1 /*
2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.util;
27 
28 import java.util.function.Consumer;
29 import java.util.function.BiConsumer;
30 import java.util.function.BiFunction;
31 import java.io.IOException;
32 
33 // Android-added: Note about spliterator order b/33945212 in Android N
34 /**
35  * <p>Hash table and linked list implementation of the <tt>Map</tt> interface,
36  * with predictable iteration order.  This implementation differs from
37  * <tt>HashMap</tt> in that it maintains a doubly-linked list running through
38  * all of its entries.  This linked list defines the iteration ordering,
39  * which is normally the order in which keys were inserted into the map
40  * (<i>insertion-order</i>).  Note that insertion order is not affected
41  * if a key is <i>re-inserted</i> into the map.  (A key <tt>k</tt> is
42  * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when
43  * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to
44  * the invocation.)
45  *
46  * <p>This implementation spares its clients from the unspecified, generally
47  * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}),
48  * without incurring the increased cost associated with {@link TreeMap}.  It
49  * can be used to produce a copy of a map that has the same order as the
50  * original, regardless of the original map's implementation:
51  * <pre>
52  *     void foo(Map m) {
53  *         Map copy = new LinkedHashMap(m);
54  *         ...
55  *     }
56  * </pre>
57  * This technique is particularly useful if a module takes a map on input,
58  * copies it, and later returns results whose order is determined by that of
59  * the copy.  (Clients generally appreciate having things returned in the same
60  * order they were presented.)
61  *
62  * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is
63  * provided to create a linked hash map whose order of iteration is the order
64  * in which its entries were last accessed, from least-recently accessed to
65  * most-recently (<i>access-order</i>).  This kind of map is well-suited to
66  * building LRU caches.  Invoking the {@code put}, {@code putIfAbsent},
67  * {@code get}, {@code getOrDefault}, {@code compute}, {@code computeIfAbsent},
68  * {@code computeIfPresent}, or {@code merge} methods results
69  * in an access to the corresponding entry (assuming it exists after the
70  * invocation completes). The {@code replace} methods only result in an access
71  * of the entry if the value is replaced.  The {@code putAll} method generates one
72  * entry access for each mapping in the specified map, in the order that
73  * key-value mappings are provided by the specified map's entry set iterator.
74  * <i>No other methods generate entry accesses.</i>  In particular, operations
75  * on collection-views do <i>not</i> affect the order of iteration of the
76  * backing map.
77  *
78  * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to
79  * impose a policy for removing stale mappings automatically when new mappings
80  * are added to the map.
81  *
82  * <p>This class provides all of the optional <tt>Map</tt> operations, and
83  * permits null elements.  Like <tt>HashMap</tt>, it provides constant-time
84  * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and
85  * <tt>remove</tt>), assuming the hash function disperses elements
86  * properly among the buckets.  Performance is likely to be just slightly
87  * below that of <tt>HashMap</tt>, due to the added expense of maintaining the
88  * linked list, with one exception: Iteration over the collection-views
89  * of a <tt>LinkedHashMap</tt> requires time proportional to the <i>size</i>
90  * of the map, regardless of its capacity.  Iteration over a <tt>HashMap</tt>
91  * is likely to be more expensive, requiring time proportional to its
92  * <i>capacity</i>.
93  *
94  * <p>A linked hash map has two parameters that affect its performance:
95  * <i>initial capacity</i> and <i>load factor</i>.  They are defined precisely
96  * as for <tt>HashMap</tt>.  Note, however, that the penalty for choosing an
97  * excessively high value for initial capacity is less severe for this class
98  * than for <tt>HashMap</tt>, as iteration times for this class are unaffected
99  * by capacity.
100  *
101  * <p><strong>Note that this implementation is not synchronized.</strong>
102  * If multiple threads access a linked hash map concurrently, and at least
103  * one of the threads modifies the map structurally, it <em>must</em> be
104  * synchronized externally.  This is typically accomplished by
105  * synchronizing on some object that naturally encapsulates the map.
106  *
107  * If no such object exists, the map should be "wrapped" using the
108  * {@link Collections#synchronizedMap Collections.synchronizedMap}
109  * method.  This is best done at creation time, to prevent accidental
110  * unsynchronized access to the map:<pre>
111  *   Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre>
112  *
113  * A structural modification is any operation that adds or deletes one or more
114  * mappings or, in the case of access-ordered linked hash maps, affects
115  * iteration order.  In insertion-ordered linked hash maps, merely changing
116  * the value associated with a key that is already contained in the map is not
117  * a structural modification.  <strong>In access-ordered linked hash maps,
118  * merely querying the map with <tt>get</tt> is a structural modification.
