1 /*
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.  Oracle designates this
7  * particular file as subject to the "Classpath" exception as provided
8  * by Oracle in the LICENSE file that accompanied this code.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  */
24 
25 /*
26  * This file is available under and governed by the GNU General Public
27  * License version 2 only, as published by the Free Software Foundation.
28  * However, the following notice accompanied the original version of this
29  * file:
30  *
31  * Written by Doug Lea with assistance from members of JCP JSR-166
32  * Expert Group and released to the public domain, as explained at
33  * http://creativecommons.org/publicdomain/zero/1.0/
34  */
35 
36 package java.util.concurrent;
37 
38 import java.util.AbstractQueue;
39 import java.util.Collection;
40 import java.util.Iterator;
41 import java.util.NoSuchElementException;
42 import java.util.Spliterator;
43 import java.util.Spliterators;
44 import java.util.concurrent.locks.Condition;
45 import java.util.concurrent.locks.ReentrantLock;
46 import java.util.function.Consumer;
47 
48 // BEGIN android-note
49 // removed link to collections framework docs
50 // END android-note
51 
52 /**
53  * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
54  * linked nodes.
55  *
56  * <p>The optional capacity bound constructor argument serves as a
57  * way to prevent excessive expansion. The capacity, if unspecified,
58  * is equal to {@link Integer#MAX_VALUE}.  Linked nodes are
59  * dynamically created upon each insertion unless this would bring the
60  * deque above capacity.
61  *
62  * <p>Most operations run in constant time (ignoring time spent
63  * blocking).  Exceptions include {@link #remove(Object) remove},
64  * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
65  * #removeLastOccurrence removeLastOccurrence}, {@link #contains
66  * contains}, {@link #iterator iterator.remove()}, and the bulk
67  * operations, all of which run in linear time.
68  *
69  * <p>This class and its iterator implement all of the
70  * <em>optional</em> methods of the {@link Collection} and {@link
71  * Iterator} interfaces.
72  *
73  * @since 1.6
74  * @author  Doug Lea
75  * @param <E> the type of elements held in this deque
76  */
77 public class LinkedBlockingDeque<E>
78     extends AbstractQueue<E>
79     implements BlockingDeque<E>, java.io.Serializable {
80 
81     /*
82      * Implemented as a simple doubly-linked list protected by a
83      * single lock and using conditions to manage blocking.
84      *
85      * To implement weakly consistent iterators, it appears we need to
86      * keep all Nodes GC-reachable from a predecessor dequeued Node.
87      * That would cause two problems:
88      * - allow a rogue Iterator to cause unbounded memory retention
89      * - cause cross-generational linking of old Nodes to new Nodes if
90      *   a Node was tenured while live, which generational GCs have a
91      *   hard time dealing with, causing repeated major collections.
92      * However, only non-deleted Nodes need to be reachable from
93      * dequeued Nodes, and reachability does not necessarily have to
94      * be of the kind understood by the GC.  We use the trick of
95      * linking a Node that has just been dequeued to itself.  Such a
96      * self-link implicitly means to jump to "first" (for next links)
97      * or "last" (for prev links).
98      */
99 
100     /*
101      * We have "diamond" multiple interface/abstract class inheritance
102      * here, and that introduces ambiguities. Often we want the
103      * BlockingDeque javadoc combined with the AbstractQueue
104      * implementation, so a lot of method specs are duplicated here.
105      */
106 
107     private static final long serialVersionUID = -387911632671998426L;
108 
109     /** Doubly-linked list node class */
110     static final class Node<E> {
111         /**
112          * The item, or null if this node has been removed.
113          */
114         E item;
115 
116         /**
117          * One of:
118          * - the real predecessor Node
119          * - this Node, meaning the predecessor is tail
120          * - null, meaning there is no predecessor
121          */
122         Node<E> prev;
123 
124         /**
125          * One of:
126          * - the real successor Node
127          * - this Node, meaning the successor is head
128          * - null, meaning there is no successor
129          */
130         Node<E> next;
131 
Node(E x)132         Node(E x) {
133             item = x;
134         }
135     }
136 
137     /**
138      * Pointer to first node.
139      * Invariant: (first == null && last == null) ||
140      *            (first.prev == null && first.item != null)
141      */
142     transient Node<E> first;
143 
144     /**
145      * Pointer to last node.
146      * Invariant: (first == null && last == null) ||
147      *            (last.next == null && last.item != null)
148      */
149     transient Node<E> last;
150 
151     /** Number of items in the deque */
152     private transient int count;
153 
154     /** Maximum number of items in the deque */
155     private final int capacity;
156 
157     /** Main lock guarding all access */
158     final ReentrantLock lock = new ReentrantLock();
159 
160     /** Condition for waiting takes */
161     private final Condition notEmpty = lock.newCondition();
162 
163     /** Condition for waiting puts */
164     private final Condition notFull = lock.newCondition();
165 
166     /**
167      * Creates a {@code LinkedBlockingDeque} with a capacity of
168      * {@link Integer#MAX_VALUE}.
