921              * is in the opposite direction than would be expected at
1922              * first .
1923              */
1924             if (direction > start) { // Calculate next greater value
1925                 transducer = transducer + (transducer >= 0L ? 1L:-1L);
1926             } else  { // Calculate next lesser value
1927                 assert direction < start;
1928                 if (transducer > 0L)
1929                     --transducer;
1930                 else
1931                     if (transducer < 0L )
1932                         ++transducer;
1933                     /*
1934                      * transducer==0, the result is -MIN_VALUE
1935                      *
1936                      * The transition from zero (implicitly
1937                      * positive) to the smallest negative
1938                      * signed magnitude value must be done
1939                      * explicitly.
1940                      */
1941                     else
1942                         transducer = DoubleConsts.SIGN_BIT_MASK | 1L;
1943             }
1944 
1945             return Double.longBitsToDouble(transducer);
1946         }
1947     }
1948 
1949     /**
1950      * Returns the floating-point number adjacent to the first
1951      * argument in the direction of the second argument.  If both
1952      * arguments compare as equal a value equivalent to the second argument
1953      * is returned.
1954      *
1955      * <p>
1956      * Special cases:
1957      * <ul>
1958      * <li> If either argument is a NaN, then NaN is returned.
1959      *
1960      * <li> If both arguments are signed zeros, a value equivalent
1961      * to {@code direction} is returned.
1962      *
1963      * <li> If {@code start} is
1964      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1965      * has a value such that the result should have a smaller
1966      * magnitude, then a zero with the same sign as {@code start}
1967      * is returned.
1968      *
1969      * <li> If {@code start} is infinite and
1970      * {@code direction} has a value such that the result should
1971      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1972      * same sign as {@code start} is returned.
1973      *
1974      * <li> If {@code start} is equal to &plusmn;
1975      * {@link Float#MAX_VALUE} and {@code direction} has a
1976      * value such that the result should have a larger magnitude, an
1977      * infinity with same sign as {@code start} is returned.
1978      * </ul>
1979      *
1980      * @param start  starting floating-point value
1981      * @param direction value indicating which of
1982      * {@code start}'s neighbors or {@code start} should
1983      * be returned
1984      * @return The floating-point number adjacent to {@code start} in the
1985      * direction of {@code direction}.
1986      * @since 1.6
1987      */
nextAfter(float start, double direction)1988     public static float nextAfter(float start, double direction) {
1989         /*
1990          * The cases:
1991          *
1992          * nextAfter(+infinity, 0)  == MAX_VALUE
1993          * nextAfter(+infinity, +infinity)  == +infinity
1994          * nextAfter(-infinity, 0)  == -MAX_VALUE
1995          * nextAfter(-infinity, -infinity)  == -infinity
1996          *
1997          * are naturally handled without any additional testing
1998          */
1999 
2000         // First check for NaN values
2001         if (Float.isNaN(start) || Double.isNaN(direction)) {
2002             // return a NaN derived from the input NaN(s)
2003             return start + (float)direction;
2004         } else if (start == direction) {
2005             return (float)direction;
2006         } else {        // start > direction or start < direction
2007             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
2008             // then bitwise convert start to integer.
2009             int transducer = Float.floatToRawIntBits(start + 0.0f);
2010 
2011             /*
2012              * IEEE 754 floating-point numbers are lexicographically
2013              * ordered if treated as signed- magnitude integers .
2014              * Since Java's integers are two's complement,
2015              * incrementing" the two's complement representation of a
2016              * logically negative floating-point value *decrements*
2017              * the signed-magnitude representation. Therefore, when
2018              * the integer representation of a floating-point values
2019              * is less than zero, the adjustment to the representation
2020              * is in the opposite direction than would be expected at
2021              * first.
2022              */
2023             if (direction > start) {// Calculate next greater value
2024                 transducer = transducer + (transducer >= 0 ? 1:-1);
2025             } else  { // Calculate next lesser value
2026                 assert direction < start;
2027                 if (transducer > 0)
2028                     --transducer;
2029                 else
2030                     if (transducer < 0 )
2031                         ++transducer;
2032                     /*
2033                      * transducer==0, the result is -MIN_VALUE
2034                      *
2035                      * The transition from zero (implicitly
2036                      * positive) to the smallest negative
2037                      * signed magnitude value must be done
2038                      * explicitly.
