1 // Copyright 2013 the V8 project authors. All rights reserved.
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 //     * Redistributions of source code must retain the above copyright
8 //       notice, this list of conditions and the following disclaimer.
9 //     * Redistributions in binary form must reproduce the above
10 //       copyright notice, this list of conditions and the following
11 //       disclaimer in the documentation and/or other materials provided
12 //       with the distribution.
13 //     * Neither the name of Google Inc. nor the names of its
14 //       contributors may be used to endorse or promote products derived
15 //       from this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 
29 #if V8_TARGET_ARCH_ARM64
30 
31 #define ARM64_DEFINE_REG_STATICS
32 #include "src/arm64/assembler-arm64.h"
33 
34 #include "src/arm64/assembler-arm64-inl.h"
35 #include "src/arm64/frames-arm64.h"
36 #include "src/base/bits.h"
37 #include "src/base/cpu.h"
38 #include "src/register-configuration.h"
39 
40 namespace v8 {
41 namespace internal {
42 
43 
44 // -----------------------------------------------------------------------------
45 // CpuFeatures implementation.
46 
ProbeImpl(bool cross_compile)47 void CpuFeatures::ProbeImpl(bool cross_compile) {
48   // AArch64 has no configuration options, no further probing is required.
49   supported_ = 0;
50 
51   // Only use statically determined features for cross compile (snapshot).
52   if (cross_compile) return;
53 
54   // We used to probe for coherent cache support, but on older CPUs it
55   // causes crashes (crbug.com/524337), and newer CPUs don't even have
56   // the feature any more.
57 }
58 
PrintTarget()59 void CpuFeatures::PrintTarget() { }
PrintFeatures()60 void CpuFeatures::PrintFeatures() {}
61 
62 // -----------------------------------------------------------------------------
63 // CPURegList utilities.
64 
PopLowestIndex()65 CPURegister CPURegList::PopLowestIndex() {
66   DCHECK(IsValid());
67   if (IsEmpty()) {
68     return NoCPUReg;
69   }
70   int index = CountTrailingZeros(list_, kRegListSizeInBits);
71   DCHECK((1 << index) & list_);
72   Remove(index);
73   return CPURegister::Create(index, size_, type_);
74 }
75 
76 
PopHighestIndex()77 CPURegister CPURegList::PopHighestIndex() {
78   DCHECK(IsValid());
79   if (IsEmpty()) {
80     return NoCPUReg;
81   }
82   int index = CountLeadingZeros(list_, kRegListSizeInBits);
83   index = kRegListSizeInBits - 1 - index;
84   DCHECK((1 << index) & list_);
85   Remove(index);
86   return CPURegister::Create(index, size_, type_);
87 }
88 
89 
RemoveCalleeSaved()90 void CPURegList::RemoveCalleeSaved() {
91   if (type() == CPURegister::kRegister) {
92     Remove(GetCalleeSaved(RegisterSizeInBits()));
93   } else if (type() == CPURegister::kFPRegister) {
94     Remove(GetCalleeSavedFP(RegisterSizeInBits()));
95   } else {
96     DCHECK(type() == CPURegister::kNoRegister);
97     DCHECK(IsEmpty());
98     // The list must already be empty, so do nothing.
99   }
100 }
101 
102 
GetCalleeSaved(int size)103 CPURegList CPURegList::GetCalleeSaved(int size) {
104   return CPURegList(CPURegister::kRegister, size, 19, 29);
105 }
106 
107 
GetCalleeSavedFP(int size)108 CPURegList CPURegList::GetCalleeSavedFP(int size) {
109   return CPURegList(CPURegister::kFPRegister, size, 8, 15);
110 }
111 
112 
GetCallerSaved(int size)113 CPURegList CPURegList::GetCallerSaved(int size) {
114   // Registers x0-x18 and lr (x30) are caller-saved.
115   CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
116   list.Combine(lr);
117   return list;
118 }
119 
120 
GetCallerSavedFP(int size)121 CPURegList CPURegList::GetCallerSavedFP(int size) {
122   // Registers d0-d7 and d16-d31 are caller-saved.