119  * </strong>)
120  *
121  * <p>The iterators returned by the <tt>iterator</tt> method of the collections
122  * returned by all of this class's collection view methods are
123  * <em>fail-fast</em>: if the map is structurally modified at any time after
124  * the iterator is created, in any way except through the iterator's own
125  * <tt>remove</tt> method, the iterator will throw a {@link
126  * ConcurrentModificationException}.  Thus, in the face of concurrent
127  * modification, the iterator fails quickly and cleanly, rather than risking
128  * arbitrary, non-deterministic behavior at an undetermined time in the future.
129  *
130  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
131  * as it is, generally speaking, impossible to make any hard guarantees in the
132  * presence of unsynchronized concurrent modification.  Fail-fast iterators
133  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
134  * Therefore, it would be wrong to write a program that depended on this
135  * exception for its correctness:   <i>the fail-fast behavior of iterators
136  * should be used only to detect bugs.</i>
137  *
138  * <p>The spliterators returned by the spliterator method of the collections
139  * returned by all of this class's collection view methods are
140  * <em><a href="Spliterator.html#binding">late-binding</a></em>,
141  * <em>fail-fast</em>, and additionally report {@link Spliterator#ORDERED}.
142  * <em>Note</em>: The implementation of these spliterators in Android Nougat
143  * (API levels 24 and 25) uses the wrong order (inconsistent with the
144  * iterators, which use the correct order), despite reporting
145  * {@link Spliterator#ORDERED}. You may use the following code fragments
146  * to obtain a correctly ordered Spliterator on API level 24 and 25:
147  * <ul>
148  *     <li>For a Collection view {@code c = lhm.keySet()},
149  *         {@code c = lhm.keySet()} or {@code c = lhm.values()}, use
150  *         {@code java.util.Spliterators.spliterator(c, c.spliterator().characteristics())}
151  *         instead of {@code c.spliterator()}.
152  *     <li>Instead of {@code lhm.stream()} or {@code lhm.parallelStream()}, use
153  *         {@code java.util.stream.StreamSupport.stream(spliterator, false)}
154  *         to construct a (nonparallel) {@link java.util.stream.Stream} from
155  *         such a {@code Spliterator}.
156  * </ul>
157  * Note that these workarounds are only suggested where {@code lhm} is a
158  * {@code LinkedHashMap}.
159  *
160  * <p>This class is a member of the
161  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
162  * Java Collections Framework</a>.
163  *
164  * @implNote
165  * The spliterators returned by the spliterator method of the collections
166  * returned by all of this class's collection view methods are created from
167  * the iterators of the corresponding collections.
168  *
169  * @param <K> the type of keys maintained by this map
170  * @param <V> the type of mapped values
171  *
172  * @author  Josh Bloch
173  * @see     Object#hashCode()
174  * @see     Collection
175  * @see     Map
176  * @see     HashMap
177  * @see     TreeMap
178  * @see     Hashtable
179  * @since   1.4
180  */
181 public class LinkedHashMap<K,V>
182     extends HashMap<K,V>
183     implements Map<K,V>
184 {
185 
186     /*
187      * Implementation note.  A previous version of this class was
188      * internally structured a little differently. Because superclass
189      * HashMap now uses trees for some of its nodes, class
190      * LinkedHashMap.Entry is now treated as intermediary node class
191      * that can also be converted to tree form.
192      *
193      * BEGIN Android-changed
194      * LinkedHashMapEntry should not be renamed. Specifically, for
195      * source compatibility with earlier versions of Android, this
196      * nested class must not be named "Entry". Otherwise, it would
197      * hide Map.Entry which would break compilation of code like:
198      *
199      * LinkedHashMap.Entry<K, V> entry = map.entrySet().iterator.next()
200      *
201      * To compile, that code snippet's "LinkedHashMap.Entry" must
202      * mean java.util.Map.Entry which is the compile time type of
203      * entrySet()'s elements.
