1 /*
2  * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang.invoke;
27 
28 import java.lang.reflect.*;
29 import java.util.List;
30 import java.util.Arrays;
31 import java.util.ArrayList;
32 import java.util.NoSuchElementException;
33 
34 import dalvik.system.VMStack;
35 import sun.invoke.util.VerifyAccess;
36 import sun.invoke.util.Wrapper;
37 import static java.lang.invoke.MethodHandleStatics.*;
38 
39 /**
40  * This class consists exclusively of static methods that operate on or return
41  * method handles. They fall into several categories:
42  * <ul>
43  * <li>Lookup methods which help create method handles for methods and fields.
44  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
45  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
46  * </ul>
47  * <p>
48  * @author John Rose, JSR 292 EG
49  * @since 1.7
50  */
51 public class MethodHandles {
52 
MethodHandles()53     private MethodHandles() { }  // do not instantiate
54 
55     // Android-changed: We do not use MemberName / MethodHandleImpl.
56     //
57     // private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
58     // static { MethodHandleImpl.initStatics(); }
59     // See IMPL_LOOKUP below.
60 
61     //// Method handle creation from ordinary methods.
62 
63     /**
64      * Returns a {@link Lookup lookup object} with
65      * full capabilities to emulate all supported bytecode behaviors of the caller.
66      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
67      * Factory methods on the lookup object can create
68      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
69      * for any member that the caller has access to via bytecodes,
70      * including protected and private fields and methods.
71      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
72      * Do not store it in place where untrusted code can access it.
73      * <p>
74      * This method is caller sensitive, which means that it may return different
75      * values to different callers.
76      * <p>
77      * For any given caller class {@code C}, the lookup object returned by this call
78      * has equivalent capabilities to any lookup object
79      * supplied by the JVM to the bootstrap method of an
80      * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
81      * executing in the same caller class {@code C}.
82      * @return a lookup object for the caller of this method, with private access
83      */
84     // Android-changed: Remove caller sensitive.
85     // @CallerSensitive
lookup()86     public static Lookup lookup() {
87         // Android-changed: Do not use Reflection.getCallerClass().
88         return new Lookup(VMStack.getStackClass1());
89     }
90 
91     /**
92      * Returns a {@link Lookup lookup object} which is trusted minimally.
93      * It can only be used to create method handles to
94      * publicly accessible fields and methods.
95      * <p>
96      * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
97      * of this lookup object will be {@link java.lang.Object}.
98      *
99      * <p style="font-size:smaller;">
100      * <em>Discussion:</em>
101      * The lookup class can be changed to any other class {@code C} using an expression of the form
102      * {@link Lookup#in publicLookup().in(C.class)}.
103      * Since all classes have equal access to public names,
104      * such a change would confer no new access rights.
105      * A public lookup object is always subject to
106      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
107      * Also, it cannot access
108      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
109      * @return a lookup object which is trusted minimally
110      */
publicLookup()111     public static Lookup publicLookup() {
112         return Lookup.PUBLIC_LOOKUP;
113     }
114 
115     /**
116      * Performs an unchecked "crack" of a
117      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
118      * The result is as if the user had obtained a lookup object capable enough
119      * to crack the target method handle, called
120      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
121      * on the target to obtain its symbolic reference, and then called
122      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
123      * to resolve the symbolic reference to a member.
124      * <p>
125      * If there is a security manager, its {@code checkPermission} method
126      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
127      * @param <T> the desired type of the result, either {@link Member} or a subtype
128      * @param target a direct method handle to crack into symbolic reference components
129      * @param expected a class object representing the desired result type {@code T}
130      * @return a reference to the method, constructor, or field object
131      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
132      * @exception NullPointerException if either argument is {@code null}
133      * @exception IllegalArgumentException if the target is not a direct method handle
134      * @exception ClassCastException if the member is not of the expected type
135      * @since 1.8
136      */
137     public static <T extends Member> T
reflectAs(Class<T> expected, MethodHandle target)138     reflectAs(Class<T> expected, MethodHandle target) {
139         MethodHandleImpl directTarget = getMethodHandleImpl(target);
140         // Given that this is specified to be an "unchecked" crack, we can directly allocate
141         // a member from the underlying ArtField / Method and bypass all associated access checks.
142         return expected.cast(directTarget.getMemberInternal());
143     }
144 
145     /**
146      * A <em>lookup object</em> is a factory for creating method handles,
147      * when the creation requires access checking.
148      * Method handles do not perform
149      * access checks when they are called, but rather when they are created.
150      * Therefore, method handle access
151      * restrictions must be enforced when a method handle is created.
152      * The caller class against which those restrictions are enforced
153      * is known as the {@linkplain #lookupClass lookup class}.
154      * <p>
155      * A lookup class which needs to create method handles will call
156      * {@link #lookup MethodHandles.lookup} to create a factory for itself.
157      * When the {@code Lookup} factory object is created, the identity of the lookup class is
158      * determined, and securely stored in the {@code Lookup} object.
159      * The lookup class (or its delegates) may then use factory methods
160      * on the {@code Lookup} object to create method handles for access-checked members.
161      * This includes all methods, constructors, and fields which are allowed to the lookup class,
162      * even private ones.
163      *
164      * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
165      * The factory methods on a {@code Lookup} object correspond to all major
166      * use cases for methods, constructors, and fields.
167      * Each method handle created by a factory method is the functional
168      * equivalent of a particular <em>bytecode behavior</em>.
169      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
170      * Here is a summary of the correspondence between these factory methods and
171      * the behavior the resulting method handles:
172      * <table border=1 cellpadding=5 summary="lookup method behaviors">
173      * <tr>
174      *     <th><a name="equiv"></a>lookup expression</th>
175      *     <th>member</th>
176      *     <th>bytecode behavior</th>
177      * </tr>
178      * <tr>
179      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
180      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
181      * </tr>
182      * <tr>
183      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
184      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
185      * </tr>
186      * <tr>
187      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
188      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
189      * </tr>
190      * <tr>
191      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
192      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
193      * </tr>
194      * <tr>
195      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
196      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
197      * </tr>
198      * <tr>
199      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
200      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
201      * </tr>
202      * <tr>
203      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
204      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
205      * </tr>
206      * <tr>
207      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
208      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
209      * </tr>
210      * <tr>
211      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
212      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
213      * </tr>
214      * <tr>
215      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
216      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
217      * </tr>
218      * <tr>
219      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
220      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
221      * </tr>
222      * <tr>
223      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
224      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
225      * </tr>
226      * <tr>
227      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
228      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
229      * </tr>
230      * </table>
231      *
232      * Here, the type {@code C} is the class or interface being searched for a member,
233      * documented as a parameter named {@code refc} in the lookup methods.
234      * The method type {@code MT} is composed from the return type {@code T}
235      * and the sequence of argument types {@code A*}.
236      * The constructor also has a sequence of argument types {@code A*} and
237      * is deemed to return the newly-created object of type {@code C}.
238      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
239      * The formal parameter {@code this} stands for the self-reference of type {@code C};
240      * if it is present, it is always the leading argument to the method handle invocation.
241      * (In the case of some {@code protected} members, {@code this} may be
242      * restricted in type to the lookup class; see below.)
243      * The name {@code arg} stands for all the other method handle arguments.
244      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
245      * stands for a null reference if the accessed method or field is static,
246      * and {@code this} otherwise.
247      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
248      * for reflective objects corresponding to the given members.
249      * <p>
250      * In cases where the given member is of variable arity (i.e., a method or constructor)
251      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
252      * In all other cases, the returned method handle will be of fixed arity.
253      * <p style="font-size:smaller;">
254      * <em>Discussion:</em>
255      * The equivalence between looked-up method handles and underlying
256      * class members and bytecode behaviors
257      * can break down in a few ways:
258      * <ul style="font-size:smaller;">
259      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
260      * the lookup can still succeed, even when there is no equivalent
261      * Java expression or bytecoded constant.
262      * <li>Likewise, if {@code T} or {@code MT}
263      * is not symbolically accessible from the lookup class's loader,
264      * the lookup can still succeed.
265      * For example, lookups for {@code MethodHandle.invokeExact} and
266      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
267      * <li>If there is a security manager installed, it can forbid the lookup
268      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
269      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
270      * constant is not subject to security manager checks.
271      * <li>If the looked-up method has a
272      * <a href="MethodHandle.html#maxarity">very large arity</a>,
273      * the method handle creation may fail, due to the method handle
274      * type having too many parameters.
275      * </ul>
276      *
277      * <h1><a name="access"></a>Access checking</h1>
278      * Access checks are applied in the factory methods of {@code Lookup},
279      * when a method handle is created.
280      * This is a key difference from the Core Reflection API, since
281      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
282      * performs access checking against every caller, on every call.
283      * <p>
284      * All access checks start from a {@code Lookup} object, which
285      * compares its recorded lookup class against all requests to
286      * create method handles.
287      * A single {@code Lookup} object can be used to create any number
288      * of access-checked method handles, all checked against a single
289      * lookup class.
290      * <p>
291      * A {@code Lookup} object can be shared with other trusted code,
292      * such as a metaobject protocol.
293      * A shared {@code Lookup} object delegates the capability
294      * to create method handles on private members of the lookup class.
295      * Even if privileged code uses the {@code Lookup} object,
296      * the access checking is confined to the privileges of the
297      * original lookup class.
298      * <p>
299      * A lookup can fail, because
300      * the containing class is not accessible to the lookup class, or
301      * because the desired class member is missing, or because the
302      * desired class member is not accessible to the lookup class, or
303      * because the lookup object is not trusted enough to access the member.
304      * In any of these cases, a {@code ReflectiveOperationException} will be
305      * thrown from the attempted lookup.  The exact class will be one of
306      * the following:
307      * <ul>
308      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
309      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
310      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
311      * </ul>
312      * <p>
313      * In general, the conditions under which a method handle may be
314      * looked up for a method {@code M} are no more restrictive than the conditions
315      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
316      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
317      * a method handle lookup will generally raise a corresponding
318      * checked exception, such as {@code NoSuchMethodException}.
319      * And the effect of invoking the method handle resulting from the lookup
320      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
321      * to executing the compiled, verified, and resolved call to {@code M}.
322      * The same point is true of fields and constructors.
323      * <p style="font-size:smaller;">
324      * <em>Discussion:</em>
325      * Access checks only apply to named and reflected methods,
326      * constructors, and fields.
327      * Other method handle creation methods, such as
328      * {@link MethodHandle#asType MethodHandle.asType},
329      * do not require any access checks, and are used
330      * independently of any {@code Lookup} object.
331      * <p>
332      * If the desired member is {@code protected}, the usual JVM rules apply,
333      * including the requirement that the lookup class must be either be in the
334      * same package as the desired member, or must inherit that member.
335      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
336      * In addition, if the desired member is a non-static field or method
337      * in a different package, the resulting method handle may only be applied
338      * to objects of the lookup class or one of its subclasses.
339      * This requirement is enforced by narrowing the type of the leading
340      * {@code this} parameter from {@code C}
341      * (which will necessarily be a superclass of the lookup class)
342      * to the lookup class itself.
343      * <p>
344      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
345      * that the receiver argument must match both the resolved method <em>and</em>
346      * the current class.  Again, this requirement is enforced by narrowing the
347      * type of the leading parameter to the resulting method handle.
348      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
349      * <p>
350      * The JVM represents constructors and static initializer blocks as internal methods
351      * with special names ({@code "<init>"} and {@code "<clinit>"}).
352      * The internal syntax of invocation instructions allows them to refer to such internal
353      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
354      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
355      * <p>
356      * In some cases, access between nested classes is obtained by the Java compiler by creating
357      * an wrapper method to access a private method of another class
358      * in the same top-level declaration.
359      * For example, a nested class {@code C.D}
360      * can access private members within other related classes such as
361      * {@code C}, {@code C.D.E}, or {@code C.B},
362      * but the Java compiler may need to generate wrapper methods in
363      * those related classes.  In such cases, a {@code Lookup} object on
364      * {@code C.E} would be unable to those private members.
365      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
366      * which can transform a lookup on {@code C.E} into one on any of those other
367      * classes, without special elevation of privilege.
368      * <p>
369      * The accesses permitted to a given lookup object may be limited,
370      * according to its set of {@link #lookupModes lookupModes},
371      * to a subset of members normally accessible to the lookup class.
372      * For example, the {@link #publicLookup publicLookup}
373      * method produces a lookup object which is only allowed to access
374      * public members in public classes.
375      * The caller sensitive method {@link #lookup lookup}
376      * produces a lookup object with full capabilities relative to
377      * its caller class, to emulate all supported bytecode behaviors.
378      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
379      * with fewer access modes than the original lookup object.
380      *
381      * <p style="font-size:smaller;">
382      * <a name="privacc"></a>
383      * <em>Discussion of private access:</em>
384      * We say that a lookup has <em>private access</em>
385      * if its {@linkplain #lookupModes lookup modes}
386      * include the possibility of accessing {@code private} members.
387      * As documented in the relevant methods elsewhere,
388      * only lookups with private access possess the following capabilities:
389      * <ul style="font-size:smaller;">
390      * <li>access private fields, methods, and constructors of the lookup class
391      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
392      *     such as {@code Class.forName}
393      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
394      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
395      *     for classes accessible to the lookup class
396      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
397      *     within the same package member
398      * </ul>
399      * <p style="font-size:smaller;">
400      * Each of these permissions is a consequence of the fact that a lookup object
401      * with private access can be securely traced back to an originating class,
402      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
403      * can be reliably determined and emulated by method handles.
404      *
405      * <h1><a name="secmgr"></a>Security manager interactions</h1>
406      * Although bytecode instructions can only refer to classes in
407      * a related class loader, this API can search for methods in any
408      * class, as long as a reference to its {@code Class} object is
409      * available.  Such cross-loader references are also possible with the
410      * Core Reflection API, and are impossible to bytecode instructions
411      * such as {@code invokestatic} or {@code getfield}.
412      * There is a {@linkplain java.lang.SecurityManager security manager API}
413      * to allow applications to check such cross-loader references.
414      * These checks apply to both the {@code MethodHandles.Lookup} API
415      * and the Core Reflection API
416      * (as found on {@link java.lang.Class Class}).
417      * <p>
418      * If a security manager is present, member lookups are subject to
419      * additional checks.
420      * From one to three calls are made to the security manager.
421      * Any of these calls can refuse access by throwing a
422      * {@link java.lang.SecurityException SecurityException}.
423      * Define {@code smgr} as the security manager,
424      * {@code lookc} as the lookup class of the current lookup object,
425      * {@code refc} as the containing class in which the member
426      * is being sought, and {@code defc} as the class in which the
427      * member is actually defined.