169      */
LinkedBlockingDeque()170     public LinkedBlockingDeque() {
171         this(Integer.MAX_VALUE);
172     }
173 
174     /**
175      * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
176      *
177      * @param capacity the capacity of this deque
178      * @throws IllegalArgumentException if {@code capacity} is less than 1
179      */
LinkedBlockingDeque(int capacity)180     public LinkedBlockingDeque(int capacity) {
181         if (capacity <= 0) throw new IllegalArgumentException();
182         this.capacity = capacity;
183     }
184 
185     /**
186      * Creates a {@code LinkedBlockingDeque} with a capacity of
187      * {@link Integer#MAX_VALUE}, initially containing the elements of
188      * the given collection, added in traversal order of the
189      * collection's iterator.
190      *
191      * @param c the collection of elements to initially contain
192      * @throws NullPointerException if the specified collection or any
193      *         of its elements are null
194      */
LinkedBlockingDeque(Collection<? extends E> c)195     public LinkedBlockingDeque(Collection<? extends E> c) {
196         this(Integer.MAX_VALUE);
197         final ReentrantLock lock = this.lock;
198         lock.lock(); // Never contended, but necessary for visibility
199         try {
200             for (E e : c) {
201                 if (e == null)
202                     throw new NullPointerException();
203                 if (!linkLast(new Node<E>(e)))
204                     throw new IllegalStateException("Deque full");
205             }
206         } finally {
207             lock.unlock();
208         }
209     }
210 
211 
212     // Basic linking and unlinking operations, called only while holding lock
213 
214     /**
215      * Links node as first element, or returns false if full.
216      */
linkFirst(Node<E> node)217     private boolean linkFirst(Node<E> node) {
218         // assert lock.isHeldByCurrentThread();
219         if (count >= capacity)
220             return false;
221         Node<E> f = first;
222         node.next = f;
223         first = node;
224         if (last == null)
225             last = node;
226         else
227             f.prev = node;
228         ++count;
229         notEmpty.signal();
230         return true;
231     }
232 
233     /**
234      * Links node as last element, or returns false if full.
235      */
linkLast(Node<E> node)236     private boolean linkLast(Node<E> node) {
237         // assert lock.isHeldByCurrentThread();
238         if (count >= capacity)
239             return false;
240         Node<E> l = last;
241         node.prev = l;
242         last = node;
243         if (first == null)
244             first = node;
245         else
246             l.next = node;
247         ++count;
248         notEmpty.signal();
249         return true;
250     }
251 
252     /**
253      * Removes and returns first element, or null if empty.
254      */
unlinkFirst()255     private E unlinkFirst() {
256         // assert lock.isHeldByCurrentThread();
257         Node<E> f = first;
258         if (f == null)
259             return null;
260         Node<E> n = f.next;
261         E item = f.item;
262         f.item = null;
263         f.next = f; // help GC
264         first = n;
265         if (n == null)
266             last = null;
267         else
268             n.prev = null;
269         --count;
270         notFull.signal();
271         return item;
272     }
273 
274     /**
275      * Removes and returns last element, or null if empty.
276      */
unlinkLast()277     private E unlinkLast() {
278         // assert lock.isHeldByCurrentThread();
279         Node<E> l = last;
280         if (l == null)
281             return null;
282         Node<E> p = l.prev;
283         E item = l.item;
284         l.item = null;
285         l.prev = l; // help GC
286         last = p;
287         if (p == null)
288             first = null;
289         else
290             p.next = null;
291         --count;
292         notFull.signal();
293         return item;
294     }
295 
296     /**
297      * Unlinks x.
298      */
unlink(Node<E> x)299     void unlink(Node<E> x) {
300         // assert lock.isHeldByCurrentThread();
301         Node<E> p = x.prev;
302         Node<E> n = x.next;
303         if (p == null) {
304             unlinkFirst();
305         } else if (n == null) {
306             unlinkLast();
307         } else {
308             p.next = n;
309             n.prev = p;
310             x.item = null;
311             // Don't mess with x's links.  They may still be in use by
312             // an iterator.
