1 /*
2  * Copyright (c) 2013, 2014, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 package java.util.stream;
26 
27 import java.util.DoubleSummaryStatistics;
28 import java.util.Objects;
29 import java.util.OptionalDouble;
30 import java.util.PrimitiveIterator;
31 import java.util.Spliterator;
32 import java.util.Spliterators;
33 import java.util.function.BiConsumer;
34 import java.util.function.BinaryOperator;
35 import java.util.function.DoubleBinaryOperator;
36 import java.util.function.DoubleConsumer;
37 import java.util.function.DoubleFunction;
38 import java.util.function.DoublePredicate;
39 import java.util.function.DoubleToIntFunction;
40 import java.util.function.DoubleToLongFunction;
41 import java.util.function.DoubleUnaryOperator;
42 import java.util.function.IntFunction;
43 import java.util.function.ObjDoubleConsumer;
44 import java.util.function.Supplier;
45 
46 /**
47  * Abstract base class for an intermediate pipeline stage or pipeline source
48  * stage implementing whose elements are of type {@code double}.
49  *
50  * @param <E_IN> type of elements in the upstream source
51  *
52  * @since 1.8
53  * @hide Visible for CTS testing only (OpenJDK8 tests).
54  */
55 public abstract class DoublePipeline<E_IN>
56         extends AbstractPipeline<E_IN, Double, DoubleStream>
57         implements DoubleStream {
58 
59     /**
60      * Constructor for the head of a stream pipeline.
61      *
62      * @param source {@code Supplier<Spliterator>} describing the stream source
63      * @param sourceFlags the source flags for the stream source, described in
64      * {@link StreamOpFlag}
65      */
DoublePipeline(Supplier<? extends Spliterator<Double>> source, int sourceFlags, boolean parallel)66     DoublePipeline(Supplier<? extends Spliterator<Double>> source,
67                    int sourceFlags, boolean parallel) {
68         super(source, sourceFlags, parallel);
69     }
70 
71     /**
72      * Constructor for the head of a stream pipeline.
73      *
74      * @param source {@code Spliterator} describing the stream source
75      * @param sourceFlags the source flags for the stream source, described in
76      * {@link StreamOpFlag}
77      */
DoublePipeline(Spliterator<Double> source, int sourceFlags, boolean parallel)78     DoublePipeline(Spliterator<Double> source,
79                    int sourceFlags, boolean parallel) {
80         super(source, sourceFlags, parallel);
81     }
82 
83     /**
84      * Constructor for appending an intermediate operation onto an existing
85      * pipeline.
86      *
87      * @param upstream the upstream element source.
88      * @param opFlags the operation flags
89      */
DoublePipeline(AbstractPipeline<?, E_IN, ?> upstream, int opFlags)90     DoublePipeline(AbstractPipeline<?, E_IN, ?> upstream, int opFlags) {
91         super(upstream, opFlags);
92     }
93 
94     /**
95      * Adapt a {@code Sink<Double> to a {@code DoubleConsumer}, ideally simply
96      * by casting.
97      */
adapt(Sink<Double> sink)98     private static DoubleConsumer adapt(Sink<Double> sink) {
99         if (sink instanceof DoubleConsumer) {
100             return (DoubleConsumer) sink;
101         } else {
102             if (Tripwire.ENABLED)
103                 Tripwire.trip(AbstractPipeline.class,
104                               "using DoubleStream.adapt(Sink<Double> s)");
105             return sink::accept;
106         }
107     }
108 
109     /**
110      * Adapt a {@code Spliterator<Double>} to a {@code Spliterator.OfDouble}.
111      *
112      * @implNote
113      * The implementation attempts to cast to a Spliterator.OfDouble, and throws
114      * an exception if this cast is not possible.