123   CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
124   list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
125   return list;
126 }
127 
128 
129 // This function defines the list of registers which are associated with a
130 // safepoint slot. Safepoint register slots are saved contiguously on the stack.
131 // MacroAssembler::SafepointRegisterStackIndex handles mapping from register
132 // code to index in the safepoint register slots. Any change here can affect
133 // this mapping.
GetSafepointSavedRegisters()134 CPURegList CPURegList::GetSafepointSavedRegisters() {
135   CPURegList list = CPURegList::GetCalleeSaved();
136   list.Combine(
137       CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
138 
139   // Note that unfortunately we can't use symbolic names for registers and have
140   // to directly use register codes. This is because this function is used to
141   // initialize some static variables and we can't rely on register variables
142   // to be initialized due to static initialization order issues in C++.
143 
144   // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
145   // preserved outside of the macro assembler.
146   list.Remove(16);
147   list.Remove(17);
148 
149   // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
150   // is a caller-saved register according to the procedure call standard.
151   list.Combine(18);
152 
153   // Drop jssp as the stack pointer doesn't need to be included.
154   list.Remove(28);
155 
156   // Add the link register (x30) to the safepoint list.
157   list.Combine(30);
158 
159   return list;
160 }
161 
162 
163 // -----------------------------------------------------------------------------
164 // Implementation of RelocInfo
165 
166 const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE;
167 
168 
IsCodedSpecially()169 bool RelocInfo::IsCodedSpecially() {
170   // The deserializer needs to know whether a pointer is specially coded. Being
171   // specially coded on ARM64 means that it is a movz/movk sequence. We don't
172   // generate those for relocatable pointers.
173   return false;
174 }
175 
176 
IsInConstantPool()177 bool RelocInfo::IsInConstantPool() {
178   Instruction* instr = reinterpret_cast<Instruction*>(pc_);
179   return instr->IsLdrLiteralX();
180 }
181 
wasm_memory_reference()182 Address RelocInfo::wasm_memory_reference() {
183   DCHECK(IsWasmMemoryReference(rmode_));
184   return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
185 }
186 
wasm_memory_size_reference()187 uint32_t RelocInfo::wasm_memory_size_reference() {
188   DCHECK(IsWasmMemorySizeReference(rmode_));
189   return Memory::uint32_at(Assembler::target_pointer_address_at(pc_));
190 }
191 
wasm_global_reference()192 Address RelocInfo::wasm_global_reference() {
193   DCHECK(IsWasmGlobalReference(rmode_));
194   return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
195 }
196 
unchecked_update_wasm_memory_reference(Address address,ICacheFlushMode flush_mode)197 void RelocInfo::unchecked_update_wasm_memory_reference(
198     Address address, ICacheFlushMode flush_mode) {
199   Assembler::set_target_address_at(isolate_, pc_, host_, address, flush_mode);
200 }
201 
unchecked_update_wasm_memory_size(uint32_t size,ICacheFlushMode flush_mode)202 void RelocInfo::unchecked_update_wasm_memory_size(uint32_t size,
203                                                   ICacheFlushMode flush_mode) {
204   Memory::uint32_at(Assembler::target_pointer_address_at(pc_)) = size;
205 }
206 
GetAllocatableRegisterThatIsNotOneOf(Register reg1,Register reg2,Register reg3,Register reg4)207 Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2,
208                                               Register reg3, Register reg4) {
209   CPURegList regs(reg1, reg2, reg3, reg4);
210   const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
211   for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
212     int code = config->GetAllocatableDoubleCode(i);
213     Register candidate = Register::from_code(code);
214     if (regs.IncludesAliasOf(candidate)) continue;
215     return candidate;
216   }
217   UNREACHABLE();
218   return NoReg;
219 }
220 
221 
AreAliased(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4,const CPURegister & reg5,const CPURegister & reg6,const CPURegister & reg7,const CPURegister & reg8)222 bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
