1 /*
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.  Oracle designates this
7  * particular file as subject to the "Classpath" exception as provided
8  * by Oracle in the LICENSE file that accompanied this code.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  */
24 
25 /*
26  * This file is available under and governed by the GNU General Public
27  * License version 2 only, as published by the Free Software Foundation.
28  * However, the following notice accompanied the original version of this
29  * file:
30  *
31  * Written by Doug Lea and Martin Buchholz with assistance from members of
32  * JCP JSR-166 Expert Group and released to the public domain, as explained
33  * at http://creativecommons.org/publicdomain/zero/1.0/
34  */
35 
36 package java.util.concurrent;
37 
38 import java.util.AbstractQueue;
39 import java.util.Arrays;
40 import java.util.Collection;
41 import java.util.Iterator;
42 import java.util.NoSuchElementException;
43 import java.util.Objects;
44 import java.util.Queue;
45 import java.util.Spliterator;
46 import java.util.Spliterators;
47 import java.util.function.Consumer;
48 
49 // BEGIN android-note
50 // removed link to collections framework docs
51 // END android-note
52 
53 /**
54  * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
55  * This queue orders elements FIFO (first-in-first-out).
56  * The <em>head</em> of the queue is that element that has been on the
57  * queue the longest time.
58  * The <em>tail</em> of the queue is that element that has been on the
59  * queue the shortest time. New elements
60  * are inserted at the tail of the queue, and the queue retrieval
61  * operations obtain elements at the head of the queue.
62  * A {@code ConcurrentLinkedQueue} is an appropriate choice when
63  * many threads will share access to a common collection.
64  * Like most other concurrent collection implementations, this class
65  * does not permit the use of {@code null} elements.
66  *
67  * <p>This implementation employs an efficient <em>non-blocking</em>
68  * algorithm based on one described in
69  * <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
70  * Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
71  * Algorithms</a> by Maged M. Michael and Michael L. Scott.
72  *
73  * <p>Iterators are <i>weakly consistent</i>, returning elements
74  * reflecting the state of the queue at some point at or since the
75  * creation of the iterator.  They do <em>not</em> throw {@link
76  * java.util.ConcurrentModificationException}, and may proceed concurrently
77  * with other operations.  Elements contained in the queue since the creation
78  * of the iterator will be returned exactly once.
79  *
80  * <p>Beware that, unlike in most collections, the {@code size} method
81  * is <em>NOT</em> a constant-time operation. Because of the
82  * asynchronous nature of these queues, determining the current number
83  * of elements requires a traversal of the elements, and so may report
84  * inaccurate results if this collection is modified during traversal.
85  * Additionally, the bulk operations {@code addAll},
86  * {@code removeAll}, {@code retainAll}, {@code containsAll},
87  * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
88  * to be performed atomically. For example, an iterator operating
89  * concurrently with an {@code addAll} operation might view only some
90  * of the added elements.
91  *
92  * <p>This class and its iterator implement all of the <em>optional</em>
93  * methods of the {@link Queue} and {@link Iterator} interfaces.
94  *
95  * <p>Memory consistency effects: As with other concurrent
96  * collections, actions in a thread prior to placing an object into a
97  * {@code ConcurrentLinkedQueue}
98  * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
99  * actions subsequent to the access or removal of that element from
100  * the {@code ConcurrentLinkedQueue} in another thread.
101  *
102  * @since 1.5
103  * @author Doug Lea
104  * @param <E> the type of elements held in this queue
105  */
106 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
107         implements Queue<E>, java.io.Serializable {
108     private static final long serialVersionUID = 196745693267521676L;
109 
110     /*
111      * This is a modification of the Michael & Scott algorithm,
112      * adapted for a garbage-collected environment, with support for
113      * interior node deletion (to support remove(Object)).  For
114      * explanation, read the paper.
115      *
116      * Note that like most non-blocking algorithms in this package,
117      * this implementation relies on the fact that in garbage
118      * collected systems, there is no possibility of ABA problems due
119      * to recycled nodes, so there is no need to use "counted
120      * pointers" or related techniques seen in versions used in
121      * non-GC'ed settings.
