1 /*
2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 package java.util.stream;
26 
27 import java.nio.charset.Charset;
28 import java.util.Arrays;
29 import java.util.Collection;
30 import java.util.DoubleSummaryStatistics;
31 import java.util.Objects;
32 import java.util.OptionalDouble;
33 import java.util.PrimitiveIterator;
34 import java.util.Spliterator;
35 import java.util.Spliterators;
36 import java.util.concurrent.ConcurrentHashMap;
37 import java.util.function.BiConsumer;
38 import java.util.function.DoubleBinaryOperator;
39 import java.util.function.DoubleConsumer;
40 import java.util.function.DoubleFunction;
41 import java.util.function.DoublePredicate;
42 import java.util.function.DoubleSupplier;
43 import java.util.function.DoubleToIntFunction;
44 import java.util.function.DoubleToLongFunction;
45 import java.util.function.DoubleUnaryOperator;
46 import java.util.function.Function;
47 import java.util.function.ObjDoubleConsumer;
48 import java.util.function.Supplier;
49 
50 /**
51  * A sequence of primitive double-valued elements supporting sequential and parallel
52  * aggregate operations.  This is the {@code double} primitive specialization of
53  * {@link Stream}.
54  *
55  * <p>The following example illustrates an aggregate operation using
56  * {@link Stream} and {@link DoubleStream}, computing the sum of the weights of the
57  * red widgets:
58  *
59  * <pre>{@code
60  *     double sum = widgets.stream()
61  *                         .filter(w -> w.getColor() == RED)
62  *                         .mapToDouble(w -> w.getWeight())
63  *                         .sum();
64  * }</pre>
65  *
66  * See the class documentation for {@link Stream} and the package documentation
67  * for <a href="package-summary.html">java.util.stream</a> for additional
68  * specification of streams, stream operations, stream pipelines, and
69  * parallelism.
70  *
71  * @since 1.8
72  * @see Stream
73  * @see <a href="package-summary.html">java.util.stream</a>
74  */
75 public interface DoubleStream extends BaseStream<Double, DoubleStream> {
76 
77     /**
78      * Returns a stream consisting of the elements of this stream that match
79      * the given predicate.
80      *
81      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
82      * operation</a>.
83      *
84      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
85      *                  <a href="package-summary.html#Statelessness">stateless</a>
86      *                  predicate to apply to each element to determine if it
87      *                  should be included
88      * @return the new stream
89      */
filter(DoublePredicate predicate)90     DoubleStream filter(DoublePredicate predicate);
91 
92     /**
93      * Returns a stream consisting of the results of applying the given
94      * function to the elements of this stream.
95      *
96      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
97      * operation</a>.
98      *
99      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
100      *               <a href="package-summary.html#Statelessness">stateless</a>
101      *               function to apply to each element
102      * @return the new stream
103      */
map(DoubleUnaryOperator mapper)104     DoubleStream map(DoubleUnaryOperator mapper);
105 
106     /**
107      * Returns an object-valued {@code Stream} consisting of the results of
108      * applying the given function to the elements of this stream.
109      *
110      * <p>This is an <a href="package-summary.html#StreamOps">
111      *     intermediate operation</a>.
112      *
113      * @param <U> the element type of the new stream
114      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
115      *               <a href="package-summary.html#Statelessness">stateless</a>
116      *               function to apply to each element
117      * @return the new stream
118      */
mapToObj(DoubleFunction<? extends U> mapper)119     <U> Stream<U> mapToObj(DoubleFunction<? extends U> mapper);
120 
121     /**
122      * Returns an {@code IntStream} consisting of the results of applying the
123      * given function to the elements of this stream.
124      *
125      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
126      * operation</a>.
127      *
128      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
129      *               <a href="package-summary.html#Statelessness">stateless</a>
130      *               function to apply to each element
131      * @return the new stream
132      */
mapToInt(DoubleToIntFunction mapper)133     IntStream mapToInt(DoubleToIntFunction mapper);
134 
135     /**
136      * Returns a {@code LongStream} consisting of the results of applying the
137      * given function to the elements of this stream.