2039                      */
2040                     else
2041                         transducer = FloatConsts.SIGN_BIT_MASK | 1;
2042             }
2043 
2044             return Float.intBitsToFloat(transducer);
2045         }
2046     }
2047 
2048     /**
2049      * Returns the floating-point value adjacent to {@code d} in
2050      * the direction of positive infinity.  This method is
2051      * semantically equivalent to {@code nextAfter(d,
2052      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
2053      * implementation may run faster than its equivalent
2054      * {@code nextAfter} call.
2055      *
2056      * <p>Special Cases:
2057      * <ul>
2058      * <li> If the argument is NaN, the result is NaN.
2059      *
2060      * <li> If the argument is positive infinity, the result is
2061      * positive infinity.
2062      *
2063      * <li> If the argument is zero, the result is
2064      * {@link Double#MIN_VALUE}
2065      *
2066      * </ul>
2067      *
2068      * @param d starting floating-point value
2069      * @return The adjacent floating-point value closer to positive
2070      * infinity.
2071      * @since 1.6
2072      */
nextUp(double d)2073     public static double nextUp(double d) {
2074         if( Double.isNaN(d) || d == Double.POSITIVE_INFINITY)
2075             return d;
2076         else {
2077             d += 0.0d;
2078             return Double.longBitsToDouble(Double.doubleToRawLongBits(d) +
2079                                            ((d >= 0.0d)?+1L:-1L));
2080         }
2081     }
2082 
2083     /**
2084      * Returns the floating-point value adjacent to {@code f} in
2085      * the direction of positive infinity.  This method is
2086      * semantically equivalent to {@code nextAfter(f,
2087      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
2088      * implementation may run faster than its equivalent
2089      * {@code nextAfter} call.
2090      *
2091      * <p>Special Cases:
2092      * <ul>
2093      * <li> If the argument is NaN, the result is NaN.
2094      *
2095      * <li> If the argument is positive infinity, the result is
2096      * positive infinity.
2097      *
2098      * <li> If the argument is zero, the result is
2099      * {@link Float#MIN_VALUE}
2100      *
2101      * </ul>
2102      *
2103      * @param f starting floating-point value
2104      * @return The adjacent floating-point value closer to positive
2105      * infinity.
2106      * @since 1.6
2107      */
nextUp(float f)2108     public static float nextUp(float f) {
2109         if( Float.isNaN(f) || f == FloatConsts.POSITIVE_INFINITY)
2110             return f;
2111         else {
2112             f += 0.0f;
2113             return Float.intBitsToFloat(Float.floatToRawIntBits(f) +
2114                                         ((f >= 0.0f)?+1:-1));
2115         }
2116     }
2117 
2118     /**
2119      * Returns the floating-point value adjacent to {@code d} in
2120      * the direction of negative infinity.  This method is
2121      * semantically equivalent to {@code nextAfter(d,
2122      * Double.NEGATIVE_INFINITY)}; however, a
2123      * {@code nextDown} implementation may run faster than its
2124      * equivalent {@code nextAfter} call.
2125      *
2126      * <p>Special Cases:
2127      * <ul>
2128      * <li> If the argument is NaN, the result is NaN.
2129      *
2130      * <li> If the argument is negative infinity, the result is
2131      * negative infinity.
2132      *
2133      * <li> If the argument is zero, the result is
2134      * {@code -Double.MIN_VALUE}
2135      *
2136      * </ul>
2137      *
2138      * @param d  starting floating-point value
2139      * @return The adjacent floating-point value closer to negative
2140      * infinity.
2141      * @since 1.8
2142      */
nextDown(double d)2143     public static double nextDown(double d) {
2144         if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY)
2145             return d;
2146         else {
2147             if (d == 0.0)
2148                 return -Double.MIN_VALUE;
2149             else
2150                 return Double.longBitsToDouble(Double.doubleToRawLongBits(d) +
2151                                                ((d > 0.0d)?-1L:+1L));
2152         }
2153     }
2154 
2155     /**
2156      * Returns the floating-point value adjacent to {@code f} in
2157      * the direction of negative infinity.  This method is
2158      * semantically equivalent to {@code nextAfter(f,
2159      * Float.NEGATIVE_INFINITY)}; however, a
2160      * {@code nextDown} implementation may run faster than its
2161      * equivalent {@code nextAfter} call.
2162      *
2163      * <p>Special Cases:
2164      * <ul>
2165      * <li> If the argument is NaN, the result is NaN.
2166      *
2167      * <li> If the argument is negative infinity, the result is
2168      * negative infinity.
2169      *
2170      * <li> If the argument is zero, the result is
2171      * {@code -Float.MIN_VALUE}
2172      *
2173      * </ul>
2174      *
2175      * @param f  starting floating-point value
2176      * @return The adjacent floating-point value closer to negative
2177      * infinity.