122      *
123      * The fundamental invariants are:
124      * - There is exactly one (last) Node with a null next reference,
125      *   which is CASed when enqueueing.  This last Node can be
126      *   reached in O(1) time from tail, but tail is merely an
127      *   optimization - it can always be reached in O(N) time from
128      *   head as well.
129      * - The elements contained in the queue are the non-null items in
130      *   Nodes that are reachable from head.  CASing the item
131      *   reference of a Node to null atomically removes it from the
132      *   queue.  Reachability of all elements from head must remain
133      *   true even in the case of concurrent modifications that cause
134      *   head to advance.  A dequeued Node may remain in use
135      *   indefinitely due to creation of an Iterator or simply a
136      *   poll() that has lost its time slice.
137      *
138      * The above might appear to imply that all Nodes are GC-reachable
139      * from a predecessor dequeued Node.  That would cause two problems:
140      * - allow a rogue Iterator to cause unbounded memory retention
141      * - cause cross-generational linking of old Nodes to new Nodes if
142      *   a Node was tenured while live, which generational GCs have a
143      *   hard time dealing with, causing repeated major collections.
144      * However, only non-deleted Nodes need to be reachable from
145      * dequeued Nodes, and reachability does not necessarily have to
146      * be of the kind understood by the GC.  We use the trick of
147      * linking a Node that has just been dequeued to itself.  Such a
148      * self-link implicitly means to advance to head.
149      *
150      * Both head and tail are permitted to lag.  In fact, failing to
151      * update them every time one could is a significant optimization
152      * (fewer CASes). As with LinkedTransferQueue (see the internal
153      * documentation for that class), we use a slack threshold of two;
154      * that is, we update head/tail when the current pointer appears
155      * to be two or more steps away from the first/last node.
156      *
157      * Since head and tail are updated concurrently and independently,
158      * it is possible for tail to lag behind head (why not)?
159      *
160      * CASing a Node's item reference to null atomically removes the
161      * element from the queue.  Iterators skip over Nodes with null
162      * items.  Prior implementations of this class had a race between
163      * poll() and remove(Object) where the same element would appear
164      * to be successfully removed by two concurrent operations.  The
165      * method remove(Object) also lazily unlinks deleted Nodes, but
166      * this is merely an optimization.
167      *
168      * When constructing a Node (before enqueuing it) we avoid paying
169      * for a volatile write to item by using Unsafe.putObject instead
170      * of a normal write.  This allows the cost of enqueue to be
171      * "one-and-a-half" CASes.
172      *
173      * Both head and tail may or may not point to a Node with a
174      * non-null item.  If the queue is empty, all items must of course
175      * be null.  Upon creation, both head and tail refer to a dummy
176      * Node with null item.  Both head and tail are only updated using
177      * CAS, so they never regress, although again this is merely an
178      * optimization.
179      */
180 
181     private static class Node<E> {
182         volatile E item;
183         volatile Node<E> next;
184     }
185 
186     /**
187      * Returns a new node holding item.  Uses relaxed write because item
188      * can only be seen after piggy-backing publication via casNext.
189      */
newNode(E item)190     static <E> Node<E> newNode(E item) {
191         Node<E> node = new Node<E>();
192         U.putObject(node, ITEM, item);
193         return node;
194     }
195 
casItem(Node<E> node, E cmp, E val)196     static <E> boolean casItem(Node<E> node, E cmp, E val) {
197         return U.compareAndSwapObject(node, ITEM, cmp, val);
198     }
199 
lazySetNext(Node<E> node, Node<E> val)200     static <E> void lazySetNext(Node<E> node, Node<E> val) {
201         U.putOrderedObject(node, NEXT, val);
202     }
203 
casNext(Node<E> node, Node<E> cmp, Node<E> val)204     static <E> boolean casNext(Node<E> node, Node<E> cmp, Node<E> val) {
205         return U.compareAndSwapObject(node, NEXT, cmp, val);
206     }
207 
208     /**
209      * A node from which the first live (non-deleted) node (if any)
210      * can be reached in O(1) time.