115      */
adapt(Spliterator<Double> s)116     private static Spliterator.OfDouble adapt(Spliterator<Double> s) {
117         if (s instanceof Spliterator.OfDouble) {
118             return (Spliterator.OfDouble) s;
119         } else {
120             if (Tripwire.ENABLED)
121                 Tripwire.trip(AbstractPipeline.class,
122                               "using DoubleStream.adapt(Spliterator<Double> s)");
123             throw new UnsupportedOperationException("DoubleStream.adapt(Spliterator<Double> s)");
124         }
125     }
126 
127 
128     // Shape-specific methods
129 
130     @Override
getOutputShape()131     public final StreamShape getOutputShape() {
132         return StreamShape.DOUBLE_VALUE;
133     }
134 
135     @Override
evaluateToNode(PipelineHelper<Double> helper, Spliterator<P_IN> spliterator, boolean flattenTree, IntFunction<Double[]> generator)136     public final <P_IN> Node<Double> evaluateToNode(PipelineHelper<Double> helper,
137                                              Spliterator<P_IN> spliterator,
138                                              boolean flattenTree,
139                                              IntFunction<Double[]> generator) {
140         return Nodes.collectDouble(helper, spliterator, flattenTree);
141     }
142 
143     @Override
wrap(PipelineHelper<Double> ph, Supplier<Spliterator<P_IN>> supplier, boolean isParallel)144     public final <P_IN> Spliterator<Double> wrap(PipelineHelper<Double> ph,
145                                           Supplier<Spliterator<P_IN>> supplier,
146                                           boolean isParallel) {
147         return new StreamSpliterators.DoubleWrappingSpliterator<>(ph, supplier, isParallel);
148     }
149 
150     @Override
151     @SuppressWarnings("unchecked")
lazySpliterator(Supplier<? extends Spliterator<Double>> supplier)152     public final Spliterator.OfDouble lazySpliterator(Supplier<? extends Spliterator<Double>> supplier) {
153         return new StreamSpliterators.DelegatingSpliterator.OfDouble((Supplier<Spliterator.OfDouble>) supplier);
154     }
155 
156     @Override
forEachWithCancel(Spliterator<Double> spliterator, Sink<Double> sink)157     public final void forEachWithCancel(Spliterator<Double> spliterator, Sink<Double> sink) {
158         Spliterator.OfDouble spl = adapt(spliterator);
159         DoubleConsumer adaptedSink = adapt(sink);
160         do { } while (!sink.cancellationRequested() && spl.tryAdvance(adaptedSink));
161     }
162 
163     @Override
makeNodeBuilder(long exactSizeIfKnown, IntFunction<Double[]> generator)164     public final Node.Builder<Double> makeNodeBuilder(long exactSizeIfKnown, IntFunction<Double[]> generator) {
165         return Nodes.doubleBuilder(exactSizeIfKnown);
166     }
167 
168 
169     // DoubleStream
170 
171     @Override
iterator()172     public final PrimitiveIterator.OfDouble iterator() {
173         return Spliterators.iterator(spliterator());
174     }
175 
176     @Override
spliterator()177     public final Spliterator.OfDouble spliterator() {
178         return adapt(super.spliterator());
179     }
180 
181     // Stateless intermediate ops from DoubleStream
182 
183     @Override
boxed()184     public final Stream<Double> boxed() {
185         return mapToObj(Double::valueOf);
186     }
187 
188     @Override
map(DoubleUnaryOperator mapper)189     public final DoubleStream map(DoubleUnaryOperator mapper) {
190         Objects.requireNonNull(mapper);
191         return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
192                                        StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
193             @Override
194             public Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
195                 return new Sink.ChainedDouble<Double>(sink) {
196                     @Override
197                     public void accept(double t) {
198                         downstream.accept(mapper.applyAsDouble(t));
199                     }
200                 };
201             }
202         };
203     }
204 
205     @Override
206     public final <U> Stream<U> mapToObj(DoubleFunction<? extends U> mapper) {
207         Objects.requireNonNull(mapper);
208         return new ReferencePipeline.StatelessOp<Double, U>(this, StreamShape.DOUBLE_VALUE,
209                                                             StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
210             @Override
211             public Sink<Double> opWrapSink(int flags, Sink<U> sink) {
212                 return new Sink.ChainedDouble<U>(sink) {
213                     @Override
214                     public void accept(double t) {
215                         downstream.accept(mapper.apply(t));
216                     }
217                 };
218             }
219         };
220     }
221 
222     @Override
223     public final IntStream mapToInt(DoubleToIntFunction mapper) {
224         Objects.requireNonNull(mapper);
225         return new IntPipeline.StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
226                                                    StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
227             @Override
228             public Sink<Double> opWrapSink(int flags, Sink<Integer> sink) {
229                 return new Sink.ChainedDouble<Integer>(sink) {
230                     @Override
231                     public void accept(double t) {
232                         downstream.accept(mapper.applyAsInt(t));
233                     }
234                 };
235             }
236         };
237     }
238 
239     @Override
240     public final LongStream mapToLong(DoubleToLongFunction mapper) {