138      *
139      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
140      * operation</a>.
141      *
142      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
143      *               <a href="package-summary.html#Statelessness">stateless</a>
144      *               function to apply to each element
145      * @return the new stream
146      */
mapToLong(DoubleToLongFunction mapper)147     LongStream mapToLong(DoubleToLongFunction mapper);
148 
149     /**
150      * Returns a stream consisting of the results of replacing each element of
151      * this stream with the contents of a mapped stream produced by applying
152      * the provided mapping function to each element.  Each mapped stream is
153      * {@link java.util.stream.BaseStream#close() closed} after its contents
154      * have been placed into this stream.  (If a mapped stream is {@code null}
155      * an empty stream is used, instead.)
156      *
157      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
158      * operation</a>.
159      *
160      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
161      *               <a href="package-summary.html#Statelessness">stateless</a>
162      *               function to apply to each element which produces a
163      *               {@code DoubleStream} of new values
164      * @return the new stream
165      * @see Stream#flatMap(Function)
166      */
flatMap(DoubleFunction<? extends DoubleStream> mapper)167     DoubleStream flatMap(DoubleFunction<? extends DoubleStream> mapper);
168 
169     /**
170      * Returns a stream consisting of the distinct elements of this stream. The
171      * elements are compared for equality according to
172      * {@link java.lang.Double#compare(double, double)}.
173      *
174      * <p>This is a <a href="package-summary.html#StreamOps">stateful
175      * intermediate operation</a>.
176      *
177      * @return the result stream
178      */
distinct()179     DoubleStream distinct();
180 
181     /**
182      * Returns a stream consisting of the elements of this stream in sorted
183      * order. The elements are compared for equality according to
184      * {@link java.lang.Double#compare(double, double)}.
185      *
186      * <p>This is a <a href="package-summary.html#StreamOps">stateful
187      * intermediate operation</a>.
188      *
189      * @return the result stream
190      */
sorted()191     DoubleStream sorted();
192 
193     /**
194      * Returns a stream consisting of the elements of this stream, additionally
195      * performing the provided action on each element as elements are consumed
196      * from the resulting stream.
197      *
198      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
199      * operation</a>.
200      *
201      * <p>For parallel stream pipelines, the action may be called at
202      * whatever time and in whatever thread the element is made available by the
203      * upstream operation.  If the action modifies shared state,
204      * it is responsible for providing the required synchronization.
205      *
206      * @apiNote This method exists mainly to support debugging, where you want
207      * to see the elements as they flow past a certain point in a pipeline:
208      * <pre>{@code
209      *     DoubleStream.of(1, 2, 3, 4)
210      *         .filter(e -> e > 2)
211      *         .peek(e -> System.out.println("Filtered value: " + e))
212      *         .map(e -> e * e)
213      *         .peek(e -> System.out.println("Mapped value: " + e))
214      *         .sum();
215      * }</pre>
216      *
217      * @param action a <a href="package-summary.html#NonInterference">
218      *               non-interfering</a> action to perform on the elements as
219      *               they are consumed from the stream
220      * @return the new stream
221      */
peek(DoubleConsumer action)222     DoubleStream peek(DoubleConsumer action);
223 
224     /**
225      * Returns a stream consisting of the elements of this stream, truncated
226      * to be no longer than {@code maxSize} in length.
227      *
228      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
229      * stateful intermediate operation</a>.
230      *
231      * @apiNote
232      * While {@code limit()} is generally a cheap operation on sequential
233      * stream pipelines, it can be quite expensive on ordered parallel pipelines,
234      * especially for large values of {@code maxSize}, since {@code limit(n)}
235      * is constrained to return not just any <em>n</em> elements, but the
236      * <em>first n</em> elements in the encounter order.  Using an unordered
237      * stream source (such as {@link #generate(DoubleSupplier)}) or removing the
238      * ordering constraint with {@link #unordered()} may result in significant
239      * speedups of {@code limit()} in parallel pipelines, if the semantics of
240      * your situation permit.  If consistency with encounter order is required,
241      * and you are experiencing poor performance or memory utilization with
242      * {@code limit()} in parallel pipelines, switching to sequential execution
243      * with {@link #sequential()} may improve performance.
