1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/codegen.h"
6 #include "src/deoptimizer.h"
7 #include "src/full-codegen/full-codegen.h"
8 #include "src/register-configuration.h"
9 #include "src/safepoint-table.h"
10 
11 namespace v8 {
12 namespace internal {
13 
14 const int Deoptimizer::table_entry_size_ = 8;
15 
16 
patch_size()17 int Deoptimizer::patch_size() {
18   const int kCallInstructionSizeInWords = 3;
19   return kCallInstructionSizeInWords * Assembler::kInstrSize;
20 }
21 
22 
EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code)23 void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
24   // Empty because there is no need for relocation information for the code
25   // patching in Deoptimizer::PatchCodeForDeoptimization below.
26 }
27 
28 
PatchCodeForDeoptimization(Isolate * isolate,Code * code)29 void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
30   Address code_start_address = code->instruction_start();
31   // Invalidate the relocation information, as it will become invalid by the
32   // code patching below, and is not needed any more.
33   code->InvalidateRelocation();
34 
35   if (FLAG_zap_code_space) {
36     // Fail hard and early if we enter this code object again.
37     byte* pointer = code->FindCodeAgeSequence();
38     if (pointer != NULL) {
39       pointer += kNoCodeAgeSequenceLength;
40     } else {
41       pointer = code->instruction_start();
42     }
43     CodePatcher patcher(isolate, pointer, 1);
44     patcher.masm()->bkpt(0);
45 
46     DeoptimizationInputData* data =
47         DeoptimizationInputData::cast(code->deoptimization_data());
48     int osr_offset = data->OsrPcOffset()->value();
49     if (osr_offset > 0) {
50       CodePatcher osr_patcher(isolate, code->instruction_start() + osr_offset,
51                               1);
52       osr_patcher.masm()->bkpt(0);
53     }
54   }
55 
56   DeoptimizationInputData* deopt_data =
57       DeoptimizationInputData::cast(code->deoptimization_data());
58 #ifdef DEBUG
59   Address prev_call_address = NULL;
60 #endif
61   // For each LLazyBailout instruction insert a call to the corresponding
62   // deoptimization entry.
63   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
64     if (deopt_data->Pc(i)->value() == -1) continue;
65     Address call_address = code_start_address + deopt_data->Pc(i)->value();
66     Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
67     // We need calls to have a predictable size in the unoptimized code, but
68     // this is optimized code, so we don't have to have a predictable size.
69     int call_size_in_bytes = MacroAssembler::CallDeoptimizerSize();
70     int call_size_in_words = call_size_in_bytes / Assembler::kInstrSize;
71     DCHECK(call_size_in_bytes % Assembler::kInstrSize == 0);
72     DCHECK(call_size_in_bytes <= patch_size());
73     CodePatcher patcher(isolate, call_address, call_size_in_words);
74     patcher.masm()->CallDeoptimizer(deopt_entry);
75     DCHECK(prev_call_address == NULL ||
76            call_address >= prev_call_address + patch_size());
77     DCHECK(call_address + patch_size() <= code->instruction_end());
78 #ifdef DEBUG
79     prev_call_address = call_address;
80 #endif
81   }
82 }
83 
84 
SetPlatformCompiledStubRegisters(FrameDescription * output_frame,CodeStubDescriptor * descriptor)85 void Deoptimizer::SetPlatformCompiledStubRegisters(
86     FrameDescription* output_frame, CodeStubDescriptor* descriptor) {
87   ApiFunction function(descriptor->deoptimization_handler());
88   ExternalReference xref(&function, ExternalReference::BUILTIN_CALL, isolate_);
89   intptr_t handler = reinterpret_cast<intptr_t>(xref.address());
90   int params = descriptor->GetHandlerParameterCount();
91   output_frame->SetRegister(r0.code(), params);
92   output_frame->SetRegister(r1.code(), handler);
93 }
94 
95 
CopyDoubleRegisters(FrameDescription * output_frame)96 void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
97   for (int i = 0; i < DwVfpRegister::kMaxNumRegisters; ++i) {
98     double double_value = input_->GetDoubleRegister(i);
99     output_frame->SetDoubleRegister(i, double_value);
100   }
101 }
102 
103 #define __ masm()->
104 
105 // This code tries to be close to ia32 code so that any changes can be
106 // easily ported.