241         Objects.requireNonNull(mapper);
242         return new LongPipeline.StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
243                                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
244             @Override
245             public Sink<Double> opWrapSink(int flags, Sink<Long> sink) {
246                 return new Sink.ChainedDouble<Long>(sink) {
247                     @Override
248                     public void accept(double t) {
249                         downstream.accept(mapper.applyAsLong(t));
250                     }
251                 };
252             }
253         };
254     }
255 
256     @Override
257     public final DoubleStream flatMap(DoubleFunction<? extends DoubleStream> mapper) {
258         return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
259                                         StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
260             @Override
261             public Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
262                 return new Sink.ChainedDouble<Double>(sink) {
263                     @Override
264                     public void begin(long size) {
265                         downstream.begin(-1);
266                     }
267 
268                     @Override
269                     public void accept(double t) {
270                         try (DoubleStream result = mapper.apply(t)) {
271                             // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
272                             if (result != null)
273                                 result.sequential().forEach(i -> downstream.accept(i));
274                         }
275                     }
276                 };
277             }
278         };
279     }
280 
281     @Override
282     public DoubleStream unordered() {
283         if (!isOrdered())
284             return this;
285         return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE, StreamOpFlag.NOT_ORDERED) {
286             @Override
287             public Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
288                 return sink;
289             }
290         };
291     }
292 
293     @Override
294     public final DoubleStream filter(DoublePredicate predicate) {
295         Objects.requireNonNull(predicate);
296         return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
297                                        StreamOpFlag.NOT_SIZED) {
298             @Override
299             public Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
300                 return new Sink.ChainedDouble<Double>(sink) {
301                     @Override
302                     public void begin(long size) {
303                         downstream.begin(-1);
304                     }
305 
306                     @Override
307                     public void accept(double t) {
308                         if (predicate.test(t))
309                             downstream.accept(t);
310                     }
311                 };
312             }
313         };
314     }
315 
316     @Override
317     public final DoubleStream peek(DoubleConsumer action) {
318         Objects.requireNonNull(action);
319         return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
320                                        0) {
321             @Override
322             public Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
323                 return new Sink.ChainedDouble<Double>(sink) {
324                     @Override
325                     public void accept(double t) {
326                         action.accept(t);
327                         downstream.accept(t);
328                     }
329                 };
330             }
331         };
332     }
333 
334     // Stateful intermediate ops from DoubleStream
335 
336     @Override
337     public final DoubleStream limit(long maxSize) {
338         if (maxSize < 0)
339             throw new IllegalArgumentException(Long.toString(maxSize));
340         return SliceOps.makeDouble(this, (long) 0, maxSize);
341     }
342 
343     @Override
344     public final DoubleStream skip(long n) {
345         if (n < 0)
346             throw new IllegalArgumentException(Long.toString(n));
347         if (n == 0)
348             return this;
349         else {
350             long limit = -1;
351             return SliceOps.makeDouble(this, n, limit);
352         }
353     }
354 
355     @Override
356     public final DoubleStream sorted() {
357         return SortedOps.makeDouble(this);
358     }
359 
360     @Override
361     public final DoubleStream distinct() {
362         // While functional and quick to implement, this approach is not very efficient.
363         // An efficient version requires a double-specific map/set implementation.
364         return boxed().distinct().mapToDouble(i -> (double) i);
365     }
366 
367     // Terminal ops from DoubleStream
368 
369     @Override
370     public void forEach(DoubleConsumer consumer) {
371         evaluate(ForEachOps.makeDouble(consumer, false));
372     }
373 
374     @Override
375     public void forEachOrdered(DoubleConsumer consumer) {
376         evaluate(ForEachOps.makeDouble(consumer, true));
377     }
378 
379     @Override
380     public final double sum() {
381         /*
382          * In the arrays allocated for the collect operation, index 0
383          * holds the high-order bits of the running sum, index 1 holds
384          * the low-order bits of the sum computed via compensated
385          * summation, and index 2 holds the simple sum used to compute
386          * the proper result if the stream contains infinite values of
387          * the same sign.