244      *
245      * @param maxSize the number of elements the stream should be limited to
246      * @return the new stream
247      * @throws IllegalArgumentException if {@code maxSize} is negative
248      */
limit(long maxSize)249     DoubleStream limit(long maxSize);
250 
251     /**
252      * Returns a stream consisting of the remaining elements of this stream
253      * after discarding the first {@code n} elements of the stream.
254      * If this stream contains fewer than {@code n} elements then an
255      * empty stream will be returned.
256      *
257      * <p>This is a <a href="package-summary.html#StreamOps">stateful
258      * intermediate operation</a>.
259      *
260      * @apiNote
261      * While {@code skip()} is generally a cheap operation on sequential
262      * stream pipelines, it can be quite expensive on ordered parallel pipelines,
263      * especially for large values of {@code n}, since {@code skip(n)}
264      * is constrained to skip not just any <em>n</em> elements, but the
265      * <em>first n</em> elements in the encounter order.  Using an unordered
266      * stream source (such as {@link #generate(DoubleSupplier)}) or removing the
267      * ordering constraint with {@link #unordered()} may result in significant
268      * speedups of {@code skip()} in parallel pipelines, if the semantics of
269      * your situation permit.  If consistency with encounter order is required,
270      * and you are experiencing poor performance or memory utilization with
271      * {@code skip()} in parallel pipelines, switching to sequential execution
272      * with {@link #sequential()} may improve performance.
273      *
274      * @param n the number of leading elements to skip
275      * @return the new stream
276      * @throws IllegalArgumentException if {@code n} is negative
277      */
skip(long n)278     DoubleStream skip(long n);
279 
280     /**
281      * Performs an action for each element of this stream.
282      *
283      * <p>This is a <a href="package-summary.html#StreamOps">terminal
284      * operation</a>.
285      *
286      * <p>For parallel stream pipelines, this operation does <em>not</em>
287      * guarantee to respect the encounter order of the stream, as doing so
288      * would sacrifice the benefit of parallelism.  For any given element, the
289      * action may be performed at whatever time and in whatever thread the
290      * library chooses.  If the action accesses shared state, it is
291      * responsible for providing the required synchronization.
292      *
293      * @param action a <a href="package-summary.html#NonInterference">
294      *               non-interfering</a> action to perform on the elements
295      */
forEach(DoubleConsumer action)296     void forEach(DoubleConsumer action);
297 
298     /**
299      * Performs an action for each element of this stream, guaranteeing that
300      * each element is processed in encounter order for streams that have a
301      * defined encounter order.
302      *
303      * <p>This is a <a href="package-summary.html#StreamOps">terminal
304      * operation</a>.
305      *
306      * @param action a <a href="package-summary.html#NonInterference">
307      *               non-interfering</a> action to perform on the elements
308      * @see #forEach(DoubleConsumer)
309      */
forEachOrdered(DoubleConsumer action)310     void forEachOrdered(DoubleConsumer action);
311 
312     /**
313      * Returns an array containing the elements of this stream.
314      *
315      * <p>This is a <a href="package-summary.html#StreamOps">terminal
316      * operation</a>.
317      *
318      * @return an array containing the elements of this stream
319      */
toArray()320     double[] toArray();
321 
322     /**
323      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
324      * elements of this stream, using the provided identity value and an
325      * <a href="package-summary.html#Associativity">associative</a>
326      * accumulation function, and returns the reduced value.  This is equivalent
327      * to:
328      * <pre>{@code
329      *     double result = identity;
330      *     for (double element : this stream)
331      *         result = accumulator.applyAsDouble(result, element)
332      *     return result;
333      * }</pre>
334      *
335      * but is not constrained to execute sequentially.
336      *
337      * <p>The {@code identity} value must be an identity for the accumulator
338      * function. This means that for all {@code x},
339      * {@code accumulator.apply(identity, x)} is equal to {@code x}.
340      * The {@code accumulator} function must be an
341      * <a href="package-summary.html#Associativity">associative</a> function.