313             --count;
314             notFull.signal();
315         }
316     }
317 
318     // BlockingDeque methods
319 
320     /**
321      * @throws IllegalStateException if this deque is full
322      * @throws NullPointerException {@inheritDoc}
323      */
addFirst(E e)324     public void addFirst(E e) {
325         if (!offerFirst(e))
326             throw new IllegalStateException("Deque full");
327     }
328 
329     /**
330      * @throws IllegalStateException if this deque is full
331      * @throws NullPointerException  {@inheritDoc}
332      */
addLast(E e)333     public void addLast(E e) {
334         if (!offerLast(e))
335             throw new IllegalStateException("Deque full");
336     }
337 
338     /**
339      * @throws NullPointerException {@inheritDoc}
340      */
offerFirst(E e)341     public boolean offerFirst(E e) {
342         if (e == null) throw new NullPointerException();
343         Node<E> node = new Node<E>(e);
344         final ReentrantLock lock = this.lock;
345         lock.lock();
346         try {
347             return linkFirst(node);
348         } finally {
349             lock.unlock();
350         }
351     }
352 
353     /**
354      * @throws NullPointerException {@inheritDoc}
355      */
offerLast(E e)356     public boolean offerLast(E e) {
357         if (e == null) throw new NullPointerException();
358         Node<E> node = new Node<E>(e);
359         final ReentrantLock lock = this.lock;
360         lock.lock();
361         try {
362             return linkLast(node);
363         } finally {
364             lock.unlock();
365         }
366     }
367 
368     /**
369      * @throws NullPointerException {@inheritDoc}
370      * @throws InterruptedException {@inheritDoc}
371      */
putFirst(E e)372     public void putFirst(E e) throws InterruptedException {
373         if (e == null) throw new NullPointerException();
374         Node<E> node = new Node<E>(e);
375         final ReentrantLock lock = this.lock;
376         lock.lock();
377         try {
378             while (!linkFirst(node))
379                 notFull.await();
380         } finally {
381             lock.unlock();
382         }
383     }
384 
385     /**
386      * @throws NullPointerException {@inheritDoc}
387      * @throws InterruptedException {@inheritDoc}
388      */
putLast(E e)389     public void putLast(E e) throws InterruptedException {
390         if (e == null) throw new NullPointerException();
391         Node<E> node = new Node<E>(e);
392         final ReentrantLock lock = this.lock;
393         lock.lock();
394         try {
395             while (!linkLast(node))
396                 notFull.await();
397         } finally {
398             lock.unlock();
399         }
400     }
401 
402     /**
403      * @throws NullPointerException {@inheritDoc}
404      * @throws InterruptedException {@inheritDoc}
405      */
offerFirst(E e, long timeout, TimeUnit unit)406     public boolean offerFirst(E e, long timeout, TimeUnit unit)
407         throws InterruptedException {
408         if (e == null) throw new NullPointerException();
409         Node<E> node = new Node<E>(e);
410         long nanos = unit.toNanos(timeout);
411         final ReentrantLock lock = this.lock;
412         lock.lockInterruptibly();
413         try {
414             while (!linkFirst(node)) {
415                 if (nanos <= 0L)
416                     return false;
417                 nanos = notFull.awaitNanos(nanos);
418             }
419             return true;
420         } finally {
421             lock.unlock();
422         }
423     }
424 
425     /**
426      * @throws NullPointerException {@inheritDoc}
427      * @throws InterruptedException {@inheritDoc}
428      */
offerLast(E e, long timeout, TimeUnit unit)429     public boolean offerLast(E e, long timeout, TimeUnit unit)
430         throws InterruptedException {
431         if (e == null) throw new NullPointerException();
432         Node<E> node = new Node<E>(e);
433         long nanos = unit.toNanos(timeout);
434         final ReentrantLock lock = this.lock;
435         lock.lockInterruptibly();
436         try {
437             while (!linkLast(node)) {
438                 if (nanos <= 0L)
439                     return false;
440                 nanos = notFull.awaitNanos(nanos);
441             }
442             return true;
443         } finally {
444             lock.unlock();
445         }
446     }
447 
448     /**
449      * @throws NoSuchElementException {@inheritDoc}
450      */
removeFirst()451     public E removeFirst() {
452         E x = pollFirst();
453         if (x == null) throw new NoSuchElementException();
454         return x;
455     }
456 
457     /**
458      * @throws NoSuchElementException {@inheritDoc}
459      */
removeLast()460     public E removeLast() {
461         E x = pollLast();
462         if (x == null) throw new NoSuchElementException();
463         return x;
464     }
465 
pollFirst()466     public E pollFirst() {
467         final ReentrantLock lock = this.lock;
468         lock.lock();
469         try {
470             return unlinkFirst();
471         } finally {
472             lock.unlock();
473         }
474     }
475 
pollLast()476     public E pollLast() {
477         final ReentrantLock lock = this.lock;
478         lock.lock();
479         try {
480             return unlinkLast();
481         } finally {
482             lock.unlock();
483         }
484     }
485 
takeFirst()486     public E takeFirst() throws InterruptedException {
487         final ReentrantLock lock = this.lock;
488         lock.lock();
489         try {
490             E x;
491             while ( (x = unlinkFirst()) == null)
492                 notEmpty.await();
493             return x;
494         } finally {
495             lock.unlock();
496         }
497     }
498 
takeLast()499     public E takeLast() throws InterruptedException {
500         final ReentrantLock lock = this.lock;
501         lock.lock();
502         try {
503             E x;
504             while ( (x = unlinkLast()) == null)
505                 notEmpty.await();