211      * Invariants:
212      * - all live nodes are reachable from head via succ()
213      * - head != null
214      * - (tmp = head).next != tmp || tmp != head
215      * Non-invariants:
216      * - head.item may or may not be null.
217      * - it is permitted for tail to lag behind head, that is, for tail
218      *   to not be reachable from head!
219      */
220     transient volatile Node<E> head;
221 
222     /**
223      * A node from which the last node on list (that is, the unique
224      * node with node.next == null) can be reached in O(1) time.
225      * Invariants:
226      * - the last node is always reachable from tail via succ()
227      * - tail != null
228      * Non-invariants:
229      * - tail.item may or may not be null.
230      * - it is permitted for tail to lag behind head, that is, for tail
231      *   to not be reachable from head!
232      * - tail.next may or may not be self-pointing to tail.
233      */
234     private transient volatile Node<E> tail;
235 
236     /**
237      * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
238      */
ConcurrentLinkedQueue()239     public ConcurrentLinkedQueue() {
240         head = tail = newNode(null);
241     }
242 
243     /**
244      * Creates a {@code ConcurrentLinkedQueue}
245      * initially containing the elements of the given collection,
246      * added in traversal order of the collection's iterator.
247      *
248      * @param c the collection of elements to initially contain
249      * @throws NullPointerException if the specified collection or any
250      *         of its elements are null
251      */
ConcurrentLinkedQueue(Collection<? extends E> c)252     public ConcurrentLinkedQueue(Collection<? extends E> c) {
253         Node<E> h = null, t = null;
254         for (E e : c) {
255             Node<E> newNode = newNode(Objects.requireNonNull(e));
256             if (h == null)
257                 h = t = newNode;
258             else {
259                 lazySetNext(t, newNode);
260                 t = newNode;
261             }
262         }
263         if (h == null)
264             h = t = newNode(null);
265         head = h;
266         tail = t;
267     }
268 
269     // Have to override just to update the javadoc
270 
271     /**
272      * Inserts the specified element at the tail of this queue.
273      * As the queue is unbounded, this method will never throw
274      * {@link IllegalStateException} or return {@code false}.
275      *
276      * @return {@code true} (as specified by {@link Collection#add})
277      * @throws NullPointerException if the specified element is null
278      */
add(E e)279     public boolean add(E e) {
280         return offer(e);
281     }
282 
283     /**
284      * Tries to CAS head to p. If successful, repoint old head to itself
285      * as sentinel for succ(), below.
286      */
updateHead(Node<E> h, Node<E> p)287     final void updateHead(Node<E> h, Node<E> p) {
288         // assert h != null && p != null && (h == p || h.item == null);
289         if (h != p && casHead(h, p))
290             lazySetNext(h, h);
291     }
292 
293     /**
294      * Returns the successor of p, or the head node if p.next has been
295      * linked to self, which will only be true if traversing with a
296      * stale pointer that is now off the list.
297      */
succ(Node<E> p)298     final Node<E> succ(Node<E> p) {
299         Node<E> next = p.next;
300         return (p == next) ? head : next;
301     }
302 
303     /**
304      * Inserts the specified element at the tail of this queue.
305      * As the queue is unbounded, this method will never return {@code false}.
306      *
307      * @return {@code true} (as specified by {@link Queue#offer})
308      * @throws NullPointerException if the specified element is null
309      */
offer(E e)310     public boolean offer(E e) {
311         final Node<E> newNode = newNode(Objects.requireNonNull(e));
312 
313         for (Node<E> t = tail, p = t;;) {
314             Node<E> q = p.next;
315             if (q == null) {
316                 // p is last node
317                 if (casNext(p, null, newNode)) {
318                     // Successful CAS is the linearization point
319                     // for e to become an element of this queue,
320                     // and for newNode to become "live".
321                     if (p != t) // hop two nodes at a time
322                         casTail(t, newNode);  // Failure is OK.
