1 /*
2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 package java.util.stream;
26 
27 import java.util.Objects;
28 import java.util.Spliterator;
29 import java.util.function.IntFunction;
30 import java.util.function.Supplier;
31 
32 /**
33  * Abstract base class for "pipeline" classes, which are the core
34  * implementations of the Stream interface and its primitive specializations.
35  * Manages construction and evaluation of stream pipelines.
36  *
37  * <p>An {@code AbstractPipeline} represents an initial portion of a stream
38  * pipeline, encapsulating a stream source and zero or more intermediate
39  * operations.  The individual {@code AbstractPipeline} objects are often
40  * referred to as <em>stages</em>, where each stage describes either the stream
41  * source or an intermediate operation.
42  *
43  * <p>A concrete intermediate stage is generally built from an
44  * {@code AbstractPipeline}, a shape-specific pipeline class which extends it
45  * (e.g., {@code IntPipeline}) which is also abstract, and an operation-specific
46  * concrete class which extends that.  {@code AbstractPipeline} contains most of
47  * the mechanics of evaluating the pipeline, and implements methods that will be
48  * used by the operation; the shape-specific classes add helper methods for
49  * dealing with collection of results into the appropriate shape-specific
50  * containers.
51  *
52  * <p>After chaining a new intermediate operation, or executing a terminal
53  * operation, the stream is considered to be consumed, and no more intermediate
54  * or terminal operations are permitted on this stream instance.
55  *
56  * @implNote
57  * <p>For sequential streams, and parallel streams without
58  * <a href="package-summary.html#StreamOps">stateful intermediate
59  * operations</a>, parallel streams, pipeline evaluation is done in a single
60  * pass that "jams" all the operations together.  For parallel streams with
61  * stateful operations, execution is divided into segments, where each
62  * stateful operations marks the end of a segment, and each segment is
63  * evaluated separately and the result used as the input to the next
64  * segment.  In all cases, the source data is not consumed until a terminal
65  * operation begins.
66  *
67  * @param <E_IN>  type of input elements
68  * @param <E_OUT> type of output elements
69  * @param <S> type of the subclass implementing {@code BaseStream}
70  * @since 1.8
71  * @hide Visibility for CTS only (OpenJDK 8 streams tests).
72  */
73 public abstract class AbstractPipeline<E_IN, E_OUT, S extends BaseStream<E_OUT, S>>
74         extends PipelineHelper<E_OUT> implements BaseStream<E_OUT, S> {
75     private static final String MSG_STREAM_LINKED = "stream has already been operated upon or closed";
76     private static final String MSG_CONSUMED = "source already consumed or closed";
77 
78     /**
79      * Backlink to the head of the pipeline chain (self if this is the source
80      * stage).
81      */
82     @SuppressWarnings("rawtypes")
83     private final AbstractPipeline sourceStage;
84 
85     /**
86      * The "upstream" pipeline, or null if this is the source stage.
87      */
88     @SuppressWarnings("rawtypes")
89     private final AbstractPipeline previousStage;
90 
91     /**
92      * The operation flags for the intermediate operation represented by this
93      * pipeline object.
94      */
95     protected final int sourceOrOpFlags;
96 
97     /**
98      * The next stage in the pipeline, or null if this is the last stage.
99      * Effectively final at the point of linking to the next pipeline.
100      */
101     @SuppressWarnings("rawtypes")
102     private AbstractPipeline nextStage;
103 
104     /**
105      * The number of intermediate operations between this pipeline object
106      * and the stream source if sequential, or the previous stateful if parallel.
107      * Valid at the point of pipeline preparation for evaluation.
108      */
109     private int depth;
110 
111     /**
112      * The combined source and operation flags for the source and all operations
113      * up to and including the operation represented by this pipeline object.
114      * Valid at the point of pipeline preparation for evaluation.
115      */
116     private int combinedFlags;
117 
118     /**
119      * The source spliterator. Only valid for the head pipeline.