506             return x;
507         } finally {
508             lock.unlock();
509         }
510     }
511 
pollFirst(long timeout, TimeUnit unit)512     public E pollFirst(long timeout, TimeUnit unit)
513         throws InterruptedException {
514         long nanos = unit.toNanos(timeout);
515         final ReentrantLock lock = this.lock;
516         lock.lockInterruptibly();
517         try {
518             E x;
519             while ( (x = unlinkFirst()) == null) {
520                 if (nanos <= 0L)
521                     return null;
522                 nanos = notEmpty.awaitNanos(nanos);
523             }
524             return x;
525         } finally {
526             lock.unlock();
527         }
528     }
529 
pollLast(long timeout, TimeUnit unit)530     public E pollLast(long timeout, TimeUnit unit)
531         throws InterruptedException {
532         long nanos = unit.toNanos(timeout);
533         final ReentrantLock lock = this.lock;
534         lock.lockInterruptibly();
535         try {
536             E x;
537             while ( (x = unlinkLast()) == null) {
538                 if (nanos <= 0L)
539                     return null;
540                 nanos = notEmpty.awaitNanos(nanos);
541             }
542             return x;
543         } finally {
544             lock.unlock();
545         }
546     }
547 
548     /**
549      * @throws NoSuchElementException {@inheritDoc}
550      */
getFirst()551     public E getFirst() {
552         E x = peekFirst();
553         if (x == null) throw new NoSuchElementException();
554         return x;
555     }
556 
557     /**
558      * @throws NoSuchElementException {@inheritDoc}
559      */
getLast()560     public E getLast() {
561         E x = peekLast();
562         if (x == null) throw new NoSuchElementException();
563         return x;
564     }
565 
peekFirst()566     public E peekFirst() {
567         final ReentrantLock lock = this.lock;
568         lock.lock();
569         try {
570             return (first == null) ? null : first.item;
571         } finally {
572             lock.unlock();
573         }
574     }
575 
peekLast()576     public E peekLast() {
577         final ReentrantLock lock = this.lock;
578         lock.lock();
579         try {
580             return (last == null) ? null : last.item;
581         } finally {
582             lock.unlock();
583         }
584     }
585 
removeFirstOccurrence(Object o)586     public boolean removeFirstOccurrence(Object o) {
587         if (o == null) return false;
588         final ReentrantLock lock = this.lock;
589         lock.lock();
590         try {
591             for (Node<E> p = first; p != null; p = p.next) {
592                 if (o.equals(p.item)) {
593                     unlink(p);
594                     return true;
595                 }
596             }
597             return false;
598         } finally {
599             lock.unlock();
600         }
601     }
602 
removeLastOccurrence(Object o)603     public boolean removeLastOccurrence(Object o) {
604         if (o == null) return false;
605         final ReentrantLock lock = this.lock;
606         lock.lock();
607         try {
608             for (Node<E> p = last; p != null; p = p.prev) {
609                 if (o.equals(p.item)) {
610                     unlink(p);
611                     return true;
612                 }
613             }
614             return false;
615         } finally {
616             lock.unlock();
617         }
618     }
619 
620     // BlockingQueue methods
621 
622     /**
623      * Inserts the specified element at the end of this deque unless it would
624      * violate capacity restrictions.  When using a capacity-restricted deque,
625      * it is generally preferable to use method {@link #offer(Object) offer}.
626      *
627      * <p>This method is equivalent to {@link #addLast}.
628      *
629      * @throws IllegalStateException if this deque is full
630      * @throws NullPointerException if the specified element is null
631      */
add(E e)632     public boolean add(E e) {
633         addLast(e);
634         return true;
635     }
636 
637     /**
638      * @throws NullPointerException if the specified element is null
639      */
offer(E e)640     public boolean offer(E e) {
641         return offerLast(e);
642     }
643 
644     /**
645      * @throws NullPointerException {@inheritDoc}
646      * @throws InterruptedException {@inheritDoc}
647      */
put(E e)648     public void put(E e) throws InterruptedException {
649         putLast(e);
650     }
651 
652     /**
653      * @throws NullPointerException {@inheritDoc}
654      * @throws InterruptedException {@inheritDoc}
655      */
offer(E e, long timeout, TimeUnit unit)656     public boolean offer(E e, long timeout, TimeUnit unit)
657         throws InterruptedException {
658         return offerLast(e, timeout, unit);
659     }
660 
661     /**
662      * Retrieves and removes the head of the queue represented by this deque.
663      * This method differs from {@link #poll poll} only in that it throws an
664      * exception if this deque is empty.
665      *
666      * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
667      *
668      * @return the head of the queue represented by this deque
669      * @throws NoSuchElementException if this deque is empty
670      */
remove()671     public E remove() {
672         return removeFirst();
673     }
674 
poll()675     public E poll() {
676         return pollFirst();
677     }
678 
take()679     public E take() throws InterruptedException {
680         return takeFirst();
681     }
682 
poll(long timeout, TimeUnit unit)683     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
684         return pollFirst(timeout, unit);
685     }
686 
687     /**
688      * Retrieves, but does not remove, the head of the queue represented by
689      * this deque.  This method differs from {@link #peek peek} only in that
690      * it throws an exception if this deque is empty.
691      *
692      * <p>This method is equivalent to {@link #getFirst() getFirst}.