428      * The value {@code lookc} is defined as <em>not present</em>
429      * if the current lookup object does not have
430      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
431      * The calls are made according to the following rules:
432      * <ul>
433      * <li><b>Step 1:</b>
434      *     If {@code lookc} is not present, or if its class loader is not
435      *     the same as or an ancestor of the class loader of {@code refc},
436      *     then {@link SecurityManager#checkPackageAccess
437      *     smgr.checkPackageAccess(refcPkg)} is called,
438      *     where {@code refcPkg} is the package of {@code refc}.
439      * <li><b>Step 2:</b>
440      *     If the retrieved member is not public and
441      *     {@code lookc} is not present, then
442      *     {@link SecurityManager#checkPermission smgr.checkPermission}
443      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
444      * <li><b>Step 3:</b>
445      *     If the retrieved member is not public,
446      *     and if {@code lookc} is not present,
447      *     and if {@code defc} and {@code refc} are different,
448      *     then {@link SecurityManager#checkPackageAccess
449      *     smgr.checkPackageAccess(defcPkg)} is called,
450      *     where {@code defcPkg} is the package of {@code defc}.
451      * </ul>
452      * Security checks are performed after other access checks have passed.
453      * Therefore, the above rules presuppose a member that is public,
454      * or else that is being accessed from a lookup class that has
455      * rights to access the member.
456      *
457      * <h1><a name="callsens"></a>Caller sensitive methods</h1>
458      * A small number of Java methods have a special property called caller sensitivity.
459      * A <em>caller-sensitive</em> method can behave differently depending on the
460      * identity of its immediate caller.
461      * <p>
462      * If a method handle for a caller-sensitive method is requested,
463      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
464      * but they take account of the lookup class in a special way.
465      * The resulting method handle behaves as if it were called
466      * from an instruction contained in the lookup class,
467      * so that the caller-sensitive method detects the lookup class.
468      * (By contrast, the invoker of the method handle is disregarded.)
469      * Thus, in the case of caller-sensitive methods,
470      * different lookup classes may give rise to
471      * differently behaving method handles.
472      * <p>
473      * In cases where the lookup object is
474      * {@link #publicLookup publicLookup()},
475      * or some other lookup object without
476      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
477      * the lookup class is disregarded.
478      * In such cases, no caller-sensitive method handle can be created,
479      * access is forbidden, and the lookup fails with an
480      * {@code IllegalAccessException}.
481      * <p style="font-size:smaller;">
482      * <em>Discussion:</em>
483      * For example, the caller-sensitive method
484      * {@link java.lang.Class#forName(String) Class.forName(x)}
485      * can return varying classes or throw varying exceptions,
486      * depending on the class loader of the class that calls it.
487      * A public lookup of {@code Class.forName} will fail, because
488      * there is no reasonable way to determine its bytecode behavior.
489      * <p style="font-size:smaller;">
490      * If an application caches method handles for broad sharing,
491      * it should use {@code publicLookup()} to create them.
492      * If there is a lookup of {@code Class.forName}, it will fail,
493      * and the application must take appropriate action in that case.
494      * It may be that a later lookup, perhaps during the invocation of a
495      * bootstrap method, can incorporate the specific identity
496      * of the caller, making the method accessible.
497      * <p style="font-size:smaller;">
498      * The function {@code MethodHandles.lookup} is caller sensitive
499      * so that there can be a secure foundation for lookups.
500      * Nearly all other methods in the JSR 292 API rely on lookup
501      * objects to check access requests.
502      */
503     // Android-changed: Change link targets from MethodHandles#[public]Lookup to
504     // #[public]Lookup to work around complaints from javadoc.
505     public static final
506     class Lookup {
507         /** The class on behalf of whom the lookup is being performed. */
508         /* @NonNull */ private final Class<?> lookupClass;
509 
510         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
511         private final int allowedModes;
512 
513         /** A single-bit mask representing {@code public} access,
514          *  which may contribute to the result of {@link #lookupModes lookupModes}.
515          *  The value, {@code 0x01}, happens to be the same as the value of the
516          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
517          */
518         public static final int PUBLIC = Modifier.PUBLIC;
519 
520         /** A single-bit mask representing {@code private} access,
521          *  which may contribute to the result of {@link #lookupModes lookupModes}.
522          *  The value, {@code 0x02}, happens to be the same as the value of the
523          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
524          */
525         public static final int PRIVATE = Modifier.PRIVATE;
526 
527         /** A single-bit mask representing {@code protected} access,
528          *  which may contribute to the result of {@link #lookupModes lookupModes}.
529          *  The value, {@code 0x04}, happens to be the same as the value of the
530          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
531          */
532         public static final int PROTECTED = Modifier.PROTECTED;
533 
534         /** A single-bit mask representing {@code package} access (default access),
535          *  which may contribute to the result of {@link #lookupModes lookupModes}.
536          *  The value is {@code 0x08}, which does not correspond meaningfully to
537          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
538          */
539         public static final int PACKAGE = Modifier.STATIC;
540 
541         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
542 
543         // Android-note: Android has no notion of a trusted lookup. If required, such lookups
544         // are performed by the runtime. As a result, we always use lookupClass, which will always
545         // be non-null in our implementation.
546         //
547         // private static final int TRUSTED   = -1;
548 
fixmods(int mods)549         private static int fixmods(int mods) {
550             mods &= (ALL_MODES - PACKAGE);
551             return (mods != 0) ? mods : PACKAGE;
552         }
553 
554         /** Tells which class is performing the lookup.  It is this class against
555          *  which checks are performed for visibility and access permissions.
556          *  <p>
557          *  The class implies a maximum level of access permission,
558          *  but the permissions may be additionally limited by the bitmask
559          *  {@link #lookupModes lookupModes}, which controls whether non-public members
560          *  can be accessed.
561          *  @return the lookup class, on behalf of which this lookup object finds members
562          */
lookupClass()563         public Class<?> lookupClass() {
564             return lookupClass;
565         }
566 
567         /** Tells which access-protection classes of members this lookup object can produce.
568          *  The result is a bit-mask of the bits
569          *  {@linkplain #PUBLIC PUBLIC (0x01)},
570          *  {@linkplain #PRIVATE PRIVATE (0x02)},
571          *  {@linkplain #PROTECTED PROTECTED (0x04)},
572          *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
573          *  <p>
574          *  A freshly-created lookup object
575          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
576          *  has all possible bits set, since the caller class can access all its own members.
577          *  A lookup object on a new lookup class
578          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
579          *  may have some mode bits set to zero.
580          *  The purpose of this is to restrict access via the new lookup object,
581          *  so that it can access only names which can be reached by the original
582          *  lookup object, and also by the new lookup class.
583          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
584          */
lookupModes()585         public int lookupModes() {
586             return allowedModes & ALL_MODES;
587         }
588 
589         /** Embody the current class (the lookupClass) as a lookup class
590          * for method handle creation.
591          * Must be called by from a method in this package,
592          * which in turn is called by a method not in this package.
593          */
Lookup(Class<?> lookupClass)594         Lookup(Class<?> lookupClass) {
595             this(lookupClass, ALL_MODES);
596             // make sure we haven't accidentally picked up a privileged class:
597             checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
598         }
599 
Lookup(Class<?> lookupClass, int allowedModes)600         private Lookup(Class<?> lookupClass, int allowedModes) {
601             this.lookupClass = lookupClass;
602             this.allowedModes = allowedModes;
603         }
604 
605         /**
606          * Creates a lookup on the specified new lookup class.
607          * The resulting object will report the specified
608          * class as its own {@link #lookupClass lookupClass}.
609          * <p>
610          * However, the resulting {@code Lookup} object is guaranteed
611          * to have no more access capabilities than the original.
612          * In particular, access capabilities can be lost as follows:<ul>
613          * <li>If the new lookup class differs from the old one,
614          * protected members will not be accessible by virtue of inheritance.
615          * (Protected members may continue to be accessible because of package sharing.)
616          * <li>If the new lookup class is in a different package
617          * than the old one, protected and default (package) members will not be accessible.
618          * <li>If the new lookup class is not within the same package member
619          * as the old one, private members will not be accessible.
620          * <li>If the new lookup class is not accessible to the old lookup class,
621          * then no members, not even public members, will be accessible.
622          * (In all other cases, public members will continue to be accessible.)
623          * </ul>
624          *
625          * @param requestedLookupClass the desired lookup class for the new lookup object
626          * @return a lookup object which reports the desired lookup class
627          * @throws NullPointerException if the argument is null
628          */
in(Class<?> requestedLookupClass)629         public Lookup in(Class<?> requestedLookupClass) {
630             requestedLookupClass.getClass();  // null check
631             // Android-changed: There's no notion of a trusted lookup.
632             // if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
633             //    return new Lookup(requestedLookupClass, ALL_MODES);
634 
635             if (requestedLookupClass == this.lookupClass)
636                 return this;  // keep same capabilities
637             int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
638             if ((newModes & PACKAGE) != 0
639                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
640                 newModes &= ~(PACKAGE|PRIVATE);
641             }
642             // Allow nestmate lookups to be created without special privilege:
643             if ((newModes & PRIVATE) != 0
644                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
645                 newModes &= ~PRIVATE;
646             }
647             if ((newModes & PUBLIC) != 0
648                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
649                 // The requested class it not accessible from the lookup class.
650                 // No permissions.
651                 newModes = 0;
652             }
653             checkUnprivilegedlookupClass(requestedLookupClass, newModes);
654             return new Lookup(requestedLookupClass, newModes);
655         }
656 
657         // Make sure outer class is initialized first.
658         //
659         // Android-changed: Removed unnecessary reference to IMPL_NAMES.
660         // static { IMPL_NAMES.getClass(); }
661 
662         /** Version of lookup which is trusted minimally.
663          *  It can only be used to create method handles to
664          *  publicly accessible members.
665          */
666         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
667 
668         /** Package-private version of lookup which is trusted. */
669         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, ALL_MODES);
670 
checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes)671         private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
672             String name = lookupClass.getName();
673             if (name.startsWith("java.lang.invoke."))
674                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
675 
676             // For caller-sensitive MethodHandles.lookup()
677             // disallow lookup more restricted packages
678             //
679             // Android-changed: The bootstrap classloader isn't null.
680             if (allowedModes == ALL_MODES &&
681                     lookupClass.getClassLoader() == Object.class.getClassLoader()) {
682                 if (name.startsWith("java.") ||
683                         (name.startsWith("sun.")
684                                 && !name.startsWith("sun.invoke.")
685                                 && !name.equals("sun.reflect.ReflectionFactory"))) {
686                     throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
687                 }
688             }
689         }
690 
691         /**
692          * Displays the name of the class from which lookups are to be made.
693          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
694          * If there are restrictions on the access permitted to this lookup,
695          * this is indicated by adding a suffix to the class name, consisting
696          * of a slash and a keyword.  The keyword represents the strongest
697          * allowed access, and is chosen as follows:
698          * <ul>
699          * <li>If no access is allowed, the suffix is "/noaccess".
700          * <li>If only public access is allowed, the suffix is "/public".
701          * <li>If only public and package access are allowed, the suffix is "/package".
702          * <li>If only public, package, and private access are allowed, the suffix is "/private".
703          * </ul>
704          * If none of the above cases apply, it is the case that full
705          * access (public, package, private, and protected) is allowed.
706          * In this case, no suffix is added.
707          * This is true only of an object obtained originally from
708          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
709          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
710          * always have restricted access, and will display a suffix.
711          * <p>
712          * (It may seem strange that protected access should be
713          * stronger than private access.  Viewed independently from
714          * package access, protected access is the first to be lost,
715          * because it requires a direct subclass relationship between
716          * caller and callee.)
717          * @see #in
718          */
719         @Override
toString()720         public String toString() {
721             String cname = lookupClass.getName();
722             switch (allowedModes) {
723             case 0:  // no privileges
724                 return cname + "/noaccess";
725             case PUBLIC:
726                 return cname + "/public";
727             case PUBLIC|PACKAGE:
728                 return cname + "/package";
729             case ALL_MODES & ~PROTECTED:
730                 return cname + "/private";
731             case ALL_MODES:
732                 return cname;
733             // Android-changed: No support for TRUSTED callers.
734             // case TRUSTED:
735             //    return "/trusted";  // internal only; not exported
736             default:  // Should not happen, but it's a bitfield...
737                 cname = cname + "/" + Integer.toHexString(allowedModes);
738                 assert(false) : cname;
739                 return cname;
740             }
741         }
742 
743         /**
744          * Produces a method handle for a static method.
745          * The type of the method handle will be that of the method.
746          * (Since static methods do not take receivers, there is no
747          * additional receiver argument inserted into the method handle type,
748          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
749          * The method and all its argument types must be accessible to the lookup object.
750          * <p>
751          * The returned method handle will have
752          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
753          * the method's variable arity modifier bit ({@code 0x0080}) is set.
754          * <p>
755          * If the returned method handle is invoked, the method's class will
756          * be initialized, if it has not already been initialized.
757          * <p><b>Example:</b>
758          * <blockquote><pre>{@code
759 import static java.lang.invoke.MethodHandles.*;
760 import static java.lang.invoke.MethodType.*;
761 ...
762 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
763   "asList", methodType(List.class, Object[].class));
764 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
765          * }</pre></blockquote>
766          * @param refc the class from which the method is accessed
767          * @param name the name of the method
768          * @param type the type of the method
769          * @return the desired method handle
770          * @throws NoSuchMethodException if the method does not exist
771          * @throws IllegalAccessException if access checking fails,
772          *                                or if the method is not {@code static},
773          *                                or if the method's variable arity modifier bit
774          *                                is set and {@code asVarargsCollector} fails
775          * @exception SecurityException if a security manager is present and it
776          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
777          * @throws NullPointerException if any argument is null
778          */
779         public
findStatic(Class<?> refc, String name, MethodType type)780         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
781             Method method = refc.getDeclaredMethod(name, type.ptypes());
782             final int modifiers = method.getModifiers();
783             if (!Modifier.isStatic(modifiers)) {
784                 throw new IllegalAccessException("Method" + method + " is not static");
785             }
786             checkReturnType(method, type);
787             checkAccess(refc, method.getDeclaringClass(), modifiers, method.getName());
788             return createMethodHandle(method, MethodHandle.INVOKE_STATIC, type);
789         }
790 
findVirtualForMH(String name, MethodType type)791         private MethodHandle findVirtualForMH(String name, MethodType type) {
792             // these names require special lookups because of the implicit MethodType argument
793             if ("invoke".equals(name))
794                 return invoker(type);
795             if ("invokeExact".equals(name))
796                 return exactInvoker(type);
797             return null;
798         }
799 
createMethodHandle(Method method, int handleKind, MethodType methodType)800         private static MethodHandle createMethodHandle(Method method, int handleKind,
801                                                        MethodType methodType) {
802             MethodHandle mh = new MethodHandleImpl(method.getArtMethod(), handleKind, methodType);
803             if (method.isVarArgs()) {
804                 return new Transformers.VarargsCollector(mh);
805             } else {
806                 return mh;
807             }
808         }
809 
810         /**
811          * Produces a method handle for a virtual method.
