1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "bounds_check_elimination.h"
18 
19 #include <limits>
20 
21 #include "base/arena_containers.h"
22 #include "induction_var_range.h"
23 #include "side_effects_analysis.h"
24 #include "nodes.h"
25 
26 namespace art {
27 
28 class MonotonicValueRange;
29 
30 /**
31  * A value bound is represented as a pair of value and constant,
32  * e.g. array.length - 1.
33  */
34 class ValueBound : public ValueObject {
35  public:
ValueBound(HInstruction * instruction,int32_t constant)36   ValueBound(HInstruction* instruction, int32_t constant) {
37     if (instruction != nullptr && instruction->IsIntConstant()) {
38       // Normalize ValueBound with constant instruction.
39       int32_t instr_const = instruction->AsIntConstant()->GetValue();
40       if (!WouldAddOverflowOrUnderflow(instr_const, constant)) {
41         instruction_ = nullptr;
42         constant_ = instr_const + constant;
43         return;
44       }
45     }
46     instruction_ = instruction;
47     constant_ = constant;
48   }
49 
50   // Return whether (left + right) overflows or underflows.
WouldAddOverflowOrUnderflow(int32_t left,int32_t right)51   static bool WouldAddOverflowOrUnderflow(int32_t left, int32_t right) {
52     if (right == 0) {
53       return false;
54     }
55     if ((right > 0) && (left <= (std::numeric_limits<int32_t>::max() - right))) {
56       // No overflow.
57       return false;
58     }
59     if ((right < 0) && (left >= (std::numeric_limits<int32_t>::min() - right))) {
60       // No underflow.
61       return false;
62     }
63     return true;
64   }
65 
66   // Return true if instruction can be expressed as "left_instruction + right_constant".
IsAddOrSubAConstant(HInstruction * instruction,HInstruction ** left_instruction,int32_t * right_constant)67   static bool IsAddOrSubAConstant(HInstruction* instruction,
68                                   /* out */ HInstruction** left_instruction,
69                                   /* out */ int32_t* right_constant) {
70     HInstruction* left_so_far = nullptr;
71     int32_t right_so_far = 0;
72     while (instruction->IsAdd() || instruction->IsSub()) {
73       HBinaryOperation* bin_op = instruction->AsBinaryOperation();
74       HInstruction* left = bin_op->GetLeft();
75       HInstruction* right = bin_op->GetRight();
76       if (right->IsIntConstant()) {
77         int32_t v = right->AsIntConstant()->GetValue();
78         int32_t c = instruction->IsAdd() ? v : -v;
79         if (!WouldAddOverflowOrUnderflow(right_so_far, c)) {
80           instruction = left;
81           left_so_far = left;
82           right_so_far += c;
83           continue;
84         }
85       }
86       break;
87     }
88     // Return result: either false and "null+0" or true and "instr+constant".
89     *left_instruction = left_so_far;
90     *right_constant = right_so_far;
91     return left_so_far != nullptr;
92   }
93 
94   // Expresses any instruction as a value bound.
AsValueBound(HInstruction * instruction)95   static ValueBound AsValueBound(HInstruction* instruction) {
96     if (instruction->IsIntConstant()) {
97       return ValueBound(nullptr, instruction->AsIntConstant()->GetValue());
98     }
99     HInstruction *left;
100     int32_t right;
101     if (IsAddOrSubAConstant(instruction, &left, &right)) {
102       return ValueBound(left, right);
103     }
104     return ValueBound(instruction, 0);
105   }
106 
107   // Try to detect useful value bound format from an instruction, e.g.
108   // a constant or array length related value.
DetectValueBoundFromValue(HInstruction * instruction,bool * found)109   static ValueBound DetectValueBoundFromValue(HInstruction* instruction, /* out */ bool* found) {
110     DCHECK(instruction != nullptr);
111     if (instruction->IsIntConstant()) {
112       *found = true;
113       return ValueBound(nullptr, instruction->AsIntConstant()->GetValue());
114     }
115 
116     if (instruction->IsArrayLength()) {
117       *found = true;
118       return ValueBound(instruction, 0);
119     }
120     // Try to detect (array.length + c) format.
121     HInstruction *left;
122     int32_t right;
123     if (IsAddOrSubAConstant(instruction, &left, &right)) {
124       if (left->IsArrayLength()) {
125         *found = true;
126         return ValueBound(left, right);
127       }
128     }
129 
130     // No useful bound detected.
131     *found = false;
132     return ValueBound::Max();
133   }
134 
GetInstruction() const135   HInstruction* GetInstruction() const { return instruction_; }
GetConstant() const136   int32_t GetConstant() const { return constant_; }
137 
IsRelatedToArrayLength() const138   bool IsRelatedToArrayLength() const {
139     // Some bounds are created with HNewArray* as the instruction instead
140     // of HArrayLength*. They are treated the same.
141     return (instruction_ != nullptr) &&
142            (instruction_->IsArrayLength() || instruction_->IsNewArray());
143   }
144 
IsConstant() const145   bool IsConstant() const {
146     return instruction_ == nullptr;
147   }
148 
Min()149   static ValueBound Min() { return ValueBound(nullptr, std::numeric_limits<int32_t>::min()); }
Max()150   static ValueBound Max() { return ValueBound(nullptr, std::numeric_limits<int32_t>::max()); }
151 
Equals(ValueBound bound) const152   bool Equals(ValueBound bound) const {
153     return instruction_ == bound.instruction_ && constant_ == bound.constant_;
154   }
155 
Equal(HInstruction * instruction1,HInstruction * instruction2)156   static bool Equal(HInstruction* instruction1, HInstruction* instruction2) {
157     if (instruction1 == instruction2) {
158       return true;
159     }
160     if (instruction1 == nullptr || instruction2 == nullptr) {
161       return false;
162     }
163     instruction1 = HuntForDeclaration(instruction1);
164     instruction2 = HuntForDeclaration(instruction2);
165     return instruction1 == instruction2;
166   }
167 
168   // Returns if it's certain this->bound >= `bound`.
GreaterThanOrEqualTo(ValueBound bound) const169   bool GreaterThanOrEqualTo(ValueBound bound) const {
170     if (Equal(instruction_, bound.instruction_)) {
171       return constant_ >= bound.constant_;
172     }
173     // Not comparable. Just return false.
174     return false;
175   }
176 
177   // Returns if it's certain this->bound <= `bound`.
LessThanOrEqualTo(ValueBound bound) const178   bool LessThanOrEqualTo(ValueBound bound) const {
179     if (Equal(instruction_, bound.instruction_)) {
180       return constant_ <= bound.constant_;
181     }
182     // Not comparable. Just return false.
183     return false;
184   }
185 
186   // Returns if it's certain this->bound > `bound`.
GreaterThan(ValueBound bound) const187   bool GreaterThan(ValueBound bound) const {
188     if (Equal(instruction_, bound.instruction_)) {
189       return constant_ > bound.constant_;
190     }
191     // Not comparable. Just return false.
192     return false;
193   }
194 
195   // Returns if it's certain this->bound < `bound`.
LessThan(ValueBound bound) const196   bool LessThan(ValueBound bound) const {
197     if (Equal(instruction_, bound.instruction_)) {
198       return constant_ < bound.constant_;
199     }
200     // Not comparable. Just return false.
201     return false;
202   }
203 
204   // Try to narrow lower bound. Returns the greatest of the two if possible.
205   // Pick one if they are not comparable.
NarrowLowerBound(ValueBound bound1,ValueBound bound2)206   static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) {
207     if (bound1.GreaterThanOrEqualTo(bound2)) {
208       return bound1;
209     }
210     if (bound2.GreaterThanOrEqualTo(bound1)) {
211       return bound2;
212     }
213 
214     // Not comparable. Just pick one. We may lose some info, but that's ok.
215     // Favor constant as lower bound.
216     return bound1.IsConstant() ? bound1 : bound2;
217   }
218 
219   // Try to narrow upper bound. Returns the lowest of the two if possible.
220   // Pick one if they are not comparable.
NarrowUpperBound(ValueBound bound1,ValueBound bound2)221   static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) {
222     if (bound1.LessThanOrEqualTo(bound2)) {
223       return bound1;
224     }
225     if (bound2.LessThanOrEqualTo(bound1)) {
226       return bound2;
227     }
228 
229     // Not comparable. Just pick one. We may lose some info, but that's ok.
230     // Favor array length as upper bound.
231     return bound1.IsRelatedToArrayLength() ? bound1 : bound2;
232   }
233 
234   // Add a constant to a ValueBound.
235   // `overflow` or `underflow` will return whether the resulting bound may
236   // overflow or underflow an int.
Add(int32_t c,bool * overflow,bool * underflow) const237   ValueBound Add(int32_t c, /* out */ bool* overflow, /* out */ bool* underflow) const {
238     *overflow = *underflow = false;
239     if (c == 0) {
240       return *this;
241     }
242 
243     int32_t new_constant;
244     if (c > 0) {
245       if (constant_ > (std::numeric_limits<int32_t>::max() - c)) {
246         *overflow = true;
247         return Max();
248       }
249 
250       new_constant = constant_ + c;
251       // (array.length + non-positive-constant) won't overflow an int.
252       if (IsConstant() || (IsRelatedToArrayLength() && new_constant <= 0)) {
253         return ValueBound(instruction_, new_constant);
254       }
255       // Be conservative.
256       *overflow = true;
257       return Max();
258     } else {
259       if (constant_ < (std::numeric_limits<int32_t>::min() - c)) {
260         *underflow = true;
261         return Min();
262       }
263 
264       new_constant = constant_ + c;
265       // Regardless of the value new_constant, (array.length+new_constant) will
266       // never underflow since array.length is no less than 0.
267       if (IsConstant() || IsRelatedToArrayLength()) {
268         return ValueBound(instruction_, new_constant);
269       }
270       // Be conservative.
271       *underflow = true;
272       return Min();
273     }
274   }
275 
276  private:
277   HInstruction* instruction_;
278   int32_t constant_;
279 };
280 
281 /**
282  * Represent a range of lower bound and upper bound, both being inclusive.
283  * Currently a ValueRange may be generated as a result of the following:
284  * comparisons related to array bounds, array bounds check, add/sub on top
285  * of an existing value range, NewArray or a loop phi corresponding to an
286  * incrementing/decrementing array index (MonotonicValueRange).