323                     return true;
324                 }
325                 // Lost CAS race to another thread; re-read next
326             }
327             else if (p == q)
328                 // We have fallen off list.  If tail is unchanged, it
329                 // will also be off-list, in which case we need to
330                 // jump to head, from which all live nodes are always
331                 // reachable.  Else the new tail is a better bet.
332                 p = (t != (t = tail)) ? t : head;
333             else
334                 // Check for tail updates after two hops.
335                 p = (p != t && t != (t = tail)) ? t : q;
336         }
337     }
338 
poll()339     public E poll() {
340         restartFromHead:
341         for (;;) {
342             for (Node<E> h = head, p = h, q;;) {
343                 E item = p.item;
344 
345                 if (item != null && casItem(p, item, null)) {
346                     // Successful CAS is the linearization point
347                     // for item to be removed from this queue.
348                     if (p != h) // hop two nodes at a time
349                         updateHead(h, ((q = p.next) != null) ? q : p);
350                     return item;
351                 }
352                 else if ((q = p.next) == null) {
353                     updateHead(h, p);
354                     return null;
355                 }
356                 else if (p == q)
357                     continue restartFromHead;
358                 else
359                     p = q;
360             }
361         }
362     }
363 
peek()364     public E peek() {
365         restartFromHead:
366         for (;;) {
367             for (Node<E> h = head, p = h, q;;) {
368                 E item = p.item;
369                 if (item != null || (q = p.next) == null) {
370                     updateHead(h, p);
371                     return item;
372                 }
373                 else if (p == q)
374                     continue restartFromHead;
375                 else
376                     p = q;
377             }
378         }
379     }
380 
381     /**
382      * Returns the first live (non-deleted) node on list, or null if none.
383      * This is yet another variant of poll/peek; here returning the
384      * first node, not element.  We could make peek() a wrapper around
385      * first(), but that would cost an extra volatile read of item,
386      * and the need to add a retry loop to deal with the possibility
387      * of losing a race to a concurrent poll().
388      */
first()389     Node<E> first() {
390         restartFromHead:
391         for (;;) {
392             for (Node<E> h = head, p = h, q;;) {
393                 boolean hasItem = (p.item != null);
394                 if (hasItem || (q = p.next) == null) {
395                     updateHead(h, p);
396                     return hasItem ? p : null;
397                 }
398                 else if (p == q)
399                     continue restartFromHead;
400                 else
401                     p = q;
402             }
403         }
404     }
405 
406     /**
407      * Returns {@code true} if this queue contains no elements.
408      *
409      * @return {@code true} if this queue contains no elements
410      */
isEmpty()411     public boolean isEmpty() {
412         return first() == null;
413     }
414 
415     /**
416      * Returns the number of elements in this queue.  If this queue
417      * contains more than {@code Integer.MAX_VALUE} elements, returns
418      * {@code Integer.MAX_VALUE}.
419      *
420      * <p>Beware that, unlike in most collections, this method is
421      * <em>NOT</em> a constant-time operation. Because of the
422      * asynchronous nature of these queues, determining the current
423      * number of elements requires an O(n) traversal.
424      * Additionally, if elements are added or removed during execution
425      * of this method, the returned result may be inaccurate.  Thus,
426      * this method is typically not very useful in concurrent
427      * applications.
428      *
429      * @return the number of elements in this queue
430      */
size()431     public int size() {
432         restartFromHead: for (;;) {
433             int count = 0;
434             for (Node<E> p = first(); p != null;) {
435                 if (p.item != null)
436                     if (++count == Integer.MAX_VALUE)
437                         break;  // @see Collection.size()
438                 if (p == (p = p.next))
439                     continue restartFromHead;
440             }
441             return count;
442         }
443     }
444 
445     /**
446      * Returns {@code true} if this queue contains the specified element.
447      * More formally, returns {@code true} if and only if this queue contains
448      * at least one element {@code e} such that {@code o.equals(e)}.
