1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #ifndef OPENSSL_HEADER_AEAD_H
16 #define OPENSSL_HEADER_AEAD_H
17 
18 #include <openssl/base.h>
19 
20 #if defined(__cplusplus)
21 extern "C" {
22 #endif
23 
24 
25 /* Authenticated Encryption with Additional Data.
26  *
27  * AEAD couples confidentiality and integrity in a single primitive. AEAD
28  * algorithms take a key and then can seal and open individual messages. Each
29  * message has a unique, per-message nonce and, optionally, additional data
30  * which is authenticated but not included in the ciphertext.
31  *
32  * The |EVP_AEAD_CTX_init| function initialises an |EVP_AEAD_CTX| structure and
33  * performs any precomputation needed to use |aead| with |key|. The length of
34  * the key, |key_len|, is given in bytes.
35  *
36  * The |tag_len| argument contains the length of the tags, in bytes, and allows
37  * for the processing of truncated authenticators. A zero value indicates that
38  * the default tag length should be used and this is defined as
39  * |EVP_AEAD_DEFAULT_TAG_LENGTH| in order to make the code clear. Using
40  * truncated tags increases an attacker's chance of creating a valid forgery.
41  * Be aware that the attacker's chance may increase more than exponentially as
42  * would naively be expected.
43  *
44  * When no longer needed, the initialised |EVP_AEAD_CTX| structure must be
45  * passed to |EVP_AEAD_CTX_cleanup|, which will deallocate any memory used.
46  *
47  * With an |EVP_AEAD_CTX| in hand, one can seal and open messages. These
48  * operations are intended to meet the standard notions of privacy and
49  * authenticity for authenticated encryption. For formal definitions see
50  * Bellare and Namprempre, "Authenticated encryption: relations among notions
51  * and analysis of the generic composition paradigm," Lecture Notes in Computer
52  * Science B<1976> (2000), 531–545,
53  * http://www-cse.ucsd.edu/~mihir/papers/oem.html.
54  *
55  * When sealing messages, a nonce must be given. The length of the nonce is
56  * fixed by the AEAD in use and is returned by |EVP_AEAD_nonce_length|. *The
57  * nonce must be unique for all messages with the same key*. This is critically
58  * important - nonce reuse may completely undermine the security of the AEAD.
59  * Nonces may be predictable and public, so long as they are unique. Uniqueness
60  * may be achieved with a simple counter or, if large enough, may be generated
61  * randomly. The nonce must be passed into the "open" operation by the receiver
62  * so must either be implicit (e.g. a counter), or must be transmitted along
63  * with the sealed message.
64  *
65  * The "seal" and "open" operations are atomic - an entire message must be
66  * encrypted or decrypted in a single call. Large messages may have to be split
67  * up in order to accommodate this. When doing so, be mindful of the need not to
68  * repeat nonces and the possibility that an attacker could duplicate, reorder
69  * or drop message chunks. For example, using a single key for a given (large)
70  * message and sealing chunks with nonces counting from zero would be secure as
71  * long as the number of chunks was securely transmitted. (Otherwise an
72  * attacker could truncate the message by dropping chunks from the end.)
73  *
74  * The number of chunks could be transmitted by prefixing it to the plaintext,
75  * for example. This also assumes that no other message would ever use the same
76  * key otherwise the rule that nonces must be unique for a given key would be
77  * violated.
78  *
79  * The "seal" and "open" operations also permit additional data to be
80  * authenticated via the |ad| parameter. This data is not included in the
81  * ciphertext and must be identical for both the "seal" and "open" call. This
82  * permits implicit context to be authenticated but may be empty if not needed.
83  *
84  * The "seal" and "open" operations may work in-place if the |out| and |in|
85  * arguments are equal. Otherwise, if |out| and |in| alias, input data may be
86  * overwritten before it is read. This situation will cause an error.