388          */
389         double[] summation = collect(() -> new double[3],
390                                (ll, d) -> {
391                                    Collectors.sumWithCompensation(ll, d);
392                                    ll[2] += d;
393                                },
394                                (ll, rr) -> {
395                                    Collectors.sumWithCompensation(ll, rr[0]);
396                                    Collectors.sumWithCompensation(ll, rr[1]);
397                                    ll[2] += rr[2];
398                                });
399 
400         return Collectors.computeFinalSum(summation);
401     }
402 
403     @Override
404     public final OptionalDouble min() {
405         return reduce(Math::min);
406     }
407 
408     @Override
409     public final OptionalDouble max() {
410         return reduce(Math::max);
411     }
412 
413     /**
414      * {@inheritDoc}
415      *
416      * @implNote The {@code double} format can represent all
417      * consecutive integers in the range -2<sup>53</sup> to
418      * 2<sup>53</sup>. If the pipeline has more than 2<sup>53</sup>
419      * values, the divisor in the average computation will saturate at
420      * 2<sup>53</sup>, leading to additional numerical errors.
421      */
422     @Override
423     public final OptionalDouble average() {
424         /*
425          * In the arrays allocated for the collect operation, index 0
426          * holds the high-order bits of the running sum, index 1 holds
427          * the low-order bits of the sum computed via compensated
428          * summation, index 2 holds the number of values seen, index 3
429          * holds the simple sum.
430          */
431         double[] avg = collect(() -> new double[4],
432                                (ll, d) -> {
433                                    ll[2]++;
434                                    Collectors.sumWithCompensation(ll, d);
435                                    ll[3] += d;
436                                },
437                                (ll, rr) -> {
438                                    Collectors.sumWithCompensation(ll, rr[0]);
439                                    Collectors.sumWithCompensation(ll, rr[1]);
440                                    ll[2] += rr[2];
441                                    ll[3] += rr[3];
442                                });
443         return avg[2] > 0
444             ? OptionalDouble.of(Collectors.computeFinalSum(avg) / avg[2])
445             : OptionalDouble.empty();
446     }
447 
448     @Override
449     public final long count() {
450         return mapToLong(e -> 1L).sum();
451     }
452 
453     @Override
454     public final DoubleSummaryStatistics summaryStatistics() {
455         return collect(DoubleSummaryStatistics::new, DoubleSummaryStatistics::accept,
456                        DoubleSummaryStatistics::combine);
457     }
458 
459     @Override
460     public final double reduce(double identity, DoubleBinaryOperator op) {
461         return evaluate(ReduceOps.makeDouble(identity, op));
462     }
463 
464     @Override
465     public final OptionalDouble reduce(DoubleBinaryOperator op) {
466         return evaluate(ReduceOps.makeDouble(op));
467     }
468 
469     @Override
470     public final <R> R collect(Supplier<R> supplier,
471                                ObjDoubleConsumer<R> accumulator,
472                                BiConsumer<R, R> combiner) {
473         BinaryOperator<R> operator = (left, right) -> {
474             combiner.accept(left, right);
475             return left;
476         };
477         return evaluate(ReduceOps.makeDouble(supplier, accumulator, operator));
478     }
479 
480     @Override
481     public final boolean anyMatch(DoublePredicate predicate) {
482         return evaluate(MatchOps.makeDouble(predicate, MatchOps.MatchKind.ANY));
483     }
484 
485     @Override
486     public final boolean allMatch(DoublePredicate predicate) {
487         return evaluate(MatchOps.makeDouble(predicate, MatchOps.MatchKind.ALL));
488     }
489 
490     @Override
491     public final boolean noneMatch(DoublePredicate predicate) {
492         return evaluate(MatchOps.makeDouble(predicate, MatchOps.MatchKind.NONE));
493     }
494 
495     @Override
496     public final OptionalDouble findFirst() {
497         return evaluate(FindOps.makeDouble(true));
498     }
499 
500     @Override
501     public final OptionalDouble findAny() {
502         return evaluate(FindOps.makeDouble(false));
503     }
504 
505     @Override
506     public final double[] toArray() {
507         return Nodes.flattenDouble((Node.OfDouble) evaluateToArrayNode(Double[]::new))
508                         .asPrimitiveArray();
509     }
510 
511     //
512 
513     /**
514      * Source stage of a DoubleStream
515      *
516      * @param <E_IN> type of elements in the upstream source
517      * @hide Visibility for CTS only (OpenJDK 8 streams tests).