120      * Before the pipeline is consumed if non-null then {@code sourceSupplier}
121      * must be null. After the pipeline is consumed if non-null then is set to
122      * null.
123      */
124     private Spliterator<?> sourceSpliterator;
125 
126     /**
127      * The source supplier. Only valid for the head pipeline. Before the
128      * pipeline is consumed if non-null then {@code sourceSpliterator} must be
129      * null. After the pipeline is consumed if non-null then is set to null.
130      */
131     private Supplier<? extends Spliterator<?>> sourceSupplier;
132 
133     /**
134      * True if this pipeline has been linked or consumed
135      */
136     private boolean linkedOrConsumed;
137 
138     /**
139      * True if there are any stateful ops in the pipeline; only valid for the
140      * source stage.
141      */
142     private boolean sourceAnyStateful;
143 
144     private Runnable sourceCloseAction;
145 
146     /**
147      * True if pipeline is parallel, otherwise the pipeline is sequential; only
148      * valid for the source stage.
149      */
150     private boolean parallel;
151 
152     /**
153      * Constructor for the head of a stream pipeline.
154      *
155      * @param source {@code Supplier<Spliterator>} describing the stream source
156      * @param sourceFlags The source flags for the stream source, described in
157      * {@link StreamOpFlag}
158      * @param parallel True if the pipeline is parallel
159      */
AbstractPipeline(Supplier<? extends Spliterator<?>> source, int sourceFlags, boolean parallel)160     AbstractPipeline(Supplier<? extends Spliterator<?>> source,
161                      int sourceFlags, boolean parallel) {
162         this.previousStage = null;
163         this.sourceSupplier = source;
164         this.sourceStage = this;
165         this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
166         // The following is an optimization of:
167         // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
168         this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
169         this.depth = 0;
170         this.parallel = parallel;
171     }
172 
173     /**
174      * Constructor for the head of a stream pipeline.
175      *
176      * @param source {@code Spliterator} describing the stream source
177      * @param sourceFlags the source flags for the stream source, described in
178      * {@link StreamOpFlag}
179      * @param parallel {@code true} if the pipeline is parallel
180      */
AbstractPipeline(Spliterator<?> source, int sourceFlags, boolean parallel)181     AbstractPipeline(Spliterator<?> source,
182                      int sourceFlags, boolean parallel) {
183         this.previousStage = null;
184         this.sourceSpliterator = source;
185         this.sourceStage = this;
186         this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
187         // The following is an optimization of:
188         // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
189         this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
190         this.depth = 0;
191         this.parallel = parallel;
192     }
193 
194     /**
195      * Constructor for appending an intermediate operation stage onto an
196      * existing pipeline.
197      *
198      * @param previousStage the upstream pipeline stage
199      * @param opFlags the operation flags for the new stage, described in
200      * {@link StreamOpFlag}
201      */
AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags)202     AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) {
203         if (previousStage.linkedOrConsumed)
204             throw new IllegalStateException(MSG_STREAM_LINKED);
205         previousStage.linkedOrConsumed = true;
206         previousStage.nextStage = this;
207 
208         this.previousStage = previousStage;
209         this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK;
210         this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags);
211         this.sourceStage = previousStage.sourceStage;
212         if (opIsStateful())
213             sourceStage.sourceAnyStateful = true;
214         this.depth = previousStage.depth + 1;
215     }
216 
217 
218     // Terminal evaluation methods
219 
220     /**
221      * Evaluate the pipeline with a terminal operation to produce a result.
222      *
223      * @param <R> the type of result
224      * @param terminalOp the terminal operation to be applied to the pipeline.
225      * @return the result
226      */
evaluate(TerminalOp<E_OUT, R> terminalOp)227     final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {
228         assert getOutputShape() == terminalOp.inputShape();
229         if (linkedOrConsumed)
230             throw new IllegalStateException(MSG_STREAM_LINKED);
231         linkedOrConsumed = true;
232 
233         return isParallel()
234                ? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags()))
235                : terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));
236     }
237 
238     /**
239      * Collect the elements output from the pipeline stage.