87  *
88  * The "seal" and "open" operations return one on success and zero on error. */
89 
90 
91 /* AEAD algorithms. */
92 
93 /* EVP_aead_aes_128_gcm is AES-128 in Galois Counter Mode. */
94 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm(void);
95 
96 /* EVP_aead_aes_256_gcm is AES-256 in Galois Counter Mode. */
97 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm(void);
98 
99 /* EVP_aead_chacha20_poly1305 is the AEAD built from ChaCha20 and
100  * Poly1305 as described in RFC 7539. */
101 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_chacha20_poly1305(void);
102 
103 /* EVP_aead_aes_128_ctr_hmac_sha256 is AES-128 in CTR mode with HMAC-SHA256 for
104  * authentication. The nonce is 12 bytes; the bottom 32-bits are used as the
105  * block counter, thus the maximum plaintext size is 64GB. */
106 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void);
107 
108 /* EVP_aead_aes_256_ctr_hmac_sha256 is AES-256 in CTR mode with HMAC-SHA256 for
109  * authentication. See |EVP_aead_aes_128_ctr_hmac_sha256| for details. */
110 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void);
111 
112 /* EVP_aead_aes_128_gcm_siv is AES-128 in GCM-SIV mode. See
113  * https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02 */
114 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void);
115 
116 /* EVP_aead_aes_256_gcm_siv is AES-256 in GCM-SIV mode. See
117  * https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02 */
118 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void);
119 
120 /* EVP_has_aes_hardware returns one if we enable hardware support for fast and
121  * constant-time AES-GCM. */
122 OPENSSL_EXPORT int EVP_has_aes_hardware(void);
123 
124 
125 /* Utility functions. */
126 
127 /* EVP_AEAD_key_length returns the length, in bytes, of the keys used by
128  * |aead|. */
129 OPENSSL_EXPORT size_t EVP_AEAD_key_length(const EVP_AEAD *aead);
130 
131 /* EVP_AEAD_nonce_length returns the length, in bytes, of the per-message nonce
132  * for |aead|. */
133 OPENSSL_EXPORT size_t EVP_AEAD_nonce_length(const EVP_AEAD *aead);
134 
135 /* EVP_AEAD_max_overhead returns the maximum number of additional bytes added
136  * by the act of sealing data with |aead|. */
137 OPENSSL_EXPORT size_t EVP_AEAD_max_overhead(const EVP_AEAD *aead);
138 
139 /* EVP_AEAD_max_tag_len returns the maximum tag length when using |aead|. This
140  * is the largest value that can be passed as |tag_len| to
141  * |EVP_AEAD_CTX_init|. */
142 OPENSSL_EXPORT size_t EVP_AEAD_max_tag_len(const EVP_AEAD *aead);
143 
144 
145 /* AEAD operations. */
146 
147 /* An EVP_AEAD_CTX represents an AEAD algorithm configured with a specific key
148  * and message-independent IV. */
149 typedef struct evp_aead_ctx_st {
150   const EVP_AEAD *aead;
151   /* aead_state is an opaque pointer to whatever state the AEAD needs to
152    * maintain. */
153   void *aead_state;
154 } EVP_AEAD_CTX;
155 
156 /* EVP_AEAD_MAX_KEY_LENGTH contains the maximum key length used by
157  * any AEAD defined in this header. */
158 #define EVP_AEAD_MAX_KEY_LENGTH 80
159 
160 /* EVP_AEAD_MAX_NONCE_LENGTH contains the maximum nonce length used by
161  * any AEAD defined in this header. */
162 #define EVP_AEAD_MAX_NONCE_LENGTH 16
163 
164 /* EVP_AEAD_MAX_OVERHEAD contains the maximum overhead used by any AEAD
165  * defined in this header. */
166 #define EVP_AEAD_MAX_OVERHEAD 64
167 
168 /* EVP_AEAD_DEFAULT_TAG_LENGTH is a magic value that can be passed to
169  * EVP_AEAD_CTX_init to indicate that the default tag length for an AEAD should
170  * be used. */
171 #define EVP_AEAD_DEFAULT_TAG_LENGTH 0
172 
173 /* EVP_AEAD_CTX_zero sets an uninitialized |ctx| to the zero state. It must be
174  * initialized with |EVP_AEAD_CTX_init| before use. It is safe, but not
175  * necessary, to call |EVP_AEAD_CTX_cleanup| in this state. This may be used for
176  * more uniform cleanup of |EVP_AEAD_CTX|. */
177 OPENSSL_EXPORT void EVP_AEAD_CTX_zero(EVP_AEAD_CTX *ctx);
178 
179 /* EVP_AEAD_CTX_init initializes |ctx| for the given AEAD algorithm. The |impl|
180  * argument is ignored and should be NULL. Authentication tags may be truncated
181  * by passing a size as |tag_len|. A |tag_len| of zero indicates the default
182  * tag length and this is defined as EVP_AEAD_DEFAULT_TAG_LENGTH for
183  * readability.
184  *
185  * Returns 1 on success. Otherwise returns 0 and pushes to the error stack. In
186  * the error case, you do not need to call |EVP_AEAD_CTX_cleanup|, but it's
187  * harmless to do so. */
188 OPENSSL_EXPORT int EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead,
189                                      const uint8_t *key, size_t key_len,
190                                      size_t tag_len, ENGINE *impl);
191 
192 /* EVP_AEAD_CTX_cleanup frees any data allocated by |ctx|. It is a no-op to
193  * call |EVP_AEAD_CTX_cleanup| on a |EVP_AEAD_CTX| that has been |memset| to
194  * all zeros. */
195 OPENSSL_EXPORT void EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx);
196 
197 /* EVP_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and
198  * authenticates |ad_len| bytes from |ad| and writes the result to |out|. It
199  * returns one on success and zero otherwise.
200  *
201  * This function may be called (with the same |EVP_AEAD_CTX|) concurrently with
202  * itself or |EVP_AEAD_CTX_open|.
203  *
204  * At most |max_out_len| bytes are written to |out| and, in order to ensure
205  * success, |max_out_len| should be |in_len| plus the result of
206  * |EVP_AEAD_max_overhead|. On successful return, |*out_len| is set to the
207  * actual number of bytes written.
208  *
209  * The length of |nonce|, |nonce_len|, must be equal to the result of
210  * |EVP_AEAD_nonce_length| for this AEAD.
