1 /*
2  * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang.invoke;
27 
28 // Android-changed: not used.
29 // import java.util.concurrent.atomic.AtomicInteger;
30 
31 // Android-changed: removed references to MutableCallSite.syncAll().
32 /**
33  * A {@code MutableCallSite} is a {@link CallSite} whose target variable
34  * behaves like an ordinary field.
35  * An {@code invokedynamic} instruction linked to a {@code MutableCallSite} delegates
36  * all calls to the site's current target.
37  * The {@linkplain CallSite#dynamicInvoker dynamic invoker} of a mutable call site
38  * also delegates each call to the site's current target.
39  * <p>
40  * Here is an example of a mutable call site which introduces a
41  * state variable into a method handle chain.
42  * <!-- JavaDocExamplesTest.testMutableCallSite -->
43  * <blockquote><pre>{@code
44 MutableCallSite name = new MutableCallSite(MethodType.methodType(String.class));
45 MethodHandle MH_name = name.dynamicInvoker();
46 MethodType MT_str1 = MethodType.methodType(String.class);
47 MethodHandle MH_upcase = MethodHandles.lookup()
48     .findVirtual(String.class, "toUpperCase", MT_str1);
49 MethodHandle worker1 = MethodHandles.filterReturnValue(MH_name, MH_upcase);
50 name.setTarget(MethodHandles.constant(String.class, "Rocky"));
51 assertEquals("ROCKY", (String) worker1.invokeExact());
52 name.setTarget(MethodHandles.constant(String.class, "Fred"));
53 assertEquals("FRED", (String) worker1.invokeExact());
54 // (mutation can be continued indefinitely)
55  * }</pre></blockquote>
56  * <p>
57  * The same call site may be used in several places at once.
58  * <blockquote><pre>{@code
59 MethodType MT_str2 = MethodType.methodType(String.class, String.class);
60 MethodHandle MH_cat = lookup().findVirtual(String.class,
61   "concat", methodType(String.class, String.class));
62 MethodHandle MH_dear = MethodHandles.insertArguments(MH_cat, 1, ", dear?");
63 MethodHandle worker2 = MethodHandles.filterReturnValue(MH_name, MH_dear);
64 assertEquals("Fred, dear?", (String) worker2.invokeExact());
65 name.setTarget(MethodHandles.constant(String.class, "Wilma"));
66 assertEquals("WILMA", (String) worker1.invokeExact());
67 assertEquals("Wilma, dear?", (String) worker2.invokeExact());
68  * }</pre></blockquote>
69  * <p>
70  * <em>Non-synchronization of target values:</em>
71  * A write to a mutable call site's target does not force other threads
72  * to become aware of the updated value.  Threads which do not perform
73  * suitable synchronization actions relative to the updated call site
74  * may cache the old target value and delay their use of the new target
75  * value indefinitely.
76  * (This is a normal consequence of the Java Memory Model as applied
77  * to object fields.)
78  * <p>
79  * For target values which will be frequently updated, consider using
80  * a {@linkplain VolatileCallSite volatile call site} instead.
81  * @author John Rose, JSR 292 EG
82  */
83 public class MutableCallSite extends CallSite {
84     /**
85      * Creates a blank call site object with the given method type.
86      * The initial target is set to a method handle of the given type
87      * which will throw an {@link IllegalStateException} if called.
88      * <p>
89      * The type of the call site is permanently set to the given type.
90      * <p>
91      * Before this {@code CallSite} object is returned from a bootstrap method,
92      * or invoked in some other manner,
93      * it is usually provided with a more useful target method,
94      * via a call to {@link CallSite#setTarget(MethodHandle) setTarget}.
95      * @param type the method type that this call site will have
96      * @throws NullPointerException if the proposed type is null
97      */
MutableCallSite(MethodType type)98     public MutableCallSite(MethodType type) {
99         super(type);
100     }
101 
102     /**
103      * Creates a call site object with an initial target method handle.
104      * The type of the call site is permanently set to the initial target's type.