Generate()107 void Deoptimizer::TableEntryGenerator::Generate() {
108   GeneratePrologue();
109 
110   // Save all general purpose registers before messing with them.
111   const int kNumberOfRegisters = Register::kNumRegisters;
112 
113   // Everything but pc, lr and ip which will be saved but not restored.
114   RegList restored_regs = kJSCallerSaved | kCalleeSaved | ip.bit();
115 
116   const int kDoubleRegsSize = kDoubleSize * DwVfpRegister::kMaxNumRegisters;
117 
118   // Save all allocatable VFP registers before messing with them.
119   DCHECK(kDoubleRegZero.code() == 14);
120   DCHECK(kScratchDoubleReg.code() == 15);
121 
122   {
123     // We use a run-time check for VFP32DREGS.
124     CpuFeatureScope scope(masm(), VFP32DREGS,
125                           CpuFeatureScope::kDontCheckSupported);
126 
127     // Check CPU flags for number of registers, setting the Z condition flag.
128     __ CheckFor32DRegs(ip);
129 
130     // Push registers d0-d15, and possibly d16-d31, on the stack.
131     // If d16-d31 are not pushed, decrease the stack pointer instead.
132     __ vstm(db_w, sp, d16, d31, ne);
133     __ sub(sp, sp, Operand(16 * kDoubleSize), LeaveCC, eq);
134     __ vstm(db_w, sp, d0, d15);
135   }
136 
137   // Push all 16 registers (needed to populate FrameDescription::registers_).
138   // TODO(1588) Note that using pc with stm is deprecated, so we should perhaps
139   // handle this a bit differently.
140   __ stm(db_w, sp, restored_regs  | sp.bit() | lr.bit() | pc.bit());
141 
142   __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
143   __ str(fp, MemOperand(ip));
144 
145   const int kSavedRegistersAreaSize =
146       (kNumberOfRegisters * kPointerSize) + kDoubleRegsSize;
147 
148   // Get the bailout id from the stack.
149   __ ldr(r2, MemOperand(sp, kSavedRegistersAreaSize));
150 
151   // Get the address of the location in the code object (r3) (return
152   // address for lazy deoptimization) and compute the fp-to-sp delta in
153   // register r4.
154   __ mov(r3, lr);
155   // Correct one word for bailout id.
156   __ add(r4, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize)));
157   __ sub(r4, fp, r4);
158 
159   // Allocate a new deoptimizer object.
160   // Pass four arguments in r0 to r3 and fifth argument on stack.
161   __ PrepareCallCFunction(6, r5);
162   __ mov(r0, Operand(0));
163   Label context_check;
164   __ ldr(r1, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
165   __ JumpIfSmi(r1, &context_check);
166   __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
167   __ bind(&context_check);
168   __ mov(r1, Operand(type()));  // bailout type,
169   // r2: bailout id already loaded.
170   // r3: code address or 0 already loaded.
171   __ str(r4, MemOperand(sp, 0 * kPointerSize));  // Fp-to-sp delta.
172   __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
173   __ str(r5, MemOperand(sp, 1 * kPointerSize));  // Isolate.
174   // Call Deoptimizer::New().
175   {
176     AllowExternalCallThatCantCauseGC scope(masm());
177     __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
178   }
179 
180   // Preserve "deoptimizer" object in register r0 and get the input
181   // frame descriptor pointer to r1 (deoptimizer->input_);
182   __ ldr(r1, MemOperand(r0, Deoptimizer::input_offset()));
183 
184   // Copy core registers into FrameDescription::registers_[kNumRegisters].