223                 const CPURegister& reg3, const CPURegister& reg4,
224                 const CPURegister& reg5, const CPURegister& reg6,
225                 const CPURegister& reg7, const CPURegister& reg8) {
226   int number_of_valid_regs = 0;
227   int number_of_valid_fpregs = 0;
228 
229   RegList unique_regs = 0;
230   RegList unique_fpregs = 0;
231 
232   const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
233 
234   for (unsigned i = 0; i < arraysize(regs); i++) {
235     if (regs[i].IsRegister()) {
236       number_of_valid_regs++;
237       unique_regs |= regs[i].Bit();
238     } else if (regs[i].IsFPRegister()) {
239       number_of_valid_fpregs++;
240       unique_fpregs |= regs[i].Bit();
241     } else {
242       DCHECK(!regs[i].IsValid());
243     }
244   }
245 
246   int number_of_unique_regs =
247     CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
248   int number_of_unique_fpregs =
249     CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);
250 
251   DCHECK(number_of_valid_regs >= number_of_unique_regs);
252   DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs);
253 
254   return (number_of_valid_regs != number_of_unique_regs) ||
255          (number_of_valid_fpregs != number_of_unique_fpregs);
256 }
257 
258 
AreSameSizeAndType(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4,const CPURegister & reg5,const CPURegister & reg6,const CPURegister & reg7,const CPURegister & reg8)259 bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
260                         const CPURegister& reg3, const CPURegister& reg4,
261                         const CPURegister& reg5, const CPURegister& reg6,
262                         const CPURegister& reg7, const CPURegister& reg8) {
263   DCHECK(reg1.IsValid());
264   bool match = true;
265   match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
266   match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
267   match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
268   match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
269   match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
270   match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
271   match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
272   return match;
273 }
274 
275 
InitializeHandle(Handle<Object> handle)276 void Immediate::InitializeHandle(Handle<Object> handle) {
277   AllowDeferredHandleDereference using_raw_address;
278 
279   // Verify all Objects referred by code are NOT in new space.
280   Object* obj = *handle;
281   if (obj->IsHeapObject()) {
282     value_ = reinterpret_cast<intptr_t>(handle.location());
283     rmode_ = RelocInfo::EMBEDDED_OBJECT;
284   } else {
285     STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t));
286     value_ = reinterpret_cast<intptr_t>(obj);
287     rmode_ = RelocInfo::NONE64;
288   }
289 }
290 
291 
NeedsRelocation(const Assembler * assembler) const292 bool Operand::NeedsRelocation(const Assembler* assembler) const {
293   RelocInfo::Mode rmode = immediate_.rmode();
294 
295   if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
296     return assembler->serializer_enabled();
297   }
298 
299   return !RelocInfo::IsNone(rmode);
300 }
301 
302 
303 // Constant Pool.
RecordEntry(intptr_t data,RelocInfo::Mode mode)304 void ConstPool::RecordEntry(intptr_t data,
305                             RelocInfo::Mode mode) {
306   DCHECK(mode != RelocInfo::COMMENT && mode != RelocInfo::CONST_POOL &&
307          mode != RelocInfo::VENEER_POOL &&
308          mode != RelocInfo::CODE_AGE_SEQUENCE &&
309          mode != RelocInfo::DEOPT_SCRIPT_OFFSET &&
310          mode != RelocInfo::DEOPT_INLINING_ID &&
311          mode != RelocInfo::DEOPT_REASON && mode != RelocInfo::DEOPT_ID);
312   uint64_t raw_data = static_cast<uint64_t>(data);
313   int offset = assm_->pc_offset();
314   if (IsEmpty()) {
315     first_use_ = offset;
316   }
317 
318   std::pair<uint64_t, int> entry = std::make_pair(raw_data, offset);
319   if (CanBeShared(mode)) {
320     shared_entries_.insert(entry);
321     if (shared_entries_.count(entry.first) == 1) {
322       shared_entries_count++;
323     }
324   } else {
325     unique_entries_.push_back(entry);
326   }
327 
328   if (EntryCount() > Assembler::kApproxMaxPoolEntryCount) {
329     // Request constant pool emission after the next instruction.