518      */
519     public static class Head<E_IN> extends DoublePipeline<E_IN> {
520         /**
521          * Constructor for the source stage of a DoubleStream.
522          *
523          * @param source {@code Supplier<Spliterator>} describing the stream
524          *               source
525          * @param sourceFlags the source flags for the stream source, described
526          *                    in {@link StreamOpFlag}
527          * @param parallel {@code true} if the pipeline is parallel
528          */
529         public Head(Supplier<? extends Spliterator<Double>> source,
530              int sourceFlags, boolean parallel) {
531             super(source, sourceFlags, parallel);
532         }
533 
534         /**
535          * Constructor for the source stage of a DoubleStream.
536          *
537          * @param source {@code Spliterator} describing the stream source
538          * @param sourceFlags the source flags for the stream source, described
539          *                    in {@link StreamOpFlag}
540          * @param parallel {@code true} if the pipeline is parallel
541          */
542         public Head(Spliterator<Double> source,
543              int sourceFlags, boolean parallel) {
544             super(source, sourceFlags, parallel);
545         }
546 
547         @Override
548         public final boolean opIsStateful() {
549             throw new UnsupportedOperationException();
550         }
551 
552         @Override
553         public final Sink<E_IN> opWrapSink(int flags, Sink<Double> sink) {
554             throw new UnsupportedOperationException();
555         }
556 
557         // Optimized sequential terminal operations for the head of the pipeline
558 
559         @Override
560         public void forEach(DoubleConsumer consumer) {
561             if (!isParallel()) {
562                 adapt(sourceStageSpliterator()).forEachRemaining(consumer);
563             }
564             else {
565                 super.forEach(consumer);
566             }
567         }
568 
569         @Override
570         public void forEachOrdered(DoubleConsumer consumer) {
571             if (!isParallel()) {
572                 adapt(sourceStageSpliterator()).forEachRemaining(consumer);
573             }
574             else {
575                 super.forEachOrdered(consumer);
576             }
577         }
578 
579     }
580 
581     /**
582      * Base class for a stateless intermediate stage of a DoubleStream.
583      *
584      * @param <E_IN> type of elements in the upstream source
585      * @since 1.8
586      * @hide Visible for CTS testing only (OpenJDK8 tests).
587      */
588     public abstract static class StatelessOp<E_IN> extends DoublePipeline<E_IN> {
589         /**
590          * Construct a new DoubleStream by appending a stateless intermediate
591          * operation to an existing stream.
592          *
593          * @param upstream the upstream pipeline stage
594          * @param inputShape the stream shape for the upstream pipeline stage
595          * @param opFlags operation flags for the new stage
596          */
597         public StatelessOp(AbstractPipeline<?, E_IN, ?> upstream,
598                     StreamShape inputShape,
599                     int opFlags) {
600             super(upstream, opFlags);
601             assert upstream.getOutputShape() == inputShape;
602         }
603 
604         @Override
605         public final boolean opIsStateful() {
606             return false;
607         }
608     }
609 
610     /**
611      * Base class for a stateful intermediate stage of a DoubleStream.
612      *
613      * @param <E_IN> type of elements in the upstream source
614      * @since 1.8
615      * @hide Visible for CTS testing only (OpenJDK8 tests).
616      */
617     public abstract static class StatefulOp<E_IN> extends DoublePipeline<E_IN> {
618         /**
619          * Construct a new DoubleStream by appending a stateful intermediate
620          * operation to an existing stream.
621          *
622          * @param upstream the upstream pipeline stage
623          * @param inputShape the stream shape for the upstream pipeline stage
624          * @param opFlags operation flags for the new stage
625          */
626         public StatefulOp(AbstractPipeline<?, E_IN, ?> upstream,
627                    StreamShape inputShape,
628                    int opFlags) {
629             super(upstream, opFlags);
630             assert upstream.getOutputShape() == inputShape;
631         }
632 
633         @Override
634         public final boolean opIsStateful() {
635             return true;
636         }
637 
638         @Override
639         public abstract <P_IN> Node<Double> opEvaluateParallel(PipelineHelper<Double> helper,
640                                                         Spliterator<P_IN> spliterator,
641                                                         IntFunction<Double[]> generator);
642     }
643 }
644