240      *
241      * @param generator the array generator to be used to create array instances
242      * @return a flat array-backed Node that holds the collected output elements
243      */
244     @SuppressWarnings("unchecked")
evaluateToArrayNode(IntFunction<E_OUT[]> generator)245     public final Node<E_OUT> evaluateToArrayNode(IntFunction<E_OUT[]> generator) {
246         if (linkedOrConsumed)
247             throw new IllegalStateException(MSG_STREAM_LINKED);
248         linkedOrConsumed = true;
249 
250         // If the last intermediate operation is stateful then
251         // evaluate directly to avoid an extra collection step
252         if (isParallel() && previousStage != null && opIsStateful()) {
253             // Set the depth of this, last, pipeline stage to zero to slice the
254             // pipeline such that this operation will not be included in the
255             // upstream slice and upstream operations will not be included
256             // in this slice
257             depth = 0;
258             return opEvaluateParallel(previousStage, previousStage.sourceSpliterator(0), generator);
259         }
260         else {
261             return evaluate(sourceSpliterator(0), true, generator);
262         }
263     }
264 
265     /**
266      * Gets the source stage spliterator if this pipeline stage is the source
267      * stage.  The pipeline is consumed after this method is called and
268      * returns successfully.
269      *
270      * @return the source stage spliterator
271      * @throws IllegalStateException if this pipeline stage is not the source
272      *         stage.
273      */
274     @SuppressWarnings("unchecked")
sourceStageSpliterator()275     final Spliterator<E_OUT> sourceStageSpliterator() {
276         if (this != sourceStage)
277             throw new IllegalStateException();
278 
279         if (linkedOrConsumed)
280             throw new IllegalStateException(MSG_STREAM_LINKED);
281         linkedOrConsumed = true;
282 
283         if (sourceStage.sourceSpliterator != null) {
284             @SuppressWarnings("unchecked")
285             Spliterator<E_OUT> s = sourceStage.sourceSpliterator;
286             sourceStage.sourceSpliterator = null;
287             return s;
288         }
289         else if (sourceStage.sourceSupplier != null) {
290             @SuppressWarnings("unchecked")
291             Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSupplier.get();
292             sourceStage.sourceSupplier = null;
293             return s;
294         }
295         else {
296             throw new IllegalStateException(MSG_CONSUMED);
297         }
298     }
299 
300     // BaseStream
301 
302     @Override
303     @SuppressWarnings("unchecked")
sequential()304     public final S sequential() {
305         sourceStage.parallel = false;
306         return (S) this;
307     }
308 
309     @Override
310     @SuppressWarnings("unchecked")
parallel()311     public final S parallel() {
312         sourceStage.parallel = true;
313         return (S) this;
314     }
315 
316     @Override
close()317     public void close() {
318         linkedOrConsumed = true;
319         sourceSupplier = null;
320         sourceSpliterator = null;
321         if (sourceStage.sourceCloseAction != null) {
322             Runnable closeAction = sourceStage.sourceCloseAction;
323             sourceStage.sourceCloseAction = null;
324             closeAction.run();
325         }
326     }
327 
328     @Override
329     @SuppressWarnings("unchecked")
onClose(Runnable closeHandler)330     public S onClose(Runnable closeHandler) {
331         Runnable existingHandler = sourceStage.sourceCloseAction;
332         sourceStage.sourceCloseAction =
333                 (existingHandler == null)
334                 ? closeHandler
335                 : Streams.composeWithExceptions(existingHandler, closeHandler);
336         return (S) this;
337     }
338 
339     // Primitive specialization use co-variant overrides, hence is not final
340     @Override
341     @SuppressWarnings("unchecked")
spliterator()342     public Spliterator<E_OUT> spliterator() {
343         if (linkedOrConsumed)
344             throw new IllegalStateException(MSG_STREAM_LINKED);
345         linkedOrConsumed = true;
346 
347         if (this == sourceStage) {
348             if (sourceStage.sourceSpliterator != null) {
349                 @SuppressWarnings("unchecked")
350                 Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSpliterator;
351                 sourceStage.sourceSpliterator = null;
352                 return s;
353             }
354             else if (sourceStage.sourceSupplier != null) {
355                 @SuppressWarnings("unchecked")
356                 Supplier<Spliterator<E_OUT>> s = (Supplier<Spliterator<E_OUT>>) sourceStage.sourceSupplier;
357                 sourceStage.sourceSupplier = null;
358                 return lazySpliterator(s);
359             }
360             else {
361                 throw new IllegalStateException(MSG_CONSUMED);
362             }
363         }
364         else {
365             return wrap(this, () -> sourceSpliterator(0), isParallel());
366         }
367     }
368 
369     @Override
isParallel()370     public final boolean isParallel() {
371         return sourceStage.parallel;
372     }
373 
374 
375     /**
376      * Returns the composition of stream flags of the stream source and all
377      * intermediate operations.