342      *
343      * <p>This is a <a href="package-summary.html#StreamOps">terminal
344      * operation</a>.
345      *
346      * @apiNote Sum, min, max, and average are all special cases of reduction.
347      * Summing a stream of numbers can be expressed as:
348 
349      * <pre>{@code
350      *     double sum = numbers.reduce(0, (a, b) -> a+b);
351      * }</pre>
352      *
353      * or more compactly:
354      *
355      * <pre>{@code
356      *     double sum = numbers.reduce(0, Double::sum);
357      * }</pre>
358      *
359      * <p>While this may seem a more roundabout way to perform an aggregation
360      * compared to simply mutating a running total in a loop, reduction
361      * operations parallelize more gracefully, without needing additional
362      * synchronization and with greatly reduced risk of data races.
363      *
364      * @param identity the identity value for the accumulating function
365      * @param op an <a href="package-summary.html#Associativity">associative</a>,
366      *           <a href="package-summary.html#NonInterference">non-interfering</a>,
367      *           <a href="package-summary.html#Statelessness">stateless</a>
368      *           function for combining two values
369      * @return the result of the reduction
370      * @see #sum()
371      * @see #min()
372      * @see #max()
373      * @see #average()
374      */
reduce(double identity, DoubleBinaryOperator op)375     double reduce(double identity, DoubleBinaryOperator op);
376 
377     /**
378      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
379      * elements of this stream, using an
380      * <a href="package-summary.html#Associativity">associative</a> accumulation
381      * function, and returns an {@code OptionalDouble} describing the reduced
382      * value, if any. This is equivalent to:
383      * <pre>{@code
384      *     boolean foundAny = false;
385      *     double result = null;
386      *     for (double element : this stream) {
387      *         if (!foundAny) {
388      *             foundAny = true;
389      *             result = element;
390      *         }
391      *         else
392      *             result = accumulator.applyAsDouble(result, element);
393      *     }
394      *     return foundAny ? OptionalDouble.of(result) : OptionalDouble.empty();
395      * }</pre>
396      *
397      * but is not constrained to execute sequentially.
398      *
399      * <p>The {@code accumulator} function must be an
400      * <a href="package-summary.html#Associativity">associative</a> function.
401      *
402      * <p>This is a <a href="package-summary.html#StreamOps">terminal
403      * operation</a>.
404      *
405      * @param op an <a href="package-summary.html#Associativity">associative</a>,
406      *           <a href="package-summary.html#NonInterference">non-interfering</a>,
407      *           <a href="package-summary.html#Statelessness">stateless</a>
408      *           function for combining two values
409      * @return the result of the reduction
410      * @see #reduce(double, DoubleBinaryOperator)
411      */
reduce(DoubleBinaryOperator op)412     OptionalDouble reduce(DoubleBinaryOperator op);
413 
414     /**
415      * Performs a <a href="package-summary.html#MutableReduction">mutable
416      * reduction</a> operation on the elements of this stream.  A mutable
417      * reduction is one in which the reduced value is a mutable result container,
418      * such as an {@code ArrayList}, and elements are incorporated by updating
419      * the state of the result rather than by replacing the result.  This
420      * produces a result equivalent to:
421      * <pre>{@code
422      *     R result = supplier.get();
423      *     for (double element : this stream)
424      *         accumulator.accept(result, element);
425      *     return result;
426      * }</pre>
427      *
428      * <p>Like {@link #reduce(double, DoubleBinaryOperator)}, {@code collect}
429      * operations can be parallelized without requiring additional
430      * synchronization.
431      *
432      * <p>This is a <a href="package-summary.html#StreamOps">terminal
433      * operation</a>.
434      *
435      * @param <R> type of the result
436      * @param supplier a function that creates a new result container. For a
437      *                 parallel execution, this function may be called
438      *                 multiple times and must return a fresh value each time.