185   DCHECK(Register::kNumRegisters == kNumberOfRegisters);
186   for (int i = 0; i < kNumberOfRegisters; i++) {
187     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
188     __ ldr(r2, MemOperand(sp, i * kPointerSize));
189     __ str(r2, MemOperand(r1, offset));
190   }
191 
192   // Copy VFP registers to
193   // double_registers_[DoubleRegister::kMaxNumAllocatableRegisters]
194   int double_regs_offset = FrameDescription::double_registers_offset();
195   const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
196   for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
197     int code = config->GetAllocatableDoubleCode(i);
198     int dst_offset = code * kDoubleSize + double_regs_offset;
199     int src_offset = code * kDoubleSize + kNumberOfRegisters * kPointerSize;
200     __ vldr(d0, sp, src_offset);
201     __ vstr(d0, r1, dst_offset);
202   }
203 
204   // Remove the bailout id and the saved registers from the stack.
205   __ add(sp, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize)));
206 
207   // Compute a pointer to the unwinding limit in register r2; that is
208   // the first stack slot not part of the input frame.
209   __ ldr(r2, MemOperand(r1, FrameDescription::frame_size_offset()));
210   __ add(r2, r2, sp);
211 
212   // Unwind the stack down to - but not including - the unwinding
213   // limit and copy the contents of the activation frame to the input
214   // frame description.
215   __ add(r3,  r1, Operand(FrameDescription::frame_content_offset()));
216   Label pop_loop;
217   Label pop_loop_header;
218   __ b(&pop_loop_header);
219   __ bind(&pop_loop);
220   __ pop(r4);
221   __ str(r4, MemOperand(r3, 0));
222   __ add(r3, r3, Operand(sizeof(uint32_t)));
223   __ bind(&pop_loop_header);
224   __ cmp(r2, sp);
225   __ b(ne, &pop_loop);
226 
227   // Compute the output frame in the deoptimizer.
228   __ push(r0);  // Preserve deoptimizer object across call.
229   // r0: deoptimizer object; r1: scratch.
230   __ PrepareCallCFunction(1, r1);
231   // Call Deoptimizer::ComputeOutputFrames().
232   {
233     AllowExternalCallThatCantCauseGC scope(masm());
234     __ CallCFunction(
235         ExternalReference::compute_output_frames_function(isolate()), 1);
236   }
237   __ pop(r0);  // Restore deoptimizer object (class Deoptimizer).
238 
239   __ ldr(sp, MemOperand(r0, Deoptimizer::caller_frame_top_offset()));
240 
241   // Replace the current (input) frame with the output frames.
242   Label outer_push_loop, inner_push_loop,
243       outer_loop_header, inner_loop_header;
244   // Outer loop state: r4 = current "FrameDescription** output_",
245   // r1 = one past the last FrameDescription**.
246   __ ldr(r1, MemOperand(r0, Deoptimizer::output_count_offset()));
247   __ ldr(r4, MemOperand(r0, Deoptimizer::output_offset()));  // r4 is output_.
248   __ add(r1, r4, Operand(r1, LSL, 2));
249   __ jmp(&outer_loop_header);
250   __ bind(&outer_push_loop);
251   // Inner loop state: r2 = current FrameDescription*, r3 = loop index.
252   __ ldr(r2, MemOperand(r4, 0));  // output_[ix]
253   __ ldr(r3, MemOperand(r2, FrameDescription::frame_size_offset()));
254   __ jmp(&inner_loop_header);
255   __ bind(&inner_push_loop);
256   __ sub(r3, r3, Operand(sizeof(uint32_t)));
257   __ add(r6, r2, Operand(r3));
258   __ ldr(r6, MemOperand(r6, FrameDescription::frame_content_offset()));
259   __ push(r6);
260   __ bind(&inner_loop_header);
261   __ cmp(r3, Operand::Zero());
262   __ b(ne, &inner_push_loop);  // test for gt?
263   __ add(r4, r4, Operand(kPointerSize));
264   __ bind(&outer_loop_header);
265   __ cmp(r4, r1);
266   __ b(lt, &outer_push_loop);
267 
268   __ ldr(r1, MemOperand(r0, Deoptimizer::input_offset()));
269   for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
270     int code = config->GetAllocatableDoubleCode(i);
271     DwVfpRegister reg = DwVfpRegister::from_code(code);
272     int src_offset = code * kDoubleSize + double_regs_offset;
273     __ vldr(reg, r1, src_offset);
274   }
275 
276   // Push state, pc, and continuation from the last output frame.