287  */
288 class ValueRange : public ArenaObject<kArenaAllocBoundsCheckElimination> {
289  public:
ValueRange(ArenaAllocator * allocator,ValueBound lower,ValueBound upper)290   ValueRange(ArenaAllocator* allocator, ValueBound lower, ValueBound upper)
291       : allocator_(allocator), lower_(lower), upper_(upper) {}
292 
~ValueRange()293   virtual ~ValueRange() {}
294 
AsMonotonicValueRange()295   virtual MonotonicValueRange* AsMonotonicValueRange() { return nullptr; }
IsMonotonicValueRange()296   bool IsMonotonicValueRange() {
297     return AsMonotonicValueRange() != nullptr;
298   }
299 
GetAllocator() const300   ArenaAllocator* GetAllocator() const { return allocator_; }
GetLower() const301   ValueBound GetLower() const { return lower_; }
GetUpper() const302   ValueBound GetUpper() const { return upper_; }
303 
IsConstantValueRange()304   bool IsConstantValueRange() { return lower_.IsConstant() && upper_.IsConstant(); }
305 
306   // If it's certain that this value range fits in other_range.
FitsIn(ValueRange * other_range) const307   virtual bool FitsIn(ValueRange* other_range) const {
308     if (other_range == nullptr) {
309       return true;
310     }
311     DCHECK(!other_range->IsMonotonicValueRange());
312     return lower_.GreaterThanOrEqualTo(other_range->lower_) &&
313            upper_.LessThanOrEqualTo(other_range->upper_);
314   }
315 
316   // Returns the intersection of this and range.
317   // If it's not possible to do intersection because some
318   // bounds are not comparable, it's ok to pick either bound.
Narrow(ValueRange * range)319   virtual ValueRange* Narrow(ValueRange* range) {
320     if (range == nullptr) {
321       return this;
322     }
323 
324     if (range->IsMonotonicValueRange()) {
325       return this;
326     }
327 
328     return new (allocator_) ValueRange(
329         allocator_,
330         ValueBound::NarrowLowerBound(lower_, range->lower_),
331         ValueBound::NarrowUpperBound(upper_, range->upper_));
332   }
333 
334   // Shift a range by a constant.
Add(int32_t constant) const335   ValueRange* Add(int32_t constant) const {
336     bool overflow, underflow;
337     ValueBound lower = lower_.Add(constant, &overflow, &underflow);
338     if (underflow) {
339       // Lower bound underflow will wrap around to positive values
340       // and invalidate the upper bound.
341       return nullptr;
342     }
343     ValueBound upper = upper_.Add(constant, &overflow, &underflow);
344     if (overflow) {
345       // Upper bound overflow will wrap around to negative values
346       // and invalidate the lower bound.
347       return nullptr;
348     }
349     return new (allocator_) ValueRange(allocator_, lower, upper);
350   }
351 
352  private:
353   ArenaAllocator* const allocator_;
354   const ValueBound lower_;  // inclusive
355   const ValueBound upper_;  // inclusive
356 
357   DISALLOW_COPY_AND_ASSIGN(ValueRange);
358 };
359 
360 /**
361  * A monotonically incrementing/decrementing value range, e.g.
362  * the variable i in "for (int i=0; i<array.length; i++)".
363  * Special care needs to be taken to account for overflow/underflow
364  * of such value ranges.
365  */
366 class MonotonicValueRange : public ValueRange {
367  public:
MonotonicValueRange(ArenaAllocator * allocator,HPhi * induction_variable,HInstruction * initial,int32_t increment,ValueBound bound)368   MonotonicValueRange(ArenaAllocator* allocator,
369                       HPhi* induction_variable,
370                       HInstruction* initial,
371                       int32_t increment,
372                       ValueBound bound)
373       // To be conservative, give it full range [Min(), Max()] in case it's
374       // used as a regular value range, due to possible overflow/underflow.
375       : ValueRange(allocator, ValueBound::Min(), ValueBound::Max()),
376         induction_variable_(induction_variable),
377         initial_(initial),
378         increment_(increment),
379         bound_(bound) {}
380 
~MonotonicValueRange()381   virtual ~MonotonicValueRange() {}
382 
GetIncrement() const383   int32_t GetIncrement() const { return increment_; }
GetBound() const384   ValueBound GetBound() const { return bound_; }
GetLoopHeader() const385   HBasicBlock* GetLoopHeader() const {
386     DCHECK(induction_variable_->GetBlock()->IsLoopHeader());
387     return induction_variable_->GetBlock();
388   }
389 
AsMonotonicValueRange()390   MonotonicValueRange* AsMonotonicValueRange() OVERRIDE { return this; }
391 
392   // If it's certain that this value range fits in other_range.
FitsIn(ValueRange * other_range) const393   bool FitsIn(ValueRange* other_range) const OVERRIDE {
394     if (other_range == nullptr) {
395       return true;
396     }
397     DCHECK(!other_range->IsMonotonicValueRange());
398     return false;
399   }
400 
401   // Try to narrow this MonotonicValueRange given another range.
402   // Ideally it will return a normal ValueRange. But due to
403   // possible overflow/underflow, that may not be possible.
Narrow(ValueRange * range)404   ValueRange* Narrow(ValueRange* range) OVERRIDE {
405     if (range == nullptr) {
406       return this;
407     }
408     DCHECK(!range->IsMonotonicValueRange());
409 
410     if (increment_ > 0) {
411       // Monotonically increasing.
412       ValueBound lower = ValueBound::NarrowLowerBound(bound_, range->GetLower());
413       if (!lower.IsConstant() || lower.GetConstant() == std::numeric_limits<int32_t>::min()) {
414         // Lower bound isn't useful. Leave it to deoptimization.
415         return this;
416       }
417 
418       // We currently conservatively assume max array length is Max().
419       // If we can make assumptions about the max array length, e.g. due to the max heap size,
420       // divided by the element size (such as 4 bytes for each integer array), we can
421       // lower this number and rule out some possible overflows.
422       int32_t max_array_len = std::numeric_limits<int32_t>::max();
423 
424       // max possible integer value of range's upper value.
425       int32_t upper = std::numeric_limits<int32_t>::max();
426       // Try to lower upper.
427       ValueBound upper_bound = range->GetUpper();
428       if (upper_bound.IsConstant()) {
429         upper = upper_bound.GetConstant();
430       } else if (upper_bound.IsRelatedToArrayLength() && upper_bound.GetConstant() <= 0) {
431         // Normal case. e.g. <= array.length - 1.
432         upper = max_array_len + upper_bound.GetConstant();
433       }
434 
435       // If we can prove for the last number in sequence of initial_,
436       // initial_ + increment_, initial_ + 2 x increment_, ...
437       // that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow,
438       // then this MonoticValueRange is narrowed to a normal value range.
439 
440       // Be conservative first, assume last number in the sequence hits upper.
441       int32_t last_num_in_sequence = upper;
442       if (initial_->IsIntConstant()) {
443         int32_t initial_constant = initial_->AsIntConstant()->GetValue();
444         if (upper <= initial_constant) {
445           last_num_in_sequence = upper;
446         } else {
447           // Cast to int64_t for the substraction part to avoid int32_t overflow.
448           last_num_in_sequence = initial_constant +
449               ((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_;
450         }
451       }
452       if (last_num_in_sequence <= (std::numeric_limits<int32_t>::max() - increment_)) {
453         // No overflow. The sequence will be stopped by the upper bound test as expected.
454         return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper());
455       }
456 
457       // There might be overflow. Give up narrowing.
458       return this;
459     } else {
460       DCHECK_NE(increment_, 0);
461       // Monotonically decreasing.
462       ValueBound upper = ValueBound::NarrowUpperBound(bound_, range->GetUpper());
463       if ((!upper.IsConstant() || upper.GetConstant() == std::numeric_limits<int32_t>::max()) &&
464           !upper.IsRelatedToArrayLength()) {
465         // Upper bound isn't useful. Leave it to deoptimization.
466         return this;
467       }
468 
469       // Need to take care of underflow. Try to prove underflow won't happen
470       // for common cases.
471       if (range->GetLower().IsConstant()) {
472         int32_t constant = range->GetLower().GetConstant();
473         if (constant >= (std::numeric_limits<int32_t>::min() - increment_)) {
474           return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper);
475         }
476       }
477 
478       // For non-constant lower bound, just assume might be underflow. Give up narrowing.
479       return this;
480     }
481   }
482 
483  private:
484   HPhi* const induction_variable_;  // Induction variable for this monotonic value range.
485   HInstruction* const initial_;     // Initial value.
486   const int32_t increment_;         // Increment for each loop iteration.
487   const ValueBound bound_;          // Additional value bound info for initial_.
488 
489   DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange);
490 };
491 
492 class BCEVisitor : public HGraphVisitor {
493  public:
494   // The least number of bounds checks that should be eliminated by triggering
495   // the deoptimization technique.
496   static constexpr size_t kThresholdForAddingDeoptimize = 2;
497 
498   // Very large lengths are considered an anomaly. This is a threshold beyond which we don't
499   // bother to apply the deoptimization technique since it's likely, or sometimes certain,
500   // an AIOOBE will be thrown.
501   static constexpr uint32_t kMaxLengthForAddingDeoptimize =
502       std::numeric_limits<int32_t>::max() - 1024 * 1024;
503 
504   // Added blocks for loop body entry test.
IsAddedBlock(HBasicBlock * block) const505   bool IsAddedBlock(HBasicBlock* block) const {
506     return block->GetBlockId() >= initial_block_size_;
507   }
508 
BCEVisitor(HGraph * graph,const SideEffectsAnalysis & side_effects,HInductionVarAnalysis * induction_analysis)509   BCEVisitor(HGraph* graph,
510              const SideEffectsAnalysis& side_effects,
511              HInductionVarAnalysis* induction_analysis)
512       : HGraphVisitor(graph),
513         maps_(graph->GetBlocks().size(),
514               ArenaSafeMap<int, ValueRange*>(
515                   std::less<int>(),
516                   graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)),
517               graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)),
518         first_index_bounds_check_map_(
519             std::less<int>(),
520             graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)),
521         early_exit_loop_(
522             std::less<uint32_t>(),
523             graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)),
524         taken_test_loop_(
525             std::less<uint32_t>(),
526             graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)),
527         finite_loop_(graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)),
528         has_dom_based_dynamic_bce_(false),
529         initial_block_size_(graph->GetBlocks().size()),
530         side_effects_(side_effects),
531         induction_range_(induction_analysis),
532         next_(nullptr) {}
533 
VisitBasicBlock(HBasicBlock * block)534   void VisitBasicBlock(HBasicBlock* block) OVERRIDE {
535     DCHECK(!IsAddedBlock(block));
536     first_index_bounds_check_map_.clear();
537     // Visit phis and instructions using a safe iterator. The iteration protects
538     // against deleting the current instruction during iteration. However, it
539     // must advance next_ if that instruction is deleted during iteration.
540     for (HInstruction* instruction = block->GetFirstPhi(); instruction != nullptr;) {
541       DCHECK(instruction->IsInBlock());
542       next_ = instruction->GetNext();
543       instruction->Accept(this);
544       instruction = next_;
545     }
546     for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
547       DCHECK(instruction->IsInBlock());
548       next_ = instruction->GetNext();
549       instruction->Accept(this);
550       instruction = next_;
551     }
552     // We should never deoptimize from an osr method, otherwise we might wrongly optimize
553     // code dominated by the deoptimization.
