1 /*
2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 /*
27  *
28  * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
29  * (C) Copyright IBM Corp. 1996 - 2002 - All Rights Reserved
30  *
31  * The original version of this source code and documentation
32  * is copyrighted and owned by Taligent, Inc., a wholly-owned
33  * subsidiary of IBM. These materials are provided under terms
34  * of a License Agreement between Taligent and Sun. This technology
35  * is protected by multiple US and International patents.
36  *
37  * This notice and attribution to Taligent may not be removed.
38  * Taligent is a registered trademark of Taligent, Inc.
39  */
40 
41 
42 package java.text;
43 
44 /**
45  * <p>A subclass of BreakIterator whose behavior is specified using a list of rules.</p>
46  *
47  * <p>There are two kinds of rules, which are separated by semicolons: <i>substitutions</i>
48  * and <i>regular expressions.</i></p>
49  *
50  * <p>A substitution rule defines a name that can be used in place of an expression. It
51  * consists of a name, which is a string of characters contained in angle brackets, an equals
52  * sign, and an expression. (There can be no whitespace on either side of the equals sign.)
53  * To keep its syntactic meaning intact, the expression must be enclosed in parentheses or
54  * square brackets. A substitution is visible after its definition, and is filled in using
55  * simple textual substitution. Substitution definitions can contain other substitutions, as
56  * long as those substitutions have been defined first. Substitutions are generally used to
57  * make the regular expressions (which can get quite complex) shorted and easier to read.
58  * They typically define either character categories or commonly-used subexpressions.</p>
59  *
60  * <p>There is one special substitution.&nbsp; If the description defines a substitution
61  * called &quot;&lt;ignore&gt;&quot;, the expression must be a [] expression, and the
62  * expression defines a set of characters (the &quot;<em>ignore characters</em>&quot;) that
63  * will be transparent to the BreakIterator.&nbsp; A sequence of characters will break the
64  * same way it would if any ignore characters it contains are taken out.&nbsp; Break
65  * positions never occur befoer ignore characters.</p>
66  *
67  * <p>A regular expression uses a subset of the normal Unix regular-expression syntax, and
68  * defines a sequence of characters to be kept together. With one significant exception, the
69  * iterator uses a longest-possible-match algorithm when matching text to regular
70  * expressions. The iterator also treats descriptions containing multiple regular expressions
71  * as if they were ORed together (i.e., as if they were separated by |).</p>
72  *
73  * <p>The special characters recognized by the regular-expression parser are as follows:</p>
74  *
75  * <blockquote>
76  * <table border="1" width="100%">
77  * <tr>
78  * <td width="6%">*</td>
79  * <td width="94%">Specifies that the expression preceding the asterisk may occur any number
80  * of times (including not at all).</td>
81  * </tr>
82  * <tr>
83  * <td width="6%">{}</td>
84  * <td width="94%">Encloses a sequence of characters that is optional.</td>
85  * </tr>
86  * <tr>
87  * <td width="6%">()</td>
88  * <td width="94%">Encloses a sequence of characters.&nbsp; If followed by *, the sequence
89  * repeats.&nbsp; Otherwise, the parentheses are just a grouping device and a way to delimit
90  * the ends of expressions containing |.</td>
91  * </tr>
92  * <tr>
93  * <td width="6%">|</td>
94  * <td width="94%">Separates two alternative sequences of characters.&nbsp; Either one
95  * sequence or the other, but not both, matches this expression.&nbsp; The | character can
96  * only occur inside ().</td>
97  * </tr>
98  * <tr>
99  * <td width="6%">.</td>
100  * <td width="94%">Matches any character.</td>
101  * </tr>
102  * <tr>
103  * <td width="6%">*?</td>
104  * <td width="94%">Specifies a non-greedy asterisk.&nbsp; *? works the same way as *, except
105  * when there is overlap between the last group of characters in the expression preceding the