439      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
440      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
441      *                    <a href="package-summary.html#Statelessness">stateless</a>
442      *                    function for incorporating an additional element into a result
443      * @param combiner an <a href="package-summary.html#Associativity">associative</a>,
444      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
445      *                    <a href="package-summary.html#Statelessness">stateless</a>
446      *                    function for combining two values, which must be
447      *                    compatible with the accumulator function
448      * @return the result of the reduction
449      * @see Stream#collect(Supplier, BiConsumer, BiConsumer)
450      */
collect(Supplier<R> supplier, ObjDoubleConsumer<R> accumulator, BiConsumer<R, R> combiner)451     <R> R collect(Supplier<R> supplier,
452                   ObjDoubleConsumer<R> accumulator,
453                   BiConsumer<R, R> combiner);
454 
455     /**
456      * Returns the sum of elements in this stream.
457      *
458      * Summation is a special case of a <a
459      * href="package-summary.html#Reduction">reduction</a>. If
460      * floating-point summation were exact, this method would be
461      * equivalent to:
462      *
463      * <pre>{@code
464      *     return reduce(0, Double::sum);
465      * }</pre>
466      *
467      * However, since floating-point summation is not exact, the above
468      * code is not necessarily equivalent to the summation computation
469      * done by this method.
470      *
471      * <p>If any stream element is a NaN or the sum is at any point a NaN
472      * then the sum will be NaN.
473      *
474      * The value of a floating-point sum is a function both
475      * of the input values as well as the order of addition
476      * operations. The order of addition operations of this method is
477      * intentionally not defined to allow for implementation
478      * flexibility to improve the speed and accuracy of the computed
479      * result.
480      *
481      * In particular, this method may be implemented using compensated
482      * summation or other technique to reduce the error bound in the
483      * numerical sum compared to a simple summation of {@code double}
484      * values.
485      *
486      * <p>This is a <a href="package-summary.html#StreamOps">terminal
487      * operation</a>.
488      *
489      * @apiNote Elements sorted by increasing absolute magnitude tend
490      * to yield more accurate results.
491      *
492      * @return the sum of elements in this stream
493      */
sum()494     double sum();
495 
496     /**
497      * Returns an {@code OptionalDouble} describing the minimum element of this
498      * stream, or an empty OptionalDouble if this stream is empty.  The minimum
499      * element will be {@code Double.NaN} if any stream element was NaN. Unlike
500      * the numerical comparison operators, this method considers negative zero
501      * to be strictly smaller than positive zero. This is a special case of a
502      * <a href="package-summary.html#Reduction">reduction</a> and is
503      * equivalent to:
504      * <pre>{@code
505      *     return reduce(Double::min);
506      * }</pre>
507      *
508      * <p>This is a <a href="package-summary.html#StreamOps">terminal
509      * operation</a>.
510      *
511      * @return an {@code OptionalDouble} containing the minimum element of this
512      * stream, or an empty optional if the stream is empty
513      */
min()514     OptionalDouble min();
515 
516     /**
517      * Returns an {@code OptionalDouble} describing the maximum element of this
518      * stream, or an empty OptionalDouble if this stream is empty.  The maximum
519      * element will be {@code Double.NaN} if any stream element was NaN. Unlike
520      * the numerical comparison operators, this method considers negative zero
521      * to be strictly smaller than positive zero. This is a
522      * special case of a
523      * <a href="package-summary.html#Reduction">reduction</a> and is
524      * equivalent to:
525      * <pre>{@code
526      *     return reduce(Double::max);
527      * }</pre>
528      *
529      * <p>This is a <a href="package-summary.html#StreamOps">terminal
530      * operation</a>.
531      *
532      * @return an {@code OptionalDouble} containing the maximum element of this
533      * stream, or an empty optional if the stream is empty
534      */
max()535     OptionalDouble max();
536 
537     /**
538      * Returns the count of elements in this stream.  This is a special case of
539      * a <a href="package-summary.html#Reduction">reduction</a> and is
540      * equivalent to:
541      * <pre>{@code
542      *     return mapToLong(e -> 1L).sum();
543      * }</pre>
544      *
545      * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
546      *
547      * @return the count of elements in this stream
548      */
count()549     long count();
550 
551     /**
552      * Returns an {@code OptionalDouble} describing the arithmetic
553      * mean of elements of this stream, or an empty optional if this
554      * stream is empty.