378      *
379      * @return the composition of stream flags of the stream source and all
380      *         intermediate operations
381      * @see StreamOpFlag
382      */
getStreamFlags()383     public final int getStreamFlags() {
384         return StreamOpFlag.toStreamFlags(combinedFlags);
385     }
386 
387     /**
388      * Get the source spliterator for this pipeline stage.  For a sequential or
389      * stateless parallel pipeline, this is the source spliterator.  For a
390      * stateful parallel pipeline, this is a spliterator describing the results
391      * of all computations up to and including the most recent stateful
392      * operation.
393      */
394     @SuppressWarnings("unchecked")
sourceSpliterator(int terminalFlags)395     private Spliterator<?> sourceSpliterator(int terminalFlags) {
396         // Get the source spliterator of the pipeline
397         Spliterator<?> spliterator = null;
398         if (sourceStage.sourceSpliterator != null) {
399             spliterator = sourceStage.sourceSpliterator;
400             sourceStage.sourceSpliterator = null;
401         }
402         else if (sourceStage.sourceSupplier != null) {
403             spliterator = (Spliterator<?>) sourceStage.sourceSupplier.get();
404             sourceStage.sourceSupplier = null;
405         }
406         else {
407             throw new IllegalStateException(MSG_CONSUMED);
408         }
409 
410         if (isParallel() && sourceStage.sourceAnyStateful) {
411             // Adapt the source spliterator, evaluating each stateful op
412             // in the pipeline up to and including this pipeline stage.
413             // The depth and flags of each pipeline stage are adjusted accordingly.
414             int depth = 1;
415             for (@SuppressWarnings("rawtypes") AbstractPipeline u = sourceStage, p = sourceStage.nextStage, e = this;
416                  u != e;
417                  u = p, p = p.nextStage) {
418 
419                 int thisOpFlags = p.sourceOrOpFlags;
420                 if (p.opIsStateful()) {
421                     depth = 0;
422 
423                     if (StreamOpFlag.SHORT_CIRCUIT.isKnown(thisOpFlags)) {
424                         // Clear the short circuit flag for next pipeline stage
425                         // This stage encapsulates short-circuiting, the next
426                         // stage may not have any short-circuit operations, and
427                         // if so spliterator.forEachRemaining should be used
428                         // for traversal
429                         thisOpFlags = thisOpFlags & ~StreamOpFlag.IS_SHORT_CIRCUIT;
430                     }
431 
432                     spliterator = p.opEvaluateParallelLazy(u, spliterator);
433 
434                     // Inject or clear SIZED on the source pipeline stage
435                     // based on the stage's spliterator
436                     thisOpFlags = spliterator.hasCharacteristics(Spliterator.SIZED)
437                             ? (thisOpFlags & ~StreamOpFlag.NOT_SIZED) | StreamOpFlag.IS_SIZED
438                             : (thisOpFlags & ~StreamOpFlag.IS_SIZED) | StreamOpFlag.NOT_SIZED;
439                 }
440                 p.depth = depth++;
441                 p.combinedFlags = StreamOpFlag.combineOpFlags(thisOpFlags, u.combinedFlags);
442             }
443         }
444 
445         if (terminalFlags != 0)  {
446             // Apply flags from the terminal operation to last pipeline stage
447             combinedFlags = StreamOpFlag.combineOpFlags(terminalFlags, combinedFlags);
448         }
449 
450         return spliterator;
451     }
452 
453     // PipelineHelper
454 
455     @Override
getSourceShape()456     final StreamShape getSourceShape() {
457         @SuppressWarnings("rawtypes")
458         AbstractPipeline p = AbstractPipeline.this;
459         while (p.depth > 0) {
460             p = p.previousStage;
461         }