106  * * and the first group of characters following the *.&nbsp; When there is this kind of
107  * overlap, * will match the longest sequence of characters that match the expression before
108  * the *, and *? will match the shortest sequence of characters matching the expression
109  * before the *?.&nbsp; For example, if you have &quot;xxyxyyyxyxyxxyxyxyy&quot; in the text,
110  * &quot;x[xy]*x&quot; will match through to the last x (i.e., &quot;<strong>xxyxyyyxyxyxxyxyx</strong>yy&quot;,
111  * but &quot;x[xy]*?x&quot; will only match the first two xes (&quot;<strong>xx</strong>yxyyyxyxyxxyxyxyy&quot;).</td>
112  * </tr>
113  * <tr>
114  * <td width="6%">[]</td>
115  * <td width="94%">Specifies a group of alternative characters.&nbsp; A [] expression will
116  * match any single character that is specified in the [] expression.&nbsp; For more on the
117  * syntax of [] expressions, see below.</td>
118  * </tr>
119  * <tr>
120  * <td width="6%">/</td>
121  * <td width="94%">Specifies where the break position should go if text matches this
122  * expression.&nbsp; (e.g., &quot;[a-z]&#42;/[:Zs:]*[1-0]&quot; will match if the iterator sees a
123  * run
124  * of letters, followed by a run of whitespace, followed by a digit, but the break position
125  * will actually go before the whitespace).&nbsp; Expressions that don't contain / put the
126  * break position at the end of the matching text.</td>
127  * </tr>
128  * <tr>
129  * <td width="6%">\</td>
130  * <td width="94%">Escape character.&nbsp; The \ itself is ignored, but causes the next
131  * character to be treated as literal character.&nbsp; This has no effect for many
132  * characters, but for the characters listed above, this deprives them of their special
133  * meaning.&nbsp; (There are no special escape sequences for Unicode characters, or tabs and
134  * newlines; these are all handled by a higher-level protocol.&nbsp; In a Java string,
135  * &quot;\n&quot; will be converted to a literal newline character by the time the
136  * regular-expression parser sees it.&nbsp; Of course, this means that \ sequences that are
137  * visible to the regexp parser must be written as \\ when inside a Java string.)&nbsp; All
138  * characters in the ASCII range except for letters, digits, and control characters are
139  * reserved characters to the parser and must be preceded by \ even if they currently don't
140  * mean anything.</td>
141  * </tr>
142  * <tr>
143  * <td width="6%">!</td>
144  * <td width="94%">If ! appears at the beginning of a regular expression, it tells the regexp
145  * parser that this expression specifies the backwards-iteration behavior of the iterator,
146  * and not its normal iteration behavior.&nbsp; This is generally only used in situations
147  * where the automatically-generated backwards-iteration brhavior doesn't produce
148  * satisfactory results and must be supplemented with extra client-specified rules.</td>
149  * </tr>
150  * <tr>
151  * <td width="6%"><em>(all others)</em></td>
152  * <td width="94%">All other characters are treated as literal characters, which must match
153  * the corresponding character(s) in the text exactly.</td>
154  * </tr>
155  * </table>
156  * </blockquote>
157  *
158  * <p>Within a [] expression, a number of other special characters can be used to specify
159  * groups of characters:</p>
160  *
161  * <blockquote>
162  * <table border="1" width="100%">
163  * <tr>
164  * <td width="6%">-</td>
165  * <td width="94%">Specifies a range of matching characters.&nbsp; For example
166  * &quot;[a-p]&quot; matches all lowercase Latin letters from a to p (inclusive).&nbsp; The -
167  * sign specifies ranges of continuous Unicode numeric values, not ranges of characters in a
168  * language's alphabetical order: &quot;[a-z]&quot; doesn't include capital letters, nor does
169  * it include accented letters such as a-umlaut.</td>
170  * </tr>
171  * <tr>
172  * <td width="6%">::</td>
173  * <td width="94%">A pair of colons containing a one- or two-letter code matches all