693      *
694      * @return the head of the queue represented by this deque
695      * @throws NoSuchElementException if this deque is empty
696      */
element()697     public E element() {
698         return getFirst();
699     }
700 
peek()701     public E peek() {
702         return peekFirst();
703     }
704 
705     /**
706      * Returns the number of additional elements that this deque can ideally
707      * (in the absence of memory or resource constraints) accept without
708      * blocking. This is always equal to the initial capacity of this deque
709      * less the current {@code size} of this deque.
710      *
711      * <p>Note that you <em>cannot</em> always tell if an attempt to insert
712      * an element will succeed by inspecting {@code remainingCapacity}
713      * because it may be the case that another thread is about to
714      * insert or remove an element.
715      */
remainingCapacity()716     public int remainingCapacity() {
717         final ReentrantLock lock = this.lock;
718         lock.lock();
719         try {
720             return capacity - count;
721         } finally {
722             lock.unlock();
723         }
724     }
725 
726     /**
727      * @throws UnsupportedOperationException {@inheritDoc}
728      * @throws ClassCastException            {@inheritDoc}
729      * @throws NullPointerException          {@inheritDoc}
730      * @throws IllegalArgumentException      {@inheritDoc}
731      */
drainTo(Collection<? super E> c)732     public int drainTo(Collection<? super E> c) {
733         return drainTo(c, Integer.MAX_VALUE);
734     }
735 
736     /**
737      * @throws UnsupportedOperationException {@inheritDoc}
738      * @throws ClassCastException            {@inheritDoc}
739      * @throws NullPointerException          {@inheritDoc}
740      * @throws IllegalArgumentException      {@inheritDoc}
741      */
drainTo(Collection<? super E> c, int maxElements)742     public int drainTo(Collection<? super E> c, int maxElements) {
743         if (c == null)
744             throw new NullPointerException();
745         if (c == this)
746             throw new IllegalArgumentException();
747         if (maxElements <= 0)
748             return 0;
749         final ReentrantLock lock = this.lock;
750         lock.lock();
751         try {
752             int n = Math.min(maxElements, count);
753             for (int i = 0; i < n; i++) {
754                 c.add(first.item);   // In this order, in case add() throws.
755                 unlinkFirst();
756             }
757             return n;
758         } finally {
759             lock.unlock();
760         }
761     }
762 
763     // Stack methods
764 
765     /**
766      * @throws IllegalStateException if this deque is full
767      * @throws NullPointerException {@inheritDoc}
768      */
push(E e)769     public void push(E e) {
770         addFirst(e);
771     }
772 
773     /**
774      * @throws NoSuchElementException {@inheritDoc}
775      */
pop()776     public E pop() {
777         return removeFirst();
778     }
779 
780     // Collection methods
781 
782     /**
783      * Removes the first occurrence of the specified element from this deque.
784      * If the deque does not contain the element, it is unchanged.
785      * More formally, removes the first element {@code e} such that
786      * {@code o.equals(e)} (if such an element exists).
787      * Returns {@code true} if this deque contained the specified element
788      * (or equivalently, if this deque changed as a result of the call).
789      *
790      * <p>This method is equivalent to
791      * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
792      *
793      * @param o element to be removed from this deque, if present
794      * @return {@code true} if this deque changed as a result of the call
795      */
remove(Object o)796     public boolean remove(Object o) {
797         return removeFirstOccurrence(o);
798     }
799 
800     /**
801      * Returns the number of elements in this deque.
802      *
803      * @return the number of elements in this deque
804      */
size()805     public int size() {
806         final ReentrantLock lock = this.lock;
807         lock.lock();
808         try {
809             return count;
810         } finally {
811             lock.unlock();
812         }
813     }
814 
815     /**
816      * Returns {@code true} if this deque contains the specified element.
817      * More formally, returns {@code true} if and only if this deque contains
818      * at least one element {@code e} such that {@code o.equals(e)}.
819      *
820      * @param o object to be checked for containment in this deque
821      * @return {@code true} if this deque contains the specified element
822      */
contains(Object o)823     public boolean contains(Object o) {
824         if (o == null) return false;
825         final ReentrantLock lock = this.lock;
826         lock.lock();
827         try {
828             for (Node<E> p = first; p != null; p = p.next)
829                 if (o.equals(p.item))
830                     return true;
831             return false;
832         } finally {
833             lock.unlock();
834         }
835     }
836 
837     /*
838      * TODO: Add support for more efficient bulk operations.
839      *
840      * We don't want to acquire the lock for every iteration, but we
841      * also want other threads a chance to interact with the
842      * collection, especially when count is close to capacity.
843      */
844 
845 //     /**
846 //      * Adds all of the elements in the specified collection to this
847 //      * queue.  Attempts to addAll of a queue to itself result in
848 //      * {@code IllegalArgumentException}. Further, the behavior of
849 //      * this operation is undefined if the specified collection is
850 //      * modified while the operation is in progress.