204      * END Android-changed
205      *
206      * The changes in node classes also require using two fields
207      * (head, tail) rather than a pointer to a header node to maintain
208      * the doubly-linked before/after list. This class also
209      * previously used a different style of callback methods upon
210      * access, insertion, and removal.
211      */
212 
213     /**
214      * HashMap.Node subclass for normal LinkedHashMap entries.
215      */
216     static class LinkedHashMapEntry<K,V> extends HashMap.Node<K,V> {
217         LinkedHashMapEntry<K,V> before, after;
LinkedHashMapEntry(int hash, K key, V value, Node<K,V> next)218         LinkedHashMapEntry(int hash, K key, V value, Node<K,V> next) {
219             super(hash, key, value, next);
220         }
221     }
222 
223     private static final long serialVersionUID = 3801124242820219131L;
224 
225     /**
226      * The head (eldest) of the doubly linked list.
227      */
228     transient LinkedHashMapEntry<K,V> head;
229 
230     /**
231      * The tail (youngest) of the doubly linked list.
232      */
233     transient LinkedHashMapEntry<K,V> tail;
234 
235     /**
236      * The iteration ordering method for this linked hash map: <tt>true</tt>
237      * for access-order, <tt>false</tt> for insertion-order.
238      *
239      * @serial
240      */
241     final boolean accessOrder;
242 
243     // internal utilities
244 
245     // link at the end of list
linkNodeLast(LinkedHashMapEntry<K,V> p)246     private void linkNodeLast(LinkedHashMapEntry<K,V> p) {
247         LinkedHashMapEntry<K,V> last = tail;
248         tail = p;
249         if (last == null)
250             head = p;
251         else {
252             p.before = last;
253             last.after = p;
254         }
255     }
256 
257     // apply src's links to dst
transferLinks(LinkedHashMapEntry<K,V> src, LinkedHashMapEntry<K,V> dst)258     private void transferLinks(LinkedHashMapEntry<K,V> src,
259                                LinkedHashMapEntry<K,V> dst) {
260         LinkedHashMapEntry<K,V> b = dst.before = src.before;
261         LinkedHashMapEntry<K,V> a = dst.after = src.after;
262         if (b == null)
263             head = dst;
264         else
265             b.after = dst;
266         if (a == null)
267             tail = dst;
268         else
269             a.before = dst;
270     }
271 
272     // overrides of HashMap hook methods
273 
reinitialize()274     void reinitialize() {
275         super.reinitialize();
276         head = tail = null;
277     }
278 
newNode(int hash, K key, V value, Node<K,V> e)279     Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
280         LinkedHashMapEntry<K,V> p =
281             new LinkedHashMapEntry<K,V>(hash, key, value, e);
282         linkNodeLast(p);
283         return p;
284     }
285 
replacementNode(Node<K,V> p, Node<K,V> next)286     Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
287         LinkedHashMapEntry<K,V> q = (LinkedHashMapEntry<K,V>)p;
288         LinkedHashMapEntry<K,V> t =
289             new LinkedHashMapEntry<K,V>(q.hash, q.key, q.value, next);
290         transferLinks(q, t);
291         return t;
292     }
293 
newTreeNode(int hash, K key, V value, Node<K,V> next)294     TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
295         TreeNode<K,V> p = new TreeNode<K,V>(hash, key, value, next);
296         linkNodeLast(p);
297         return p;
298     }
299 
replacementTreeNode(Node<K,V> p, Node<K,V> next)300     TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
301         LinkedHashMapEntry<K,V> q = (LinkedHashMapEntry<K,V>)p;
302         TreeNode<K,V> t = new TreeNode<K,V>(q.hash, q.key, q.value, next);
303         transferLinks(q, t);
304         return t;
305     }
306 
afterNodeRemoval(Node<K,V> e)307     void afterNodeRemoval(Node<K,V> e) { // unlink
308         LinkedHashMapEntry<K,V> p =
309             (LinkedHashMapEntry<K,V>)e, b = p.before, a = p.after;
310         p.before = p.after = null;
311         if (b == null)
312             head = a;
313         else
314             b.after = a;
315         if (a == null)
316             tail = b;
317         else
318             a.before = b;
319     }
320 
afterNodeInsertion(boolean evict)321     void afterNodeInsertion(boolean evict) { // possibly remove eldest
322         LinkedHashMapEntry<K,V> first;
323         if (evict && (first = head) != null && removeEldestEntry(first)) {
324             K key = first.key;
325             removeNode(hash(key), key, null, false, true);
326         }
327     }
328 
afterNodeAccess(Node<K,V> e)329     void afterNodeAccess(Node<K,V> e) { // move node to last
330         LinkedHashMapEntry<K,V> last;
331         if (accessOrder && (last = tail) != e) {
332             LinkedHashMapEntry<K,V> p =
333                 (LinkedHashMapEntry<K,V>)e, b = p.before, a = p.after;
334             p.after = null;
335             if (b == null)
336                 head = a;
337             else
338                 b.after = a;
339             if (a != null)
340                 a.before = b;
341             else
342                 last = b;
343             if (last == null)
344                 head = p;
345             else {
346                 p.before = last;
347                 last.after = p;
348             }
349             tail = p;
350             ++modCount;
351         }
352     }
353 
internalWriteEntries(java.io.ObjectOutputStream s)354     void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
355         for (LinkedHashMapEntry<K,V> e = head; e != null; e = e.after) {
356             s.writeObject(e.key);
357             s.writeObject(e.value);
358         }
359     }
360 
361     /**
362      * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
363      * with the specified initial capacity and load factor.