554     if (!GetGraph()->IsCompilingOsr()) {
555       AddComparesWithDeoptimization(block);
556     }
557   }
558 
Finish()559   void Finish() {
560     // Preserve SSA structure which may have been broken by adding one or more
561     // new taken-test structures (see TransformLoopForDeoptimizationIfNeeded()).
562     InsertPhiNodes();
563 
564     // Clear the loop data structures.
565     early_exit_loop_.clear();
566     taken_test_loop_.clear();
567     finite_loop_.clear();
568   }
569 
570  private:
571   // Return the map of proven value ranges at the beginning of a basic block.
GetValueRangeMap(HBasicBlock * basic_block)572   ArenaSafeMap<int, ValueRange*>* GetValueRangeMap(HBasicBlock* basic_block) {
573     if (IsAddedBlock(basic_block)) {
574       // Added blocks don't keep value ranges.
575       return nullptr;
576     }
577     return &maps_[basic_block->GetBlockId()];
578   }
579 
580   // Traverse up the dominator tree to look for value range info.
LookupValueRange(HInstruction * instruction,HBasicBlock * basic_block)581   ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) {
582     while (basic_block != nullptr) {
583       ArenaSafeMap<int, ValueRange*>* map = GetValueRangeMap(basic_block);
584       if (map != nullptr) {
585         if (map->find(instruction->GetId()) != map->end()) {
586           return map->Get(instruction->GetId());
587         }
588       } else {
589         DCHECK(IsAddedBlock(basic_block));
590       }
591       basic_block = basic_block->GetDominator();
592     }
593     // Didn't find any.
594     return nullptr;
595   }
596 
597   // Helper method to assign a new range to an instruction in given basic block.
AssignRange(HBasicBlock * basic_block,HInstruction * instruction,ValueRange * range)598   void AssignRange(HBasicBlock* basic_block, HInstruction* instruction, ValueRange* range) {
599     GetValueRangeMap(basic_block)->Overwrite(instruction->GetId(), range);
600   }
601 
602   // Narrow the value range of `instruction` at the end of `basic_block` with `range`,
603   // and push the narrowed value range to `successor`.
ApplyRangeFromComparison(HInstruction * instruction,HBasicBlock * basic_block,HBasicBlock * successor,ValueRange * range)604   void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block,
605                                 HBasicBlock* successor, ValueRange* range) {
606     ValueRange* existing_range = LookupValueRange(instruction, basic_block);
607     if (existing_range == nullptr) {
608       if (range != nullptr) {
609         AssignRange(successor, instruction, range);
610       }
611       return;
612     }
613     if (existing_range->IsMonotonicValueRange()) {
614       DCHECK(instruction->IsLoopHeaderPhi());
615       // Make sure the comparison is in the loop header so each increment is
616       // checked with a comparison.
617       if (instruction->GetBlock() != basic_block) {
618         return;
619       }
620     }
621     AssignRange(successor, instruction, existing_range->Narrow(range));
622   }
623 
624   // Special case that we may simultaneously narrow two MonotonicValueRange's to
625   // regular value ranges.
HandleIfBetweenTwoMonotonicValueRanges(HIf * instruction,HInstruction * left,HInstruction * right,IfCondition cond,MonotonicValueRange * left_range,MonotonicValueRange * right_range)626   void HandleIfBetweenTwoMonotonicValueRanges(HIf* instruction,
627                                               HInstruction* left,
628                                               HInstruction* right,
629                                               IfCondition cond,
630                                               MonotonicValueRange* left_range,
631                                               MonotonicValueRange* right_range) {
632     DCHECK(left->IsLoopHeaderPhi());
633     DCHECK(right->IsLoopHeaderPhi());
634     if (instruction->GetBlock() != left->GetBlock()) {
635       // Comparison needs to be in loop header to make sure it's done after each
636       // increment/decrement.
637       return;
638     }
639 
640     // Handle common cases which also don't have overflow/underflow concerns.
641     if (left_range->GetIncrement() == 1 &&
642         left_range->GetBound().IsConstant() &&
643         right_range->GetIncrement() == -1 &&
644         right_range->GetBound().IsRelatedToArrayLength() &&
645         right_range->GetBound().GetConstant() < 0) {
646       HBasicBlock* successor = nullptr;
647       int32_t left_compensation = 0;
648       int32_t right_compensation = 0;
649       if (cond == kCondLT) {
650         left_compensation = -1;
651         right_compensation = 1;
652         successor = instruction->IfTrueSuccessor();
653       } else if (cond == kCondLE) {
654         successor = instruction->IfTrueSuccessor();
655       } else if (cond == kCondGT) {
656         successor = instruction->IfFalseSuccessor();
657       } else if (cond == kCondGE) {
658         left_compensation = -1;
659         right_compensation = 1;
660         successor = instruction->IfFalseSuccessor();
661       } else {
662         // We don't handle '=='/'!=' test in case left and right can cross and
663         // miss each other.
664         return;
665       }
666 
667       if (successor != nullptr) {
668         bool overflow;
669         bool underflow;
670         ValueRange* new_left_range = new (GetGraph()->GetArena()) ValueRange(
671             GetGraph()->GetArena(),
672             left_range->GetBound(),
673             right_range->GetBound().Add(left_compensation, &overflow, &underflow));
674         if (!overflow && !underflow) {
675           ApplyRangeFromComparison(left, instruction->GetBlock(), successor,
676                                    new_left_range);
677         }
678 
679         ValueRange* new_right_range = new (GetGraph()->GetArena()) ValueRange(
680             GetGraph()->GetArena(),
681             left_range->GetBound().Add(right_compensation, &overflow, &underflow),
682             right_range->GetBound());
683         if (!overflow && !underflow) {
684           ApplyRangeFromComparison(right, instruction->GetBlock(), successor,
685                                    new_right_range);
686         }
687       }
688     }
689   }
690 
691   // Handle "if (left cmp_cond right)".
HandleIf(HIf * instruction,HInstruction * left,HInstruction * right,IfCondition cond)692   void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) {
693     HBasicBlock* block = instruction->GetBlock();
694 
695     HBasicBlock* true_successor = instruction->IfTrueSuccessor();
696     // There should be no critical edge at this point.
697     DCHECK_EQ(true_successor->GetPredecessors().size(), 1u);
698 
699     HBasicBlock* false_successor = instruction->IfFalseSuccessor();
700     // There should be no critical edge at this point.
701     DCHECK_EQ(false_successor->GetPredecessors().size(), 1u);
702 
703     ValueRange* left_range = LookupValueRange(left, block);
704     MonotonicValueRange* left_monotonic_range = nullptr;
705     if (left_range != nullptr) {
706       left_monotonic_range = left_range->AsMonotonicValueRange();
707       if (left_monotonic_range != nullptr) {
708         HBasicBlock* loop_head = left_monotonic_range->GetLoopHeader();
709         if (instruction->GetBlock() != loop_head) {
710           // For monotonic value range, don't handle `instruction`
711           // if it's not defined in the loop header.
712           return;
713         }
714       }
715     }
716 
717     bool found;
718     ValueBound bound = ValueBound::DetectValueBoundFromValue(right, &found);
719     // Each comparison can establish a lower bound and an upper bound
720     // for the left hand side.
721     ValueBound lower = bound;
722     ValueBound upper = bound;
723     if (!found) {
724       // No constant or array.length+c format bound found.
725       // For i<j, we can still use j's upper bound as i's upper bound. Same for lower.
726       ValueRange* right_range = LookupValueRange(right, block);
727       if (right_range != nullptr) {
728         if (right_range->IsMonotonicValueRange()) {
729           if (left_range != nullptr && left_range->IsMonotonicValueRange()) {
730             HandleIfBetweenTwoMonotonicValueRanges(instruction, left, right, cond,
731                                                    left_range->AsMonotonicValueRange(),
732                                                    right_range->AsMonotonicValueRange());
733             return;
734           }
735         }
736         lower = right_range->GetLower();
737         upper = right_range->GetUpper();
738       } else {
739         lower = ValueBound::Min();
740         upper = ValueBound::Max();
741       }
742     }
743 
744     bool overflow, underflow;
745     if (cond == kCondLT || cond == kCondLE) {
746       if (!upper.Equals(ValueBound::Max())) {
747         int32_t compensation = (cond == kCondLT) ? -1 : 0;  // upper bound is inclusive
748         ValueBound new_upper = upper.Add(compensation, &overflow, &underflow);
749         if (overflow || underflow) {
750           return;
751         }
752         ValueRange* new_range = new (GetGraph()->GetArena())
753             ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper);
754         ApplyRangeFromComparison(left, block, true_successor, new_range);
755       }
756 
757       // array.length as a lower bound isn't considered useful.
758       if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) {
759         int32_t compensation = (cond == kCondLE) ? 1 : 0;  // lower bound is inclusive
760         ValueBound new_lower = lower.Add(compensation, &overflow, &underflow);
761         if (overflow || underflow) {
762           return;
763         }
764         ValueRange* new_range = new (GetGraph()->GetArena())
765             ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max());
766         ApplyRangeFromComparison(left, block, false_successor, new_range);
767       }
768     } else if (cond == kCondGT || cond == kCondGE) {
769       // array.length as a lower bound isn't considered useful.
770       if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) {
771         int32_t compensation = (cond == kCondGT) ? 1 : 0;  // lower bound is inclusive
772         ValueBound new_lower = lower.Add(compensation, &overflow, &underflow);
773         if (overflow || underflow) {
774           return;
775         }
776         ValueRange* new_range = new (GetGraph()->GetArena())
777             ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max());
778         ApplyRangeFromComparison(left, block, true_successor, new_range);
779       }
780 
781       if (!upper.Equals(ValueBound::Max())) {
782         int32_t compensation = (cond == kCondGE) ? -1 : 0;  // upper bound is inclusive
783         ValueBound new_upper = upper.Add(compensation, &overflow, &underflow);
784         if (overflow || underflow) {
785           return;
786         }
787         ValueRange* new_range = new (GetGraph()->GetArena())
788             ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper);
789         ApplyRangeFromComparison(left, block, false_successor, new_range);
790       }
791     } else if (cond == kCondNE || cond == kCondEQ) {
792       if (left->IsArrayLength() && lower.IsConstant() && upper.IsConstant()) {
793         // Special case:
794         //   length == [c,d] yields [c, d] along true
795         //   length != [c,d] yields [c, d] along false
796         if (!lower.Equals(ValueBound::Min()) || !upper.Equals(ValueBound::Max())) {
797           ValueRange* new_range = new (GetGraph()->GetArena())
798               ValueRange(GetGraph()->GetArena(), lower, upper);
799           ApplyRangeFromComparison(
800               left, block, cond == kCondEQ ? true_successor : false_successor, new_range);
801         }
802         // In addition:
803         //   length == 0 yields [1, max] along false
804         //   length != 0 yields [1, max] along true
805         if (lower.GetConstant() == 0 && upper.GetConstant() == 0) {
806           ValueRange* new_range = new (GetGraph()->GetArena())
807               ValueRange(GetGraph()->GetArena(), ValueBound(nullptr, 1), ValueBound::Max());
808           ApplyRangeFromComparison(
809               left, block, cond == kCondEQ ? false_successor : true_successor, new_range);
810         }
811       }
812     }
813   }
814 
VisitBoundsCheck(HBoundsCheck * bounds_check)815   void VisitBoundsCheck(HBoundsCheck* bounds_check) OVERRIDE {
816     HBasicBlock* block = bounds_check->GetBlock();
817     HInstruction* index = bounds_check->InputAt(0);
818     HInstruction* array_length = bounds_check->InputAt(1);
819     DCHECK(array_length->IsIntConstant() ||
820            array_length->IsArrayLength() ||
821            array_length->IsPhi());
822     bool try_dynamic_bce = true;
823     // Analyze index range.