851 //      *
852 //      * @param c collection containing elements to be added to this queue
853 //      * @return {@code true} if this queue changed as a result of the call
854 //      * @throws ClassCastException            {@inheritDoc}
855 //      * @throws NullPointerException          {@inheritDoc}
856 //      * @throws IllegalArgumentException      {@inheritDoc}
857 //      * @throws IllegalStateException if this deque is full
858 //      * @see #add(Object)
859 //      */
860 //     public boolean addAll(Collection<? extends E> c) {
861 //         if (c == null)
862 //             throw new NullPointerException();
863 //         if (c == this)
864 //             throw new IllegalArgumentException();
865 //         final ReentrantLock lock = this.lock;
866 //         lock.lock();
867 //         try {
868 //             boolean modified = false;
869 //             for (E e : c)
870 //                 if (linkLast(e))
871 //                     modified = true;
872 //             return modified;
873 //         } finally {
874 //             lock.unlock();
875 //         }
876 //     }
877 
878     /**
879      * Returns an array containing all of the elements in this deque, in
880      * proper sequence (from first to last element).
881      *
882      * <p>The returned array will be "safe" in that no references to it are
883      * maintained by this deque.  (In other words, this method must allocate
884      * a new array).  The caller is thus free to modify the returned array.
885      *
886      * <p>This method acts as bridge between array-based and collection-based
887      * APIs.
888      *
889      * @return an array containing all of the elements in this deque
890      */
891     @SuppressWarnings("unchecked")
toArray()892     public Object[] toArray() {
893         final ReentrantLock lock = this.lock;
894         lock.lock();
895         try {
896             Object[] a = new Object[count];
897             int k = 0;
898             for (Node<E> p = first; p != null; p = p.next)
899                 a[k++] = p.item;
900             return a;
901         } finally {
902             lock.unlock();
903         }
904     }
905 
906     /**
907      * Returns an array containing all of the elements in this deque, in
908      * proper sequence; the runtime type of the returned array is that of
909      * the specified array.  If the deque fits in the specified array, it
910      * is returned therein.  Otherwise, a new array is allocated with the
911      * runtime type of the specified array and the size of this deque.
912      *
913      * <p>If this deque fits in the specified array with room to spare
914      * (i.e., the array has more elements than this deque), the element in
915      * the array immediately following the end of the deque is set to
916      * {@code null}.
917      *
918      * <p>Like the {@link #toArray()} method, this method acts as bridge between
919      * array-based and collection-based APIs.  Further, this method allows
920      * precise control over the runtime type of the output array, and may,
921      * under certain circumstances, be used to save allocation costs.
922      *
923      * <p>Suppose {@code x} is a deque known to contain only strings.
924      * The following code can be used to dump the deque into a newly
925      * allocated array of {@code String}:
926      *
927      * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
928      *
929      * Note that {@code toArray(new Object[0])} is identical in function to
930      * {@code toArray()}.
931      *
932      * @param a the array into which the elements of the deque are to
933      *          be stored, if it is big enough; otherwise, a new array of the
934      *          same runtime type is allocated for this purpose
935      * @return an array containing all of the elements in this deque
936      * @throws ArrayStoreException if the runtime type of the specified array
937      *         is not a supertype of the runtime type of every element in
938      *         this deque
939      * @throws NullPointerException if the specified array is null
940      */
941     @SuppressWarnings("unchecked")
toArray(T[] a)942     public <T> T[] toArray(T[] a) {
943         final ReentrantLock lock = this.lock;
944         lock.lock();
945         try {
946             if (a.length < count)
947                 a = (T[])java.lang.reflect.Array.newInstance
948                     (a.getClass().getComponentType(), count);
949 
950             int k = 0;
951             for (Node<E> p = first; p != null; p = p.next)
952                 a[k++] = (T)p.item;
953             if (a.length > k)
954                 a[k] = null;
955             return a;
956         } finally {
957             lock.unlock();
958         }
959     }
960 
toString()961     public String toString() {
962         return Helpers.collectionToString(this);
963     }
964 
965     /**
966      * Atomically removes all of the elements from this deque.
967      * The deque will be empty after this call returns.
968      */
clear()969     public void clear() {
970         final ReentrantLock lock = this.lock;
971         lock.lock();
972         try {
973             for (Node<E> f = first; f != null; ) {
974                 f.item = null;
975                 Node<E> n = f.next;
976                 f.prev = null;
977                 f.next = null;
978                 f = n;
979             }
980             first = last = null;
981             count = 0;
982             notFull.signalAll();
983         } finally {
984             lock.unlock();
985         }
986     }
987 
988     /**
989      * Returns an iterator over the elements in this deque in proper sequence.
990      * The elements will be returned in order from first (head) to last (tail).
991      *
992      * <p>The returned iterator is
993      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
994      *
995      * @return an iterator over the elements in this deque in proper sequence
996      */
iterator()997     public Iterator<E> iterator() {
998         return new Itr();
999     }
1000 
1001     /**
1002      * Returns an iterator over the elements in this deque in reverse
1003      * sequential order.  The elements will be returned in order from
1004      * last (tail) to first (head).