449      *
450      * @param o object to be checked for containment in this queue
451      * @return {@code true} if this queue contains the specified element
452      */
contains(Object o)453     public boolean contains(Object o) {
454         if (o != null) {
455             for (Node<E> p = first(); p != null; p = succ(p)) {
456                 E item = p.item;
457                 if (item != null && o.equals(item))
458                     return true;
459             }
460         }
461         return false;
462     }
463 
464     /**
465      * Removes a single instance of the specified element from this queue,
466      * if it is present.  More formally, removes an element {@code e} such
467      * that {@code o.equals(e)}, if this queue contains one or more such
468      * elements.
469      * Returns {@code true} if this queue contained the specified element
470      * (or equivalently, if this queue changed as a result of the call).
471      *
472      * @param o element to be removed from this queue, if present
473      * @return {@code true} if this queue changed as a result of the call
474      */
remove(Object o)475     public boolean remove(Object o) {
476         if (o != null) {
477             Node<E> next, pred = null;
478             for (Node<E> p = first(); p != null; pred = p, p = next) {
479                 boolean removed = false;
480                 E item = p.item;
481                 if (item != null) {
482                     if (!o.equals(item)) {
483                         next = succ(p);
484                         continue;
485                     }
486                     removed = casItem(p, item, null);
487                 }
488 
489                 next = succ(p);
490                 if (pred != null && next != null) // unlink
491                     casNext(pred, p, next);
492                 if (removed)
493                     return true;
494             }
495         }
496         return false;
497     }
498 
499     /**
500      * Appends all of the elements in the specified collection to the end of
501      * this queue, in the order that they are returned by the specified
502      * collection's iterator.  Attempts to {@code addAll} of a queue to
503      * itself result in {@code IllegalArgumentException}.
504      *
505      * @param c the elements to be inserted into this queue
506      * @return {@code true} if this queue changed as a result of the call
507      * @throws NullPointerException if the specified collection or any
508      *         of its elements are null
509      * @throws IllegalArgumentException if the collection is this queue
510      */
addAll(Collection<? extends E> c)511     public boolean addAll(Collection<? extends E> c) {
512         if (c == this)
513             // As historically specified in AbstractQueue#addAll
514             throw new IllegalArgumentException();
515 
516         // Copy c into a private chain of Nodes
517         Node<E> beginningOfTheEnd = null, last = null;
518         for (E e : c) {
519             Node<E> newNode = newNode(Objects.requireNonNull(e));
520             if (beginningOfTheEnd == null)
521                 beginningOfTheEnd = last = newNode;
522             else {
523                 lazySetNext(last, newNode);
524                 last = newNode;
525             }
526         }
527         if (beginningOfTheEnd == null)
528             return false;
529 
530         // Atomically append the chain at the tail of this collection
531         for (Node<E> t = tail, p = t;;) {
532             Node<E> q = p.next;
533             if (q == null) {
534                 // p is last node
535                 if (casNext(p, null, beginningOfTheEnd)) {
536                     // Successful CAS is the linearization point
537                     // for all elements to be added to this queue.
538                     if (!casTail(t, last)) {
539                         // Try a little harder to update tail,
540                         // since we may be adding many elements.
541                         t = tail;
542                         if (last.next == null)
543                             casTail(t, last);
544                     }
545                     return true;
546                 }
547                 // Lost CAS race to another thread; re-read next
548             }
549             else if (p == q)
550                 // We have fallen off list.  If tail is unchanged, it
551                 // will also be off-list, in which case we need to
552                 // jump to head, from which all live nodes are always
553                 // reachable.  Else the new tail is a better bet.
554                 p = (t != (t = tail)) ? t : head;
555             else
556                 // Check for tail updates after two hops.