824     if (!index->IsIntConstant()) {
825       // Non-constant index.
826       ValueBound lower = ValueBound(nullptr, 0);        // constant 0
827       ValueBound upper = ValueBound(array_length, -1);  // array_length - 1
828       ValueRange array_range(GetGraph()->GetArena(), lower, upper);
829       // Try index range obtained by dominator-based analysis.
830       ValueRange* index_range = LookupValueRange(index, block);
831       if (index_range != nullptr && index_range->FitsIn(&array_range)) {
832         ReplaceInstruction(bounds_check, index);
833         return;
834       }
835       // Try index range obtained by induction variable analysis.
836       // Disables dynamic bce if OOB is certain.
837       if (InductionRangeFitsIn(&array_range, bounds_check, &try_dynamic_bce)) {
838         ReplaceInstruction(bounds_check, index);
839         return;
840       }
841     } else {
842       // Constant index.
843       int32_t constant = index->AsIntConstant()->GetValue();
844       if (constant < 0) {
845         // Will always throw exception.
846         return;
847       } else if (array_length->IsIntConstant()) {
848         if (constant < array_length->AsIntConstant()->GetValue()) {
849           ReplaceInstruction(bounds_check, index);
850         }
851         return;
852       }
853       // Analyze array length range.
854       DCHECK(array_length->IsArrayLength());
855       ValueRange* existing_range = LookupValueRange(array_length, block);
856       if (existing_range != nullptr) {
857         ValueBound lower = existing_range->GetLower();
858         DCHECK(lower.IsConstant());
859         if (constant < lower.GetConstant()) {
860           ReplaceInstruction(bounds_check, index);
861           return;
862         } else {
863           // Existing range isn't strong enough to eliminate the bounds check.
864           // Fall through to update the array_length range with info from this
865           // bounds check.
866         }
867       }
868       // Once we have an array access like 'array[5] = 1', we record array.length >= 6.
869       // We currently don't do it for non-constant index since a valid array[i] can't prove
870       // a valid array[i-1] yet due to the lower bound side.
871       if (constant == std::numeric_limits<int32_t>::max()) {
872         // Max() as an index will definitely throw AIOOBE.
873         return;
874       } else {
875         ValueBound lower = ValueBound(nullptr, constant + 1);
876         ValueBound upper = ValueBound::Max();
877         ValueRange* range = new (GetGraph()->GetArena())
878             ValueRange(GetGraph()->GetArena(), lower, upper);
879         AssignRange(block, array_length, range);
880       }
881     }
882 
883     // If static analysis fails, and OOB is not certain, try dynamic elimination.
884     if (try_dynamic_bce) {
885       // Try loop-based dynamic elimination.
886       HLoopInformation* loop = bounds_check->GetBlock()->GetLoopInformation();
887       bool needs_finite_test = false;
888       bool needs_taken_test = false;
889       if (DynamicBCESeemsProfitable(loop, bounds_check->GetBlock()) &&
890           induction_range_.CanGenerateRange(
891               bounds_check, index, &needs_finite_test, &needs_taken_test) &&
892           CanHandleInfiniteLoop(loop, index, needs_finite_test) &&
893           // Do this test last, since it may generate code.
894           CanHandleLength(loop, array_length, needs_taken_test)) {
895         TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test);
896         TransformLoopForDynamicBCE(loop, bounds_check);
897         return;
898       }
899       // Otherwise, prepare dominator-based dynamic elimination.
900       if (first_index_bounds_check_map_.find(array_length->GetId()) ==
901           first_index_bounds_check_map_.end()) {
902         // Remember the first bounds check against each array_length. That bounds check
903         // instruction has an associated HEnvironment where we may add an HDeoptimize
904         // to eliminate subsequent bounds checks against the same array_length.
905         first_index_bounds_check_map_.Put(array_length->GetId(), bounds_check);
906       }
907     }
908   }
909 
HasSameInputAtBackEdges(HPhi * phi)910   static bool HasSameInputAtBackEdges(HPhi* phi) {
911     DCHECK(phi->IsLoopHeaderPhi());
912     HConstInputsRef inputs = phi->GetInputs();
913     // Start with input 1. Input 0 is from the incoming block.
914     const HInstruction* input1 = inputs[1];
915     DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge(
916         *phi->GetBlock()->GetPredecessors()[1]));
917     for (size_t i = 2; i < inputs.size(); ++i) {
918       DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge(
919           *phi->GetBlock()->GetPredecessors()[i]));
920       if (input1 != inputs[i]) {
921         return false;
922       }
923     }
924     return true;
925   }
926 
VisitPhi(HPhi * phi)927   void VisitPhi(HPhi* phi) OVERRIDE {
928     if (phi->IsLoopHeaderPhi()
929         && (phi->GetType() == Primitive::kPrimInt)
930         && HasSameInputAtBackEdges(phi)) {
931       HInstruction* instruction = phi->InputAt(1);
932       HInstruction *left;
933       int32_t increment;
934       if (ValueBound::IsAddOrSubAConstant(instruction, &left, &increment)) {
935         if (left == phi) {
936           HInstruction* initial_value = phi->InputAt(0);
937           ValueRange* range = nullptr;
938           if (increment == 0) {
939             // Add constant 0. It's really a fixed value.
940             range = new (GetGraph()->GetArena()) ValueRange(
941                 GetGraph()->GetArena(),
942                 ValueBound(initial_value, 0),
943                 ValueBound(initial_value, 0));
944           } else {
945             // Monotonically increasing/decreasing.
946             bool found;
947             ValueBound bound = ValueBound::DetectValueBoundFromValue(
948                 initial_value, &found);
949             if (!found) {
950               // No constant or array.length+c bound found.
951               // For i=j, we can still use j's upper bound as i's upper bound.
952               // Same for lower.
953               ValueRange* initial_range = LookupValueRange(initial_value, phi->GetBlock());
954               if (initial_range != nullptr) {
955                 bound = increment > 0 ? initial_range->GetLower() :
956                                         initial_range->GetUpper();
957               } else {
958                 bound = increment > 0 ? ValueBound::Min() : ValueBound::Max();
959               }
960             }
961             range = new (GetGraph()->GetArena()) MonotonicValueRange(
962                 GetGraph()->GetArena(),
963                 phi,
964                 initial_value,
965                 increment,
966                 bound);
967           }
968           AssignRange(phi->GetBlock(), phi, range);
969         }
970       }
971     }
972   }
973 
VisitIf(HIf * instruction)974   void VisitIf(HIf* instruction) OVERRIDE {
975     if (instruction->InputAt(0)->IsCondition()) {
976       HCondition* cond = instruction->InputAt(0)->AsCondition();
977       HandleIf(instruction, cond->GetLeft(), cond->GetRight(), cond->GetCondition());
978     }
979   }
980 
VisitAdd(HAdd * add)981   void VisitAdd(HAdd* add) OVERRIDE {
982     HInstruction* right = add->GetRight();
983     if (right->IsIntConstant()) {
984       ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock());
985       if (left_range == nullptr) {
986         return;
987       }
988       ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue());
989       if (range != nullptr) {
990         AssignRange(add->GetBlock(), add, range);
991       }
992     }
993   }
994 
VisitSub(HSub * sub)995   void VisitSub(HSub* sub) OVERRIDE {
996     HInstruction* left = sub->GetLeft();
997     HInstruction* right = sub->GetRight();
998     if (right->IsIntConstant()) {
999       ValueRange* left_range = LookupValueRange(left, sub->GetBlock());
1000       if (left_range == nullptr) {
1001         return;
1002       }
1003       ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue());
1004       if (range != nullptr) {
1005         AssignRange(sub->GetBlock(), sub, range);
1006         return;
1007       }
1008     }
1009 
1010     // Here we are interested in the typical triangular case of nested loops,
1011     // such as the inner loop 'for (int j=0; j<array.length-i; j++)' where i
1012     // is the index for outer loop. In this case, we know j is bounded by array.length-1.
1013 
1014     // Try to handle (array.length - i) or (array.length + c - i) format.
1015     HInstruction* left_of_left;  // left input of left.
1016     int32_t right_const = 0;
1017     if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &right_const)) {
1018       left = left_of_left;
1019     }
1020     // The value of left input of the sub equals (left + right_const).
1021 
1022     if (left->IsArrayLength()) {
1023       HInstruction* array_length = left->AsArrayLength();
1024       ValueRange* right_range = LookupValueRange(right, sub->GetBlock());
1025       if (right_range != nullptr) {
1026         ValueBound lower = right_range->GetLower();
1027         ValueBound upper = right_range->GetUpper();
1028         if (lower.IsConstant() && upper.IsRelatedToArrayLength()) {
1029           HInstruction* upper_inst = upper.GetInstruction();
1030           // Make sure it's the same array.
1031           if (ValueBound::Equal(array_length, upper_inst)) {
1032             int32_t c0 = right_const;
1033             int32_t c1 = lower.GetConstant();
1034             int32_t c2 = upper.GetConstant();
1035             // (array.length + c0 - v) where v is in [c1, array.length + c2]
1036             // gets [c0 - c2, array.length + c0 - c1] as its value range.
1037             if (!ValueBound::WouldAddOverflowOrUnderflow(c0, -c2) &&
1038                 !ValueBound::WouldAddOverflowOrUnderflow(c0, -c1)) {
1039               if ((c0 - c1) <= 0) {
1040                 // array.length + (c0 - c1) won't overflow/underflow.