1005      *
1006      * <p>The returned iterator is
1007      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1008      *
1009      * @return an iterator over the elements in this deque in reverse order
1010      */
descendingIterator()1011     public Iterator<E> descendingIterator() {
1012         return new DescendingItr();
1013     }
1014 
1015     /**
1016      * Base class for LinkedBlockingDeque iterators.
1017      */
1018     private abstract class AbstractItr implements Iterator<E> {
1019         /**
1020          * The next node to return in next().
1021          */
1022         Node<E> next;
1023 
1024         /**
1025          * nextItem holds on to item fields because once we claim that
1026          * an element exists in hasNext(), we must return item read
1027          * under lock (in advance()) even if it was in the process of
1028          * being removed when hasNext() was called.
1029          */
1030         E nextItem;
1031 
1032         /**
1033          * Node returned by most recent call to next. Needed by remove.
1034          * Reset to null if this element is deleted by a call to remove.
1035          */
1036         private Node<E> lastRet;
1037 
firstNode()1038         abstract Node<E> firstNode();
nextNode(Node<E> n)1039         abstract Node<E> nextNode(Node<E> n);
1040 
AbstractItr()1041         AbstractItr() {
1042             // set to initial position
1043             final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1044             lock.lock();
1045             try {
1046                 next = firstNode();
1047                 nextItem = (next == null) ? null : next.item;
1048             } finally {
1049                 lock.unlock();
1050             }
1051         }
1052 
1053         /**
1054          * Returns the successor node of the given non-null, but
1055          * possibly previously deleted, node.
1056          */
succ(Node<E> n)1057         private Node<E> succ(Node<E> n) {
1058             // Chains of deleted nodes ending in null or self-links
1059             // are possible if multiple interior nodes are removed.
1060             for (;;) {
1061                 Node<E> s = nextNode(n);
1062                 if (s == null)
1063                     return null;
1064                 else if (s.item != null)
1065                     return s;
1066                 else if (s == n)
1067                     return firstNode();
1068                 else
1069                     n = s;
1070             }
1071         }
1072 
1073         /**
1074          * Advances next.
1075          */
advance()1076         void advance() {
1077             final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1078             lock.lock();
1079             try {
1080                 // assert next != null;
1081                 next = succ(next);
1082                 nextItem = (next == null) ? null : next.item;
1083             } finally {
1084                 lock.unlock();
1085             }
1086         }
1087 
hasNext()1088         public boolean hasNext() {
1089             return next != null;
1090         }
1091 
next()1092         public E next() {
1093             if (next == null)
1094                 throw new NoSuchElementException();
1095             lastRet = next;
1096             E x = nextItem;
1097             advance();
1098             return x;
1099         }
1100 
remove()1101         public void remove() {
1102             Node<E> n = lastRet;
1103             if (n == null)
1104                 throw new IllegalStateException();
1105             lastRet = null;
1106             final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1107             lock.lock();
1108             try {
1109                 if (n.item != null)
1110                     unlink(n);
1111             } finally {
1112                 lock.unlock();
1113             }
1114         }
1115     }
1116 
1117     /** Forward iterator */
1118     private class Itr extends AbstractItr {
firstNode()1119         Node<E> firstNode() { return first; }
nextNode(Node<E> n)1120         Node<E> nextNode(Node<E> n) { return n.next; }
1121     }
1122 
1123     /** Descending iterator */
1124     private class DescendingItr extends AbstractItr {
firstNode()1125         Node<E> firstNode() { return last; }
nextNode(Node<E> n)1126         Node<E> nextNode(Node<E> n) { return n.prev; }
1127     }
1128 
1129     /** A customized variant of Spliterators.IteratorSpliterator */
1130     static final class LBDSpliterator<E> implements Spliterator<E> {
1131         static final int MAX_BATCH = 1 << 25;  // max batch array size;
1132         final LinkedBlockingDeque<E> queue;
1133         Node<E> current;    // current node; null until initialized
1134         int batch;          // batch size for splits
1135         boolean exhausted;  // true when no more nodes
1136         long est;           // size estimate
LBDSpliterator(LinkedBlockingDeque<E> queue)1137         LBDSpliterator(LinkedBlockingDeque<E> queue) {
1138             this.queue = queue;
1139             this.est = queue.size();
1140         }
1141 
estimateSize()1142         public long estimateSize() { return est; }
1143 
trySplit()1144         public Spliterator<E> trySplit() {
1145             Node<E> h;
1146             final LinkedBlockingDeque<E> q = this.queue;
1147             int b = batch;
1148             int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1149             if (!exhausted &&
1150                 ((h = current) != null || (h = q.first) != null) &&
1151                 h.next != null) {
1152                 Object[] a = new Object[n];
1153                 final ReentrantLock lock = q.lock;
1154                 int i = 0;
1155                 Node<E> p = current;
1156                 lock.lock();
1157                 try {
1158                     if (p != null || (p = q.first) != null) {
1159                         do {
1160                             if ((a[i] = p.item) != null)
1161                                 ++i;