462         return p.getOutputShape();
463     }
464 
465     @Override
exactOutputSizeIfKnown(Spliterator<P_IN> spliterator)466     final <P_IN> long exactOutputSizeIfKnown(Spliterator<P_IN> spliterator) {
467         return StreamOpFlag.SIZED.isKnown(getStreamAndOpFlags()) ? spliterator.getExactSizeIfKnown() : -1;
468     }
469 
470     @Override
wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator)471     final <P_IN, S extends Sink<E_OUT>> S wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator) {
472         copyInto(wrapSink(Objects.requireNonNull(sink)), spliterator);
473         return sink;
474     }
475 
476     @Override
copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator)477     final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
478         Objects.requireNonNull(wrappedSink);
479 
480         if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {
481             wrappedSink.begin(spliterator.getExactSizeIfKnown());
482             spliterator.forEachRemaining(wrappedSink);
483             wrappedSink.end();
484         }
485         else {
486             copyIntoWithCancel(wrappedSink, spliterator);
487         }
488     }
489 
490     @Override
491     @SuppressWarnings("unchecked")
copyIntoWithCancel(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator)492     final <P_IN> void copyIntoWithCancel(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
493         @SuppressWarnings({"rawtypes","unchecked"})
494         AbstractPipeline p = AbstractPipeline.this;
495         while (p.depth > 0) {
496             p = p.previousStage;
497         }
498         wrappedSink.begin(spliterator.getExactSizeIfKnown());
499         p.forEachWithCancel(spliterator, wrappedSink);
500         wrappedSink.end();
501     }
502 
503     @Override
getStreamAndOpFlags()504     public final int getStreamAndOpFlags() {
505         return combinedFlags;
506     }
507 
isOrdered()508     final boolean isOrdered() {
509         return StreamOpFlag.ORDERED.isKnown(combinedFlags);
510     }
511 
512     @Override
513     @SuppressWarnings("unchecked")
wrapSink(Sink<E_OUT> sink)514     public final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {
515         Objects.requireNonNull(sink);
516 
517         for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) {
518             sink = p.opWrapSink(p.previousStage.combinedFlags, sink);
519         }
520         return (Sink<P_IN>) sink;
521     }
522 
523     @Override
524     @SuppressWarnings("unchecked")
wrapSpliterator(Spliterator<P_IN> sourceSpliterator)525     final <P_IN> Spliterator<E_OUT> wrapSpliterator(Spliterator<P_IN> sourceSpliterator) {
526         if (depth == 0) {
527             return (Spliterator<E_OUT>) sourceSpliterator;
528         }
529         else {
530             return wrap(this, () -> sourceSpliterator, isParallel());
531         }
532     }
533 
534     @Override
535     @SuppressWarnings("unchecked")
evaluate(Spliterator<P_IN> spliterator, boolean flatten, IntFunction<E_OUT[]> generator)536     public final <P_IN> Node<E_OUT> evaluate(Spliterator<P_IN> spliterator,
537                                       boolean flatten,
538                                       IntFunction<E_OUT[]> generator) {
539         if (isParallel()) {
540             // @@@ Optimize if op of this pipeline stage is a stateful op
541             return evaluateToNode(this, spliterator, flatten, generator);
542         }
543         else {
544             Node.Builder<E_OUT> nb = makeNodeBuilder(
545                     exactOutputSizeIfKnown(spliterator), generator);
546             return wrapAndCopyInto(nb, spliterator).build();
547         }
548     }
549 
550 
551     // Shape-specific abstract methods, implemented by XxxPipeline classes
552 
553     /**
554      * Get the output shape of the pipeline.  If the pipeline is the head,
555      * then it's output shape corresponds to the shape of the source.