1041                 ValueRange* range = new (GetGraph()->GetArena()) ValueRange(
1042                     GetGraph()->GetArena(),
1043                     ValueBound(nullptr, right_const - upper.GetConstant()),
1044                     ValueBound(array_length, right_const - lower.GetConstant()));
1045                 AssignRange(sub->GetBlock(), sub, range);
1046               }
1047             }
1048           }
1049         }
1050       }
1051     }
1052   }
1053 
FindAndHandlePartialArrayLength(HBinaryOperation * instruction)1054   void FindAndHandlePartialArrayLength(HBinaryOperation* instruction) {
1055     DCHECK(instruction->IsDiv() || instruction->IsShr() || instruction->IsUShr());
1056     HInstruction* right = instruction->GetRight();
1057     int32_t right_const;
1058     if (right->IsIntConstant()) {
1059       right_const = right->AsIntConstant()->GetValue();
1060       // Detect division by two or more.
1061       if ((instruction->IsDiv() && right_const <= 1) ||
1062           (instruction->IsShr() && right_const < 1) ||
1063           (instruction->IsUShr() && right_const < 1)) {
1064         return;
1065       }
1066     } else {
1067       return;
1068     }
1069 
1070     // Try to handle array.length/2 or (array.length-1)/2 format.
1071     HInstruction* left = instruction->GetLeft();
1072     HInstruction* left_of_left;  // left input of left.
1073     int32_t c = 0;
1074     if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &c)) {
1075       left = left_of_left;
1076     }
1077     // The value of left input of instruction equals (left + c).
1078 
1079     // (array_length + 1) or smaller divided by two or more
1080     // always generate a value in [Min(), array_length].
1081     // This is true even if array_length is Max().
1082     if (left->IsArrayLength() && c <= 1) {
1083       if (instruction->IsUShr() && c < 0) {
1084         // Make sure for unsigned shift, left side is not negative.
1085         // e.g. if array_length is 2, ((array_length - 3) >>> 2) is way bigger
1086         // than array_length.
1087         return;
1088       }
1089       ValueRange* range = new (GetGraph()->GetArena()) ValueRange(
1090           GetGraph()->GetArena(),
1091           ValueBound(nullptr, std::numeric_limits<int32_t>::min()),
1092           ValueBound(left, 0));
1093       AssignRange(instruction->GetBlock(), instruction, range);
1094     }
1095   }
1096 
VisitDiv(HDiv * div)1097   void VisitDiv(HDiv* div) OVERRIDE {
1098     FindAndHandlePartialArrayLength(div);
1099   }
1100 
VisitShr(HShr * shr)1101   void VisitShr(HShr* shr) OVERRIDE {
1102     FindAndHandlePartialArrayLength(shr);
1103   }
1104 
VisitUShr(HUShr * ushr)1105   void VisitUShr(HUShr* ushr) OVERRIDE {
1106     FindAndHandlePartialArrayLength(ushr);
1107   }
1108 
VisitAnd(HAnd * instruction)1109   void VisitAnd(HAnd* instruction) OVERRIDE {
1110     if (instruction->GetRight()->IsIntConstant()) {
1111       int32_t constant = instruction->GetRight()->AsIntConstant()->GetValue();
1112       if (constant > 0) {
1113         // constant serves as a mask so any number masked with it
1114         // gets a [0, constant] value range.
1115         ValueRange* range = new (GetGraph()->GetArena()) ValueRange(
1116             GetGraph()->GetArena(),
1117             ValueBound(nullptr, 0),
1118             ValueBound(nullptr, constant));
1119         AssignRange(instruction->GetBlock(), instruction, range);
1120       }
1121     }
1122   }
1123 
VisitNewArray(HNewArray * new_array)1124   void VisitNewArray(HNewArray* new_array) OVERRIDE {
1125     HInstruction* len = new_array->GetLength();
1126     if (!len->IsIntConstant()) {
1127       HInstruction *left;
1128       int32_t right_const;
1129       if (ValueBound::IsAddOrSubAConstant(len, &left, &right_const)) {
1130         // (left + right_const) is used as size to new the array.
1131         // We record "-right_const <= left <= new_array - right_const";
1132         ValueBound lower = ValueBound(nullptr, -right_const);
1133         // We use new_array for the bound instead of new_array.length,
1134         // which isn't available as an instruction yet. new_array will
1135         // be treated the same as new_array.length when it's used in a ValueBound.
1136         ValueBound upper = ValueBound(new_array, -right_const);
1137         ValueRange* range = new (GetGraph()->GetArena())
1138             ValueRange(GetGraph()->GetArena(), lower, upper);
1139         ValueRange* existing_range = LookupValueRange(left, new_array->GetBlock());
1140         if (existing_range != nullptr) {
1141           range = existing_range->Narrow(range);
1142         }
1143         AssignRange(new_array->GetBlock(), left, range);
1144       }
1145     }
1146   }
1147 
1148   /**
1149     * After null/bounds checks are eliminated, some invariant array references
1150     * may be exposed underneath which can be hoisted out of the loop to the
1151     * preheader or, in combination with dynamic bce, the deoptimization block.
1152     *
1153     * for (int i = 0; i < n; i++) {
1154     *                                <-------+
1155     *   for (int j = 0; j < n; j++)          |
1156     *     a[i][j] = 0;               --a[i]--+
1157     * }
1158     *
1159     * Note: this optimization is no longer applied after dominator-based dynamic deoptimization
1160     * has occurred (see AddCompareWithDeoptimization()), since in those cases it would be
1161     * unsafe to hoist array references across their deoptimization instruction inside a loop.
1162     */
VisitArrayGet(HArrayGet * array_get)1163   void VisitArrayGet(HArrayGet* array_get) OVERRIDE {
1164     if (!has_dom_based_dynamic_bce_ && array_get->IsInLoop()) {
1165       HLoopInformation* loop = array_get->GetBlock()->GetLoopInformation();
1166       if (loop->IsDefinedOutOfTheLoop(array_get->InputAt(0)) &&
1167           loop->IsDefinedOutOfTheLoop(array_get->InputAt(1))) {
1168         SideEffects loop_effects = side_effects_.GetLoopEffects(loop->GetHeader());
1169         if (!array_get->GetSideEffects().MayDependOn(loop_effects)) {
1170           // We can hoist ArrayGet only if its execution is guaranteed on every iteration.
1171           // In other words only if array_get_bb dominates all back branches.
1172           if (loop->DominatesAllBackEdges(array_get->GetBlock())) {
1173             HoistToPreHeaderOrDeoptBlock(loop, array_get);
1174           }
1175         }
1176       }
1177     }
1178   }
1179 
1180   /** Performs dominator-based dynamic elimination on suitable set of bounds checks. */
AddCompareWithDeoptimization(HBasicBlock * block,HInstruction * array_length,HInstruction * base,int32_t min_c,int32_t max_c)1181   void AddCompareWithDeoptimization(HBasicBlock* block,
1182                                     HInstruction* array_length,
1183                                     HInstruction* base,
1184                                     int32_t min_c, int32_t max_c) {
1185     HBoundsCheck* bounds_check =
1186         first_index_bounds_check_map_.Get(array_length->GetId())->AsBoundsCheck();
1187     // Construct deoptimization on single or double bounds on range [base-min_c,base+max_c],
1188     // for example either for a[0]..a[3] just 3 or for a[base-1]..a[base+3] both base-1
1189     // and base+3, since we made the assumption any in between value may occur too.
1190     // In code, using unsigned comparisons:
1191     // (1) constants only
1192     //       if (max_c >= a.length) deoptimize;
1193     // (2) general case
1194     //       if (base-min_c >  base+max_c) deoptimize;
1195     //       if (base+max_c >= a.length  ) deoptimize;
1196     static_assert(kMaxLengthForAddingDeoptimize < std::numeric_limits<int32_t>::max(),
1197                   "Incorrect max length may be subject to arithmetic wrap-around");
1198     HInstruction* upper = GetGraph()->GetIntConstant(max_c);
1199     if (base == nullptr) {
1200       DCHECK_GE(min_c, 0);
1201     } else {
1202       HInstruction* lower = new (GetGraph()->GetArena())
1203           HAdd(Primitive::kPrimInt, base, GetGraph()->GetIntConstant(min_c));
1204       upper = new (GetGraph()->GetArena()) HAdd(Primitive::kPrimInt, base, upper);
1205       block->InsertInstructionBefore(lower, bounds_check);
1206       block->InsertInstructionBefore(upper, bounds_check);
1207       InsertDeoptInBlock(bounds_check, new (GetGraph()->GetArena()) HAbove(lower, upper));
1208     }
1209     InsertDeoptInBlock(bounds_check, new (GetGraph()->GetArena()) HAboveOrEqual(upper, array_length));
1210     // Flag that this kind of deoptimization has occurred.
1211     has_dom_based_dynamic_bce_ = true;
1212   }
1213 
1214   /** Attempts dominator-based dynamic elimination on remaining candidates. */
AddComparesWithDeoptimization(HBasicBlock * block)1215   void AddComparesWithDeoptimization(HBasicBlock* block) {
1216     for (const auto& entry : first_index_bounds_check_map_) {
1217       HBoundsCheck* bounds_check = entry.second;
1218       HInstruction* index = bounds_check->InputAt(0);
1219       HInstruction* array_length = bounds_check->InputAt(1);
1220       if (!array_length->IsArrayLength()) {
1221         continue;  // disregard phis and constants
1222       }
1223       // Collect all bounds checks that are still there and that are related as "a[base + constant]"
1224       // for a base instruction (possibly absent) and various constants. Note that no attempt
1225       // is made to partition the set into matching subsets (viz. a[0], a[1] and a[base+1] and
1226       // a[base+2] are considered as one set).
1227       // TODO: would such a partitioning be worthwhile?
1228       ValueBound value = ValueBound::AsValueBound(index);
1229       HInstruction* base = value.GetInstruction();
1230       int32_t min_c = base == nullptr ? 0 : value.GetConstant();
1231       int32_t max_c = value.GetConstant();
1232       ArenaVector<HBoundsCheck*> candidates(
1233           GetGraph()->GetArena()->Adapter(kArenaAllocBoundsCheckElimination));
1234       ArenaVector<HBoundsCheck*> standby(
1235           GetGraph()->GetArena()->Adapter(kArenaAllocBoundsCheckElimination));
1236       for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) {
1237         // Another bounds check in same or dominated block?
1238         HInstruction* user = use.GetUser();
1239         HBasicBlock* other_block = user->GetBlock();
1240         if (user->IsBoundsCheck() && block->Dominates(other_block)) {
1241           HBoundsCheck* other_bounds_check = user->AsBoundsCheck();
1242           HInstruction* other_index = other_bounds_check->InputAt(0);
1243           HInstruction* other_array_length = other_bounds_check->InputAt(1);
1244           ValueBound other_value = ValueBound::AsValueBound(other_index);
1245           if (array_length == other_array_length && base == other_value.GetInstruction()) {
1246             // Reject certain OOB if BoundsCheck(l, l) occurs on considered subset.