555      *
556      * If any recorded value is a NaN or the sum is at any point a NaN
557      * then the average will be NaN.
558      *
559      * <p>The average returned can vary depending upon the order in
560      * which values are recorded.
561      *
562      * This method may be implemented using compensated summation or
563      * other technique to reduce the error bound in the {@link #sum
564      * numerical sum} used to compute the average.
565      *
566      *  <p>The average is a special case of a <a
567      *  href="package-summary.html#Reduction">reduction</a>.
568      *
569      * <p>This is a <a href="package-summary.html#StreamOps">terminal
570      * operation</a>.
571      *
572      * @apiNote Elements sorted by increasing absolute magnitude tend
573      * to yield more accurate results.
574      *
575      * @return an {@code OptionalDouble} containing the average element of this
576      * stream, or an empty optional if the stream is empty
577      */
average()578     OptionalDouble average();
579 
580     /**
581      * Returns a {@code DoubleSummaryStatistics} describing various summary data
582      * about the elements of this stream.  This is a special
583      * case of a <a href="package-summary.html#Reduction">reduction</a>.
584      *
585      * <p>This is a <a href="package-summary.html#StreamOps">terminal
586      * operation</a>.
587      *
588      * @return a {@code DoubleSummaryStatistics} describing various summary data
589      * about the elements of this stream
590      */
summaryStatistics()591     DoubleSummaryStatistics summaryStatistics();
592 
593     /**
594      * Returns whether any elements of this stream match the provided
595      * predicate.  May not evaluate the predicate on all elements if not
596      * necessary for determining the result.  If the stream is empty then
597      * {@code false} is returned and the predicate is not evaluated.
598      *
599      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
600      * terminal operation</a>.
601      *
602      * @apiNote
603      * This method evaluates the <em>existential quantification</em> of the
604      * predicate over the elements of the stream (for some x P(x)).
605      *
606      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
607      *                  <a href="package-summary.html#Statelessness">stateless</a>
608      *                  predicate to apply to elements of this stream
609      * @return {@code true} if any elements of the stream match the provided
610      * predicate, otherwise {@code false}
611      */
anyMatch(DoublePredicate predicate)612     boolean anyMatch(DoublePredicate predicate);
613 
614     /**
615      * Returns whether all elements of this stream match the provided predicate.
616      * May not evaluate the predicate on all elements if not necessary for
617      * determining the result.  If the stream is empty then {@code true} is
618      * returned and the predicate is not evaluated.
619      *
620      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
621      * terminal operation</a>.
622      *
623      * @apiNote
624      * This method evaluates the <em>universal quantification</em> of the
625      * predicate over the elements of the stream (for all x P(x)).  If the
626      * stream is empty, the quantification is said to be <em>vacuously
627      * satisfied</em> and is always {@code true} (regardless of P(x)).
628      *
629      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
630      *                  <a href="package-summary.html#Statelessness">stateless</a>
631      *                  predicate to apply to elements of this stream
632      * @return {@code true} if either all elements of the stream match the
633      * provided predicate or the stream is empty, otherwise {@code false}
634      */
allMatch(DoublePredicate predicate)635     boolean allMatch(DoublePredicate predicate);
636 
637     /**
638      * Returns whether no elements of this stream match the provided predicate.
639      * May not evaluate the predicate on all elements if not necessary for
640      * determining the result.  If the stream is empty then {@code true} is
641      * returned and the predicate is not evaluated.
642      *
643      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
644      * terminal operation</a>.
645      *
646      * @apiNote
647      * This method evaluates the <em>universal quantification</em> of the
648      * negated predicate over the elements of the stream (for all x ~P(x)).  If
649      * the stream is empty, the quantification is said to be vacuously satisfied
650      * and is always {@code true}, regardless of P(x).