812          * The type of the method handle will be that of the method,
813          * with the receiver type (usually {@code refc}) prepended.
814          * The method and all its argument types must be accessible to the lookup object.
815          * <p>
816          * When called, the handle will treat the first argument as a receiver
817          * and dispatch on the receiver's type to determine which method
818          * implementation to enter.
819          * (The dispatching action is identical with that performed by an
820          * {@code invokevirtual} or {@code invokeinterface} instruction.)
821          * <p>
822          * The first argument will be of type {@code refc} if the lookup
823          * class has full privileges to access the member.  Otherwise
824          * the member must be {@code protected} and the first argument
825          * will be restricted in type to the lookup class.
826          * <p>
827          * The returned method handle will have
828          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
829          * the method's variable arity modifier bit ({@code 0x0080}) is set.
830          * <p>
831          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
832          * instructions and method handles produced by {@code findVirtual},
833          * if the class is {@code MethodHandle} and the name string is
834          * {@code invokeExact} or {@code invoke}, the resulting
835          * method handle is equivalent to one produced by
836          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
837          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
838          * with the same {@code type} argument.
839          *
840          * <b>Example:</b>
841          * <blockquote><pre>{@code
842 import static java.lang.invoke.MethodHandles.*;
843 import static java.lang.invoke.MethodType.*;
844 ...
845 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
846   "concat", methodType(String.class, String.class));
847 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
848   "hashCode", methodType(int.class));
849 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
850   "hashCode", methodType(int.class));
851 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
852 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
853 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
854 // interface method:
855 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
856   "subSequence", methodType(CharSequence.class, int.class, int.class));
857 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
858 // constructor "internal method" must be accessed differently:
859 MethodType MT_newString = methodType(void.class); //()V for new String()
860 try { assertEquals("impossible", lookup()
861         .findVirtual(String.class, "<init>", MT_newString));
862  } catch (NoSuchMethodException ex) { } // OK
863 MethodHandle MH_newString = publicLookup()
864   .findConstructor(String.class, MT_newString);
865 assertEquals("", (String) MH_newString.invokeExact());
866          * }</pre></blockquote>
867          *
868          * @param refc the class or interface from which the method is accessed
869          * @param name the name of the method
870          * @param type the type of the method, with the receiver argument omitted
871          * @return the desired method handle
872          * @throws NoSuchMethodException if the method does not exist
873          * @throws IllegalAccessException if access checking fails,
874          *                                or if the method is {@code static}
875          *                                or if the method's variable arity modifier bit
876          *                                is set and {@code asVarargsCollector} fails
877          * @exception SecurityException if a security manager is present and it
878          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
879          * @throws NullPointerException if any argument is null
880          */
findVirtual(Class<?> refc, String name, MethodType type)881         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
882             // Special case : when we're looking up a virtual method on the MethodHandles class
883             // itself, we can return one of our specialized invokers.
884             if (refc == MethodHandle.class) {
885                 MethodHandle mh = findVirtualForMH(name, type);
886                 if (mh != null) {
887                     return mh;
888                 }
889             }
890 
891             Method method = refc.getInstanceMethod(name, type.ptypes());
892             if (method == null) {
893                 // This is pretty ugly and a consequence of the MethodHandles API. We have to throw
894                 // an IAE and not an NSME if the method exists but is static (even though the RI's
895                 // IAE has a message that says "no such method"). We confine the ugliness and
896                 // slowness to the failure case, and allow getInstanceMethod to remain fairly
897                 // general.
898                 try {
899                     Method m = refc.getDeclaredMethod(name, type.ptypes());
900                     if (Modifier.isStatic(m.getModifiers())) {
901                         throw new IllegalAccessException("Method" + m + " is static");
902                     }
903                 } catch (NoSuchMethodException ignored) {
904                 }
905 
906                 throw new NoSuchMethodException(name + " "  + Arrays.toString(type.ptypes()));
907             }
908             checkReturnType(method, type);
909 
910             // We have a valid method, perform access checks.
911             checkAccess(refc, method.getDeclaringClass(), method.getModifiers(), method.getName());
912 
913             // Insert the leading reference parameter.
914             MethodType handleType = type.insertParameterTypes(0, refc);
915             return createMethodHandle(method, MethodHandle.INVOKE_VIRTUAL, handleType);
916         }
917 
918         /**
919          * Produces a method handle which creates an object and initializes it, using
920          * the constructor of the specified type.
921          * The parameter types of the method handle will be those of the constructor,
922          * while the return type will be a reference to the constructor's class.
923          * The constructor and all its argument types must be accessible to the lookup object.
924          * <p>
925          * The requested type must have a return type of {@code void}.
926          * (This is consistent with the JVM's treatment of constructor type descriptors.)
927          * <p>
928          * The returned method handle will have
929          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
930          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
931          * <p>
932          * If the returned method handle is invoked, the constructor's class will
933          * be initialized, if it has not already been initialized.
934          * <p><b>Example:</b>
935          * <blockquote><pre>{@code
936 import static java.lang.invoke.MethodHandles.*;
937 import static java.lang.invoke.MethodType.*;
938 ...
939 MethodHandle MH_newArrayList = publicLookup().findConstructor(
940   ArrayList.class, methodType(void.class, Collection.class));
941 Collection orig = Arrays.asList("x", "y");
942 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
943 assert(orig != copy);
944 assertEquals(orig, copy);
945 // a variable-arity constructor:
946 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
947   ProcessBuilder.class, methodType(void.class, String[].class));
948 ProcessBuilder pb = (ProcessBuilder)
949   MH_newProcessBuilder.invoke("x", "y", "z");
950 assertEquals("[x, y, z]", pb.command().toString());
951          * }</pre></blockquote>
952          * @param refc the class or interface from which the method is accessed
953          * @param type the type of the method, with the receiver argument omitted, and a void return type
954          * @return the desired method handle
955          * @throws NoSuchMethodException if the constructor does not exist
956          * @throws IllegalAccessException if access checking fails
957          *                                or if the method's variable arity modifier bit
958          *                                is set and {@code asVarargsCollector} fails
959          * @exception SecurityException if a security manager is present and it
960          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
961          * @throws NullPointerException if any argument is null
962          */
findConstructor(Class<?> refc, MethodType type)963         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
964             if (refc.isArray()) {
965                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
966             }
967             // The queried |type| is (PT1,PT2,..)V
968             Constructor constructor = refc.getDeclaredConstructor(type.ptypes());
969             if (constructor == null) {
970                 throw new NoSuchMethodException(
971                     "No constructor for " + constructor.getDeclaringClass() + " matching " + type);
972             }
973             checkAccess(refc, constructor.getDeclaringClass(), constructor.getModifiers(),
974                     constructor.getName());
975 
976             return createMethodHandleForConstructor(constructor);
977         }
978 
createMethodHandleForConstructor(Constructor constructor)979         private MethodHandle createMethodHandleForConstructor(Constructor constructor) {
980             Class<?> refc = constructor.getDeclaringClass();
981             MethodType constructorType =
982                     MethodType.methodType(refc, constructor.getParameterTypes());
983             MethodHandle mh;
984             if (refc == String.class) {
985                 // String constructors have optimized StringFactory methods
986                 // that matches returned type. These factory methods combine the
987                 // memory allocation and initialization calls for String objects.
988                 mh = new MethodHandleImpl(constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT,
989                                           constructorType);
990             } else {
991                 // Constructors for all other classes use a Construct transformer to perform
992                 // their memory allocation and call to <init>.
993                 MethodType initType = initMethodType(constructorType);
994                 MethodHandle initHandle = new MethodHandleImpl(
995                     constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT, initType);
996                 mh = new Transformers.Construct(initHandle, constructorType);
997             }
998 
999             if (constructor.isVarArgs()) {
1000                 mh = new Transformers.VarargsCollector(mh);
1001             }
1002             return mh;
1003         }
1004 
initMethodType(MethodType constructorType)1005         private static MethodType initMethodType(MethodType constructorType) {
1006             // Returns a MethodType appropriate for class <init>
1007             // methods. Constructor MethodTypes have the form
1008             // (PT1,PT2,...)C and class <init> MethodTypes have the
1009             // form (C,PT1,PT2,...)V.
1010             assert constructorType.rtype() != void.class;
1011 
1012             // Insert constructorType C as the first parameter type in
1013             // the MethodType for <init>.
1014             Class<?> [] initPtypes = new Class<?> [constructorType.ptypes().length + 1];
1015             initPtypes[0] = constructorType.rtype();
1016             System.arraycopy(constructorType.ptypes(), 0, initPtypes, 1,
1017                              constructorType.ptypes().length);
1018 
1019             // Set the return type for the <init> MethodType to be void.
1020             return MethodType.methodType(void.class, initPtypes);
1021         }
1022 
1023         /**
1024          * Produces an early-bound method handle for a virtual method.
1025          * It will bypass checks for overriding methods on the receiver,
1026          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1027          * instruction from within the explicitly specified {@code specialCaller}.
1028          * The type of the method handle will be that of the method,
1029          * with a suitably restricted receiver type prepended.
1030          * (The receiver type will be {@code specialCaller} or a subtype.)
1031          * The method and all its argument types must be accessible
1032          * to the lookup object.
1033          * <p>
1034          * Before method resolution,
1035          * if the explicitly specified caller class is not identical with the
1036          * lookup class, or if this lookup object does not have
1037          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1038          * privileges, the access fails.
1039          * <p>
1040          * The returned method handle will have
1041          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1042          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1043          * <p style="font-size:smaller;">
1044          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
1045          * even though the {@code invokespecial} instruction can refer to them
1046          * in special circumstances.  Use {@link #findConstructor findConstructor}
1047          * to access instance initialization methods in a safe manner.)</em>
1048          * <p><b>Example:</b>
1049          * <blockquote><pre>{@code
1050 import static java.lang.invoke.MethodHandles.*;
1051 import static java.lang.invoke.MethodType.*;
1052 ...
1053 static class Listie extends ArrayList {
1054   public String toString() { return "[wee Listie]"; }
1055   static Lookup lookup() { return MethodHandles.lookup(); }
1056 }
1057 ...
1058 // no access to constructor via invokeSpecial:
1059 MethodHandle MH_newListie = Listie.lookup()
1060   .findConstructor(Listie.class, methodType(void.class));
1061 Listie l = (Listie) MH_newListie.invokeExact();
1062 try { assertEquals("impossible", Listie.lookup().findSpecial(
1063         Listie.class, "<init>", methodType(void.class), Listie.class));
1064  } catch (NoSuchMethodException ex) { } // OK
1065 // access to super and self methods via invokeSpecial:
1066 MethodHandle MH_super = Listie.lookup().findSpecial(
1067   ArrayList.class, "toString" , methodType(String.class), Listie.class);
1068 MethodHandle MH_this = Listie.lookup().findSpecial(
1069   Listie.class, "toString" , methodType(String.class), Listie.class);
1070 MethodHandle MH_duper = Listie.lookup().findSpecial(
1071   Object.class, "toString" , methodType(String.class), Listie.class);
1072 assertEquals("[]", (String) MH_super.invokeExact(l));
1073 assertEquals(""+l, (String) MH_this.invokeExact(l));
1074 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
1075 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
1076         String.class, "toString", methodType(String.class), Listie.class));
1077  } catch (IllegalAccessException ex) { } // OK
1078 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
1079 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
1080          * }</pre></blockquote>
1081          *
1082          * @param refc the class or interface from which the method is accessed
1083          * @param name the name of the method (which must not be "&lt;init&gt;")
1084          * @param type the type of the method, with the receiver argument omitted
1085          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
1086          * @return the desired method handle
1087          * @throws NoSuchMethodException if the method does not exist
1088          * @throws IllegalAccessException if access checking fails
1089          *                                or if the method's variable arity modifier bit
1090          *                                is set and {@code asVarargsCollector} fails
1091          * @exception SecurityException if a security manager is present and it
1092          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1093          * @throws NullPointerException if any argument is null
1094          */
findSpecial(Class<?> refc, String name, MethodType type, Class<?> specialCaller)1095         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
1096                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
1097             if (specialCaller == null) {
1098                 throw new NullPointerException("specialCaller == null");
1099             }
1100 
1101             if (type == null) {
1102                 throw new NullPointerException("type == null");
1103             }
1104 
1105             if (name == null) {
1106                 throw new NullPointerException("name == null");
1107             }
1108 
1109             if (refc == null) {
1110                 throw new NullPointerException("ref == null");
1111             }
1112 
1113             // Make sure that the special caller is identical to the lookup class or that we have
1114             // private access.
1115             checkSpecialCaller(specialCaller);
1116 
1117             // Even though constructors are invoked using a "special" invoke, handles to them can't
1118             // be created using findSpecial. Callers must use findConstructor instead. Similarly,
1119             // there is no path for calling static class initializers.
1120             if (name.startsWith("<")) {
1121                 throw new NoSuchMethodException(name + " is not a valid method name.");
1122             }
1123 
1124             Method method = refc.getDeclaredMethod(name, type.ptypes());
1125             checkReturnType(method, type);
1126             return findSpecial(method, type, refc, specialCaller);
1127         }
1128 
findSpecial(Method method, MethodType type, Class<?> refc, Class<?> specialCaller)1129         private MethodHandle findSpecial(Method method, MethodType type,
1130                                          Class<?> refc, Class<?> specialCaller)
1131                 throws IllegalAccessException {
1132             if (Modifier.isStatic(method.getModifiers())) {
1133                 throw new IllegalAccessException("expected a non-static method:" + method);
1134             }
1135 
1136             if (Modifier.isPrivate(method.getModifiers())) {
1137                 // Since this is a private method, we'll need to also make sure that the
1138                 // lookup class is the same as the refering class. We've already checked that
1139                 // the specialCaller is the same as the special lookup class, both of these must
1140                 // be the same as the declaring class(*) in order to access the private method.
1141                 //
1142                 // (*) Well, this isn't true for nested classes but OpenJDK doesn't support those
1143                 // either.
1144                 if (refc != lookupClass()) {
1145                     throw new IllegalAccessException("no private access for invokespecial : "
1146                             + refc + ", from" + this);
1147                 }
1148 
1149                 // This is a private method, so there's nothing special to do.