174  * characters in the corresponding Unicode category.&nbsp; The two-letter codes are the same
175  * as the two-letter codes in the Unicode database (for example, &quot;[:Sc::Sm:]&quot;
176  * matches all currency symbols and all math symbols).&nbsp; Specifying a one-letter code is
177  * the same as specifying all two-letter codes that begin with that letter (for example,
178  * &quot;[:L:]&quot; matches all letters, and is equivalent to
179  * &quot;[:Lu::Ll::Lo::Lm::Lt:]&quot;).&nbsp; Anything other than a valid two-letter Unicode
180  * category code or a single letter that begins a Unicode category code is illegal within
181  * colons.</td>
182  * </tr>
183  * <tr>
184  * <td width="6%">[]</td>
185  * <td width="94%">[] expressions can nest.&nbsp; This has no effect, except when used in
186  * conjunction with the ^ token.</td>
187  * </tr>
188  * <tr>
189  * <td width="6%">^</td>
190  * <td width="94%">Excludes the character (or the characters in the [] expression) following
191  * it from the group of characters.&nbsp; For example, &quot;[a-z^p]&quot; matches all Latin
192  * lowercase letters except p.&nbsp; &quot;[:L:^[&#92;u4e00-&#92;u9fff]]&quot; matches all letters
193  * except the Han ideographs.</td>
194  * </tr>
195  * <tr>
196  * <td width="6%"><em>(all others)</em></td>
197  * <td width="94%">All other characters are treated as literal characters.&nbsp; (For
198  * example, &quot;[aeiou]&quot; specifies just the letters a, e, i, o, and u.)</td>
199  * </tr>
200  * </table>
201  * </blockquote>
202  *
203  * <p>For a more complete explanation, see <a
204  * href="http://www.ibm.com/java/education/boundaries/boundaries.html">http://www.ibm.com/java/education/boundaries/boundaries.html</a>.
205  * &nbsp; For examples, see the resource data (which is annotated).</p>
206  *
207  * @author Richard Gillam
208  */
209 class IcuIteratorWrapper extends BreakIterator {
210 
211     /* The wrapped ICU implementation. Non-final for #clone() */
212     private android.icu.text.BreakIterator wrapped;
213 
214     /**
215      * Constructs a IcuIteratorWrapper according to the datafile
216      * provided.
217      */
IcuIteratorWrapper(android.icu.text.BreakIterator iterator)218     IcuIteratorWrapper(android.icu.text.BreakIterator iterator) {
219         wrapped = iterator;
220     }
221 
222     /**
223      * Clones this iterator.
224      *
225      * @return A newly-constructed IcuIteratorWrapper with the same
226      * behavior as this one.
227      */
clone()228     public Object clone() {
229         IcuIteratorWrapper result = (IcuIteratorWrapper) super.clone();
230         result.wrapped = (android.icu.text.BreakIterator) wrapped.clone();
231         return result;
232     }
233 
234     /**
235      * Returns true if both BreakIterators are of the same class, have the same
236      * rules, and iterate over the same text.
237      */
equals(Object that)238     public boolean equals(Object that) {
239         if (!(that instanceof IcuIteratorWrapper)) {
240             return false;
241         }
242         return wrapped.equals(((IcuIteratorWrapper) that).wrapped);
243     }
244 
245     //=======================================================================
246     // BreakIterator overrides
247     //=======================================================================
248 
249     /**
250      * Returns text
251      */
toString()252     public String toString() {
253         return wrapped.toString();
254     }
255 
256     /**
257      * Compute a hashcode for this BreakIterator
258      *
259      * @return A hash code
260      */
hashCode()261     public int hashCode() {
262         return wrapped.hashCode();
263     }
264 
265     /**
266      * Sets the current iteration position to the beginning of the text.
267      * (i.e., the CharacterIterator's starting offset).
268      *
269      * @return The offset of the beginning of the text.
270      */
first()271     public int first() {
272         return wrapped.first();
273     }
274 
275     /**
276      * Sets the current iteration position to the end of the text.