2178      * @since 1.8
2179      */
nextDown(float f)2180     public static float nextDown(float f) {
2181         if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY)
2182             return f;
2183         else {
2184             if (f == 0.0f)
2185                 return -Float.MIN_VALUE;
2186             else
2187                 return Float.intBitsToFloat(Float.floatToRawIntBits(f) +
2188                                             ((f > 0.0f)?-1:+1));
2189         }
2190     }
2191 
2192     /**
2193      * Returns {@code d} &times;
2194      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2195      * by a single correctly rounded floating-point multiply to a
2196      * member of the double value set.  See the Java
2197      * Language Specification for a discussion of floating-point
2198      * value sets.  If the exponent of the result is between {@link
2199      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
2200      * answer is calculated exactly.  If the exponent of the result
2201      * would be larger than {@code Double.MAX_EXPONENT}, an
2202      * infinity is returned.  Note that if the result is subnormal,
2203      * precision may be lost; that is, when {@code scalb(x, n)}
2204      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2205      * <i>x</i>.  When the result is non-NaN, the result has the same
2206      * sign as {@code d}.
2207      *
2208      * <p>Special cases:
2209      * <ul>
2210      * <li> If the first argument is NaN, NaN is returned.
2211      * <li> If the first argument is infinite, then an infinity of the
2212      * same sign is returned.
2213      * <li> If the first argument is zero, then a zero of the same
2214      * sign is returned.
2215      * </ul>
2216      *
2217      * @param d number to be scaled by a power of two.
2218      * @param scaleFactor power of 2 used to scale {@code d}
2219      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
2220      * @since 1.6
2221      */
scalb(double d, int scaleFactor)2222     public static double scalb(double d, int scaleFactor) {
2223         /*
2224          * This method does not need to be declared strictfp to
2225          * compute the same correct result on all platforms.  When
2226          * scaling up, it does not matter what order the
2227          * multiply-store operations are done; the result will be
2228          * finite or overflow regardless of the operation ordering.
2229          * However, to get the correct result when scaling down, a
2230          * particular ordering must be used.
2231          *
2232          * When scaling down, the multiply-store operations are
2233          * sequenced so that it is not possible for two consecutive
2234          * multiply-stores to return subnormal results.  If one
2235          * multiply-store result is subnormal, the next multiply will
2236          * round it away to zero.  This is done by first multiplying
2237          * by 2 ^ (scaleFactor % n) and then multiplying several
2238          * times by by 2^n as needed where n is the exponent of number
2239          * that is a covenient power of two.  In this way, at most one
2240          * real rounding error occurs.  If the double value set is
2241          * being used exclusively, the rounding will occur on a
2242          * multiply.  If the double-extended-exponent value set is
2243          * being used, the products will (perhaps) be exact but the
2244          * stores to d are guaranteed to round to the double value
2245          * set.
2246          *
2247          * It is _not_ a valid implementation to first multiply d by
2248          * 2^MIN_EXPONENT and then by 2 ^ (scaleFactor %
2249          * MIN_EXPONENT) since even in a strictfp program double
2250          * rounding on underflow could occur; e.g. if the scaleFactor
2251          * argument was (MIN_EXPONENT - n) and the exponent of d was a
2252          * little less than -(MIN_EXPONENT - n), meaning the final
2253          * result would be subnormal.
2254          *
2255          * Since exact reproducibility of this method can be achieved
2256          * without any undue performance burden, there is no
2257          * compelling reason to allow double rounding on underflow in
2258          * scalb.
2259          */
2260 
2261         // magnitude of a power of two so large that scaling a finite
2262         // nonzero value by it would be guaranteed to over or
2263         // underflow; due to rounding, scaling down takes takes an
2264         // additional power of two which is reflected here
2265         final int MAX_SCALE = DoubleConsts.MAX_EXPONENT + -DoubleConsts.MIN_EXPONENT +
2266                               DoubleConsts.SIGNIFICAND_WIDTH + 1;
2267         int exp_adjust = 0;
2268         int scale_increment = 0;
2269         double exp_delta = Double.NaN;
2270 
2271         // Make sure scaling factor is in a reasonable range
2272 
2273         if(scaleFactor < 0) {
2274             scaleFactor = Math.max(scaleFactor, -MAX_SCALE);
2275             scale_increment = -512;
2276             exp_delta = twoToTheDoubleScaleDown;
2277         }
2278         else {
2279             scaleFactor = Math.min(scaleFactor, MAX_SCALE);
2280             scale_increment = 512;
2281             exp_delta = twoToTheDoubleScaleUp;
2282         }
2283 
2284         // Calculate (scaleFactor % +/-512), 512 = 2^9, using
2285         // technique from "Hacker's Delight" section 10-2.