556      * Otherwise, it's output shape corresponds to the output shape of the
557      * associated operation.
558      *
559      * @return the output shape
560      */
getOutputShape()561     public abstract StreamShape getOutputShape();
562 
563     /**
564      * Collect elements output from a pipeline into a Node that holds elements
565      * of this shape.
566      *
567      * @param helper the pipeline helper describing the pipeline stages
568      * @param spliterator the source spliterator
569      * @param flattenTree true if the returned node should be flattened
570      * @param generator the array generator
571      * @return a Node holding the output of the pipeline
572      */
evaluateToNode(PipelineHelper<E_OUT> helper, Spliterator<P_IN> spliterator, boolean flattenTree, IntFunction<E_OUT[]> generator)573     public abstract <P_IN> Node<E_OUT> evaluateToNode(PipelineHelper<E_OUT> helper,
574                                                       Spliterator<P_IN> spliterator,
575                                                       boolean flattenTree,
576                                                       IntFunction<E_OUT[]> generator);
577 
578     /**
579      * Create a spliterator that wraps a source spliterator, compatible with
580      * this stream shape, and operations associated with a {@link
581      * PipelineHelper}.
582      *
583      * @param ph the pipeline helper describing the pipeline stages
584      * @param supplier the supplier of a spliterator
585      * @return a wrapping spliterator compatible with this shape
586      */
wrap(PipelineHelper<E_OUT> ph, Supplier<Spliterator<P_IN>> supplier, boolean isParallel)587     public abstract <P_IN> Spliterator<E_OUT> wrap(PipelineHelper<E_OUT> ph,
588                                                    Supplier<Spliterator<P_IN>> supplier,
589                                                    boolean isParallel);
590 
591     /**
592      * Create a lazy spliterator that wraps and obtains the supplied the
593      * spliterator when a method is invoked on the lazy spliterator.
594      * @param supplier the supplier of a spliterator
595      */
lazySpliterator(Supplier<? extends Spliterator<E_OUT>> supplier)596     public abstract Spliterator<E_OUT> lazySpliterator(Supplier<? extends Spliterator<E_OUT>> supplier);
597 
598     /**
599      * Traverse the elements of a spliterator compatible with this stream shape,
600      * pushing those elements into a sink.   If the sink requests cancellation,
601      * no further elements will be pulled or pushed.
602      *
603      * @param spliterator the spliterator to pull elements from
604      * @param sink the sink to push elements to
605      */
forEachWithCancel(Spliterator<E_OUT> spliterator, Sink<E_OUT> sink)606     public abstract void forEachWithCancel(Spliterator<E_OUT> spliterator, Sink<E_OUT> sink);
607 
608     /**
609      * Make a node builder compatible with this stream shape.
610      *
611      * @param exactSizeIfKnown if {@literal >=0}, then a node builder will be
612      * created that has a fixed capacity of at most sizeIfKnown elements. If
613      * {@literal < 0}, then the node builder has an unfixed capacity. A fixed
614      * capacity node builder will throw exceptions if an element is added after
615      * builder has reached capacity, or is built before the builder has reached
616      * capacity.
617      *
618      * @param generator the array generator to be used to create instances of a
619      * T[] array. For implementations supporting primitive nodes, this parameter
620      * may be ignored.