277   __ ldr(r6, MemOperand(r2, FrameDescription::state_offset()));
278   __ push(r6);
279   __ ldr(r6, MemOperand(r2, FrameDescription::pc_offset()));
280   __ push(r6);
281   __ ldr(r6, MemOperand(r2, FrameDescription::continuation_offset()));
282   __ push(r6);
283 
284   // Push the registers from the last output frame.
285   for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
286     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
287     __ ldr(r6, MemOperand(r2, offset));
288     __ push(r6);
289   }
290 
291   // Restore the registers from the stack.
292   __ ldm(ia_w, sp, restored_regs);  // all but pc registers.
293   __ pop(ip);  // remove sp
294   __ pop(ip);  // remove lr
295 
296   __ InitializeRootRegister();
297 
298   __ pop(ip);  // remove pc
299   __ pop(ip);  // get continuation, leave pc on stack
300   __ pop(lr);
301   __ Jump(ip);
302   __ stop("Unreachable.");
303 }
304 
305 
GeneratePrologue()306 void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
307   // Create a sequence of deoptimization entries.
308   // Note that registers are still live when jumping to an entry.
309 
310   // We need to be able to generate immediates up to kMaxNumberOfEntries. On
311   // ARMv7, we can use movw (with a maximum immediate of 0xffff). On ARMv6, we
312   // need two instructions.
313   STATIC_ASSERT((kMaxNumberOfEntries - 1) <= 0xffff);
314   if (CpuFeatures::IsSupported(ARMv7)) {
315     CpuFeatureScope scope(masm(), ARMv7);
316     Label done;
317     for (int i = 0; i < count(); i++) {
318       int start = masm()->pc_offset();
319       USE(start);
320       __ movw(ip, i);
321       __ b(&done);
322       DCHECK_EQ(table_entry_size_, masm()->pc_offset() - start);
323     }
324     __ bind(&done);
325   } else {
326     // We want to keep table_entry_size_ == 8 (since this is the common case),
327     // but we need two instructions to load most immediates over 0xff. To handle
328     // this, we set the low byte in the main table, and then set the high byte
329     // in a separate table if necessary.
330     Label high_fixes[256];
331     int high_fix_max = (count() - 1) >> 8;
332     DCHECK_GT(arraysize(high_fixes), static_cast<size_t>(high_fix_max));
333     for (int i = 0; i < count(); i++) {
334       int start = masm()->pc_offset();
335       USE(start);
336       __ mov(ip, Operand(i & 0xff));  // Set the low byte.
337       __ b(&high_fixes[i >> 8]);      // Jump to the secondary table.
338       DCHECK_EQ(table_entry_size_, masm()->pc_offset() - start);
339     }
340     // Generate the secondary table, to set the high byte.
341     for (int high = 1; high <= high_fix_max; high++) {
342       __ bind(&high_fixes[high]);
343       __ orr(ip, ip, Operand(high << 8));
344       // If this isn't the last entry, emit a branch to the end of the table.
345       // The last entry can just fall through.
346       if (high < high_fix_max) __ b(&high_fixes[0]);
347     }
348     // Bind high_fixes[0] last, for indices like 0x00**. This case requires no
349     // fix-up, so for (common) small tables we can jump here, then just fall
350     // through with no additional branch.
351     __ bind(&high_fixes[0]);
352   }
353   __ push(ip);
354 }
355 
356 
SetCallerPc(unsigned offset,intptr_t value)357 void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
358   SetFrameSlot(offset, value);
359 }
360 
361 
SetCallerFp(unsigned offset,intptr_t value)362 void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
363   SetFrameSlot(offset, value);
364 }
365 
366 
SetCallerConstantPool(unsigned offset,intptr_t value)367 void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
368   DCHECK(FLAG_enable_embedded_constant_pool);
369   SetFrameSlot(offset, value);
370 }
371 
372 
373 #undef __
374 
375 }  // namespace internal
376 }  // namespace v8
377