364      *
365      * @param  initialCapacity the initial capacity
366      * @param  loadFactor      the load factor
367      * @throws IllegalArgumentException if the initial capacity is negative
368      *         or the load factor is nonpositive
369      */
LinkedHashMap(int initialCapacity, float loadFactor)370     public LinkedHashMap(int initialCapacity, float loadFactor) {
371         super(initialCapacity, loadFactor);
372         accessOrder = false;
373     }
374 
375     /**
376      * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
377      * with the specified initial capacity and a default load factor (0.75).
378      *
379      * @param  initialCapacity the initial capacity
380      * @throws IllegalArgumentException if the initial capacity is negative
381      */
LinkedHashMap(int initialCapacity)382     public LinkedHashMap(int initialCapacity) {
383         super(initialCapacity);
384         accessOrder = false;
385     }
386 
387     /**
388      * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
389      * with the default initial capacity (16) and load factor (0.75).
390      */
LinkedHashMap()391     public LinkedHashMap() {
392         super();
393         accessOrder = false;
394     }
395 
396     /**
397      * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
398      * the same mappings as the specified map.  The <tt>LinkedHashMap</tt>
399      * instance is created with a default load factor (0.75) and an initial
400      * capacity sufficient to hold the mappings in the specified map.
401      *
402      * @param  m the map whose mappings are to be placed in this map
403      * @throws NullPointerException if the specified map is null
404      */
LinkedHashMap(Map<? extends K, ? extends V> m)405     public LinkedHashMap(Map<? extends K, ? extends V> m) {
406         super();
407         accessOrder = false;
408         putMapEntries(m, false);
409     }
410 
411     /**
412      * Constructs an empty <tt>LinkedHashMap</tt> instance with the
413      * specified initial capacity, load factor and ordering mode.
414      *
415      * @param  initialCapacity the initial capacity
416      * @param  loadFactor      the load factor
417      * @param  accessOrder     the ordering mode - <tt>true</tt> for
418      *         access-order, <tt>false</tt> for insertion-order
419      * @throws IllegalArgumentException if the initial capacity is negative
420      *         or the load factor is nonpositive
421      */
LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder)422     public LinkedHashMap(int initialCapacity,
423                          float loadFactor,
424                          boolean accessOrder) {
425         super(initialCapacity, loadFactor);
426         this.accessOrder = accessOrder;
427     }
428 
429 
430     /**
431      * Returns <tt>true</tt> if this map maps one or more keys to the
432      * specified value.
433      *
434      * @param value value whose presence in this map is to be tested
435      * @return <tt>true</tt> if this map maps one or more keys to the
436      *         specified value
437      */
containsValue(Object value)438     public boolean containsValue(Object value) {
439         for (LinkedHashMapEntry<K,V> e = head; e != null; e = e.after) {
440             V v = e.value;
441             if (v == value || (value != null && value.equals(v)))
442                 return true;
443         }
444         return false;
445     }
446 
447     /**
448      * Returns the value to which the specified key is mapped,
449      * or {@code null} if this map contains no mapping for the key.
450      *
451      * <p>More formally, if this map contains a mapping from a key
452      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
453      * key.equals(k))}, then this method returns {@code v}; otherwise
454      * it returns {@code null}.  (There can be at most one such mapping.)