2286         int t = (scaleFactor >> 9-1) >>> 32 - 9;
2287         exp_adjust = ((scaleFactor + t) & (512 -1)) - t;
2288 
2289         d *= powerOfTwoD(exp_adjust);
2290         scaleFactor -= exp_adjust;
2291 
2292         while(scaleFactor != 0) {
2293             d *= exp_delta;
2294             scaleFactor -= scale_increment;
2295         }
2296         return d;
2297     }
2298 
2299     /**
2300      * Returns {@code f} &times;
2301      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2302      * by a single correctly rounded floating-point multiply to a
2303      * member of the float value set.  See the Java
2304      * Language Specification for a discussion of floating-point
2305      * value sets.  If the exponent of the result is between {@link
2306      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
2307      * answer is calculated exactly.  If the exponent of the result
2308      * would be larger than {@code Float.MAX_EXPONENT}, an
2309      * infinity is returned.  Note that if the result is subnormal,
2310      * precision may be lost; that is, when {@code scalb(x, n)}
2311      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2312      * <i>x</i>.  When the result is non-NaN, the result has the same
2313      * sign as {@code f}.
2314      *
2315      * <p>Special cases:
2316      * <ul>
2317      * <li> If the first argument is NaN, NaN is returned.
2318      * <li> If the first argument is infinite, then an infinity of the
2319      * same sign is returned.
2320      * <li> If the first argument is zero, then a zero of the same
2321      * sign is returned.
2322      * </ul>
2323      *
2324      * @param f number to be scaled by a power of two.
2325      * @param scaleFactor power of 2 used to scale {@code f}
2326      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
2327      * @since 1.6
2328      */
scalb(float f, int scaleFactor)2329     public static float scalb(float f, int scaleFactor) {
2330         // magnitude of a power of two so large that scaling a finite
2331         // nonzero value by it would be guaranteed to over or
2332         // underflow; due to rounding, scaling down takes takes an
2333         // additional power of two which is reflected here
2334         final int MAX_SCALE = FloatConsts.MAX_EXPONENT + -FloatConsts.MIN_EXPONENT +
2335                               FloatConsts.SIGNIFICAND_WIDTH + 1;
2336 
2337         // Make sure scaling factor is in a reasonable range
2338         scaleFactor = Math.max(Math.min(scaleFactor, MAX_SCALE), -MAX_SCALE);
2339 
2340         /*
2341          * Since + MAX_SCALE for float fits well within the double
2342          * exponent range and + float -> double conversion is exact
2343          * the multiplication below will be exact. Therefore, the
2344          * rounding that occurs when the double product is cast to
2345          * float will be the correctly rounded float result.  Since
2346          * all operations other than the final multiply will be exact,
2347          * it is not necessary to declare this method strictfp.
2348          */
2349         return (float)((double)f*powerOfTwoD(scaleFactor));
2350     }
2351 
2352     // Constants used in scalb
2353     static double twoToTheDoubleScaleUp = powerOfTwoD(512);
2354     static double twoToTheDoubleScaleDown = powerOfTwoD(-512);
2355 
2356     /**
2357      * Returns a floating-point power of two in the normal range.
2358      */
powerOfTwoD(int n)2359     static double powerOfTwoD(int n) {
2360         assert(n >= DoubleConsts.MIN_EXPONENT && n <= DoubleConsts.MAX_EXPONENT);
2361         return Double.longBitsToDouble((((long)n + (long)DoubleConsts.EXP_BIAS) <<
2362                                         (DoubleConsts.SIGNIFICAND_WIDTH-1))
2363                                        & DoubleConsts.EXP_BIT_MASK);
2364     }
2365 
2366     /**
2367      * Returns a floating-point power of two in the normal range.
2368      */
powerOfTwoF(int n)2369     static float powerOfTwoF(int n) {
2370         assert(n >= FloatConsts.MIN_EXPONENT && n <= FloatConsts.MAX_EXPONENT);
2371         return Float.intBitsToFloat(((n + FloatConsts.EXP_BIAS) <<
2372                                      (FloatConsts.SIGNIFICAND_WIDTH-1))
2373                                     & FloatConsts.EXP_BIT_MASK);
2374     }
2375 }
2376