277      * (i.e., the CharacterIterator's ending offset).
278      *
279      * @return The text's past-the-end offset.
280      */
last()281     public int last() {
282         return wrapped.last();
283     }
284 
285     /**
286      * Advances the iterator either forward or backward the specified number of steps.
287      * Negative values move backward, and positive values move forward.  This is
288      * equivalent to repeatedly calling next() or previous().
289      *
290      * @param n The number of steps to move.  The sign indicates the direction
291      *          (negative is backwards, and positive is forwards).
292      * @return The character offset of the boundary position n boundaries away from
293      * the current one.
294      */
next(int n)295     public int next(int n) {
296         return wrapped.next(n);
297     }
298 
299     /**
300      * Advances the iterator to the next boundary position.
301      *
302      * @return The position of the first boundary after this one.
303      */
next()304     public int next() {
305         return wrapped.next();
306     }
307 
308     /**
309      * Advances the iterator backwards, to the last boundary preceding this one.
310      *
311      * @return The position of the last boundary position preceding this one.
312      */
previous()313     public int previous() {
314         return wrapped.previous();
315     }
316 
317     /**
318      * Throw IllegalArgumentException unless begin <= offset < end.
319      */
checkOffset(int offset, CharacterIterator text)320     protected static final void checkOffset(int offset, CharacterIterator text) {
321         if (offset < text.getBeginIndex() || offset > text.getEndIndex()) {
322             throw new IllegalArgumentException("offset out of bounds");
323         }
324     }
325 
326     /**
327      * Sets the iterator to refer to the first boundary position following
328      * the specified position.
329      *
330      * @return The position of the first break after the current position.
331      * @offset The position from which to begin searching for a break position.
332      */
following(int offset)333     public int following(int offset) {
334         CharacterIterator text = getText();
335         checkOffset(offset, text);
336         return wrapped.following(offset);
337     }
338 
339     /**
340      * Sets the iterator to refer to the last boundary position before the
341      * specified position.
342      *
343      * @return The position of the last boundary before the starting position.
344      * @offset The position to begin searching for a break from.
345      */
preceding(int offset)346     public int preceding(int offset) {
347         // if we start by updating the current iteration position to the
348         // position specified by the caller, we can just use previous()
349         // to carry out this operation
350         CharacterIterator text = getText();
351         checkOffset(offset, text);
352         return wrapped.preceding(offset);
353     }
354 
355     /**
356      * Returns true if the specfied position is a boundary position.  As a side
357      * effect, leaves the iterator pointing to the first boundary position at
358      * or after "offset".
359      *
360      * @param offset the offset to check.
361      * @return True if "offset" is a boundary position.
362      */
isBoundary(int offset)363     public boolean isBoundary(int offset) {
364         CharacterIterator text = getText();
365         checkOffset(offset, text);
366         return wrapped.isBoundary(offset);
367     }
368 
369     /**
370      * Returns the current iteration position.
371      *
372      * @return The current iteration position.
373      */
current()374     public int current() {
375         return wrapped.current();
376     }
377 
378     /**
379      * Return a CharacterIterator over the text being analyzed.  This version
380      * of this method returns the actual CharacterIterator we're using internally.
381      * Changing the state of this iterator can have undefined consequences.  If
382      * you need to change it, clone it first.
383      *
384      * @return An iterator over the text being analyzed.
385      */
getText()386     public CharacterIterator getText() {
387         return wrapped.getText();
388     }
389 
setText(String newText)390     public void setText(String newText) {
391         wrapped.setText(newText);
392     }
393 
394     /**
395      * Set the iterator to analyze a new piece of text.  This function resets
396      * the current iteration position to the beginning of the text.
397      *
398      * @param newText An iterator over the text to analyze.
399      */
setText(CharacterIterator newText)400     public void setText(CharacterIterator newText) {
401         newText.current();
402         wrapped.setText(newText);
403     }
404 }
405