455      *
456      * <p>A return value of {@code null} does not <i>necessarily</i>
457      * indicate that the map contains no mapping for the key; it's also
458      * possible that the map explicitly maps the key to {@code null}.
459      * The {@link #containsKey containsKey} operation may be used to
460      * distinguish these two cases.
461      */
get(Object key)462     public V get(Object key) {
463         Node<K,V> e;
464         if ((e = getNode(hash(key), key)) == null)
465             return null;
466         if (accessOrder)
467             afterNodeAccess(e);
468         return e.value;
469     }
470 
471     /**
472      * {@inheritDoc}
473      */
getOrDefault(Object key, V defaultValue)474     public V getOrDefault(Object key, V defaultValue) {
475        Node<K,V> e;
476        if ((e = getNode(hash(key), key)) == null)
477            return defaultValue;
478        if (accessOrder)
479            afterNodeAccess(e);
480        return e.value;
481    }
482 
483     /**
484      * {@inheritDoc}
485      */
clear()486     public void clear() {
487         super.clear();
488         head = tail = null;
489     }
490 
491     // Android-added: eldest(), for internal use in LRU caches
492     /**
493      * Returns the eldest entry in the map, or {@code null} if the map is empty.
494      * @hide
495      */
eldest()496     public Map.Entry<K, V> eldest() {
497         return head;
498     }
499 
500     /**
501      * Returns <tt>true</tt> if this map should remove its eldest entry.
502      * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
503      * inserting a new entry into the map.  It provides the implementor
504      * with the opportunity to remove the eldest entry each time a new one
505      * is added.  This is useful if the map represents a cache: it allows
506      * the map to reduce memory consumption by deleting stale entries.
507      *
508      * <p>Sample use: this override will allow the map to grow up to 100
509      * entries and then delete the eldest entry each time a new entry is
510      * added, maintaining a steady state of 100 entries.
511      * <pre>
512      *     private static final int MAX_ENTRIES = 100;
513      *
514      *     protected boolean removeEldestEntry(Map.Entry eldest) {
515      *        return size() &gt; MAX_ENTRIES;
516      *     }
517      * </pre>
518      *
519      * <p>This method typically does not modify the map in any way,
520      * instead allowing the map to modify itself as directed by its
521      * return value.  It <i>is</i> permitted for this method to modify
522      * the map directly, but if it does so, it <i>must</i> return
523      * <tt>false</tt> (indicating that the map should not attempt any
524      * further modification).  The effects of returning <tt>true</tt>
525      * after modifying the map from within this method are unspecified.
526      *
527      * <p>This implementation merely returns <tt>false</tt> (so that this
528      * map acts like a normal map - the eldest element is never removed).
529      *
530      * @param    eldest The least recently inserted entry in the map, or if
531      *           this is an access-ordered map, the least recently accessed
532      *           entry.  This is the entry that will be removed it this
533      *           method returns <tt>true</tt>.  If the map was empty prior
534      *           to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
535      *           in this invocation, this will be the entry that was just
536      *           inserted; in other words, if the map contains a single
537      *           entry, the eldest entry is also the newest.
538      * @return   <tt>true</tt> if the eldest entry should be removed
539      *           from the map; <tt>false</tt> if it should be retained.
540      */
removeEldestEntry(Map.Entry<K,V> eldest)541     protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
542         return false;
543     }
544 
545     /**
546      * Returns a {@link Set} view of the keys contained in this map.
547      * The set is backed by the map, so changes to the map are
548      * reflected in the set, and vice-versa.  If the map is modified
549      * while an iteration over the set is in progress (except through
550      * the iterator's own <tt>remove</tt> operation), the results of
551      * the iteration are undefined.  The set supports element removal,
552      * which removes the corresponding mapping from the map, via the
553      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
554      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
555      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
556      * operations.
557      * Its {@link Spliterator} typically provides faster sequential
558      * performance but much poorer parallel performance than that of
559      * {@code HashMap}.