557                 p = (p != t && t != (t = tail)) ? t : q;
558         }
559     }
560 
toString()561     public String toString() {
562         String[] a = null;
563         restartFromHead: for (;;) {
564             int charLength = 0;
565             int size = 0;
566             for (Node<E> p = first(); p != null;) {
567                 E item = p.item;
568                 if (item != null) {
569                     if (a == null)
570                         a = new String[4];
571                     else if (size == a.length)
572                         a = Arrays.copyOf(a, 2 * size);
573                     String s = item.toString();
574                     a[size++] = s;
575                     charLength += s.length();
576                 }
577                 if (p == (p = p.next))
578                     continue restartFromHead;
579             }
580 
581             if (size == 0)
582                 return "[]";
583 
584             return Helpers.toString(a, size, charLength);
585         }
586     }
587 
toArrayInternal(Object[] a)588     private Object[] toArrayInternal(Object[] a) {
589         Object[] x = a;
590         restartFromHead: for (;;) {
591             int size = 0;
592             for (Node<E> p = first(); p != null;) {
593                 E item = p.item;
594                 if (item != null) {
595                     if (x == null)
596                         x = new Object[4];
597                     else if (size == x.length)
598                         x = Arrays.copyOf(x, 2 * (size + 4));
599                     x[size++] = item;
600                 }
601                 if (p == (p = p.next))
602                     continue restartFromHead;
603             }
604             if (x == null)
605                 return new Object[0];
606             else if (a != null && size <= a.length) {
607                 if (a != x)
608                     System.arraycopy(x, 0, a, 0, size);
609                 if (size < a.length)
610                     a[size] = null;
611                 return a;
612             }
613             return (size == x.length) ? x : Arrays.copyOf(x, size);
614         }
615     }
616 
617     /**
618      * Returns an array containing all of the elements in this queue, in
619      * proper sequence.
620      *
621      * <p>The returned array will be "safe" in that no references to it are
622      * maintained by this queue.  (In other words, this method must allocate
623      * a new array).  The caller is thus free to modify the returned array.
624      *
625      * <p>This method acts as bridge between array-based and collection-based
626      * APIs.
627      *
628      * @return an array containing all of the elements in this queue
629      */
toArray()630     public Object[] toArray() {
631         return toArrayInternal(null);
632     }
633 
634     /**
635      * Returns an array containing all of the elements in this queue, in
636      * proper sequence; the runtime type of the returned array is that of
637      * the specified array.  If the queue fits in the specified array, it
638      * is returned therein.  Otherwise, a new array is allocated with the
639      * runtime type of the specified array and the size of this queue.
640      *
641      * <p>If this queue fits in the specified array with room to spare
642      * (i.e., the array has more elements than this queue), the element in
643      * the array immediately following the end of the queue is set to
644      * {@code null}.
645      *
646      * <p>Like the {@link #toArray()} method, this method acts as bridge between
647      * array-based and collection-based APIs.  Further, this method allows
648      * precise control over the runtime type of the output array, and may,
649      * under certain circumstances, be used to save allocation costs.
650      *
651      * <p>Suppose {@code x} is a queue known to contain only strings.
652      * The following code can be used to dump the queue into a newly
653      * allocated array of {@code String}:
654      *
655      * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
656      *
657      * Note that {@code toArray(new Object[0])} is identical in function to
658      * {@code toArray()}.
659      *
660      * @param a the array into which the elements of the queue are to
661      *          be stored, if it is big enough; otherwise, a new array of the
662      *          same runtime type is allocated for this purpose
663      * @return an array containing all of the elements in this queue
664      * @throws ArrayStoreException if the runtime type of the specified array
665      *         is not a supertype of the runtime type of every element in
666      *         this queue
667      * @throws NullPointerException if the specified array is null
668      */
669     @SuppressWarnings("unchecked")
toArray(T[] a)670     public <T> T[] toArray(T[] a) {
671         if (a == null) throw new NullPointerException();
672         return (T[]) toArrayInternal(a);
673     }
674 
675     /**
676      * Returns an iterator over the elements in this queue in proper sequence.
677      * The elements will be returned in order from first (head) to last (tail).
678      *
679      * <p>The returned iterator is
680      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
681      *
682      * @return an iterator over the elements in this queue in proper sequence
683      */
iterator()684     public Iterator<E> iterator() {
685         return new Itr();
686     }
687 
688     private class Itr implements Iterator<E> {
689         /**
690          * Next node to return item for.
691          */
692         private Node<E> nextNode;
693 
694         /**
695          * nextItem holds on to item fields because once we claim
696          * that an element exists in hasNext(), we must return it in
697          * the following next() call even if it was in the process of
698          * being removed when hasNext() was called.
