1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 /*
12 
13  * NOTE: This file is the modified version of xcolumn_bmod.c file in SuperLU
14 
15  * -- SuperLU routine (version 3.0) --
16  * Univ. of California Berkeley, Xerox Palo Alto Research Center,
17  * and Lawrence Berkeley National Lab.
18  * October 15, 2003
19  *
20  * Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
21  *
22  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
23  * EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
24  *
25  * Permission is hereby granted to use or copy this program for any
26  * purpose, provided the above notices are retained on all copies.
27  * Permission to modify the code and to distribute modified code is
28  * granted, provided the above notices are retained, and a notice that
29  * the code was modified is included with the above copyright notice.
30  */
31 #ifndef SPARSELU_COLUMN_BMOD_H
32 #define SPARSELU_COLUMN_BMOD_H
33 
34 namespace Eigen {
35 
36 namespace internal {
37 /**
38  * \brief Performs numeric block updates (sup-col) in topological order
39  *
40  * \param jcol current column to update
41  * \param nseg Number of segments in the U part
42  * \param dense Store the full representation of the column
43  * \param tempv working array
44  * \param segrep segment representative ...
45  * \param repfnz ??? First nonzero column in each row ???  ...
46  * \param fpanelc First column in the current panel
47  * \param glu Global LU data.
48  * \return 0 - successful return
49  *         > 0 - number of bytes allocated when run out of space
50  *
51  */
52 template <typename Scalar, typename StorageIndex>
column_bmod(const Index jcol,const Index nseg,BlockScalarVector dense,ScalarVector & tempv,BlockIndexVector segrep,BlockIndexVector repfnz,Index fpanelc,GlobalLU_t & glu)53 Index SparseLUImpl<Scalar,StorageIndex>::column_bmod(const Index jcol, const Index nseg, BlockScalarVector dense, ScalarVector& tempv,
54                                                      BlockIndexVector segrep, BlockIndexVector repfnz, Index fpanelc, GlobalLU_t& glu)
55 {
56   Index  jsupno, k, ksub, krep, ksupno;
57   Index lptr, nrow, isub, irow, nextlu, new_next, ufirst;
58   Index fsupc, nsupc, nsupr, luptr, kfnz, no_zeros;
59   /* krep = representative of current k-th supernode
60     * fsupc =  first supernodal column
61     * nsupc = number of columns in a supernode
62     * nsupr = number of rows in a supernode
63     * luptr = location of supernodal LU-block in storage
64     * kfnz = first nonz in the k-th supernodal segment
65     * no_zeros = no lf leading zeros in a supernodal U-segment
66     */
67 
68   jsupno = glu.supno(jcol);
69   // For each nonzero supernode segment of U[*,j] in topological order
70   k = nseg - 1;
71   Index d_fsupc; // distance between the first column of the current panel and the
72                // first column of the current snode
73   Index fst_col; // First column within small LU update
74   Index segsize;
75   for (ksub = 0; ksub < nseg; ksub++)
76   {
77     krep = segrep(k); k--;
78     ksupno = glu.supno(krep);
79     if (jsupno != ksupno )
80     {
81       // outside the rectangular supernode
82       fsupc = glu.xsup(ksupno);
83       fst_col = (std::max)(fsupc, fpanelc);
84 
85       // Distance from the current supernode to the current panel;
86       // d_fsupc = 0 if fsupc > fpanelc
87       d_fsupc = fst_col - fsupc;
88 
89       luptr = glu.xlusup(fst_col) + d_fsupc;
90       lptr = glu.xlsub(fsupc) + d_fsupc;
91 
92       kfnz = repfnz(krep);
93       kfnz = (std::max)(kfnz, fpanelc);
94 
95       segsize = krep - kfnz + 1;
96       nsupc = krep - fst_col + 1;
97       nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc);
98       nrow = nsupr - d_fsupc - nsupc;
99       Index lda = glu.xlusup(fst_col+1) - glu.xlusup(fst_col);
100 
101 
102       // Perform a triangular solver and block update,
103       // then scatter the result of sup-col update to dense
104       no_zeros = kfnz - fst_col;
105       if(segsize==1)
106         LU_kernel_bmod<1>::run(segsize, dense, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros);
107       else
108         LU_kernel_bmod<Dynamic>::run(segsize, dense, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros);
109     } // end if jsupno
110   } // end for each segment
111 
112   // Process the supernodal portion of  L\U[*,j]
113   nextlu = glu.xlusup(jcol);
114   fsupc = glu.xsup(jsupno);
115 
116   // copy the SPA dense into L\U[*,j]
117   Index mem;
118   new_next = nextlu + glu.xlsub(fsupc + 1) - glu.xlsub(fsupc);
119   Index offset = internal::first_multiple<Index>(new_next, internal::packet_traits<Scalar>::size) - new_next;
120   if(offset)
121     new_next += offset;
122   while (new_next > glu.nzlumax )
123   {
124     mem = memXpand<ScalarVector>(glu.lusup, glu.nzlumax, nextlu, LUSUP, glu.num_expansions);
125     if (mem) return mem;
126   }
127 
128   for (isub = glu.xlsub(fsupc); isub < glu.xlsub(fsupc+1); isub++)
129   {
130     irow = glu.lsub(isub);
131     glu.lusup(nextlu) = dense(irow);
132     dense(irow) = Scalar(0.0);
133     ++nextlu;
134   }
135 
136   if(offset)
137   {
138     glu.lusup.segment(nextlu,offset).setZero();
139     nextlu += offset;
140   }
141   glu.xlusup(jcol + 1) = StorageIndex(nextlu);  // close L\U(*,jcol);
142 
143   /* For more updates within the panel (also within the current supernode),
144    * should start from the first column of the panel, or the first column
145    * of the supernode, whichever is bigger. There are two cases:
146    *  1) fsupc < fpanelc, then fst_col <-- fpanelc
147    *  2) fsupc >= fpanelc, then fst_col <-- fsupc
148    */
149   fst_col = (std::max)(fsupc, fpanelc);
150 
151   if (fst_col  < jcol)
152   {
153     // Distance between the current supernode and the current panel
154     // d_fsupc = 0 if fsupc >= fpanelc
155     d_fsupc = fst_col - fsupc;
156 
157     lptr = glu.xlsub(fsupc) + d_fsupc;
158     luptr = glu.xlusup(fst_col) + d_fsupc;
159     nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); // leading dimension
160     nsupc = jcol - fst_col; // excluding jcol
161     nrow = nsupr - d_fsupc - nsupc;
162 
163     // points to the beginning of jcol in snode L\U(jsupno)
164     ufirst = glu.xlusup(jcol) + d_fsupc;
165     Index lda = glu.xlusup(jcol+1) - glu.xlusup(jcol);
166     MappedMatrixBlock A( &(glu.lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
167     VectorBlock<ScalarVector> u(glu.lusup, ufirst, nsupc);
168     u = A.template triangularView<UnitLower>().solve(u);
169 
170     new (&A) MappedMatrixBlock ( &(glu.lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) );
171     VectorBlock<ScalarVector> l(glu.lusup, ufirst+nsupc, nrow);
172     l.noalias() -= A * u;
173 
174   } // End if fst_col
175   return 0;
176 }
177 
178 } // end namespace internal
179 } // end namespace Eigen
180 
181 #endif // SPARSELU_COLUMN_BMOD_H
182