211  *
212  * |EVP_AEAD_CTX_seal| never results in a partial output. If |max_out_len| is
213  * insufficient, zero will be returned. (In this case, |*out_len| is set to
214  * zero.)
215  *
216  * If |in| and |out| alias then |out| must be == |in|. */
217 OPENSSL_EXPORT int EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
218                                      size_t *out_len, size_t max_out_len,
219                                      const uint8_t *nonce, size_t nonce_len,
220                                      const uint8_t *in, size_t in_len,
221                                      const uint8_t *ad, size_t ad_len);
222 
223 /* EVP_AEAD_CTX_open authenticates |in_len| bytes from |in| and |ad_len| bytes
224  * from |ad| and decrypts at most |in_len| bytes into |out|. It returns one on
225  * success and zero otherwise.
226  *
227  * This function may be called (with the same |EVP_AEAD_CTX|) concurrently with
228  * itself or |EVP_AEAD_CTX_seal|.
229  *
230  * At most |in_len| bytes are written to |out|. In order to ensure success,
231  * |max_out_len| should be at least |in_len|. On successful return, |*out_len|
232  * is set to the the actual number of bytes written.
233  *
234  * The length of |nonce|, |nonce_len|, must be equal to the result of
235  * |EVP_AEAD_nonce_length| for this AEAD.
236  *
237  * |EVP_AEAD_CTX_open| never results in a partial output. If |max_out_len| is
238  * insufficient, zero will be returned. (In this case, |*out_len| is set to
239  * zero.)
240  *
241  * If |in| and |out| alias then |out| must be == |in|. */
242 OPENSSL_EXPORT int EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
243                                      size_t *out_len, size_t max_out_len,
244                                      const uint8_t *nonce, size_t nonce_len,
245                                      const uint8_t *in, size_t in_len,
246                                      const uint8_t *ad, size_t ad_len);
247 
248 /* EVP_AEAD_CTX_aead returns the underlying AEAD for |ctx|, or NULL if one has
249  * not been set. */
250 OPENSSL_EXPORT const EVP_AEAD *EVP_AEAD_CTX_aead(const EVP_AEAD_CTX *ctx);
251 
252 
253 /* TLS-specific AEAD algorithms.
254  *
255  * These AEAD primitives do not meet the definition of generic AEADs. They are
256  * all specific to TLS and should not be used outside of that context. They must
257  * be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful, and may
258  * not be used concurrently. Any nonces are used as IVs, so they must be
259  * unpredictable. They only accept an |ad| parameter of length 11 (the standard
260  * TLS one with length omitted). */
261 
262 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void);
263 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void);
264 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void);
265 
266 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void);
267 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void);
268 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void);
269 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void);
270 
271 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void);
272 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void);
273 
274 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_tls(void);
275 
276 
277 /* SSLv3-specific AEAD algorithms.
278  *
279  * These AEAD primitives do not meet the definition of generic AEADs. They are
280  * all specific to SSLv3 and should not be used outside of that context. They
281  * must be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful,
282  * and may not be used concurrently. They only accept an |ad| parameter of
283  * length 9 (the standard TLS one with length and version omitted). */
284 
285 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_ssl3(void);
286 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_ssl3(void);
287 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_ssl3(void);
288 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_ssl3(void);
289 
290 
291 /* Obscure functions. */
292 
293 /* evp_aead_direction_t denotes the direction of an AEAD operation. */
294 enum evp_aead_direction_t {
295   evp_aead_open,
296   evp_aead_seal,
297 };
298 
299 /* EVP_AEAD_CTX_init_with_direction calls |EVP_AEAD_CTX_init| for normal
300  * AEADs. For TLS-specific and SSL3-specific AEADs, it initializes |ctx| for a
301  * given direction. */
302 OPENSSL_EXPORT int EVP_AEAD_CTX_init_with_direction(
303     EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const uint8_t *key, size_t key_len,
304     size_t tag_len, enum evp_aead_direction_t dir);
305 
306 /* EVP_AEAD_CTX_get_iv sets |*out_len| to the length of the IV for |ctx| and
307  * sets |*out_iv| to point to that many bytes of the current IV. This is only
308  * meaningful for AEADs with implicit IVs (i.e. CBC mode in SSLv3 and TLS 1.0).
309  *
310  * It returns one on success or zero on error. */
311 OPENSSL_EXPORT int EVP_AEAD_CTX_get_iv(const EVP_AEAD_CTX *ctx,
312                                        const uint8_t **out_iv, size_t *out_len);
313 
314 
315 #if defined(__cplusplus)
316 }  /* extern C */
317 
318 #if !defined(BORINGSSL_NO_CXX)
319 extern "C++" {
320 
321 namespace bssl {
322 
323 using ScopedEVP_AEAD_CTX =
324     internal::StackAllocated<EVP_AEAD_CTX, void, EVP_AEAD_CTX_zero,
325                              EVP_AEAD_CTX_cleanup>;
326 
327 }  // namespace bssl
328 
329 }  // extern C++
330 #endif
331 
332 #endif
333 
334 #endif  /* OPENSSL_HEADER_AEAD_H */
335