699          */
700         private E nextItem;
701 
702         /**
703          * Node of the last returned item, to support remove.
704          */
705         private Node<E> lastRet;
706 
Itr()707         Itr() {
708             restartFromHead: for (;;) {
709                 Node<E> h, p, q;
710                 for (p = h = head;; p = q) {
711                     E item;
712                     if ((item = p.item) != null) {
713                         nextNode = p;
714                         nextItem = item;
715                         break;
716                     }
717                     else if ((q = p.next) == null)
718                         break;
719                     else if (p == q)
720                         continue restartFromHead;
721                 }
722                 updateHead(h, p);
723                 return;
724             }
725         }
726 
hasNext()727         public boolean hasNext() {
728             return nextItem != null;
729         }
730 
next()731         public E next() {
732             final Node<E> pred = nextNode;
733             if (pred == null) throw new NoSuchElementException();
734             // assert nextItem != null;
735             lastRet = pred;
736             E item = null;
737 
738             for (Node<E> p = succ(pred), q;; p = q) {
739                 if (p == null || (item = p.item) != null) {
740                     nextNode = p;
741                     E x = nextItem;
742                     nextItem = item;
743                     return x;
744                 }
745                 // unlink deleted nodes
746                 if ((q = succ(p)) != null)
747                     casNext(pred, p, q);
748             }
749         }
750 
remove()751         public void remove() {
752             Node<E> l = lastRet;
753             if (l == null) throw new IllegalStateException();
754             // rely on a future traversal to relink.
755             l.item = null;
756             lastRet = null;
757         }
758     }
759 
760     /**
761      * Saves this queue to a stream (that is, serializes it).
762      *
763      * @param s the stream
764      * @throws java.io.IOException if an I/O error occurs
765      * @serialData All of the elements (each an {@code E}) in
766      * the proper order, followed by a null
767      */
writeObject(java.io.ObjectOutputStream s)768     private void writeObject(java.io.ObjectOutputStream s)
769         throws java.io.IOException {
770 
771         // Write out any hidden stuff
772         s.defaultWriteObject();
773 
774         // Write out all elements in the proper order.
775         for (Node<E> p = first(); p != null; p = succ(p)) {
776             Object item = p.item;
777             if (item != null)
778                 s.writeObject(item);
779         }
780 
781         // Use trailing null as sentinel
782         s.writeObject(null);
783     }
784 
785     /**
786      * Reconstitutes this queue from a stream (that is, deserializes it).
787      * @param s the stream
788      * @throws ClassNotFoundException if the class of a serialized object
789      *         could not be found
790      * @throws java.io.IOException if an I/O error occurs
791      */
readObject(java.io.ObjectInputStream s)792     private void readObject(java.io.ObjectInputStream s)
793         throws java.io.IOException, ClassNotFoundException {
794         s.defaultReadObject();
795 
796         // Read in elements until trailing null sentinel found
797         Node<E> h = null, t = null;
798         for (Object item; (item = s.readObject()) != null; ) {
799             @SuppressWarnings("unchecked")
800             Node<E> newNode = newNode((E) item);
801             if (h == null)
802                 h = t = newNode;
803             else {
804                 lazySetNext(t, newNode);
805                 t = newNode;
806             }
807         }
808         if (h == null)
809             h = t = newNode(null);
810         head = h;
811         tail = t;
812     }
813 
814     /** A customized variant of Spliterators.IteratorSpliterator */
815     static final class CLQSpliterator<E> implements Spliterator<E> {
816         static final int MAX_BATCH = 1 << 25;  // max batch array size;
817         final ConcurrentLinkedQueue<E> queue;
818         Node<E> current;    // current node; null until initialized
819         int batch;          // batch size for splits
820         boolean exhausted;  // true when no more nodes
CLQSpliterator(ConcurrentLinkedQueue<E> queue)821         CLQSpliterator(ConcurrentLinkedQueue<E> queue) {
822             this.queue = queue;
823         }
824 
trySplit()825         public Spliterator<E> trySplit() {
826             Node<E> p;
827             final ConcurrentLinkedQueue<E> q = this.queue;
828             int b = batch;