1150                 MethodType handleType = type.insertParameterTypes(0, refc);
1151                 return createMethodHandle(method, MethodHandle.INVOKE_DIRECT, handleType);
1152             }
1153 
1154             // This is a public, protected or package-private method, which means we're expecting
1155             // invoke-super semantics. We'll have to restrict the receiver type appropriately on the
1156             // handle once we check that there really is a "super" relationship between them.
1157             if (!method.getDeclaringClass().isAssignableFrom(specialCaller)) {
1158                 throw new IllegalAccessException(refc + "is not assignable from " + specialCaller);
1159             }
1160 
1161             // Note that we restrict the receiver to "specialCaller" instances.
1162             MethodType handleType = type.insertParameterTypes(0, specialCaller);
1163             return createMethodHandle(method, MethodHandle.INVOKE_SUPER, handleType);
1164         }
1165 
1166         /**
1167          * Produces a method handle giving read access to a non-static field.
1168          * The type of the method handle will have a return type of the field's
1169          * value type.
1170          * The method handle's single argument will be the instance containing
1171          * the field.
1172          * Access checking is performed immediately on behalf of the lookup class.
1173          * @param refc the class or interface from which the method is accessed
1174          * @param name the field's name
1175          * @param type the field's type
1176          * @return a method handle which can load values from the field
1177          * @throws NoSuchFieldException if the field does not exist
1178          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1179          * @exception SecurityException if a security manager is present and it
1180          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1181          * @throws NullPointerException if any argument is null
1182          */
findGetter(Class<?> refc, String name, Class<?> type)1183         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1184             return findAccessor(refc, name, type, MethodHandle.IGET);
1185         }
1186 
findAccessor(Class<?> refc, String name, Class<?> type, int kind)1187         private MethodHandle findAccessor(Class<?> refc, String name, Class<?> type, int kind)
1188             throws NoSuchFieldException, IllegalAccessException {
1189             final Field field = refc.getDeclaredField(name);
1190             final Class<?> fieldType = field.getType();
1191             if (fieldType != type) {
1192                 throw new NoSuchFieldException(
1193                         "Field has wrong type: " + fieldType + " != " + type);
1194             }
1195 
1196             return findAccessor(field, refc, type, kind, true /* performAccessChecks */);
1197         }
1198 
findAccessor(Field field, Class<?> refc, Class<?> fieldType, int kind, boolean performAccessChecks)1199         private MethodHandle findAccessor(Field field, Class<?> refc, Class<?> fieldType, int kind,
1200                                           boolean performAccessChecks)
1201                 throws IllegalAccessException {
1202             if (!performAccessChecks) {
1203                 checkAccess(refc, field.getDeclaringClass(), field.getModifiers(), field.getName());
1204             }
1205 
1206             final boolean isStaticKind = kind == MethodHandle.SGET || kind == MethodHandle.SPUT;
1207             final int modifiers = field.getModifiers();
1208             if (Modifier.isStatic(modifiers) != isStaticKind) {
1209                 String reason = "Field " + field + " is " +
1210                         (isStaticKind ? "not " : "") + "static";
1211                 throw new IllegalAccessException(reason);
1212             }
1213 
1214             final boolean isSetterKind = kind == MethodHandle.IPUT || kind == MethodHandle.SPUT;
1215             if (Modifier.isFinal(modifiers) && isSetterKind) {
1216                 throw new IllegalAccessException("Field " + field + " is final");
1217             }
1218 
1219             final MethodType methodType;
1220             switch (kind) {
1221                 case MethodHandle.SGET:
1222                     methodType = MethodType.methodType(fieldType);
1223                     break;
1224                 case MethodHandle.SPUT:
1225                     methodType = MethodType.methodType(void.class, fieldType);
1226                     break;
1227                 case MethodHandle.IGET:
1228                     methodType = MethodType.methodType(fieldType, refc);
1229                     break;
1230                 case MethodHandle.IPUT:
1231                     methodType = MethodType.methodType(void.class, refc, fieldType);
1232                     break;
1233                 default:
1234                     throw new IllegalArgumentException("Invalid kind " + kind);
1235             }
1236             return new MethodHandleImpl(field.getArtField(), kind, methodType);
1237         }
1238 
1239         /**
1240          * Produces a method handle giving write access to a non-static field.
1241          * The type of the method handle will have a void return type.
1242          * The method handle will take two arguments, the instance containing
1243          * the field, and the value to be stored.
1244          * The second argument will be of the field's value type.
1245          * Access checking is performed immediately on behalf of the lookup class.
1246          * @param refc the class or interface from which the method is accessed
1247          * @param name the field's name
1248          * @param type the field's type
1249          * @return a method handle which can store values into the field
1250          * @throws NoSuchFieldException if the field does not exist
1251          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1252          * @exception SecurityException if a security manager is present and it
1253          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1254          * @throws NullPointerException if any argument is null
1255          */
findSetter(Class<?> refc, String name, Class<?> type)1256         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1257             return findAccessor(refc, name, type, MethodHandle.IPUT);
1258         }
1259 
1260         /**
1261          * Produces a method handle giving read access to a static field.
1262          * The type of the method handle will have a return type of the field's
1263          * value type.
1264          * The method handle will take no arguments.
1265          * Access checking is performed immediately on behalf of the lookup class.
1266          * <p>
1267          * If the returned method handle is invoked, the field's class will
1268          * be initialized, if it has not already been initialized.
1269          * @param refc the class or interface from which the method is accessed
1270          * @param name the field's name
1271          * @param type the field's type
1272          * @return a method handle which can load values from the field
1273          * @throws NoSuchFieldException if the field does not exist
1274          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1275          * @exception SecurityException if a security manager is present and it
1276          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1277          * @throws NullPointerException if any argument is null
1278          */
findStaticGetter(Class<?> refc, String name, Class<?> type)1279         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1280             return findAccessor(refc, name, type, MethodHandle.SGET);
1281         }
1282 
1283         /**
1284          * Produces a method handle giving write access to a static field.
1285          * The type of the method handle will have a void return type.
1286          * The method handle will take a single
1287          * argument, of the field's value type, the value to be stored.
1288          * Access checking is performed immediately on behalf of the lookup class.
1289          * <p>
1290          * If the returned method handle is invoked, the field's class will
1291          * be initialized, if it has not already been initialized.
1292          * @param refc the class or interface from which the method is accessed
1293          * @param name the field's name
1294          * @param type the field's type
1295          * @return a method handle which can store values into the field
1296          * @throws NoSuchFieldException if the field does not exist
1297          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1298          * @exception SecurityException if a security manager is present and it
1299          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1300          * @throws NullPointerException if any argument is null
1301          */
findStaticSetter(Class<?> refc, String name, Class<?> type)1302         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1303             return findAccessor(refc, name, type, MethodHandle.SPUT);
1304         }
1305 
1306         /**
1307          * Produces an early-bound method handle for a non-static method.
1308          * The receiver must have a supertype {@code defc} in which a method
1309          * of the given name and type is accessible to the lookup class.
1310          * The method and all its argument types must be accessible to the lookup object.
1311          * The type of the method handle will be that of the method,
1312          * without any insertion of an additional receiver parameter.
1313          * The given receiver will be bound into the method handle,
1314          * so that every call to the method handle will invoke the
1315          * requested method on the given receiver.
1316          * <p>
1317          * The returned method handle will have
1318          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1319          * the method's variable arity modifier bit ({@code 0x0080}) is set
1320          * <em>and</em> the trailing array argument is not the only argument.
1321          * (If the trailing array argument is the only argument,
1322          * the given receiver value will be bound to it.)
1323          * <p>
1324          * This is equivalent to the following code:
1325          * <blockquote><pre>{@code
1326 import static java.lang.invoke.MethodHandles.*;
1327 import static java.lang.invoke.MethodType.*;
1328 ...
1329 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1330 MethodHandle mh1 = mh0.bindTo(receiver);
1331 MethodType mt1 = mh1.type();
1332 if (mh0.isVarargsCollector())
1333   mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
1334 return mh1;
1335          * }</pre></blockquote>
1336          * where {@code defc} is either {@code receiver.getClass()} or a super
1337          * type of that class, in which the requested method is accessible
1338          * to the lookup class.
1339          * (Note that {@code bindTo} does not preserve variable arity.)
1340          * @param receiver the object from which the method is accessed
1341          * @param name the name of the method
1342          * @param type the type of the method, with the receiver argument omitted
1343          * @return the desired method handle
1344          * @throws NoSuchMethodException if the method does not exist
1345          * @throws IllegalAccessException if access checking fails
1346          *                                or if the method's variable arity modifier bit
1347          *                                is set and {@code asVarargsCollector} fails
1348          * @exception SecurityException if a security manager is present and it
1349          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1350          * @throws NullPointerException if any argument is null
1351          * @see MethodHandle#bindTo
1352          * @see #findVirtual
1353          */
bind(Object receiver, String name, MethodType type)1354         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1355             MethodHandle handle = findVirtual(receiver.getClass(), name, type);
1356             MethodHandle adapter = handle.bindTo(receiver);
1357             MethodType adapterType = adapter.type();
1358             if (handle.isVarargsCollector()) {
1359                 adapter = adapter.asVarargsCollector(
1360                         adapterType.parameterType(adapterType.parameterCount() - 1));
1361             }
1362 
1363             return adapter;
1364         }
1365 
1366         /**
1367          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1368          * to <i>m</i>, if the lookup class has permission.
1369          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1370          * If <i>m</i> is virtual, overriding is respected on every call.
1371          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1372          * The type of the method handle will be that of the method,
1373          * with the receiver type prepended (but only if it is non-static).
1374          * If the method's {@code accessible} flag is not set,
1375          * access checking is performed immediately on behalf of the lookup class.
1376          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1377          * <p>
1378          * The returned method handle will have
1379          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1380          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1381          * <p>
1382          * If <i>m</i> is static, and
1383          * if the returned method handle is invoked, the method's class will
1384          * be initialized, if it has not already been initialized.
1385          * @param m the reflected method
1386          * @return a method handle which can invoke the reflected method
1387          * @throws IllegalAccessException if access checking fails
1388          *                                or if the method's variable arity modifier bit
1389          *                                is set and {@code asVarargsCollector} fails
1390          * @throws NullPointerException if the argument is null
1391          */
unreflect(Method m)1392         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1393             if (m == null) {
1394                 throw new NullPointerException("m == null");
1395             }
1396 
1397             MethodType methodType = MethodType.methodType(m.getReturnType(),
1398                     m.getParameterTypes());
1399 
1400             // We should only perform access checks if setAccessible hasn't been called yet.
1401             if (!m.isAccessible()) {
1402                 checkAccess(m.getDeclaringClass(), m.getDeclaringClass(), m.getModifiers(),
1403                         m.getName());
1404             }
1405 
1406             if (Modifier.isStatic(m.getModifiers())) {
1407                 return createMethodHandle(m, MethodHandle.INVOKE_STATIC, methodType);
1408             } else {
1409                 methodType = methodType.insertParameterTypes(0, m.getDeclaringClass());
1410                 return createMethodHandle(m, MethodHandle.INVOKE_VIRTUAL, methodType);
1411             }
1412         }
1413 
1414         /**
1415          * Produces a method handle for a reflected method.
1416          * It will bypass checks for overriding methods on the receiver,
1417          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1418          * instruction from within the explicitly specified {@code specialCaller}.
1419          * The type of the method handle will be that of the method,
1420          * with a suitably restricted receiver type prepended.
1421          * (The receiver type will be {@code specialCaller} or a subtype.)
1422          * If the method's {@code accessible} flag is not set,
1423          * access checking is performed immediately on behalf of the lookup class,
1424          * as if {@code invokespecial} instruction were being linked.
1425          * <p>
1426          * Before method resolution,
1427          * if the explicitly specified caller class is not identical with the
1428          * lookup class, or if this lookup object does not have
1429          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1430          * privileges, the access fails.
1431          * <p>
1432          * The returned method handle will have
1433          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1434          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1435          * @param m the reflected method
1436          * @param specialCaller the class nominally calling the method
1437          * @return a method handle which can invoke the reflected method
1438          * @throws IllegalAccessException if access checking fails
1439          *                                or if the method's variable arity modifier bit
1440          *                                is set and {@code asVarargsCollector} fails
1441          * @throws NullPointerException if any argument is null
1442          */
unreflectSpecial(Method m, Class<?> specialCaller)1443         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1444             if (m == null) {
1445                 throw new NullPointerException("m == null");
1446             }
1447 
1448             if (specialCaller == null) {
1449                 throw new NullPointerException("specialCaller == null");
1450             }
1451 
1452             if (!m.isAccessible()) {
1453                 checkSpecialCaller(specialCaller);
1454             }
1455 
1456             final MethodType methodType = MethodType.methodType(m.getReturnType(),
1457                     m.getParameterTypes());
1458             return findSpecial(m, methodType, m.getDeclaringClass() /* refc */, specialCaller);
1459         }
1460 
1461         /**
1462          * Produces a method handle for a reflected constructor.
1463          * The type of the method handle will be that of the constructor,
1464          * with the return type changed to the declaring class.
1465          * The method handle will perform a {@code newInstance} operation,
1466          * creating a new instance of the constructor's class on the
1467          * arguments passed to the method handle.
1468          * <p>
1469          * If the constructor's {@code accessible} flag is not set,
1470          * access checking is performed immediately on behalf of the lookup class.
1471          * <p>
1472          * The returned method handle will have
1473          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1474          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1475          * <p>
1476          * If the returned method handle is invoked, the constructor's class will
1477          * be initialized, if it has not already been initialized.
1478          * @param c the reflected constructor
1479          * @return a method handle which can invoke the reflected constructor
1480          * @throws IllegalAccessException if access checking fails
1481          *                                or if the method's variable arity modifier bit
1482          *                                is set and {@code asVarargsCollector} fails
1483          * @throws NullPointerException if the argument is null
1484          */
unreflectConstructor(Constructor<?> c)1485         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1486             if (c == null) {
1487                 throw new NullPointerException("c == null");
1488             }
1489 
1490             if (!c.isAccessible()) {
1491                 checkAccess(c.getDeclaringClass(), c.getDeclaringClass(), c.getModifiers(),
1492                         c.getName());
1493             }
1494 
1495             return createMethodHandleForConstructor(c);
1496         }
1497 
1498         /**
1499          * Produces a method handle giving read access to a reflected field.
1500          * The type of the method handle will have a return type of the field's
1501          * value type.
1502          * If the field is static, the method handle will take no arguments.
1503          * Otherwise, its single argument will be the instance containing
1504          * the field.
1505          * If the field's {@code accessible} flag is not set,
1506          * access checking is performed immediately on behalf of the lookup class.