651      *
652      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
653      *                  <a href="package-summary.html#Statelessness">stateless</a>
654      *                  predicate to apply to elements of this stream
655      * @return {@code true} if either no elements of the stream match the
656      * provided predicate or the stream is empty, otherwise {@code false}
657      */
noneMatch(DoublePredicate predicate)658     boolean noneMatch(DoublePredicate predicate);
659 
660     /**
661      * Returns an {@link OptionalDouble} describing the first element of this
662      * stream, or an empty {@code OptionalDouble} if the stream is empty.  If
663      * the stream has no encounter order, then any element may be returned.
664      *
665      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
666      * terminal operation</a>.
667      *
668      * @return an {@code OptionalDouble} describing the first element of this
669      * stream, or an empty {@code OptionalDouble} if the stream is empty
670      */
findFirst()671     OptionalDouble findFirst();
672 
673     /**
674      * Returns an {@link OptionalDouble} describing some element of the stream,
675      * or an empty {@code OptionalDouble} if the stream is empty.
676      *
677      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
678      * terminal operation</a>.
679      *
680      * <p>The behavior of this operation is explicitly nondeterministic; it is
681      * free to select any element in the stream.  This is to allow for maximal
682      * performance in parallel operations; the cost is that multiple invocations
683      * on the same source may not return the same result.  (If a stable result
684      * is desired, use {@link #findFirst()} instead.)
685      *
686      * @return an {@code OptionalDouble} describing some element of this stream,
687      * or an empty {@code OptionalDouble} if the stream is empty
688      * @see #findFirst()
689      */
findAny()690     OptionalDouble findAny();
691 
692     /**
693      * Returns a {@code Stream} consisting of the elements of this stream,
694      * boxed to {@code Double}.
695      *
696      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
697      * operation</a>.
698      *
699      * @return a {@code Stream} consistent of the elements of this stream,
700      * each boxed to a {@code Double}
701      */
boxed()702     Stream<Double> boxed();
703 
704     @Override
sequential()705     DoubleStream sequential();
706 
707     @Override
parallel()708     DoubleStream parallel();
709 
710     @Override
iterator()711     PrimitiveIterator.OfDouble iterator();
712 
713     @Override
spliterator()714     Spliterator.OfDouble spliterator();
715 
716 
717     // Static factories
718 
719     /**
720      * Returns a builder for a {@code DoubleStream}.
721      *
722      * @return a stream builder
723      */
builder()724     public static Builder builder() {
725         return new Streams.DoubleStreamBuilderImpl();
726     }
727 
728     /**
729      * Returns an empty sequential {@code DoubleStream}.
730      *
731      * @return an empty sequential stream
732      */
empty()733     public static DoubleStream empty() {
734         return StreamSupport.doubleStream(Spliterators.emptyDoubleSpliterator(), false);
735     }
736 
737     /**
738      * Returns a sequential {@code DoubleStream} containing a single element.
739      *
740      * @param t the single element
741      * @return a singleton sequential stream
742      */
of(double t)743     public static DoubleStream of(double t) {
744         return StreamSupport.doubleStream(new Streams.DoubleStreamBuilderImpl(t), false);
745     }
746 
747     /**
748      * Returns a sequential ordered stream whose elements are the specified values.
749      *
750      * @param values the elements of the new stream
751      * @return the new stream
752      */
of(double... values)753     public static DoubleStream of(double... values) {
754         return Arrays.stream(values);
755     }
756 
757     /**
758      * Returns an infinite sequential ordered {@code DoubleStream} produced by iterative
759      * application of a function {@code f} to an initial element {@code seed},
760      * producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},
761      * {@code f(f(seed))}, etc.
762      *
763      * <p>The first element (position {@code 0}) in the {@code DoubleStream}
764      * will be the provided {@code seed}.  For {@code n > 0}, the element at
765      * position {@code n}, will be the result of applying the function {@code f}
766      *  to the element at position {@code n - 1}.