560      *
561      * @return a set view of the keys contained in this map
562      */
keySet()563     public Set<K> keySet() {
564         Set<K> ks = keySet;
565         if (ks == null) {
566             ks = new LinkedKeySet();
567             keySet = ks;
568         }
569         return ks;
570     }
571 
572     final class LinkedKeySet extends AbstractSet<K> {
size()573         public final int size()                 { return size; }
clear()574         public final void clear()               { LinkedHashMap.this.clear(); }
iterator()575         public final Iterator<K> iterator() {
576             return new LinkedKeyIterator();
577         }
contains(Object o)578         public final boolean contains(Object o) { return containsKey(o); }
remove(Object key)579         public final boolean remove(Object key) {
580             return removeNode(hash(key), key, null, false, true) != null;
581         }
spliterator()582         public final Spliterator<K> spliterator()  {
583             return Spliterators.spliterator(this, Spliterator.SIZED |
584                                             Spliterator.ORDERED |
585                                             Spliterator.DISTINCT);
586         }
forEach(Consumer<? super K> action)587         public final void forEach(Consumer<? super K> action) {
588             if (action == null)
589                 throw new NullPointerException();
590             int mc = modCount;
591             // Android-changed: Detect changes to modCount early.
592             for (LinkedHashMapEntry<K,V> e = head; (e != null && modCount == mc); e = e.after)
593                 action.accept(e.key);
594             if (modCount != mc)
595                 throw new ConcurrentModificationException();
596         }
597     }
598 
599     /**
600      * Returns a {@link Collection} view of the values contained in this map.
601      * The collection is backed by the map, so changes to the map are
602      * reflected in the collection, and vice-versa.  If the map is
603      * modified while an iteration over the collection is in progress
604      * (except through the iterator's own <tt>remove</tt> operation),
605      * the results of the iteration are undefined.  The collection
606      * supports element removal, which removes the corresponding
607      * mapping from the map, via the <tt>Iterator.remove</tt>,
608      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
609      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
610      * support the <tt>add</tt> or <tt>addAll</tt> operations.
611      * Its {@link Spliterator} typically provides faster sequential
612      * performance but much poorer parallel performance than that of
613      * {@code HashMap}.
614      *
615      * @return a view of the values contained in this map
616      */
values()617     public Collection<V> values() {
618         Collection<V> vs = values;
619         if (vs == null) {
620             vs = new LinkedValues();
621             values = vs;
622         }
623         return vs;
624     }
625 
626     final class LinkedValues extends AbstractCollection<V> {
size()627         public final int size()                 { return size; }
clear()628         public final void clear()               { LinkedHashMap.this.clear(); }
iterator()629         public final Iterator<V> iterator() {
630             return new LinkedValueIterator();
631         }
contains(Object o)632         public final boolean contains(Object o) { return containsValue(o); }
spliterator()633         public final Spliterator<V> spliterator() {
634             return Spliterators.spliterator(this, Spliterator.SIZED |
635                                             Spliterator.ORDERED);
636         }
forEach(Consumer<? super V> action)637         public final void forEach(Consumer<? super V> action) {
638             if (action == null)
639                 throw new NullPointerException();
640             int mc = modCount;
641             // Android-changed: Detect changes to modCount early.
642             for (LinkedHashMapEntry<K,V> e = head; (e != null && modCount == mc); e = e.after)
643                 action.accept(e.value);
644             if (modCount != mc)
645                 throw new ConcurrentModificationException();
646         }
647     }
648 
649     /**
650      * Returns a {@link Set} view of the mappings contained in this map.
651      * The set is backed by the map, so changes to the map are
652      * reflected in the set, and vice-versa.  If the map is modified
653      * while an iteration over the set is in progress (except through
654      * the iterator's own <tt>remove</tt> operation, or through the
655      * <tt>setValue</tt> operation on a map entry returned by the
656      * iterator) the results of the iteration are undefined.  The set
657      * supports element removal, which removes the corresponding
658      * mapping from the map, via the <tt>Iterator.remove</tt>,
659      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
660      * <tt>clear</tt> operations.  It does not support the
661      * <tt>add</tt> or <tt>addAll</tt> operations.
662      * Its {@link Spliterator} typically provides faster sequential
663      * performance but much poorer parallel performance than that of
664      * {@code HashMap}.