1507          * <p>
1508          * If the field is static, and
1509          * if the returned method handle is invoked, the field's class will
1510          * be initialized, if it has not already been initialized.
1511          * @param f the reflected field
1512          * @return a method handle which can load values from the reflected field
1513          * @throws IllegalAccessException if access checking fails
1514          * @throws NullPointerException if the argument is null
1515          */
unreflectGetter(Field f)1516         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1517             return findAccessor(f, f.getDeclaringClass(), f.getType(),
1518                     Modifier.isStatic(f.getModifiers()) ? MethodHandle.SGET : MethodHandle.IGET,
1519                     f.isAccessible() /* performAccessChecks */);
1520         }
1521 
1522         /**
1523          * Produces a method handle giving write access to a reflected field.
1524          * The type of the method handle will have a void return type.
1525          * If the field is static, the method handle will take a single
1526          * argument, of the field's value type, the value to be stored.
1527          * Otherwise, the two arguments will be the instance containing
1528          * the field, and the value to be stored.
1529          * If the field's {@code accessible} flag is not set,
1530          * access checking is performed immediately on behalf of the lookup class.
1531          * <p>
1532          * If the field is static, and
1533          * if the returned method handle is invoked, the field's class will
1534          * be initialized, if it has not already been initialized.
1535          * @param f the reflected field
1536          * @return a method handle which can store values into the reflected field
1537          * @throws IllegalAccessException if access checking fails
1538          * @throws NullPointerException if the argument is null
1539          */
unreflectSetter(Field f)1540         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1541             return findAccessor(f, f.getDeclaringClass(), f.getType(),
1542                     Modifier.isStatic(f.getModifiers()) ? MethodHandle.SPUT : MethodHandle.IPUT,
1543                     f.isAccessible() /* performAccessChecks */);
1544         }
1545 
1546         /**
1547          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1548          * created by this lookup object or a similar one.
1549          * Security and access checks are performed to ensure that this lookup object
1550          * is capable of reproducing the target method handle.
1551          * This means that the cracking may fail if target is a direct method handle
1552          * but was created by an unrelated lookup object.
1553          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1554          * and was created by a lookup object for a different class.
1555          * @param target a direct method handle to crack into symbolic reference components
1556          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1557          * @exception SecurityException if a security manager is present and it
1558          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1559          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1560          * @exception NullPointerException if the target is {@code null}
1561          * @see MethodHandleInfo
1562          * @since 1.8
1563          */
revealDirect(MethodHandle target)1564         public MethodHandleInfo revealDirect(MethodHandle target) {
1565             MethodHandleImpl directTarget = getMethodHandleImpl(target);
1566             MethodHandleInfo info = directTarget.reveal();
1567 
1568             try {
1569                 checkAccess(lookupClass(), info.getDeclaringClass(), info.getModifiers(),
1570                         info.getName());
1571             } catch (IllegalAccessException exception) {
1572                 throw new IllegalArgumentException("Unable to access memeber.", exception);
1573             }
1574 
1575             return info;
1576         }
1577 
hasPrivateAccess()1578         private boolean hasPrivateAccess() {
1579             return (allowedModes & PRIVATE) != 0;
1580         }
1581 
1582         /** Check public/protected/private bits on the symbolic reference class and its member. */
checkAccess(Class<?> refc, Class<?> defc, int mods, String methName)1583         void checkAccess(Class<?> refc, Class<?> defc, int mods, String methName)
1584                 throws IllegalAccessException {
1585             int allowedModes = this.allowedModes;
1586 
1587             if (Modifier.isProtected(mods) &&
1588                     defc == Object.class &&
1589                     "clone".equals(methName) &&
1590                     refc.isArray()) {
1591                 // The JVM does this hack also.
1592                 // (See ClassVerifier::verify_invoke_instructions
1593                 // and LinkResolver::check_method_accessability.)
1594                 // Because the JVM does not allow separate methods on array types,
1595                 // there is no separate method for int[].clone.
1596                 // All arrays simply inherit Object.clone.
1597                 // But for access checking logic, we make Object.clone
1598                 // (normally protected) appear to be public.
1599                 // Later on, when the DirectMethodHandle is created,
1600                 // its leading argument will be restricted to the
1601                 // requested array type.
1602                 // N.B. The return type is not adjusted, because
1603                 // that is *not* the bytecode behavior.
1604                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
1605             }
1606 
1607             if (Modifier.isProtected(mods) && Modifier.isConstructor(mods)) {
1608                 // cannot "new" a protected ctor in a different package
1609                 mods ^= Modifier.PROTECTED;
1610             }
1611 
1612             if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
1613                 return;  // common case
1614             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
1615             if ((requestedModes & allowedModes) != 0) {
1616                 if (VerifyAccess.isMemberAccessible(refc, defc, mods, lookupClass(), allowedModes))
1617                     return;
1618             } else {
1619                 // Protected members can also be checked as if they were package-private.
1620                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
1621                         && VerifyAccess.isSamePackage(defc, lookupClass()))
1622                     return;
1623             }
1624 
1625             throwMakeAccessException(accessFailedMessage(refc, defc, mods), this);
1626         }
1627 
accessFailedMessage(Class<?> refc, Class<?> defc, int mods)1628         String accessFailedMessage(Class<?> refc, Class<?> defc, int mods) {
1629             // check the class first:
1630             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
1631                     (defc == refc ||
1632                             Modifier.isPublic(refc.getModifiers())));
1633             if (!classOK && (allowedModes & PACKAGE) != 0) {
1634                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
1635                         (defc == refc ||
1636                                 VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
1637             }
1638             if (!classOK)
1639                 return "class is not public";
1640             if (Modifier.isPublic(mods))
1641                 return "access to public member failed";  // (how?)
1642             if (Modifier.isPrivate(mods))
1643                 return "member is private";
1644             if (Modifier.isProtected(mods))
1645                 return "member is protected";
1646             return "member is private to package";
1647         }
1648 
1649         // Android-changed: checkSpecialCaller assumes that ALLOW_NESTMATE_ACCESS = false,
1650         // as in upstream OpenJDK.
1651         //
1652         // private static final boolean ALLOW_NESTMATE_ACCESS = false;
1653 
checkSpecialCaller(Class<?> specialCaller)1654         private void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
1655             // Android-changed: No support for TRUSTED lookups. Also construct the
1656             // IllegalAccessException by hand because the upstream code implicitly assumes
1657             // that the lookupClass == specialCaller.
1658             //
1659             // if (allowedModes == TRUSTED)  return;
1660             if (!hasPrivateAccess() || (specialCaller != lookupClass())) {
1661                 throw new IllegalAccessException("no private access for invokespecial : "
1662                         + specialCaller + ", from" + this);
1663             }
1664         }
1665 
throwMakeAccessException(String message, Object from)1666         private void throwMakeAccessException(String message, Object from) throws
1667                 IllegalAccessException{
1668             message = message + ": "+ toString();
1669             if (from != null)  message += ", from " + from;
1670             throw new IllegalAccessException(message);
1671         }
1672 
checkReturnType(Method method, MethodType methodType)1673         private void checkReturnType(Method method, MethodType methodType)
1674                 throws NoSuchMethodException {
1675             if (method.getReturnType() != methodType.rtype()) {
1676                 throw new NoSuchMethodException(method.getName() + methodType);
1677             }
1678         }
1679     }
1680 
1681     /**
1682      * "Cracks" {@code target} to reveal the underlying {@code MethodHandleImpl}.
1683      */
getMethodHandleImpl(MethodHandle target)1684     private static MethodHandleImpl getMethodHandleImpl(MethodHandle target) {
1685         // Special case : We implement handles to constructors as transformers,
1686         // so we must extract the underlying handle from the transformer.
1687         if (target instanceof Transformers.Construct) {
1688             target = ((Transformers.Construct) target).getConstructorHandle();
1689         }
1690 
1691         // Special case: Var-args methods are also implemented as Transformers,
1692         // so we should get the underlying handle in that case as well.
1693         if (target instanceof Transformers.VarargsCollector) {
1694             target = target.asFixedArity();
1695         }
1696 
1697         if (target instanceof MethodHandleImpl) {
1698             return (MethodHandleImpl) target;
1699         }
1700 
1701         throw new IllegalArgumentException(target + " is not a direct handle");
1702     }
1703 
1704     /**
1705      * Produces a method handle giving read access to elements of an array.
1706      * The type of the method handle will have a return type of the array's
1707      * element type.  Its first argument will be the array type,
1708      * and the second will be {@code int}.
1709      * @param arrayClass an array type
1710      * @return a method handle which can load values from the given array type
1711      * @throws NullPointerException if the argument is null
1712      * @throws  IllegalArgumentException if arrayClass is not an array type
1713      */
1714     public static
arrayElementGetter(Class<?> arrayClass)1715     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
1716         final Class<?> componentType = arrayClass.getComponentType();
1717         if (componentType == null) {
1718             throw new IllegalArgumentException("Not an array type: " + arrayClass);
1719         }
1720 
1721         if (componentType.isPrimitive()) {
1722             try {
1723                 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class,
1724                         "arrayElementGetter",
1725                         MethodType.methodType(componentType, arrayClass, int.class));
1726             } catch (NoSuchMethodException | IllegalAccessException exception) {
1727                 throw new AssertionError(exception);
1728             }
1729         }
1730 
1731         return new Transformers.ReferenceArrayElementGetter(arrayClass);
1732     }
1733 
arrayElementGetter(byte[] array, int i)1734     /** @hide */ public static byte arrayElementGetter(byte[] array, int i) { return array[i]; }
arrayElementGetter(boolean[] array, int i)1735     /** @hide */ public static boolean arrayElementGetter(boolean[] array, int i) { return array[i]; }
arrayElementGetter(char[] array, int i)1736     /** @hide */ public static char arrayElementGetter(char[] array, int i) { return array[i]; }
arrayElementGetter(short[] array, int i)1737     /** @hide */ public static short arrayElementGetter(short[] array, int i) { return array[i]; }
arrayElementGetter(int[] array, int i)1738     /** @hide */ public static int arrayElementGetter(int[] array, int i) { return array[i]; }
arrayElementGetter(long[] array, int i)1739     /** @hide */ public static long arrayElementGetter(long[] array, int i) { return array[i]; }
arrayElementGetter(float[] array, int i)1740     /** @hide */ public static float arrayElementGetter(float[] array, int i) { return array[i]; }
arrayElementGetter(double[] array, int i)1741     /** @hide */ public static double arrayElementGetter(double[] array, int i) { return array[i]; }
1742 
1743     /**
1744      * Produces a method handle giving write access to elements of an array.
1745      * The type of the method handle will have a void return type.
1746      * Its last argument will be the array's element type.
1747      * The first and second arguments will be the array type and int.
1748      * @param arrayClass the class of an array
1749      * @return a method handle which can store values into the array type
1750      * @throws NullPointerException if the argument is null
1751      * @throws IllegalArgumentException if arrayClass is not an array type
1752      */
1753     public static
arrayElementSetter(Class<?> arrayClass)1754     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
1755         final Class<?> componentType = arrayClass.getComponentType();
1756         if (componentType == null) {
1757             throw new IllegalArgumentException("Not an array type: " + arrayClass);
1758         }
1759 
1760         if (componentType.isPrimitive()) {
1761             try {
1762                 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class,
1763                         "arrayElementSetter",
1764                         MethodType.methodType(void.class, arrayClass, int.class, componentType));
1765             } catch (NoSuchMethodException | IllegalAccessException exception) {
1766                 throw new AssertionError(exception);
1767             }
1768         }
1769 
1770         return new Transformers.ReferenceArrayElementSetter(arrayClass);
1771     }
1772 
1773     /** @hide */
arrayElementSetter(byte[] array, int i, byte val)1774     public static void arrayElementSetter(byte[] array, int i, byte val) { array[i] = val; }
1775     /** @hide */
arrayElementSetter(boolean[] array, int i, boolean val)1776     public static void arrayElementSetter(boolean[] array, int i, boolean val) { array[i] = val; }
1777     /** @hide */
arrayElementSetter(char[] array, int i, char val)1778     public static void arrayElementSetter(char[] array, int i, char val) { array[i] = val; }
1779     /** @hide */
arrayElementSetter(short[] array, int i, short val)1780     public static void arrayElementSetter(short[] array, int i, short val) { array[i] = val; }
1781     /** @hide */
arrayElementSetter(int[] array, int i, int val)1782     public static void arrayElementSetter(int[] array, int i, int val) { array[i] = val; }
1783     /** @hide */
arrayElementSetter(long[] array, int i, long val)1784     public static void arrayElementSetter(long[] array, int i, long val) { array[i] = val; }
1785     /** @hide */
arrayElementSetter(float[] array, int i, float val)1786     public static void arrayElementSetter(float[] array, int i, float val) { array[i] = val; }
1787     /** @hide */
arrayElementSetter(double[] array, int i, double val)1788     public static void arrayElementSetter(double[] array, int i, double val) { array[i] = val; }
1789 
1790 
1791     /// method handle invocation (reflective style)
1792 
1793     /**
1794      * Produces a method handle which will invoke any method handle of the
1795      * given {@code type}, with a given number of trailing arguments replaced by
1796      * a single trailing {@code Object[]} array.
1797      * The resulting invoker will be a method handle with the following
1798      * arguments:
1799      * <ul>
1800      * <li>a single {@code MethodHandle} target
1801      * <li>zero or more leading values (counted by {@code leadingArgCount})
1802      * <li>an {@code Object[]} array containing trailing arguments
1803      * </ul>
1804      * <p>
1805      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
1806      * the indicated {@code type}.
1807      * That is, if the target is exactly of the given {@code type}, it will behave
1808      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
1809      * is used to convert the target to the required {@code type}.
1810      * <p>
1811      * The type of the returned invoker will not be the given {@code type}, but rather
1812      * will have all parameters except the first {@code leadingArgCount}
1813      * replaced by a single array of type {@code Object[]}, which will be
1814      * the final parameter.
1815      * <p>
1816      * Before invoking its target, the invoker will spread the final array, apply
1817      * reference casts as necessary, and unbox and widen primitive arguments.
1818      * If, when the invoker is called, the supplied array argument does
1819      * not have the correct number of elements, the invoker will throw
1820      * an {@link IllegalArgumentException} instead of invoking the target.
1821      * <p>
1822      * This method is equivalent to the following code (though it may be more efficient):
1823      * <blockquote><pre>{@code
1824 MethodHandle invoker = MethodHandles.invoker(type);
1825 int spreadArgCount = type.parameterCount() - leadingArgCount;
1826 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
1827 return invoker;
1828      * }</pre></blockquote>
1829      * This method throws no reflective or security exceptions.