1247             if (array_length == other_index) {
1248               candidates.clear();
1249               standby.clear();
1250               break;
1251             }
1252             // Since a subsequent dominated block could be under a conditional, only accept
1253             // the other bounds check if it is in same block or both blocks dominate the exit.
1254             // TODO: we could improve this by testing proper post-dominance, or even if this
1255             //       constant is seen along *all* conditional paths that follow.
1256             HBasicBlock* exit = GetGraph()->GetExitBlock();
1257             if (block == user->GetBlock() ||
1258                 (block->Dominates(exit) && other_block->Dominates(exit))) {
1259               int32_t other_c = other_value.GetConstant();
1260               min_c = std::min(min_c, other_c);
1261               max_c = std::max(max_c, other_c);
1262               candidates.push_back(other_bounds_check);
1263             } else {
1264               // Add this candidate later only if it falls into the range.
1265               standby.push_back(other_bounds_check);
1266             }
1267           }
1268         }
1269       }
1270       // Add standby candidates that fall in selected range.
1271       for (HBoundsCheck* other_bounds_check : standby) {
1272         HInstruction* other_index = other_bounds_check->InputAt(0);
1273         int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant();
1274         if (min_c <= other_c && other_c <= max_c) {
1275           candidates.push_back(other_bounds_check);
1276         }
1277       }
1278       // Perform dominator-based deoptimization if it seems profitable, where we eliminate
1279       // bounds checks and replace these with deopt checks that guard against any possible
1280       // OOB. Note that we reject cases where the distance min_c:max_c range gets close to
1281       // the maximum possible array length, since those cases are likely to always deopt
1282       // (such situations do not necessarily go OOB, though, since the array could be really
1283       // large, or the programmer could rely on arithmetic wrap-around from max to min).
1284       size_t threshold = kThresholdForAddingDeoptimize + (base == nullptr ? 0 : 1);  // extra test?
1285       uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c);
1286       if (candidates.size() >= threshold &&
1287           (base != nullptr || min_c >= 0) &&  // reject certain OOB
1288            distance <= kMaxLengthForAddingDeoptimize) {  // reject likely/certain deopt
1289         AddCompareWithDeoptimization(block, array_length, base, min_c, max_c);
1290         for (HBoundsCheck* other_bounds_check : candidates) {
1291           // Only replace if still in the graph. This avoids visiting the same
1292           // bounds check twice if it occurred multiple times in the use list.
1293           if (other_bounds_check->IsInBlock()) {
1294             ReplaceInstruction(other_bounds_check, other_bounds_check->InputAt(0));
1295           }
1296         }
1297       }
1298     }
1299   }
1300 
1301   /**
1302    * Returns true if static range analysis based on induction variables can determine the bounds
1303    * check on the given array range is always satisfied with the computed index range. The output
1304    * parameter try_dynamic_bce is set to false if OOB is certain.
1305    */
InductionRangeFitsIn(ValueRange * array_range,HBoundsCheck * context,bool * try_dynamic_bce)1306   bool InductionRangeFitsIn(ValueRange* array_range,
1307                             HBoundsCheck* context,
1308                             bool* try_dynamic_bce) {
1309     InductionVarRange::Value v1;
1310     InductionVarRange::Value v2;
1311     bool needs_finite_test = false;
1312     HInstruction* index = context->InputAt(0);
1313     HInstruction* hint = HuntForDeclaration(context->InputAt(1));
1314     if (induction_range_.GetInductionRange(context, index, hint, &v1, &v2, &needs_finite_test)) {
1315       if (v1.is_known && (v1.a_constant == 0 || v1.a_constant == 1) &&
1316           v2.is_known && (v2.a_constant == 0 || v2.a_constant == 1)) {
1317         DCHECK(v1.a_constant == 1 || v1.instruction == nullptr);
1318         DCHECK(v2.a_constant == 1 || v2.instruction == nullptr);
1319         ValueRange index_range(GetGraph()->GetArena(),
1320                                ValueBound(v1.instruction, v1.b_constant),
1321                                ValueBound(v2.instruction, v2.b_constant));
1322         // If analysis reveals a certain OOB, disable dynamic BCE. Otherwise,
1323         // use analysis for static bce only if loop is finite.
1324         if (index_range.GetLower().LessThan(array_range->GetLower()) ||
1325             index_range.GetUpper().GreaterThan(array_range->GetUpper())) {
1326           *try_dynamic_bce = false;
1327         } else if (!needs_finite_test && index_range.FitsIn(array_range)) {
1328           return true;
1329         }
1330       }
1331     }
1332     return false;
1333   }
1334 
1335   /**
1336    * Performs loop-based dynamic elimination on a bounds check. In order to minimize the
1337    * number of eventually generated tests, related bounds checks with tests that can be
1338    * combined with tests for the given bounds check are collected first.
1339    */
TransformLoopForDynamicBCE(HLoopInformation * loop,HBoundsCheck * bounds_check)1340   void TransformLoopForDynamicBCE(HLoopInformation* loop, HBoundsCheck* bounds_check) {
1341     HInstruction* index = bounds_check->InputAt(0);
1342     HInstruction* array_length = bounds_check->InputAt(1);
1343     DCHECK(loop->IsDefinedOutOfTheLoop(array_length));  // pre-checked
1344     DCHECK(loop->DominatesAllBackEdges(bounds_check->GetBlock()));
1345     // Collect all bounds checks in the same loop that are related as "a[base + constant]"
1346     // for a base instruction (possibly absent) and various constants.
1347     ValueBound value = ValueBound::AsValueBound(index);
1348     HInstruction* base = value.GetInstruction();
1349     int32_t min_c = base == nullptr ? 0 : value.GetConstant();
1350     int32_t max_c = value.GetConstant();
1351     ArenaVector<HBoundsCheck*> candidates(
1352         GetGraph()->GetArena()->Adapter(kArenaAllocBoundsCheckElimination));
1353     ArenaVector<HBoundsCheck*> standby(
1354         GetGraph()->GetArena()->Adapter(kArenaAllocBoundsCheckElimination));
1355     for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) {
1356       HInstruction* user = use.GetUser();
1357       if (user->IsBoundsCheck() && loop == user->GetBlock()->GetLoopInformation()) {
1358         HBoundsCheck* other_bounds_check = user->AsBoundsCheck();
1359         HInstruction* other_index = other_bounds_check->InputAt(0);
1360         HInstruction* other_array_length = other_bounds_check->InputAt(1);
1361         ValueBound other_value = ValueBound::AsValueBound(other_index);
1362         int32_t other_c = other_value.GetConstant();
1363         if (array_length == other_array_length && base == other_value.GetInstruction()) {
1364           // Ensure every candidate could be picked for code generation.
1365           bool b1 = false, b2 = false;
1366           if (!induction_range_.CanGenerateRange(other_bounds_check, other_index, &b1, &b2)) {
1367             continue;
1368           }
1369           // Does the current basic block dominate all back edges? If not,
1370           // add this candidate later only if it falls into the range.
1371           if (!loop->DominatesAllBackEdges(user->GetBlock())) {
1372             standby.push_back(other_bounds_check);
1373             continue;
1374           }
1375           min_c = std::min(min_c, other_c);
1376           max_c = std::max(max_c, other_c);
1377           candidates.push_back(other_bounds_check);
1378         }
1379       }
1380     }
1381     // Add standby candidates that fall in selected range.
1382     for (HBoundsCheck* other_bounds_check : standby) {
1383       HInstruction* other_index = other_bounds_check->InputAt(0);
1384       int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant();
1385       if (min_c <= other_c && other_c <= max_c) {
1386         candidates.push_back(other_bounds_check);
1387       }
1388     }
1389     // Perform loop-based deoptimization if it seems profitable, where we eliminate bounds
1390     // checks and replace these with deopt checks that guard against any possible OOB.
1391     DCHECK_LT(0u, candidates.size());
1392     uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c);
1393     if ((base != nullptr || min_c >= 0) &&  // reject certain OOB
1394         distance <= kMaxLengthForAddingDeoptimize) {  // reject likely/certain deopt
1395       HBasicBlock* block = GetPreHeader(loop, bounds_check);
1396       HInstruction* min_lower = nullptr;
1397       HInstruction* min_upper = nullptr;
1398       HInstruction* max_lower = nullptr;
1399       HInstruction* max_upper = nullptr;
1400       // Iterate over all bounds checks.
1401       for (HBoundsCheck* other_bounds_check : candidates) {
1402         // Only handle if still in the graph. This avoids visiting the same
1403         // bounds check twice if it occurred multiple times in the use list.
1404         if (other_bounds_check->IsInBlock()) {
1405           HInstruction* other_index = other_bounds_check->InputAt(0);
1406           int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant();
1407           // Generate code for either the maximum or minimum. Range analysis already was queried
1408           // whether code generation on the original and, thus, related bounds check was possible.
1409           // It handles either loop invariants (lower is not set) or unit strides.
1410           if (other_c == max_c) {
1411             induction_range_.GenerateRange(
1412                 other_bounds_check, other_index, GetGraph(), block, &max_lower, &max_upper);
1413           } else if (other_c == min_c && base != nullptr) {
1414             induction_range_.GenerateRange(
1415                 other_bounds_check, other_index, GetGraph(), block, &min_lower, &min_upper);
1416           }
1417           ReplaceInstruction(other_bounds_check, other_index);
1418         }
1419       }
1420       // In code, using unsigned comparisons:
1421       // (1) constants only
1422       //       if (max_upper >= a.length ) deoptimize;
1423       // (2) two symbolic invariants
1424       //       if (min_upper >  max_upper) deoptimize;   unless min_c == max_c
1425       //       if (max_upper >= a.length ) deoptimize;
1426       // (3) general case, unit strides (where lower would exceed upper for arithmetic wrap-around)
1427       //       if (min_lower >  max_lower) deoptimize;   unless min_c == max_c
1428       //       if (max_lower >  max_upper) deoptimize;
1429       //       if (max_upper >= a.length ) deoptimize;
1430       if (base == nullptr) {
1431         // Constants only.
1432         DCHECK_GE(min_c, 0);
1433         DCHECK(min_lower == nullptr && min_upper == nullptr &&
1434                max_lower == nullptr && max_upper != nullptr);
1435       } else if (max_lower == nullptr) {
1436         // Two symbolic invariants.
1437         if (min_c != max_c) {
1438           DCHECK(min_lower == nullptr && min_upper != nullptr &&
1439                  max_lower == nullptr && max_upper != nullptr);
1440           InsertDeoptInLoop(loop, block, new (GetGraph()->GetArena()) HAbove(min_upper, max_upper));
1441         } else {
1442           DCHECK(min_lower == nullptr && min_upper == nullptr &&
1443                  max_lower == nullptr && max_upper != nullptr);
1444         }
1445       } else {
1446         // General case, unit strides.