665      *
666      * @return a set view of the mappings contained in this map
667      */
entrySet()668     public Set<Map.Entry<K,V>> entrySet() {
669         Set<Map.Entry<K,V>> es;
670         return (es = entrySet) == null ? (entrySet = new LinkedEntrySet()) : es;
671     }
672 
673     final class LinkedEntrySet extends AbstractSet<Map.Entry<K,V>> {
size()674         public final int size()                 { return size; }
clear()675         public final void clear()               { LinkedHashMap.this.clear(); }
iterator()676         public final Iterator<Map.Entry<K,V>> iterator() {
677             return new LinkedEntryIterator();
678         }
contains(Object o)679         public final boolean contains(Object o) {
680             if (!(o instanceof Map.Entry))
681                 return false;
682             Map.Entry<?,?> e = (Map.Entry<?,?>) o;
683             Object key = e.getKey();
684             Node<K,V> candidate = getNode(hash(key), key);
685             return candidate != null && candidate.equals(e);
686         }
remove(Object o)687         public final boolean remove(Object o) {
688             if (o instanceof Map.Entry) {
689                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
690                 Object key = e.getKey();
691                 Object value = e.getValue();
692                 return removeNode(hash(key), key, value, true, true) != null;
693             }
694             return false;
695         }
spliterator()696         public final Spliterator<Map.Entry<K,V>> spliterator() {
697             return Spliterators.spliterator(this, Spliterator.SIZED |
698                                             Spliterator.ORDERED |
699                                             Spliterator.DISTINCT);
700         }
forEach(Consumer<? super Map.Entry<K,V>> action)701         public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
702             if (action == null)
703                 throw new NullPointerException();
704             int mc = modCount;
705             // Android-changed: Detect changes to modCount early.
706             for (LinkedHashMapEntry<K,V> e = head; (e != null && mc == modCount); e = e.after)
707                 action.accept(e);
708             if (modCount != mc)
709                 throw new ConcurrentModificationException();
710         }
711     }
712 
713     // Map overrides
714 
forEach(BiConsumer<? super K, ? super V> action)715     public void forEach(BiConsumer<? super K, ? super V> action) {
716         if (action == null)
717             throw new NullPointerException();
718         int mc = modCount;
719         // Android-changed: Detect changes to modCount early.
720         for (LinkedHashMapEntry<K,V> e = head; modCount == mc && e != null; e = e.after)
721             action.accept(e.key, e.value);
722         if (modCount != mc)
723             throw new ConcurrentModificationException();
724     }
725 
replaceAll(BiFunction<? super K, ? super V, ? extends V> function)726     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
727         if (function == null)
728             throw new NullPointerException();
729         int mc = modCount;
730         // Android-changed: Detect changes to modCount early.
731         for (LinkedHashMapEntry<K,V> e = head; modCount == mc && e != null; e = e.after)
732             e.value = function.apply(e.key, e.value);
733         if (modCount != mc)
734             throw new ConcurrentModificationException();
735     }
736 
737     // Iterators
738 
739     abstract class LinkedHashIterator {
740         LinkedHashMapEntry<K,V> next;
741         LinkedHashMapEntry<K,V> current;
742         int expectedModCount;
743 
LinkedHashIterator()744         LinkedHashIterator() {
745             next = head;
746             expectedModCount = modCount;
747             current = null;
748         }
749 
hasNext()750         public final boolean hasNext() {
751             return next != null;
752         }
753 
nextNode()754         final LinkedHashMapEntry<K,V> nextNode() {
755             LinkedHashMapEntry<K,V> e = next;
756             if (modCount != expectedModCount)
757                 throw new ConcurrentModificationException();
758             if (e == null)
759                 throw new NoSuchElementException();
760             current = e;
761             next = e.after;
762             return e;
763         }
764 
remove()765         public final void remove() {
766             Node<K,V> p = current;
767             if (p == null)
768                 throw new IllegalStateException();
769             if (modCount != expectedModCount)
770                 throw new ConcurrentModificationException();
771             current = null;
772             K key = p.key;
773             removeNode(hash(key), key, null, false, false);
774             expectedModCount = modCount;
775         }
776     }
777 
778     final class LinkedKeyIterator extends LinkedHashIterator
779         implements Iterator<K> {
next()780         public final K next() { return nextNode().getKey(); }
781     }
782 
783     final class LinkedValueIterator extends LinkedHashIterator
784         implements Iterator<V> {
next()785         public final V next() { return nextNode().value; }
786     }
787 
788     final class LinkedEntryIterator extends LinkedHashIterator
789         implements Iterator<Map.Entry<K,V>> {
next()790         public final Map.Entry<K,V> next() { return nextNode(); }
791     }
792 
793 
794 }
795