1830      * @param type the desired target type
1831      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
1832      * @return a method handle suitable for invoking any method handle of the given type
1833      * @throws NullPointerException if {@code type} is null
1834      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
1835      *                  the range from 0 to {@code type.parameterCount()} inclusive,
1836      *                  or if the resulting method handle's type would have
1837      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1838      */
1839     static public
spreadInvoker(MethodType type, int leadingArgCount)1840     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
1841         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
1842             throw newIllegalArgumentException("bad argument count", leadingArgCount);
1843 
1844         MethodHandle invoker = MethodHandles.invoker(type);
1845         int spreadArgCount = type.parameterCount() - leadingArgCount;
1846         invoker = invoker.asSpreader(Object[].class, spreadArgCount);
1847         return invoker;
1848     }
1849 
1850     /**
1851      * Produces a special <em>invoker method handle</em> which can be used to
1852      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
1853      * The resulting invoker will have a type which is
1854      * exactly equal to the desired type, except that it will accept
1855      * an additional leading argument of type {@code MethodHandle}.
1856      * <p>
1857      * This method is equivalent to the following code (though it may be more efficient):
1858      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
1859      *
1860      * <p style="font-size:smaller;">
1861      * <em>Discussion:</em>
1862      * Invoker method handles can be useful when working with variable method handles
1863      * of unknown types.
1864      * For example, to emulate an {@code invokeExact} call to a variable method
1865      * handle {@code M}, extract its type {@code T},
1866      * look up the invoker method {@code X} for {@code T},
1867      * and call the invoker method, as {@code X.invoke(T, A...)}.
1868      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
1869      * is unknown.)
1870      * If spreading, collecting, or other argument transformations are required,
1871      * they can be applied once to the invoker {@code X} and reused on many {@code M}
1872      * method handle values, as long as they are compatible with the type of {@code X}.
1873      * <p style="font-size:smaller;">
1874      * <em>(Note:  The invoker method is not available via the Core Reflection API.
1875      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
1876      * on the declared {@code invokeExact} or {@code invoke} method will raise an
1877      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
1878      * <p>
1879      * This method throws no reflective or security exceptions.
1880      * @param type the desired target type
1881      * @return a method handle suitable for invoking any method handle of the given type
1882      * @throws IllegalArgumentException if the resulting method handle's type would have
1883      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1884      */
1885     static public
exactInvoker(MethodType type)1886     MethodHandle exactInvoker(MethodType type) {
1887         return new Transformers.Invoker(type, true /* isExactInvoker */);
1888     }
1889 
1890     /**
1891      * Produces a special <em>invoker method handle</em> which can be used to
1892      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
1893      * The resulting invoker will have a type which is
1894      * exactly equal to the desired type, except that it will accept
1895      * an additional leading argument of type {@code MethodHandle}.
1896      * <p>
1897      * Before invoking its target, if the target differs from the expected type,
1898      * the invoker will apply reference casts as
1899      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
1900      * Similarly, the return value will be converted as necessary.
1901      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
1902      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
1903      * <p>
1904      * This method is equivalent to the following code (though it may be more efficient):
1905      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
1906      * <p style="font-size:smaller;">
1907      * <em>Discussion:</em>
1908      * A {@linkplain MethodType#genericMethodType general method type} is one which
1909      * mentions only {@code Object} arguments and return values.
1910      * An invoker for such a type is capable of calling any method handle
1911      * of the same arity as the general type.
1912      * <p style="font-size:smaller;">
1913      * <em>(Note:  The invoker method is not available via the Core Reflection API.
1914      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
1915      * on the declared {@code invokeExact} or {@code invoke} method will raise an
1916      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
1917      * <p>
1918      * This method throws no reflective or security exceptions.
1919      * @param type the desired target type
1920      * @return a method handle suitable for invoking any method handle convertible to the given type
1921      * @throws IllegalArgumentException if the resulting method handle's type would have
1922      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1923      */
1924     static public
invoker(MethodType type)1925     MethodHandle invoker(MethodType type) {
1926         return new Transformers.Invoker(type, false /* isExactInvoker */);
1927     }
1928 
1929     // Android-changed: Basic invokers are not supported.
1930     //
1931     // static /*non-public*/
1932     // MethodHandle basicInvoker(MethodType type) {
1933     //     return type.invokers().basicInvoker();
1934     // }
1935 
1936      /// method handle modification (creation from other method handles)
1937 
1938     /**
1939      * Produces a method handle which adapts the type of the
1940      * given method handle to a new type by pairwise argument and return type conversion.
1941      * The original type and new type must have the same number of arguments.
1942      * The resulting method handle is guaranteed to report a type
1943      * which is equal to the desired new type.
1944      * <p>
1945      * If the original type and new type are equal, returns target.
1946      * <p>
1947      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
1948      * and some additional conversions are also applied if those conversions fail.
1949      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
1950      * if possible, before or instead of any conversions done by {@code asType}:
1951      * <ul>
1952      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
1953      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
1954      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
1955      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
1956      *     the boolean is converted to a byte value, 1 for true, 0 for false.
1957      *     (This treatment follows the usage of the bytecode verifier.)
1958      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
1959      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
1960      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
1961      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
1962      *     then a Java casting conversion (JLS 5.5) is applied.
1963      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
1964      *     widening and/or narrowing.)
1965      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
1966      *     conversion will be applied at runtime, possibly followed
1967      *     by a Java casting conversion (JLS 5.5) on the primitive value,
1968      *     possibly followed by a conversion from byte to boolean by testing
1969      *     the low-order bit.
1970      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
1971      *     and if the reference is null at runtime, a zero value is introduced.
1972      * </ul>
1973      * @param target the method handle to invoke after arguments are retyped
1974      * @param newType the expected type of the new method handle
1975      * @return a method handle which delegates to the target after performing
1976      *           any necessary argument conversions, and arranges for any
1977      *           necessary return value conversions
1978      * @throws NullPointerException if either argument is null
1979      * @throws WrongMethodTypeException if the conversion cannot be made
1980      * @see MethodHandle#asType
1981      */
1982     public static
explicitCastArguments(MethodHandle target, MethodType newType)1983     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
1984         explicitCastArgumentsChecks(target, newType);
1985         // use the asTypeCache when possible:
1986         MethodType oldType = target.type();
1987         if (oldType == newType) return target;
1988         if (oldType.explicitCastEquivalentToAsType(newType)) {
1989             return target.asFixedArity().asType(newType);
1990         }
1991 
1992         return new Transformers.ExplicitCastArguments(target, newType);
1993     }
1994 
explicitCastArgumentsChecks(MethodHandle target, MethodType newType)1995     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
1996         if (target.type().parameterCount() != newType.parameterCount()) {
1997             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
1998         }
1999     }
2000 
2001     /**
2002      * Produces a method handle which adapts the calling sequence of the
2003      * given method handle to a new type, by reordering the arguments.
2004      * The resulting method handle is guaranteed to report a type
2005      * which is equal to the desired new type.
2006      * <p>
2007      * The given array controls the reordering.
2008      * Call {@code #I} the number of incoming parameters (the value
2009      * {@code newType.parameterCount()}, and call {@code #O} the number
2010      * of outgoing parameters (the value {@code target.type().parameterCount()}).
2011      * Then the length of the reordering array must be {@code #O},
2012      * and each element must be a non-negative number less than {@code #I}.
2013      * For every {@code N} less than {@code #O}, the {@code N}-th
2014      * outgoing argument will be taken from the {@code I}-th incoming
2015      * argument, where {@code I} is {@code reorder[N]}.
2016      * <p>
2017      * No argument or return value conversions are applied.
2018      * The type of each incoming argument, as determined by {@code newType},
2019      * must be identical to the type of the corresponding outgoing parameter
2020      * or parameters in the target method handle.
2021      * The return type of {@code newType} must be identical to the return
2022      * type of the original target.
2023      * <p>
2024      * The reordering array need not specify an actual permutation.
2025      * An incoming argument will be duplicated if its index appears
2026      * more than once in the array, and an incoming argument will be dropped
2027      * if its index does not appear in the array.
2028      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
2029      * incoming arguments which are not mentioned in the reordering array
2030      * are may be any type, as determined only by {@code newType}.
2031      * <blockquote><pre>{@code
2032 import static java.lang.invoke.MethodHandles.*;
2033 import static java.lang.invoke.MethodType.*;
2034 ...
2035 MethodType intfn1 = methodType(int.class, int.class);
2036 MethodType intfn2 = methodType(int.class, int.class, int.class);
2037 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
2038 assert(sub.type().equals(intfn2));
2039 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
2040 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
2041 assert((int)rsub.invokeExact(1, 100) == 99);
2042 MethodHandle add = ... (int x, int y) -> (x+y) ...;
2043 assert(add.type().equals(intfn2));
2044 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
2045 assert(twice.type().equals(intfn1));
2046 assert((int)twice.invokeExact(21) == 42);
2047      * }</pre></blockquote>
2048      * @param target the method handle to invoke after arguments are reordered
2049      * @param newType the expected type of the new method handle
2050      * @param reorder an index array which controls the reordering
2051      * @return a method handle which delegates to the target after it
2052      *           drops unused arguments and moves and/or duplicates the other arguments
2053      * @throws NullPointerException if any argument is null
2054      * @throws IllegalArgumentException if the index array length is not equal to
2055      *                  the arity of the target, or if any index array element
2056      *                  not a valid index for a parameter of {@code newType},
2057      *                  or if two corresponding parameter types in
2058      *                  {@code target.type()} and {@code newType} are not identical,
2059      */
2060     public static
permuteArguments(MethodHandle target, MethodType newType, int... reorder)2061     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
2062         reorder = reorder.clone();  // get a private copy
2063         MethodType oldType = target.type();
2064         permuteArgumentChecks(reorder, newType, oldType);
2065 
2066         return new Transformers.PermuteArguments(newType, target, reorder);
2067     }
2068 
2069     // Android-changed: findFirstDupOrDrop is unused and removed.
2070     // private static int findFirstDupOrDrop(int[] reorder, int newArity);
2071 
permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType)2072     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
2073         if (newType.returnType() != oldType.returnType())
2074             throw newIllegalArgumentException("return types do not match",
2075                     oldType, newType);
2076         if (reorder.length == oldType.parameterCount()) {
2077             int limit = newType.parameterCount();
2078             boolean bad = false;
2079             for (int j = 0; j < reorder.length; j++) {
2080                 int i = reorder[j];
2081                 if (i < 0 || i >= limit) {
2082                     bad = true; break;
2083                 }
2084                 Class<?> src = newType.parameterType(i);
2085                 Class<?> dst = oldType.parameterType(j);
2086                 if (src != dst)
2087                     throw newIllegalArgumentException("parameter types do not match after reorder",
2088                             oldType, newType);
2089             }
2090             if (!bad)  return true;
2091         }
2092         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
2093     }
2094 
2095     /**
2096      * Produces a method handle of the requested return type which returns the given
2097      * constant value every time it is invoked.
2098      * <p>
2099      * Before the method handle is returned, the passed-in value is converted to the requested type.
2100      * If the requested type is primitive, widening primitive conversions are attempted,
2101      * else reference conversions are attempted.
2102      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
2103      * @param type the return type of the desired method handle
2104      * @param value the value to return
2105      * @return a method handle of the given return type and no arguments, which always returns the given value
2106      * @throws NullPointerException if the {@code type} argument is null
2107      * @throws ClassCastException if the value cannot be converted to the required return type
2108      * @throws IllegalArgumentException if the given type is {@code void.class}
2109      */
2110     public static
constant(Class<?> type, Object value)2111     MethodHandle constant(Class<?> type, Object value) {
2112         if (type.isPrimitive()) {
2113             if (type == void.class)
2114                 throw newIllegalArgumentException("void type");
2115             Wrapper w = Wrapper.forPrimitiveType(type);
2116             value = w.convert(value, type);
2117         }
2118 
2119         return new Transformers.Constant(type, value);
2120     }
2121 
2122     /**
2123      * Produces a method handle which returns its sole argument when invoked.
2124      * @param type the type of the sole parameter and return value of the desired method handle
2125      * @return a unary method handle which accepts and returns the given type
2126      * @throws NullPointerException if the argument is null
2127      * @throws IllegalArgumentException if the given type is {@code void.class}
2128      */
2129     public static
identity(Class<?> type)2130     MethodHandle identity(Class<?> type) {
2131         if (type == null) {
2132             throw new NullPointerException("type == null");
2133         }
2134 
2135         if (type.isPrimitive()) {
2136             try {
2137                 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, "identity",
2138                         MethodType.methodType(type, type));
2139             } catch (NoSuchMethodException | IllegalAccessException e) {
2140                 throw new AssertionError(e);
2141             }
2142         }
2143 
2144         return new Transformers.ReferenceIdentity(type);
2145     }
2146 
identity(byte val)2147     /** @hide */ public static byte identity(byte val) { return val; }
identity(boolean val)2148     /** @hide */ public static boolean identity(boolean val) { return val; }
identity(char val)2149     /** @hide */ public static char identity(char val) { return val; }
identity(short val)2150     /** @hide */ public static short identity(short val) { return val; }
identity(int val)2151     /** @hide */ public static int identity(int val) { return val; }
identity(long val)2152     /** @hide */ public static long identity(long val) { return val; }
identity(float val)2153     /** @hide */ public static float identity(float val) { return val; }
identity(double val)2154     /** @hide */ public static double identity(double val) { return val; }
2155 
2156     /**
2157      * Provides a target method handle with one or more <em>bound arguments</em>
2158      * in advance of the method handle's invocation.
2159      * The formal parameters to the target corresponding to the bound
2160      * arguments are called <em>bound parameters</em>.
2161      * Returns a new method handle which saves away the bound arguments.
2162      * When it is invoked, it receives arguments for any non-bound parameters,
2163      * binds the saved arguments to their corresponding parameters,
2164      * and calls the original target.
2165      * <p>
2166      * The type of the new method handle will drop the types for the bound
2167      * parameters from the original target type, since the new method handle
2168      * will no longer require those arguments to be supplied by its callers.
2169      * <p>
2170      * Each given argument object must match the corresponding bound parameter type.
2171      * If a bound parameter type is a primitive, the argument object
2172      * must be a wrapper, and will be unboxed to produce the primitive value.
2173      * <p>
2174      * The {@code pos} argument selects which parameters are to be bound.
2175      * It may range between zero and <i>N-L</i> (inclusively),
2176      * where <i>N</i> is the arity of the target method handle
2177      * and <i>L</i> is the length of the values array.