1447         if (min_c != max_c) {
1448           DCHECK(min_lower != nullptr && min_upper != nullptr &&
1449                  max_lower != nullptr && max_upper != nullptr);
1450           InsertDeoptInLoop(loop, block, new (GetGraph()->GetArena()) HAbove(min_lower, max_lower));
1451         } else {
1452           DCHECK(min_lower == nullptr && min_upper == nullptr &&
1453                  max_lower != nullptr && max_upper != nullptr);
1454         }
1455         InsertDeoptInLoop(loop, block, new (GetGraph()->GetArena()) HAbove(max_lower, max_upper));
1456       }
1457       InsertDeoptInLoop(
1458           loop, block, new (GetGraph()->GetArena()) HAboveOrEqual(max_upper, array_length));
1459     } else {
1460       // TODO: if rejected, avoid doing this again for subsequent instructions in this set?
1461     }
1462   }
1463 
1464   /**
1465    * Returns true if heuristics indicate that dynamic bce may be profitable.
1466    */
DynamicBCESeemsProfitable(HLoopInformation * loop,HBasicBlock * block)1467   bool DynamicBCESeemsProfitable(HLoopInformation* loop, HBasicBlock* block) {
1468     if (loop != nullptr) {
1469       // The loop preheader of an irreducible loop does not dominate all the blocks in
1470       // the loop. We would need to find the common dominator of all blocks in the loop.
1471       if (loop->IsIrreducible()) {
1472         return false;
1473       }
1474       // We should never deoptimize from an osr method, otherwise we might wrongly optimize
1475       // code dominated by the deoptimization.
1476       if (GetGraph()->IsCompilingOsr()) {
1477         return false;
1478       }
1479       // A try boundary preheader is hard to handle.
1480       // TODO: remove this restriction.
1481       if (loop->GetPreHeader()->GetLastInstruction()->IsTryBoundary()) {
1482         return false;
1483       }
1484       // Does loop have early-exits? If so, the full range may not be covered by the loop
1485       // at runtime and testing the range may apply deoptimization unnecessarily.
1486       if (IsEarlyExitLoop(loop)) {
1487         return false;
1488       }
1489       // Does the current basic block dominate all back edges? If not,
1490       // don't apply dynamic bce to something that may not be executed.
1491       return loop->DominatesAllBackEdges(block);
1492     }
1493     return false;
1494   }
1495 
1496   /**
1497    * Returns true if the loop has early exits, which implies it may not cover
1498    * the full range computed by range analysis based on induction variables.
1499    */
IsEarlyExitLoop(HLoopInformation * loop)1500   bool IsEarlyExitLoop(HLoopInformation* loop) {
1501     const uint32_t loop_id = loop->GetHeader()->GetBlockId();
1502     // If loop has been analyzed earlier for early-exit, don't repeat the analysis.
1503     auto it = early_exit_loop_.find(loop_id);
1504     if (it != early_exit_loop_.end()) {
1505       return it->second;
1506     }
1507     // First time early-exit analysis for this loop. Since analysis requires scanning
1508     // the full loop-body, results of the analysis is stored for subsequent queries.
1509     HBlocksInLoopReversePostOrderIterator it_loop(*loop);
1510     for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
1511       for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
1512         if (!loop->Contains(*successor)) {
1513           early_exit_loop_.Put(loop_id, true);
1514           return true;
1515         }
1516       }
1517     }
1518     early_exit_loop_.Put(loop_id, false);
1519     return false;
1520   }
1521 
1522   /**
1523    * Returns true if the array length is already loop invariant, or can be made so
1524    * by handling the null check under the hood of the array length operation.
1525    */
CanHandleLength(HLoopInformation * loop,HInstruction * length,bool needs_taken_test)1526   bool CanHandleLength(HLoopInformation* loop, HInstruction* length, bool needs_taken_test) {
1527     if (loop->IsDefinedOutOfTheLoop(length)) {
1528       return true;
1529     } else if (length->IsArrayLength() && length->GetBlock()->GetLoopInformation() == loop) {
1530       if (CanHandleNullCheck(loop, length->InputAt(0), needs_taken_test)) {
1531         HoistToPreHeaderOrDeoptBlock(loop, length);
1532         return true;
1533       }
1534     }
1535     return false;
1536   }
1537 
1538   /**
1539    * Returns true if the null check is already loop invariant, or can be made so
1540    * by generating a deoptimization test.
1541    */
CanHandleNullCheck(HLoopInformation * loop,HInstruction * check,bool needs_taken_test)1542   bool CanHandleNullCheck(HLoopInformation* loop, HInstruction* check, bool needs_taken_test) {
1543     if (loop->IsDefinedOutOfTheLoop(check)) {
1544       return true;
1545     } else if (check->IsNullCheck() && check->GetBlock()->GetLoopInformation() == loop) {
1546       HInstruction* array = check->InputAt(0);
1547       if (loop->IsDefinedOutOfTheLoop(array)) {
1548         // Generate: if (array == null) deoptimize;
1549         TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test);
1550         HBasicBlock* block = GetPreHeader(loop, check);
1551         HInstruction* cond =
1552             new (GetGraph()->GetArena()) HEqual(array, GetGraph()->GetNullConstant());
1553         InsertDeoptInLoop(loop, block, cond, /* is_null_check */ true);
1554         ReplaceInstruction(check, array);
1555         return true;
1556       }
1557     }
1558     return false;
1559   }
1560 
1561   /**
1562    * Returns true if compiler can apply dynamic bce to loops that may be infinite
1563    * (e.g. for (int i = 0; i <= U; i++) with U = MAX_INT), which would invalidate
1564    * the range analysis evaluation code by "overshooting" the computed range.
1565    * Since deoptimization would be a bad choice, and there is no other version
1566    * of the loop to use, dynamic bce in such cases is only allowed if other tests
1567    * ensure the loop is finite.
1568    */
CanHandleInfiniteLoop(HLoopInformation * loop,HInstruction * index,bool needs_infinite_test)1569   bool CanHandleInfiniteLoop(HLoopInformation* loop, HInstruction* index, bool needs_infinite_test) {
1570     if (needs_infinite_test) {
1571       // If we already forced the loop to be finite, allow directly.
1572       const uint32_t loop_id = loop->GetHeader()->GetBlockId();
1573       if (finite_loop_.find(loop_id) != finite_loop_.end()) {
1574         return true;
1575       }
1576       // Otherwise, allow dynamic bce if the index (which is necessarily an induction at
1577       // this point) is the direct loop index (viz. a[i]), since then the runtime tests
1578       // ensure upper bound cannot cause an infinite loop.
1579       HInstruction* control = loop->GetHeader()->GetLastInstruction();
1580       if (control->IsIf()) {
1581         HInstruction* if_expr = control->AsIf()->InputAt(0);
1582         if (if_expr->IsCondition()) {
1583           HCondition* condition = if_expr->AsCondition();
1584           if (index == condition->InputAt(0) ||
1585               index == condition->InputAt(1)) {
1586             finite_loop_.insert(loop_id);
1587             return true;
1588           }
1589         }
1590       }
1591       return false;
1592     }
1593     return true;
1594   }
1595 
1596   /**
1597    * Returns appropriate preheader for the loop, depending on whether the
1598    * instruction appears in the loop header or proper loop-body.
1599    */
GetPreHeader(HLoopInformation * loop,HInstruction * instruction)1600   HBasicBlock* GetPreHeader(HLoopInformation* loop, HInstruction* instruction) {
1601     // Use preheader unless there is an earlier generated deoptimization block since
1602     // hoisted expressions may depend on and/or used by the deoptimization tests.
1603     HBasicBlock* header = loop->GetHeader();
1604     const uint32_t loop_id = header->GetBlockId();
1605     auto it = taken_test_loop_.find(loop_id);
1606     if (it != taken_test_loop_.end()) {
1607       HBasicBlock* block = it->second;
1608       // If always taken, keep it that way by returning the original preheader,
1609       // which can be found by following the predecessor of the true-block twice.
1610       if (instruction->GetBlock() == header) {
1611         return block->GetSinglePredecessor()->GetSinglePredecessor();
1612       }
1613       return block;
1614     }
1615     return loop->GetPreHeader();
1616   }
1617 
1618   /** Inserts a deoptimization test in a loop preheader. */
InsertDeoptInLoop(HLoopInformation * loop,HBasicBlock * block,HInstruction * condition,bool is_null_check=false)1619   void InsertDeoptInLoop(HLoopInformation* loop,
1620                          HBasicBlock* block,
1621                          HInstruction* condition,
1622                          bool is_null_check = false) {
1623     HInstruction* suspend = loop->GetSuspendCheck();
1624     block->InsertInstructionBefore(condition, block->GetLastInstruction());
1625     DeoptimizationKind kind =
1626         is_null_check ? DeoptimizationKind::kLoopNullBCE : DeoptimizationKind::kLoopBoundsBCE;
1627     HDeoptimize* deoptimize = new (GetGraph()->GetArena()) HDeoptimize(
1628         GetGraph()->GetArena(), condition, kind, suspend->GetDexPc());
1629     block->InsertInstructionBefore(deoptimize, block->GetLastInstruction());
1630     if (suspend->HasEnvironment()) {
1631       deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment(
1632           suspend->GetEnvironment(), loop->GetHeader());
1633     }
1634   }
1635 
1636   /** Inserts a deoptimization test right before a bounds check. */
InsertDeoptInBlock(HBoundsCheck * bounds_check,HInstruction * condition)1637   void InsertDeoptInBlock(HBoundsCheck* bounds_check, HInstruction* condition) {
1638     HBasicBlock* block = bounds_check->GetBlock();
1639     block->InsertInstructionBefore(condition, bounds_check);
1640     HDeoptimize* deoptimize = new (GetGraph()->GetArena()) HDeoptimize(
1641         GetGraph()->GetArena(), condition, DeoptimizationKind::kBlockBCE, bounds_check->GetDexPc());
1642     block->InsertInstructionBefore(deoptimize, bounds_check);
1643     deoptimize->CopyEnvironmentFrom(bounds_check->GetEnvironment());
1644   }
1645 
1646   /** Hoists instruction out of the loop to preheader or deoptimization block. */
HoistToPreHeaderOrDeoptBlock(HLoopInformation * loop,HInstruction * instruction)1647   void HoistToPreHeaderOrDeoptBlock(HLoopInformation* loop, HInstruction* instruction) {
1648     HBasicBlock* block = GetPreHeader(loop, instruction);
1649     DCHECK(!instruction->HasEnvironment());
1650     instruction->MoveBefore(block->GetLastInstruction());
1651   }
1652 
1653   /**
1654    * Adds a new taken-test structure to a loop if needed and not already done.