829             int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
830             if (!exhausted &&
831                 ((p = current) != null || (p = q.first()) != null) &&
832                 p.next != null) {
833                 Object[] a = new Object[n];
834                 int i = 0;
835                 do {
836                     if ((a[i] = p.item) != null)
837                         ++i;
838                     if (p == (p = p.next))
839                         p = q.first();
840                 } while (p != null && i < n);
841                 if ((current = p) == null)
842                     exhausted = true;
843                 if (i > 0) {
844                     batch = i;
845                     return Spliterators.spliterator
846                         (a, 0, i, (Spliterator.ORDERED |
847                                    Spliterator.NONNULL |
848                                    Spliterator.CONCURRENT));
849                 }
850             }
851             return null;
852         }
853 
forEachRemaining(Consumer<? super E> action)854         public void forEachRemaining(Consumer<? super E> action) {
855             Node<E> p;
856             if (action == null) throw new NullPointerException();
857             final ConcurrentLinkedQueue<E> q = this.queue;
858             if (!exhausted &&
859                 ((p = current) != null || (p = q.first()) != null)) {
860                 exhausted = true;
861                 do {
862                     E e = p.item;
863                     if (p == (p = p.next))
864                         p = q.first();
865                     if (e != null)
866                         action.accept(e);
867                 } while (p != null);
868             }
869         }
870 
tryAdvance(Consumer<? super E> action)871         public boolean tryAdvance(Consumer<? super E> action) {
872             Node<E> p;
873             if (action == null) throw new NullPointerException();
874             final ConcurrentLinkedQueue<E> q = this.queue;
875             if (!exhausted &&
876                 ((p = current) != null || (p = q.first()) != null)) {
877                 E e;
878                 do {
879                     e = p.item;
880                     if (p == (p = p.next))
881                         p = q.first();
882                 } while (e == null && p != null);
883                 if ((current = p) == null)
884                     exhausted = true;
885                 if (e != null) {
886                     action.accept(e);
887                     return true;
888                 }
889             }
890             return false;
891         }
892 
estimateSize()893         public long estimateSize() { return Long.MAX_VALUE; }
894 
characteristics()895         public int characteristics() {
896             return Spliterator.ORDERED | Spliterator.NONNULL |
897                 Spliterator.CONCURRENT;
898         }
899     }
900 
901     /**
902      * Returns a {@link Spliterator} over the elements in this queue.
903      *
904      * <p>The returned spliterator is
905      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
906      *
907      * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
908      * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
909      *
910      * @implNote
911      * The {@code Spliterator} implements {@code trySplit} to permit limited
912      * parallelism.
913      *
914      * @return a {@code Spliterator} over the elements in this queue
915      * @since 1.8
916      */
917     @Override
spliterator()918     public Spliterator<E> spliterator() {
919         return new CLQSpliterator<E>(this);
920     }
921 
casTail(Node<E> cmp, Node<E> val)922     private boolean casTail(Node<E> cmp, Node<E> val) {
923         return U.compareAndSwapObject(this, TAIL, cmp, val);
924     }
925 
casHead(Node<E> cmp, Node<E> val)926     private boolean casHead(Node<E> cmp, Node<E> val) {
927         return U.compareAndSwapObject(this, HEAD, cmp, val);
928     }
929 
930     // Unsafe mechanics
931 
932     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
933     private static final long HEAD;
934     private static final long TAIL;
935     private static final long ITEM;
936     private static final long NEXT;
937     static {
938         try {
939             HEAD = U.objectFieldOffset
940                 (ConcurrentLinkedQueue.class.getDeclaredField("head"));
941             TAIL = U.objectFieldOffset
942                 (ConcurrentLinkedQueue.class.getDeclaredField("tail"));
943             ITEM = U.objectFieldOffset
944                 (Node.class.getDeclaredField("item"));
945             NEXT = U.objectFieldOffset
946                 (Node.class.getDeclaredField("next"));
947         } catch (ReflectiveOperationException e) {
948             throw new Error(e);
949         }
950     }
951 }
952