105      * @param target the method handle that will be the initial target of the call site
106      * @throws NullPointerException if the proposed target is null
107      */
MutableCallSite(MethodHandle target)108     public MutableCallSite(MethodHandle target) {
109         super(target);
110     }
111 
112     /**
113      * Returns the target method of the call site, which behaves
114      * like a normal field of the {@code MutableCallSite}.
115      * <p>
116      * The interactions of {@code getTarget} with memory are the same
117      * as of a read from an ordinary variable, such as an array element or a
118      * non-volatile, non-final field.
119      * <p>
120      * In particular, the current thread may choose to reuse the result
121      * of a previous read of the target from memory, and may fail to see
122      * a recent update to the target by another thread.
123      *
124      * @return the linkage state of this call site, a method handle which can change over time
125      * @see #setTarget
126      */
getTarget()127     @Override public final MethodHandle getTarget() {
128         return target;
129     }
130 
131     /**
132      * Updates the target method of this call site, as a normal variable.
133      * The type of the new target must agree with the type of the old target.
134      * <p>
135      * The interactions with memory are the same
136      * as of a write to an ordinary variable, such as an array element or a
137      * non-volatile, non-final field.
138      * <p>
139      * In particular, unrelated threads may fail to see the updated target
140      * until they perform a read from memory.
141      * Stronger guarantees can be created by putting appropriate operations
142      * into the bootstrap method and/or the target methods used
143      * at any given call site.
144      *
145      * @param newTarget the new target
146      * @throws NullPointerException if the proposed new target is null
147      * @throws WrongMethodTypeException if the proposed new target
148      *         has a method type that differs from the previous target
149      * @see #getTarget
150      */
setTarget(MethodHandle newTarget)151     @Override public void setTarget(MethodHandle newTarget) {
152         checkTargetChange(this.target, newTarget);
153         setTargetNormal(newTarget);
154     }
155 
156     /**
157      * {@inheritDoc}
158      */
159     @Override
dynamicInvoker()160     public final MethodHandle dynamicInvoker() {
161         return makeDynamicInvoker();
162     }
163 
164     // Android-changed: not exposing incomplete implementation.
165     // /**
166     //  * Performs a synchronization operation on each call site in the given array,
167     //  * forcing all other threads to throw away any cached values previously
168     //  * loaded from the target of any of the call sites.
169     //  * <p>
170     //  * This operation does not reverse any calls that have already started
171     //  * on an old target value.
172     //  * (Java supports {@linkplain java.lang.Object#wait() forward time travel} only.)
173     //  * <p>
174     //  * The overall effect is to force all future readers of each call site's target
175     //  * to accept the most recently stored value.
176     //  * ("Most recently" is reckoned relative to the {@code syncAll} itself.)
177     //  * Conversely, the {@code syncAll} call may block until all readers have
178     //  * (somehow) decached all previous versions of each call site's target.
179     //  * <p>
180     //  * To avoid race conditions, calls to {@code setTarget} and {@code syncAll}
181     //  * should generally be performed under some sort of mutual exclusion.
182     //  * Note that reader threads may observe an updated target as early
183     //  * as the {@code setTarget} call that install the value
184     //  * (and before the {@code syncAll} that confirms the value).
185     //  * On the other hand, reader threads may observe previous versions of
186     //  * the target until the {@code syncAll} call returns
187     //  * (and after the {@code setTarget} that attempts to convey the updated version).
188     //  * <p>
189     //  * This operation is likely to be expensive and should be used sparingly.
190     //  * If possible, it should be buffered for batch processing on sets of call sites.
191     //  * <p>
192     //  * If {@code sites} contains a null element,
193     //  * a {@code NullPointerException} will be raised.
194     //  * In this case, some non-null elements in the array may be
195     //  * processed before the method returns abnormally.
196     //  * Which elements these are (if any) is implementation-dependent.
197     //  *
198     //  * <h3>Java Memory Model details</h3>
199     //  * In terms of the Java Memory Model, this operation performs a synchronization
200     //  * action which is comparable in effect to the writing of a volatile variable
201     //  * by the current thread, and an eventual volatile read by every other thread
202     //  * that may access one of the affected call sites.
203     //  * <p>
204     //  * The following effects are apparent, for each individual call site {@code S}:
205     //  * <ul>
206     //  * <li>A new volatile variable {@code V} is created, and written by the current thread.