1655    * The taken-test protects range analysis evaluation code to avoid any
1656    * deoptimization caused by incorrect trip-count evaluation in non-taken loops.
1657    *
1658    *          old_preheader
1659    *               |
1660    *            if_block          <- taken-test protects deoptimization block
1661    *            /      \
1662    *     true_block  false_block  <- deoptimizations/invariants are placed in true_block
1663    *            \       /
1664    *          new_preheader       <- may require phi nodes to preserve SSA structure
1665    *                |
1666    *             header
1667    *
1668    * For example, this loop:
1669    *
1670    *   for (int i = lower; i < upper; i++) {
1671    *     array[i] = 0;
1672    *   }
1673    *
1674    * will be transformed to:
1675    *
1676    *   if (lower < upper) {
1677    *     if (array == null) deoptimize;
1678    *     array_length = array.length;
1679    *     if (lower > upper)         deoptimize;  // unsigned
1680    *     if (upper >= array_length) deoptimize;  // unsigned
1681    *   } else {
1682    *     array_length = 0;
1683    *   }
1684    *   for (int i = lower; i < upper; i++) {
1685    *     // Loop without null check and bounds check, and any array.length replaced with array_length.
1686    *     array[i] = 0;
1687    *   }
1688    */
TransformLoopForDeoptimizationIfNeeded(HLoopInformation * loop,bool needs_taken_test)1689   void TransformLoopForDeoptimizationIfNeeded(HLoopInformation* loop, bool needs_taken_test) {
1690     // Not needed (can use preheader) or already done (can reuse)?
1691     const uint32_t loop_id = loop->GetHeader()->GetBlockId();
1692     if (!needs_taken_test || taken_test_loop_.find(loop_id) != taken_test_loop_.end()) {
1693       return;
1694     }
1695 
1696     // Generate top test structure.
1697     HBasicBlock* header = loop->GetHeader();
1698     GetGraph()->TransformLoopHeaderForBCE(header);
1699     HBasicBlock* new_preheader = loop->GetPreHeader();
1700     HBasicBlock* if_block = new_preheader->GetDominator();
1701     HBasicBlock* true_block = if_block->GetSuccessors()[0];  // True successor.
1702     HBasicBlock* false_block = if_block->GetSuccessors()[1];  // False successor.
1703 
1704     // Goto instructions.
1705     true_block->AddInstruction(new (GetGraph()->GetArena()) HGoto());
1706     false_block->AddInstruction(new (GetGraph()->GetArena()) HGoto());
1707     new_preheader->AddInstruction(new (GetGraph()->GetArena()) HGoto());
1708 
1709     // Insert the taken-test to see if the loop body is entered. If the
1710     // loop isn't entered at all, it jumps around the deoptimization block.
1711     if_block->AddInstruction(new (GetGraph()->GetArena()) HGoto());  // placeholder
1712     HInstruction* condition = induction_range_.GenerateTakenTest(
1713         header->GetLastInstruction(), GetGraph(), if_block);
1714     DCHECK(condition != nullptr);
1715     if_block->RemoveInstruction(if_block->GetLastInstruction());
1716     if_block->AddInstruction(new (GetGraph()->GetArena()) HIf(condition));
1717 
1718     taken_test_loop_.Put(loop_id, true_block);
1719   }
1720 
1721   /**
1722    * Inserts phi nodes that preserve SSA structure in generated top test structures.
1723    * All uses of instructions in the deoptimization block that reach the loop need
1724    * a phi node in the new loop preheader to fix the dominance relation.
1725    *
1726    * Example:
1727    *           if_block
1728    *            /      \
1729    *         x_0 = ..  false_block
1730    *            \       /
1731    *           x_1 = phi(x_0, null)   <- synthetic phi
1732    *               |
1733    *          new_preheader
1734    */
InsertPhiNodes()1735   void InsertPhiNodes() {
1736     // Scan all new deoptimization blocks.
1737     for (auto it1 = taken_test_loop_.begin(); it1 != taken_test_loop_.end(); ++it1) {
1738       HBasicBlock* true_block = it1->second;
1739       HBasicBlock* new_preheader = true_block->GetSingleSuccessor();
1740       // Scan all instructions in a new deoptimization block.
1741       for (HInstructionIterator it(true_block->GetInstructions()); !it.Done(); it.Advance()) {
1742         HInstruction* instruction = it.Current();
1743         Primitive::Type type = instruction->GetType();
1744         HPhi* phi = nullptr;
1745         // Scan all uses of an instruction and replace each later use with a phi node.
1746         const HUseList<HInstruction*>& uses = instruction->GetUses();
1747         for (auto it2 = uses.begin(), end2 = uses.end(); it2 != end2; /* ++it2 below */) {
1748           HInstruction* user = it2->GetUser();
1749           size_t index = it2->GetIndex();
1750           // Increment `it2` now because `*it2` may disappear thanks to user->ReplaceInput().
1751           ++it2;
1752           if (user->GetBlock() != true_block) {
1753             if (phi == nullptr) {
1754               phi = NewPhi(new_preheader, instruction, type);
1755             }
1756             user->ReplaceInput(phi, index);  // Removes the use node from the list.
1757             induction_range_.Replace(user, instruction, phi);  // update induction
1758           }
1759         }
1760         // Scan all environment uses of an instruction and replace each later use with a phi node.
1761         const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
1762         for (auto it2 = env_uses.begin(), end2 = env_uses.end(); it2 != end2; /* ++it2 below */) {
1763           HEnvironment* user = it2->GetUser();
1764           size_t index = it2->GetIndex();
1765           // Increment `it2` now because `*it2` may disappear thanks to user->RemoveAsUserOfInput().
1766           ++it2;
1767           if (user->GetHolder()->GetBlock() != true_block) {
1768             if (phi == nullptr) {
1769               phi = NewPhi(new_preheader, instruction, type);
1770             }
1771             user->RemoveAsUserOfInput(index);
1772             user->SetRawEnvAt(index, phi);
1773             phi->AddEnvUseAt(user, index);
1774           }
1775         }
1776       }
1777     }
1778   }
1779 
1780   /**
1781    * Construct a phi(instruction, 0) in the new preheader to fix the dominance relation.
1782    * These are synthetic phi nodes without a virtual register.
1783    */
NewPhi(HBasicBlock * new_preheader,HInstruction * instruction,Primitive::Type type)1784   HPhi* NewPhi(HBasicBlock* new_preheader,
1785                HInstruction* instruction,
1786                Primitive::Type type) {
1787     HGraph* graph = GetGraph();
1788     HInstruction* zero;
1789     switch (type) {
1790       case Primitive::kPrimNot: zero = graph->GetNullConstant(); break;
1791       case Primitive::kPrimFloat: zero = graph->GetFloatConstant(0); break;
1792       case Primitive::kPrimDouble: zero = graph->GetDoubleConstant(0); break;
1793       default: zero = graph->GetConstant(type, 0); break;
1794     }
1795     HPhi* phi = new (graph->GetArena())
1796         HPhi(graph->GetArena(), kNoRegNumber, /*number_of_inputs*/ 2, HPhi::ToPhiType(type));
1797     phi->SetRawInputAt(0, instruction);
1798     phi->SetRawInputAt(1, zero);
1799     if (type == Primitive::kPrimNot) {
1800       phi->SetReferenceTypeInfo(instruction->GetReferenceTypeInfo());
1801     }
1802     new_preheader->AddPhi(phi);
1803     return phi;
1804   }
1805 
1806   /** Helper method to replace an instruction with another instruction. */
ReplaceInstruction(HInstruction * instruction,HInstruction * replacement)1807   void ReplaceInstruction(HInstruction* instruction, HInstruction* replacement) {
1808     // Safe iteration.
1809     if (instruction == next_) {
1810       next_ = next_->GetNext();
1811     }
1812     // Replace and remove.
1813     instruction->ReplaceWith(replacement);
1814     instruction->GetBlock()->RemoveInstruction(instruction);
1815   }
1816 
1817   // A set of maps, one per basic block, from instruction to range.
1818   ArenaVector<ArenaSafeMap<int, ValueRange*>> maps_;
1819 
1820   // Map an HArrayLength instruction's id to the first HBoundsCheck instruction
1821   // in a block that checks an index against that HArrayLength.
1822   ArenaSafeMap<int, HBoundsCheck*> first_index_bounds_check_map_;
1823 
1824   // Early-exit loop bookkeeping.
1825   ArenaSafeMap<uint32_t, bool> early_exit_loop_;
1826 
1827   // Taken-test loop bookkeeping.
1828   ArenaSafeMap<uint32_t, HBasicBlock*> taken_test_loop_;
1829 
1830   // Finite loop bookkeeping.
1831   ArenaSet<uint32_t> finite_loop_;
1832 
1833   // Flag that denotes whether dominator-based dynamic elimination has occurred.
1834   bool has_dom_based_dynamic_bce_;
1835 
1836   // Initial number of blocks.
1837   uint32_t initial_block_size_;
1838 
1839   // Side effects.
1840   const SideEffectsAnalysis& side_effects_;
1841 
1842   // Range analysis based on induction variables.
1843   InductionVarRange induction_range_;
1844 
1845   // Safe iteration.
1846   HInstruction* next_;
1847 
1848   DISALLOW_COPY_AND_ASSIGN(BCEVisitor);
1849 };
1850 
Run()1851 void BoundsCheckElimination::Run() {
1852   if (!graph_->HasBoundsChecks()) {
1853     return;
1854   }
1855 
1856   // Reverse post order guarantees a node's dominators are visited first.
1857   // We want to visit in the dominator-based order since if a value is known to
1858   // be bounded by a range at one instruction, it must be true that all uses of
1859   // that value dominated by that instruction fits in that range. Range of that
1860   // value can be narrowed further down in the dominator tree.
1861   BCEVisitor visitor(graph_, side_effects_, induction_analysis_);
1862   for (size_t i = 0, size = graph_->GetReversePostOrder().size(); i != size; ++i) {
1863     HBasicBlock* current = graph_->GetReversePostOrder()[i];
1864     if (visitor.IsAddedBlock(current)) {
1865       // Skip added blocks. Their effects are already taken care of.
1866       continue;
1867     }
1868     visitor.VisitBasicBlock(current);
1869     // Skip forward to the current block in case new basic blocks were inserted
1870     // (which always appear earlier in reverse post order) to avoid visiting the
1871     // same basic block twice.
1872     size_t new_size = graph_->GetReversePostOrder().size();
1873     DCHECK_GE(new_size, size);
1874     i += new_size - size;
1875     DCHECK_EQ(current, graph_->GetReversePostOrder()[i]);
1876     size = new_size;
1877   }
1878 
1879   // Perform cleanup.
1880   visitor.Finish();
1881 }
1882 
1883 }  // namespace art
1884