621      * @return a node builder
622      */
623     @Override
makeNodeBuilder(long exactSizeIfKnown, IntFunction<E_OUT[]> generator)624     public abstract Node.Builder<E_OUT> makeNodeBuilder(long exactSizeIfKnown,
625                                                         IntFunction<E_OUT[]> generator);
626 
627 
628     // Op-specific abstract methods, implemented by the operation class
629 
630     /**
631      * Returns whether this operation is stateful or not.  If it is stateful,
632      * then the method
633      * {@link #opEvaluateParallel(PipelineHelper, java.util.Spliterator, java.util.function.IntFunction)}
634      * must be overridden.
635      *
636      * @return {@code true} if this operation is stateful
637      */
opIsStateful()638     public abstract boolean opIsStateful();
639 
640     /**
641      * Accepts a {@code Sink} which will receive the results of this operation,
642      * and return a {@code Sink} which accepts elements of the input type of
643      * this operation and which performs the operation, passing the results to
644      * the provided {@code Sink}.
645      *
646      * @apiNote
647      * The implementation may use the {@code flags} parameter to optimize the
648      * sink wrapping.  For example, if the input is already {@code DISTINCT},
649      * the implementation for the {@code Stream#distinct()} method could just
650      * return the sink it was passed.
651      *
652      * @param flags The combined stream and operation flags up to, but not
653      *        including, this operation
654      * @param sink sink to which elements should be sent after processing
655      * @return a sink which accepts elements, perform the operation upon
656      *         each element, and passes the results (if any) to the provided
657      *         {@code Sink}.
658      */
opWrapSink(int flags, Sink<E_OUT> sink)659     public abstract Sink<E_IN> opWrapSink(int flags, Sink<E_OUT> sink);
660 
661     /**
662      * Performs a parallel evaluation of the operation using the specified
663      * {@code PipelineHelper} which describes the upstream intermediate
664      * operations.  Only called on stateful operations.  If {@link
665      * #opIsStateful()} returns true then implementations must override the
666      * default implementation.
667      *
668      * @implSpec The default implementation always throw
669      * {@code UnsupportedOperationException}.
670      *
671      * @param helper the pipeline helper describing the pipeline stages
672      * @param spliterator the source {@code Spliterator}
673      * @param generator the array generator
674      * @return a {@code Node} describing the result of the evaluation
675      */
opEvaluateParallel(PipelineHelper<E_OUT> helper, Spliterator<P_IN> spliterator, IntFunction<E_OUT[]> generator)676     public <P_IN> Node<E_OUT> opEvaluateParallel(PipelineHelper<E_OUT> helper,
677                                           Spliterator<P_IN> spliterator,
678                                           IntFunction<E_OUT[]> generator) {
679         throw new UnsupportedOperationException("Parallel evaluation is not supported");
680     }
681 
682     /**
683      * Returns a {@code Spliterator} describing a parallel evaluation of the
684      * operation, using the specified {@code PipelineHelper} which describes the
685      * upstream intermediate operations.  Only called on stateful operations.
686      * It is not necessary (though acceptable) to do a full computation of the
687      * result here; it is preferable, if possible, to describe the result via a
688      * lazily evaluated spliterator.
689      *
690      * @implSpec The default implementation behaves as if:
691      * <pre>{@code
692      *     return evaluateParallel(helper, i -> (E_OUT[]) new
693      * Object[i]).spliterator();
694      * }</pre>
695      * and is suitable for implementations that cannot do better than a full
696      * synchronous evaluation.
697      *
698      * @param helper the pipeline helper
699      * @param spliterator the source {@code Spliterator}
700      * @return a {@code Spliterator} describing the result of the evaluation
701      */
702     @SuppressWarnings("unchecked")
opEvaluateParallelLazy(PipelineHelper<E_OUT> helper, Spliterator<P_IN> spliterator)703     public <P_IN> Spliterator<E_OUT> opEvaluateParallelLazy(PipelineHelper<E_OUT> helper,
704                                                      Spliterator<P_IN> spliterator) {
705         return opEvaluateParallel(helper, spliterator, i -> (E_OUT[]) new Object[i]).spliterator();
706     }
707 }
708