207     //  *     As defined by the JMM, this write is a global synchronization event.
208     //  * <li>As is normal with thread-local ordering of write events,
209     //  *     every action already performed by the current thread is
210     //  *     taken to happen before the volatile write to {@code V}.
211     //  *     (In some implementations, this means that the current thread
212     //  *     performs a global release operation.)
213     //  * <li>Specifically, the write to the current target of {@code S} is
214     //  *     taken to happen before the volatile write to {@code V}.
215     //  * <li>The volatile write to {@code V} is placed
216     //  *     (in an implementation specific manner)
217     //  *     in the global synchronization order.
218     //  * <li>Consider an arbitrary thread {@code T} (other than the current thread).
219     //  *     If {@code T} executes a synchronization action {@code A}
220     //  *     after the volatile write to {@code V} (in the global synchronization order),
221     //  *     it is therefore required to see either the current target
222     //  *     of {@code S}, or a later write to that target,
223     //  *     if it executes a read on the target of {@code S}.
224     //  *     (This constraint is called "synchronization-order consistency".)
225     //  * <li>The JMM specifically allows optimizing compilers to elide
226     //  *     reads or writes of variables that are known to be useless.
227     //  *     Such elided reads and writes have no effect on the happens-before
228     //  *     relation.  Regardless of this fact, the volatile {@code V}
229     //  *     will not be elided, even though its written value is
230     //  *     indeterminate and its read value is not used.
231     //  * </ul>
232     //  * Because of the last point, the implementation behaves as if a
233     //  * volatile read of {@code V} were performed by {@code T}
234     //  * immediately after its action {@code A}.  In the local ordering
235     //  * of actions in {@code T}, this read happens before any future
236     //  * read of the target of {@code S}.  It is as if the
237     //  * implementation arbitrarily picked a read of {@code S}'s target
238     //  * by {@code T}, and forced a read of {@code V} to precede it,
239     //  * thereby ensuring communication of the new target value.
240     //  * <p>
241     //  * As long as the constraints of the Java Memory Model are obeyed,
242     //  * implementations may delay the completion of a {@code syncAll}
243     //  * operation while other threads ({@code T} above) continue to
244     //  * use previous values of {@code S}'s target.
245     //  * However, implementations are (as always) encouraged to avoid
246     //  * livelock, and to eventually require all threads to take account
247     //  * of the updated target.
248     //  *
249     //  * <p style="font-size:smaller;">
250     //  * <em>Discussion:</em>
251     //  * For performance reasons, {@code syncAll} is not a virtual method
252     //  * on a single call site, but rather applies to a set of call sites.
253     //  * Some implementations may incur a large fixed overhead cost
254     //  * for processing one or more synchronization operations,
255     //  * but a small incremental cost for each additional call site.
256     //  * In any case, this operation is likely to be costly, since
257     //  * other threads may have to be somehow interrupted
258     //  * in order to make them notice the updated target value.
259     //  * However, it may be observed that a single call to synchronize
260     //  * several sites has the same formal effect as many calls,
261     //  * each on just one of the sites.
262     //  *
263     //  * <p style="font-size:smaller;">
264     //  * <em>Implementation Note:</em>
265     //  * Simple implementations of {@code MutableCallSite} may use
266     //  * a volatile variable for the target of a mutable call site.
267     //  * In such an implementation, the {@code syncAll} method can be a no-op,
268     //  * and yet it will conform to the JMM behavior documented above.
269     //  *
270     //  * @param sites an array of call sites to be synchronized
271     //  * @throws NullPointerException if the {@code sites} array reference is null
272     //  *                              or the array contains a null
273     //  */
274     // public static void syncAll(MutableCallSite[] sites) {
275     //     if (sites.length == 0)  return;
276     //     STORE_BARRIER.lazySet(0);
277     //     for (int i = 0; i < sites.length; i++) {
278     //         sites[i].getClass();  // trigger NPE on first null
279     //     }
280     //     // FIXME: NYI
281     // }
282     // private static final AtomicInteger STORE_BARRIER = new AtomicInteger();
283 }
284