2178      * @param target the method handle to invoke after the argument is inserted
2179      * @param pos where to insert the argument (zero for the first)
2180      * @param values the series of arguments to insert
2181      * @return a method handle which inserts an additional argument,
2182      *         before calling the original method handle
2183      * @throws NullPointerException if the target or the {@code values} array is null
2184      * @see MethodHandle#bindTo
2185      */
2186     public static
insertArguments(MethodHandle target, int pos, Object... values)2187     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
2188         int insCount = values.length;
2189         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
2190         if (insCount == 0)  {
2191             return target;
2192         }
2193 
2194         // Throw ClassCastExceptions early if we can't cast any of the provided values
2195         // to the required type.
2196         for (int i = 0; i < insCount; i++) {
2197             final Class<?> ptype = ptypes[pos + i];
2198             if (!ptype.isPrimitive()) {
2199                 ptypes[pos + i].cast(values[i]);
2200             } else {
2201                 // Will throw a ClassCastException if something terrible happens.
2202                 values[i] = Wrapper.forPrimitiveType(ptype).convert(values[i], ptype);
2203             }
2204         }
2205 
2206         return new Transformers.InsertArguments(target, pos, values);
2207     }
2208 
2209     // Android-changed: insertArgumentPrimitive is unused.
2210     //
2211     // private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
2212     //                                                          Class<?> ptype, Object value) {
2213     //     Wrapper w = Wrapper.forPrimitiveType(ptype);
2214     //     // perform unboxing and/or primitive conversion
2215     //     value = w.convert(value, ptype);
2216     //     switch (w) {
2217     //     case INT:     return result.bindArgumentI(pos, (int)value);
2218     //     case LONG:    return result.bindArgumentJ(pos, (long)value);
2219     //     case FLOAT:   return result.bindArgumentF(pos, (float)value);
2220     //     case DOUBLE:  return result.bindArgumentD(pos, (double)value);
2221     //     default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
2222     //     }
2223     // }
2224 
insertArgumentsChecks(MethodHandle target, int insCount, int pos)2225     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
2226         MethodType oldType = target.type();
2227         int outargs = oldType.parameterCount();
2228         int inargs  = outargs - insCount;
2229         if (inargs < 0)
2230             throw newIllegalArgumentException("too many values to insert");
2231         if (pos < 0 || pos > inargs)
2232             throw newIllegalArgumentException("no argument type to append");
2233         return oldType.ptypes();
2234     }
2235 
2236     /**
2237      * Produces a method handle which will discard some dummy arguments
2238      * before calling some other specified <i>target</i> method handle.
2239      * The type of the new method handle will be the same as the target's type,
2240      * except it will also include the dummy argument types,
2241      * at some given position.
2242      * <p>
2243      * The {@code pos} argument may range between zero and <i>N</i>,
2244      * where <i>N</i> is the arity of the target.
2245      * If {@code pos} is zero, the dummy arguments will precede
2246      * the target's real arguments; if {@code pos} is <i>N</i>
2247      * they will come after.
2248      * <p>
2249      * <b>Example:</b>
2250      * <blockquote><pre>{@code
2251 import static java.lang.invoke.MethodHandles.*;
2252 import static java.lang.invoke.MethodType.*;
2253 ...
2254 MethodHandle cat = lookup().findVirtual(String.class,
2255   "concat", methodType(String.class, String.class));
2256 assertEquals("xy", (String) cat.invokeExact("x", "y"));
2257 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
2258 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
2259 assertEquals(bigType, d0.type());
2260 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
2261      * }</pre></blockquote>
2262      * <p>
2263      * This method is also equivalent to the following code:
2264      * <blockquote><pre>
2265      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
2266      * </pre></blockquote>
2267      * @param target the method handle to invoke after the arguments are dropped
2268      * @param valueTypes the type(s) of the argument(s) to drop
2269      * @param pos position of first argument to drop (zero for the leftmost)
2270      * @return a method handle which drops arguments of the given types,
2271      *         before calling the original method handle
2272      * @throws NullPointerException if the target is null,
2273      *                              or if the {@code valueTypes} list or any of its elements is null
2274      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
2275      *                  or if {@code pos} is negative or greater than the arity of the target,
2276      *                  or if the new method handle's type would have too many parameters
2277      */
2278     public static
dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes)2279     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
2280         valueTypes = copyTypes(valueTypes);
2281         MethodType oldType = target.type();  // get NPE
2282         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
2283 
2284         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
2285         if (dropped == 0) {
2286             return target;
2287         }
2288 
2289         return new Transformers.DropArguments(newType, target, pos, valueTypes.size());
2290     }
2291 
copyTypes(List<Class<?>> types)2292     private static List<Class<?>> copyTypes(List<Class<?>> types) {
2293         Object[] a = types.toArray();
2294         return Arrays.asList(Arrays.copyOf(a, a.length, Class[].class));
2295     }
2296 
dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes)2297     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
2298         int dropped = valueTypes.size();
2299         MethodType.checkSlotCount(dropped);
2300         int outargs = oldType.parameterCount();
2301         int inargs  = outargs + dropped;
2302         if (pos < 0 || pos > outargs)
2303             throw newIllegalArgumentException("no argument type to remove"
2304                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
2305                     );
2306         return dropped;
2307     }
2308 
2309     /**
2310      * Produces a method handle which will discard some dummy arguments
2311      * before calling some other specified <i>target</i> method handle.
2312      * The type of the new method handle will be the same as the target's type,
2313      * except it will also include the dummy argument types,
2314      * at some given position.
2315      * <p>
2316      * The {@code pos} argument may range between zero and <i>N</i>,
2317      * where <i>N</i> is the arity of the target.
2318      * If {@code pos} is zero, the dummy arguments will precede
2319      * the target's real arguments; if {@code pos} is <i>N</i>
2320      * they will come after.
2321      * <p>
2322      * <b>Example:</b>
2323      * <blockquote><pre>{@code
2324 import static java.lang.invoke.MethodHandles.*;
2325 import static java.lang.invoke.MethodType.*;
2326 ...
2327 MethodHandle cat = lookup().findVirtual(String.class,
2328   "concat", methodType(String.class, String.class));
2329 assertEquals("xy", (String) cat.invokeExact("x", "y"));
2330 MethodHandle d0 = dropArguments(cat, 0, String.class);
2331 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
2332 MethodHandle d1 = dropArguments(cat, 1, String.class);
2333 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
2334 MethodHandle d2 = dropArguments(cat, 2, String.class);
2335 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
2336 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
2337 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
2338      * }</pre></blockquote>
2339      * <p>
2340      * This method is also equivalent to the following code:
2341      * <blockquote><pre>
2342      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
2343      * </pre></blockquote>
2344      * @param target the method handle to invoke after the arguments are dropped
2345      * @param valueTypes the type(s) of the argument(s) to drop
2346      * @param pos position of first argument to drop (zero for the leftmost)
2347      * @return a method handle which drops arguments of the given types,
2348      *         before calling the original method handle
2349      * @throws NullPointerException if the target is null,
2350      *                              or if the {@code valueTypes} array or any of its elements is null
2351      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
2352      *                  or if {@code pos} is negative or greater than the arity of the target,
2353      *                  or if the new method handle's type would have
2354      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
2355      */
2356     public static
dropArguments(MethodHandle target, int pos, Class<?>... valueTypes)2357     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
2358         return dropArguments(target, pos, Arrays.asList(valueTypes));
2359     }
2360 
2361     /**
2362      * Adapts a target method handle by pre-processing
2363      * one or more of its arguments, each with its own unary filter function,
2364      * and then calling the target with each pre-processed argument
2365      * replaced by the result of its corresponding filter function.
2366      * <p>
2367      * The pre-processing is performed by one or more method handles,
2368      * specified in the elements of the {@code filters} array.
2369      * The first element of the filter array corresponds to the {@code pos}
2370      * argument of the target, and so on in sequence.
2371      * <p>
2372      * Null arguments in the array are treated as identity functions,
2373      * and the corresponding arguments left unchanged.
2374      * (If there are no non-null elements in the array, the original target is returned.)
2375      * Each filter is applied to the corresponding argument of the adapter.
2376      * <p>
2377      * If a filter {@code F} applies to the {@code N}th argument of
2378      * the target, then {@code F} must be a method handle which
2379      * takes exactly one argument.  The type of {@code F}'s sole argument
2380      * replaces the corresponding argument type of the target
2381      * in the resulting adapted method handle.
2382      * The return type of {@code F} must be identical to the corresponding
2383      * parameter type of the target.
2384      * <p>
2385      * It is an error if there are elements of {@code filters}
2386      * (null or not)
2387      * which do not correspond to argument positions in the target.
2388      * <p><b>Example:</b>
2389      * <blockquote><pre>{@code
2390 import static java.lang.invoke.MethodHandles.*;
2391 import static java.lang.invoke.MethodType.*;
2392 ...
2393 MethodHandle cat = lookup().findVirtual(String.class,
2394   "concat", methodType(String.class, String.class));
2395 MethodHandle upcase = lookup().findVirtual(String.class,
2396   "toUpperCase", methodType(String.class));
2397 assertEquals("xy", (String) cat.invokeExact("x", "y"));
2398 MethodHandle f0 = filterArguments(cat, 0, upcase);
2399 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
2400 MethodHandle f1 = filterArguments(cat, 1, upcase);
2401 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
2402 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
2403 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
2404      * }</pre></blockquote>
2405      * <p> Here is pseudocode for the resulting adapter:
2406      * <blockquote><pre>{@code
2407      * V target(P... p, A[i]... a[i], B... b);
2408      * A[i] filter[i](V[i]);
2409      * T adapter(P... p, V[i]... v[i], B... b) {
2410      *   return target(p..., f[i](v[i])..., b...);
2411      * }
2412      * }</pre></blockquote>
2413      *
2414      * @param target the method handle to invoke after arguments are filtered
2415      * @param pos the position of the first argument to filter
2416      * @param filters method handles to call initially on filtered arguments
2417      * @return method handle which incorporates the specified argument filtering logic
2418      * @throws NullPointerException if the target is null
2419      *                              or if the {@code filters} array is null
2420      * @throws IllegalArgumentException if a non-null element of {@code filters}
2421      *          does not match a corresponding argument type of target as described above,
2422      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
2423      *          or if the resulting method handle's type would have
2424      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2425      */
2426     public static
filterArguments(MethodHandle target, int pos, MethodHandle... filters)2427     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
2428         filterArgumentsCheckArity(target, pos, filters);
2429 
2430         for (int i = 0; i < filters.length; ++i) {
2431             filterArgumentChecks(target, i + pos, filters[i]);
2432         }
2433 
2434         return new Transformers.FilterArguments(target, pos, filters);
2435     }
2436 
filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters)2437     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
2438         MethodType targetType = target.type();
2439         int maxPos = targetType.parameterCount();
2440         if (pos + filters.length > maxPos)
2441             throw newIllegalArgumentException("too many filters");
2442     }
2443 
filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter)2444     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
2445         MethodType targetType = target.type();
2446         MethodType filterType = filter.type();
2447         if (filterType.parameterCount() != 1
2448             || filterType.returnType() != targetType.parameterType(pos))
2449             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2450     }
2451 
2452     /**
2453      * Adapts a target method handle by pre-processing
2454      * a sub-sequence of its arguments with a filter (another method handle).
2455      * The pre-processed arguments are replaced by the result (if any) of the
2456      * filter function.
2457      * The target is then called on the modified (usually shortened) argument list.
2458      * <p>
2459      * If the filter returns a value, the target must accept that value as
2460      * its argument in position {@code pos}, preceded and/or followed by
2461      * any arguments not passed to the filter.
2462      * If the filter returns void, the target must accept all arguments
2463      * not passed to the filter.
2464      * No arguments are reordered, and a result returned from the filter
2465      * replaces (in order) the whole subsequence of arguments originally
2466      * passed to the adapter.
2467      * <p>
2468      * The argument types (if any) of the filter
2469      * replace zero or one argument types of the target, at position {@code pos},
2470      * in the resulting adapted method handle.
2471      * The return type of the filter (if any) must be identical to the
2472      * argument type of the target at position {@code pos}, and that target argument
2473      * is supplied by the return value of the filter.
2474      * <p>
2475      * In all cases, {@code pos} must be greater than or equal to zero, and
2476      * {@code pos} must also be less than or equal to the target's arity.
2477      * <p><b>Example:</b>
2478      * <blockquote><pre>{@code
2479 import static java.lang.invoke.MethodHandles.*;
2480 import static java.lang.invoke.MethodType.*;
2481 ...
2482 MethodHandle deepToString = publicLookup()
2483   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
2484 
2485 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
2486 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
2487 
2488 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
2489 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
2490 
2491 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
2492 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
2493 assertEquals("[top, [up, down], strange]",
2494              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
2495 
2496 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
2497 assertEquals("[top, [up, down], [strange]]",
2498              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
2499 
2500 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
2501 assertEquals("[top, [[up, down, strange], charm], bottom]",
2502              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
2503      * }</pre></blockquote>
2504      * <p> Here is pseudocode for the resulting adapter:
2505      * <blockquote><pre>{@code
2506      * T target(A...,V,C...);
2507      * V filter(B...);
2508      * T adapter(A... a,B... b,C... c) {
2509      *   V v = filter(b...);
2510      *   return target(a...,v,c...);
2511      * }
2512      * // and if the filter has no arguments:
2513      * T target2(A...,V,C...);
2514      * V filter2();
2515      * T adapter2(A... a,C... c) {
2516      *   V v = filter2();
2517      *   return target2(a...,v,c...);
2518      * }
2519      * // and if the filter has a void return:
2520      * T target3(A...,C...);
2521      * void filter3(B...);
2522      * void adapter3(A... a,B... b,C... c) {
2523      *   filter3(b...);
2524      *   return target3(a...,c...);
2525      * }
2526      * }</pre></blockquote>
2527      * <p>
2528      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
2529      * one which first "folds" the affected arguments, and then drops them, in separate
2530      * steps as follows:
2531      * <blockquote><pre>{@code
2532      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
2533      * mh = MethodHandles.foldArguments(mh, coll); //step 1
2534      * }</pre></blockquote>
2535      * If the target method handle consumes no arguments besides than the result
2536      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
2537      * is equivalent to {@code filterReturnValue(coll, mh)}.
2538      * If the filter method handle {@code coll} consumes one argument and produces
2539      * a non-void result, then {@code collectArguments(mh, N, coll)}
2540      * is equivalent to {@code filterArguments(mh, N, coll)}.
2541      * Other equivalences are possible but would require argument permutation.