1162                         } while ((p = p.next) != null && i < n);
1163                     }
1164                 } finally {
1165                     lock.unlock();
1166                 }
1167                 if ((current = p) == null) {
1168                     est = 0L;
1169                     exhausted = true;
1170                 }
1171                 else if ((est -= i) < 0L)
1172                     est = 0L;
1173                 if (i > 0) {
1174                     batch = i;
1175                     return Spliterators.spliterator
1176                         (a, 0, i, (Spliterator.ORDERED |
1177                                    Spliterator.NONNULL |
1178                                    Spliterator.CONCURRENT));
1179                 }
1180             }
1181             return null;
1182         }
1183 
forEachRemaining(Consumer<? super E> action)1184         public void forEachRemaining(Consumer<? super E> action) {
1185             if (action == null) throw new NullPointerException();
1186             final LinkedBlockingDeque<E> q = this.queue;
1187             final ReentrantLock lock = q.lock;
1188             if (!exhausted) {
1189                 exhausted = true;
1190                 Node<E> p = current;
1191                 do {
1192                     E e = null;
1193                     lock.lock();
1194                     try {
1195                         if (p == null)
1196                             p = q.first;
1197                         while (p != null) {
1198                             e = p.item;
1199                             p = p.next;
1200                             if (e != null)
1201                                 break;
1202                         }
1203                     } finally {
1204                         lock.unlock();
1205                     }
1206                     if (e != null)
1207                         action.accept(e);
1208                 } while (p != null);
1209             }
1210         }
1211 
tryAdvance(Consumer<? super E> action)1212         public boolean tryAdvance(Consumer<? super E> action) {
1213             if (action == null) throw new NullPointerException();
1214             final LinkedBlockingDeque<E> q = this.queue;
1215             final ReentrantLock lock = q.lock;
1216             if (!exhausted) {
1217                 E e = null;
1218                 lock.lock();
1219                 try {
1220                     if (current == null)
1221                         current = q.first;
1222                     while (current != null) {
1223                         e = current.item;
1224                         current = current.next;
1225                         if (e != null)
1226                             break;
1227                     }
1228                 } finally {
1229                     lock.unlock();
1230                 }
1231                 if (current == null)
1232                     exhausted = true;
1233                 if (e != null) {
1234                     action.accept(e);
1235                     return true;
1236                 }
1237             }
1238             return false;
1239         }
1240 
characteristics()1241         public int characteristics() {
1242             return Spliterator.ORDERED | Spliterator.NONNULL |
1243                 Spliterator.CONCURRENT;
1244         }
1245     }
1246 
1247     /**
1248      * Returns a {@link Spliterator} over the elements in this deque.
1249      *
1250      * <p>The returned spliterator is
1251      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1252      *
1253      * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1254      * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1255      *
1256      * @implNote
1257      * The {@code Spliterator} implements {@code trySplit} to permit limited
1258      * parallelism.
1259      *
1260      * @return a {@code Spliterator} over the elements in this deque
1261      * @since 1.8
1262      */
spliterator()1263     public Spliterator<E> spliterator() {
1264         return new LBDSpliterator<E>(this);
1265     }
1266 
1267     /**
1268      * Saves this deque to a stream (that is, serializes it).
1269      *
1270      * @param s the stream
1271      * @throws java.io.IOException if an I/O error occurs
1272      * @serialData The capacity (int), followed by elements (each an
1273      * {@code Object}) in the proper order, followed by a null
1274      */
writeObject(java.io.ObjectOutputStream s)1275     private void writeObject(java.io.ObjectOutputStream s)
1276         throws java.io.IOException {
1277         final ReentrantLock lock = this.lock;
1278         lock.lock();
1279         try {
1280             // Write out capacity and any hidden stuff
1281             s.defaultWriteObject();
1282             // Write out all elements in the proper order.
1283             for (Node<E> p = first; p != null; p = p.next)
1284                 s.writeObject(p.item);
1285             // Use trailing null as sentinel
1286             s.writeObject(null);
1287         } finally {
1288             lock.unlock();
1289         }
1290     }
1291 
1292     /**
1293      * Reconstitutes this deque from a stream (that is, deserializes it).
1294      * @param s the stream
1295      * @throws ClassNotFoundException if the class of a serialized object
1296      *         could not be found
1297      * @throws java.io.IOException if an I/O error occurs
1298      */
readObject(java.io.ObjectInputStream s)1299     private void readObject(java.io.ObjectInputStream s)
1300         throws java.io.IOException, ClassNotFoundException {
1301         s.defaultReadObject();
1302         count = 0;
1303         first = null;
1304         last = null;
1305         // Read in all elements and place in queue
1306         for (;;) {
1307             @SuppressWarnings("unchecked")
1308             E item = (E)s.readObject();
1309             if (item == null)
1310                 break;
1311             add(item);
1312         }
1313     }
1314 
1315 }
1316