767      *
768      * @param seed the initial element
769      * @param f a function to be applied to to the previous element to produce
770      *          a new element
771      * @return a new sequential {@code DoubleStream}
772      */
iterate(final double seed, final DoubleUnaryOperator f)773     public static DoubleStream iterate(final double seed, final DoubleUnaryOperator f) {
774         Objects.requireNonNull(f);
775         final PrimitiveIterator.OfDouble iterator = new PrimitiveIterator.OfDouble() {
776             double t = seed;
777 
778             @Override
779             public boolean hasNext() {
780                 return true;
781             }
782 
783             @Override
784             public double nextDouble() {
785                 double v = t;
786                 t = f.applyAsDouble(t);
787                 return v;
788             }
789         };
790         return StreamSupport.doubleStream(Spliterators.spliteratorUnknownSize(
791                 iterator,
792                 Spliterator.ORDERED | Spliterator.IMMUTABLE | Spliterator.NONNULL), false);
793     }
794 
795     /**
796      * Returns an infinite sequential unordered stream where each element is
797      * generated by the provided {@code DoubleSupplier}.  This is suitable for
798      * generating constant streams, streams of random elements, etc.
799      *
800      * @param s the {@code DoubleSupplier} for generated elements
801      * @return a new infinite sequential unordered {@code DoubleStream}
802      */
generate(DoubleSupplier s)803     public static DoubleStream generate(DoubleSupplier s) {
804         Objects.requireNonNull(s);
805         return StreamSupport.doubleStream(
806                 new StreamSpliterators.InfiniteSupplyingSpliterator.OfDouble(Long.MAX_VALUE, s), false);
807     }
808 
809     /**
810      * Creates a lazily concatenated stream whose elements are all the
811      * elements of the first stream followed by all the elements of the
812      * second stream.  The resulting stream is ordered if both
813      * of the input streams are ordered, and parallel if either of the input
814      * streams is parallel.  When the resulting stream is closed, the close
815      * handlers for both input streams are invoked.
816      *
817      * @implNote
818      * Use caution when constructing streams from repeated concatenation.
819      * Accessing an element of a deeply concatenated stream can result in deep
820      * call chains, or even {@code StackOverflowException}.
821      *
822      * @param a the first stream
823      * @param b the second stream
824      * @return the concatenation of the two input streams
825      */
concat(DoubleStream a, DoubleStream b)826     public static DoubleStream concat(DoubleStream a, DoubleStream b) {
827         Objects.requireNonNull(a);
828         Objects.requireNonNull(b);
829 
830         Spliterator.OfDouble split = new Streams.ConcatSpliterator.OfDouble(
831                 a.spliterator(), b.spliterator());
832         DoubleStream stream = StreamSupport.doubleStream(split, a.isParallel() || b.isParallel());
833         return stream.onClose(Streams.composedClose(a, b));
834     }
835 
836     /**
837      * A mutable builder for a {@code DoubleStream}.
838      *
839      * <p>A stream builder has a lifecycle, which starts in a building
840      * phase, during which elements can be added, and then transitions to a built
841      * phase, after which elements may not be added.  The built phase
842      * begins when the {@link #build()} method is called, which creates an
843      * ordered stream whose elements are the elements that were added to the
844      * stream builder, in the order they were added.
845      *
846      * @see DoubleStream#builder()
847      * @since 1.8
848      */
849     public interface Builder extends DoubleConsumer {
850 
851         /**
852          * Adds an element to the stream being built.
853          *
854          * @throws IllegalStateException if the builder has already transitioned
855          * to the built state
856          */
857         @Override
accept(double t)858         void accept(double t);
859 
860         /**
861          * Adds an element to the stream being built.
862          *
863          * @implSpec
864          * The default implementation behaves as if:
865          * <pre>{@code
866          *     accept(t)
867          *     return this;
868          * }</pre>
869          *
870          * @param t the element to add
871          * @return {@code this} builder
872          * @throws IllegalStateException if the builder has already transitioned
873          * to the built state
874          */
add(double t)875         default Builder add(double t) {
876             accept(t);
877             return this;
878         }
879 
880         /**
881          * Builds the stream, transitioning this builder to the built state.
882          * An {@code IllegalStateException} is thrown if there are further
883          * attempts to operate on the builder after it has entered the built
884          * state.
885          *
886          * @return the built stream
887          * @throws IllegalStateException if the builder has already transitioned
888          * to the built state
889          */
build()890         DoubleStream build();
891     }
892 }
893