2542      *
2543      * @param target the method handle to invoke after filtering the subsequence of arguments
2544      * @param pos the position of the first adapter argument to pass to the filter,
2545      *            and/or the target argument which receives the result of the filter
2546      * @param filter method handle to call on the subsequence of arguments
2547      * @return method handle which incorporates the specified argument subsequence filtering logic
2548      * @throws NullPointerException if either argument is null
2549      * @throws IllegalArgumentException if the return type of {@code filter}
2550      *          is non-void and is not the same as the {@code pos} argument of the target,
2551      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
2552      *          or if the resulting method handle's type would have
2553      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2554      * @see MethodHandles#foldArguments
2555      * @see MethodHandles#filterArguments
2556      * @see MethodHandles#filterReturnValue
2557      */
2558     public static
collectArguments(MethodHandle target, int pos, MethodHandle filter)2559     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
2560         MethodType newType = collectArgumentsChecks(target, pos, filter);
2561         return new Transformers.CollectArguments(target, filter, pos, newType);
2562     }
2563 
collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter)2564     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
2565         MethodType targetType = target.type();
2566         MethodType filterType = filter.type();
2567         Class<?> rtype = filterType.returnType();
2568         List<Class<?>> filterArgs = filterType.parameterList();
2569         if (rtype == void.class) {
2570             return targetType.insertParameterTypes(pos, filterArgs);
2571         }
2572         if (rtype != targetType.parameterType(pos)) {
2573             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2574         }
2575         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
2576     }
2577 
2578     /**
2579      * Adapts a target method handle by post-processing
2580      * its return value (if any) with a filter (another method handle).
2581      * The result of the filter is returned from the adapter.
2582      * <p>
2583      * If the target returns a value, the filter must accept that value as
2584      * its only argument.
2585      * If the target returns void, the filter must accept no arguments.
2586      * <p>
2587      * The return type of the filter
2588      * replaces the return type of the target
2589      * in the resulting adapted method handle.
2590      * The argument type of the filter (if any) must be identical to the
2591      * return type of the target.
2592      * <p><b>Example:</b>
2593      * <blockquote><pre>{@code
2594 import static java.lang.invoke.MethodHandles.*;
2595 import static java.lang.invoke.MethodType.*;
2596 ...
2597 MethodHandle cat = lookup().findVirtual(String.class,
2598   "concat", methodType(String.class, String.class));
2599 MethodHandle length = lookup().findVirtual(String.class,
2600   "length", methodType(int.class));
2601 System.out.println((String) cat.invokeExact("x", "y")); // xy
2602 MethodHandle f0 = filterReturnValue(cat, length);
2603 System.out.println((int) f0.invokeExact("x", "y")); // 2
2604      * }</pre></blockquote>
2605      * <p> Here is pseudocode for the resulting adapter:
2606      * <blockquote><pre>{@code
2607      * V target(A...);
2608      * T filter(V);
2609      * T adapter(A... a) {
2610      *   V v = target(a...);
2611      *   return filter(v);
2612      * }
2613      * // and if the target has a void return:
2614      * void target2(A...);
2615      * T filter2();
2616      * T adapter2(A... a) {
2617      *   target2(a...);
2618      *   return filter2();
2619      * }
2620      * // and if the filter has a void return:
2621      * V target3(A...);
2622      * void filter3(V);
2623      * void adapter3(A... a) {
2624      *   V v = target3(a...);
2625      *   filter3(v);
2626      * }
2627      * }</pre></blockquote>
2628      * @param target the method handle to invoke before filtering the return value
2629      * @param filter method handle to call on the return value
2630      * @return method handle which incorporates the specified return value filtering logic
2631      * @throws NullPointerException if either argument is null
2632      * @throws IllegalArgumentException if the argument list of {@code filter}
2633      *          does not match the return type of target as described above
2634      */
2635     public static
filterReturnValue(MethodHandle target, MethodHandle filter)2636     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
2637         MethodType targetType = target.type();
2638         MethodType filterType = filter.type();
2639         filterReturnValueChecks(targetType, filterType);
2640 
2641         return new Transformers.FilterReturnValue(target, filter);
2642     }
2643 
filterReturnValueChecks(MethodType targetType, MethodType filterType)2644     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
2645         Class<?> rtype = targetType.returnType();
2646         int filterValues = filterType.parameterCount();
2647         if (filterValues == 0
2648                 ? (rtype != void.class)
2649                 : (rtype != filterType.parameterType(0) || filterValues != 1))
2650             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2651     }
2652 
2653     /**
2654      * Adapts a target method handle by pre-processing
2655      * some of its arguments, and then calling the target with
2656      * the result of the pre-processing, inserted into the original
2657      * sequence of arguments.
2658      * <p>
2659      * The pre-processing is performed by {@code combiner}, a second method handle.
2660      * Of the arguments passed to the adapter, the first {@code N} arguments
2661      * are copied to the combiner, which is then called.
2662      * (Here, {@code N} is defined as the parameter count of the combiner.)
2663      * After this, control passes to the target, with any result
2664      * from the combiner inserted before the original {@code N} incoming
2665      * arguments.
2666      * <p>
2667      * If the combiner returns a value, the first parameter type of the target
2668      * must be identical with the return type of the combiner, and the next
2669      * {@code N} parameter types of the target must exactly match the parameters
2670      * of the combiner.
2671      * <p>
2672      * If the combiner has a void return, no result will be inserted,
2673      * and the first {@code N} parameter types of the target
2674      * must exactly match the parameters of the combiner.
2675      * <p>
2676      * The resulting adapter is the same type as the target, except that the
2677      * first parameter type is dropped,
2678      * if it corresponds to the result of the combiner.
2679      * <p>
2680      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
2681      * that either the combiner or the target does not wish to receive.
2682      * If some of the incoming arguments are destined only for the combiner,
2683      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
2684      * arguments will not need to be live on the stack on entry to the
2685      * target.)
2686      * <p><b>Example:</b>
2687      * <blockquote><pre>{@code
2688 import static java.lang.invoke.MethodHandles.*;
2689 import static java.lang.invoke.MethodType.*;
2690 ...
2691 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
2692   "println", methodType(void.class, String.class))
2693     .bindTo(System.out);
2694 MethodHandle cat = lookup().findVirtual(String.class,
2695   "concat", methodType(String.class, String.class));
2696 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
2697 MethodHandle catTrace = foldArguments(cat, trace);
2698 // also prints "boo":
2699 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
2700      * }</pre></blockquote>
2701      * <p> Here is pseudocode for the resulting adapter:
2702      * <blockquote><pre>{@code
2703      * // there are N arguments in A...
2704      * T target(V, A[N]..., B...);
2705      * V combiner(A...);
2706      * T adapter(A... a, B... b) {
2707      *   V v = combiner(a...);
2708      *   return target(v, a..., b...);
2709      * }
2710      * // and if the combiner has a void return:
2711      * T target2(A[N]..., B...);
2712      * void combiner2(A...);
2713      * T adapter2(A... a, B... b) {
2714      *   combiner2(a...);
2715      *   return target2(a..., b...);
2716      * }
2717      * }</pre></blockquote>
2718      * @param target the method handle to invoke after arguments are combined
2719      * @param combiner method handle to call initially on the incoming arguments
2720      * @return method handle which incorporates the specified argument folding logic
2721      * @throws NullPointerException if either argument is null
2722      * @throws IllegalArgumentException if {@code combiner}'s return type
2723      *          is non-void and not the same as the first argument type of
2724      *          the target, or if the initial {@code N} argument types
2725      *          of the target
2726      *          (skipping one matching the {@code combiner}'s return type)
2727      *          are not identical with the argument types of {@code combiner}
2728      */
2729     public static
foldArguments(MethodHandle target, MethodHandle combiner)2730     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
2731         int foldPos = 0;
2732         MethodType targetType = target.type();
2733         MethodType combinerType = combiner.type();
2734         Class<?> rtype = foldArgumentChecks(foldPos, targetType, combinerType);
2735 
2736         return new Transformers.FoldArguments(target, combiner);
2737     }
2738 
foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType)2739     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
2740         int foldArgs   = combinerType.parameterCount();
2741         Class<?> rtype = combinerType.returnType();
2742         int foldVals = rtype == void.class ? 0 : 1;
2743         int afterInsertPos = foldPos + foldVals;
2744         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
2745         if (ok && !(combinerType.parameterList()
2746                     .equals(targetType.parameterList().subList(afterInsertPos,
2747                                                                afterInsertPos + foldArgs))))
2748             ok = false;
2749         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(0))
2750             ok = false;
2751         if (!ok)
2752             throw misMatchedTypes("target and combiner types", targetType, combinerType);
2753         return rtype;
2754     }
2755 
2756     /**
2757      * Makes a method handle which adapts a target method handle,
2758      * by guarding it with a test, a boolean-valued method handle.
2759      * If the guard fails, a fallback handle is called instead.
2760      * All three method handles must have the same corresponding
2761      * argument and return types, except that the return type
2762      * of the test must be boolean, and the test is allowed
2763      * to have fewer arguments than the other two method handles.
2764      * <p> Here is pseudocode for the resulting adapter:
2765      * <blockquote><pre>{@code
2766      * boolean test(A...);
2767      * T target(A...,B...);
2768      * T fallback(A...,B...);
2769      * T adapter(A... a,B... b) {
2770      *   if (test(a...))
2771      *     return target(a..., b...);
2772      *   else
2773      *     return fallback(a..., b...);
2774      * }
2775      * }</pre></blockquote>
2776      * Note that the test arguments ({@code a...} in the pseudocode) cannot
2777      * be modified by execution of the test, and so are passed unchanged
2778      * from the caller to the target or fallback as appropriate.
2779      * @param test method handle used for test, must return boolean
2780      * @param target method handle to call if test passes
2781      * @param fallback method handle to call if test fails
2782      * @return method handle which incorporates the specified if/then/else logic
2783      * @throws NullPointerException if any argument is null
2784      * @throws IllegalArgumentException if {@code test} does not return boolean,
2785      *          or if all three method types do not match (with the return
2786      *          type of {@code test} changed to match that of the target).
2787      */
2788     public static
guardWithTest(MethodHandle test, MethodHandle target, MethodHandle fallback)2789     MethodHandle guardWithTest(MethodHandle test,
2790                                MethodHandle target,
2791                                MethodHandle fallback) {
2792         MethodType gtype = test.type();
2793         MethodType ttype = target.type();
2794         MethodType ftype = fallback.type();
2795         if (!ttype.equals(ftype))
2796             throw misMatchedTypes("target and fallback types", ttype, ftype);
2797         if (gtype.returnType() != boolean.class)
2798             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
2799         List<Class<?>> targs = ttype.parameterList();
2800         List<Class<?>> gargs = gtype.parameterList();
2801         if (!targs.equals(gargs)) {
2802             int gpc = gargs.size(), tpc = targs.size();
2803             if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
2804                 throw misMatchedTypes("target and test types", ttype, gtype);
2805             test = dropArguments(test, gpc, targs.subList(gpc, tpc));
2806             gtype = test.type();
2807         }
2808 
2809         return new Transformers.GuardWithTest(test, target, fallback);
2810     }
2811 
misMatchedTypes(String what, MethodType t1, MethodType t2)2812     static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
2813         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
2814     }
2815 
2816     /**
2817      * Makes a method handle which adapts a target method handle,
2818      * by running it inside an exception handler.
2819      * If the target returns normally, the adapter returns that value.
2820      * If an exception matching the specified type is thrown, the fallback
2821      * handle is called instead on the exception, plus the original arguments.
2822      * <p>
2823      * The target and handler must have the same corresponding
2824      * argument and return types, except that handler may omit trailing arguments
2825      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
2826      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
2827      * <p> Here is pseudocode for the resulting adapter:
2828      * <blockquote><pre>{@code
2829      * T target(A..., B...);
2830      * T handler(ExType, A...);
2831      * T adapter(A... a, B... b) {
2832      *   try {
2833      *     return target(a..., b...);
2834      *   } catch (ExType ex) {
2835      *     return handler(ex, a...);
2836      *   }
2837      * }
2838      * }</pre></blockquote>
2839      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
2840      * be modified by execution of the target, and so are passed unchanged
2841      * from the caller to the handler, if the handler is invoked.
2842      * <p>
2843      * The target and handler must return the same type, even if the handler
2844      * always throws.  (This might happen, for instance, because the handler
2845      * is simulating a {@code finally} clause).
2846      * To create such a throwing handler, compose the handler creation logic
2847      * with {@link #throwException throwException},
2848      * in order to create a method handle of the correct return type.
2849      * @param target method handle to call
2850      * @param exType the type of exception which the handler will catch
2851      * @param handler method handle to call if a matching exception is thrown
2852      * @return method handle which incorporates the specified try/catch logic
2853      * @throws NullPointerException if any argument is null
2854      * @throws IllegalArgumentException if {@code handler} does not accept
2855      *          the given exception type, or if the method handle types do
2856      *          not match in their return types and their
2857      *          corresponding parameters
2858      */
2859     public static
catchException(MethodHandle target, Class<? extends Throwable> exType, MethodHandle handler)2860     MethodHandle catchException(MethodHandle target,
2861                                 Class<? extends Throwable> exType,
2862                                 MethodHandle handler) {
2863         MethodType ttype = target.type();
2864         MethodType htype = handler.type();
2865         if (htype.parameterCount() < 1 ||
2866             !htype.parameterType(0).isAssignableFrom(exType))
2867             throw newIllegalArgumentException("handler does not accept exception type "+exType);
2868         if (htype.returnType() != ttype.returnType())
2869             throw misMatchedTypes("target and handler return types", ttype, htype);
2870         List<Class<?>> targs = ttype.parameterList();
2871         List<Class<?>> hargs = htype.parameterList();
2872         hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
2873         if (!targs.equals(hargs)) {
2874             int hpc = hargs.size(), tpc = targs.size();
2875             if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
2876                 throw misMatchedTypes("target and handler types", ttype, htype);
2877         }
2878 
2879         return new Transformers.CatchException(target, handler, exType);
2880     }
2881 
2882     /**
2883      * Produces a method handle which will throw exceptions of the given {@code exType}.
2884      * The method handle will accept a single argument of {@code exType},
2885      * and immediately throw it as an exception.
2886      * The method type will nominally specify a return of {@code returnType}.
2887      * The return type may be anything convenient:  It doesn't matter to the
2888      * method handle's behavior, since it will never return normally.
2889      * @param returnType the return type of the desired method handle
2890      * @param exType the parameter type of the desired method handle
2891      * @return method handle which can throw the given exceptions
2892      * @throws NullPointerException if either argument is null
2893      */
2894     public static
throwException(Class<?> returnType, Class<? extends Throwable> exType)2895     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
2896         if (!Throwable.class.isAssignableFrom(exType))
2897             throw new ClassCastException(exType.getName());
2898 
2899         return new Transformers.AlwaysThrow(returnType, exType);
2900     }
2901 }
2902