330     assm_->SetNextConstPoolCheckIn(1);
331   }
332 }
333 
334 
DistanceToFirstUse()335 int ConstPool::DistanceToFirstUse() {
336   DCHECK(first_use_ >= 0);
337   return assm_->pc_offset() - first_use_;
338 }
339 
340 
MaxPcOffset()341 int ConstPool::MaxPcOffset() {
342   // There are no pending entries in the pool so we can never get out of
343   // range.
344   if (IsEmpty()) return kMaxInt;
345 
346   // Entries are not necessarily emitted in the order they are added so in the
347   // worst case the first constant pool use will be accessing the last entry.
348   return first_use_ + kMaxLoadLiteralRange - WorstCaseSize();
349 }
350 
351 
WorstCaseSize()352 int ConstPool::WorstCaseSize() {
353   if (IsEmpty()) return 0;
354 
355   // Max size prologue:
356   //   b   over
357   //   ldr xzr, #pool_size
358   //   blr xzr
359   //   nop
360   // All entries are 64-bit for now.
361   return 4 * kInstructionSize + EntryCount() * kPointerSize;
362 }
363 
364 
SizeIfEmittedAtCurrentPc(bool require_jump)365 int ConstPool::SizeIfEmittedAtCurrentPc(bool require_jump) {
366   if (IsEmpty()) return 0;
367 
368   // Prologue is:
369   //   b   over  ;; if require_jump
370   //   ldr xzr, #pool_size
371   //   blr xzr
372   //   nop       ;; if not 64-bit aligned
373   int prologue_size = require_jump ? kInstructionSize : 0;
374   prologue_size += 2 * kInstructionSize;
375   prologue_size += IsAligned(assm_->pc_offset() + prologue_size, 8) ?
376                    0 : kInstructionSize;
377 
378   // All entries are 64-bit for now.
379   return prologue_size + EntryCount() * kPointerSize;
380 }
381 
382 
Emit(bool require_jump)383 void ConstPool::Emit(bool require_jump) {
384   DCHECK(!assm_->is_const_pool_blocked());
385   // Prevent recursive pool emission and protect from veneer pools.
386   Assembler::BlockPoolsScope block_pools(assm_);
387 
388   int size = SizeIfEmittedAtCurrentPc(require_jump);
389   Label size_check;
390   assm_->bind(&size_check);
391 
392   assm_->RecordConstPool(size);
393   // Emit the constant pool. It is preceded by an optional branch if
394   // require_jump and a header which will:
395   //  1) Encode the size of the constant pool, for use by the disassembler.
396   //  2) Terminate the program, to try to prevent execution from accidentally
397   //     flowing into the constant pool.
398   //  3) align the pool entries to 64-bit.
399   // The header is therefore made of up to three arm64 instructions:
400   //   ldr xzr, #<size of the constant pool in 32-bit words>
401   //   blr xzr
402   //   nop
403   //
404   // If executed, the header will likely segfault and lr will point to the
405   // instruction following the offending blr.
406   // TODO(all): Make the alignment part less fragile. Currently code is
407   // allocated as a byte array so there are no guarantees the alignment will
408   // be preserved on compaction. Currently it works as allocation seems to be
409   // 64-bit aligned.
410 
411   // Emit branch if required
412   Label after_pool;
413   if (require_jump) {
414     assm_->b(&after_pool);
415   }
416 
417   // Emit the header.
418   assm_->RecordComment("[ Constant Pool");
419   EmitMarker();
420   EmitGuard();
421   assm_->Align(8);
422 
423   // Emit constant pool entries.
424   // TODO(all): currently each relocated constant is 64 bits, consider adding
425   // support for 32-bit entries.
426   EmitEntries();
427   assm_->RecordComment("]");
428 
429   if (after_pool.is_linked()) {
430     assm_->bind(&after_pool);
431   }
432 
433   DCHECK(assm_->SizeOfCodeGeneratedSince(&size_check) ==
434          static_cast<unsigned>(size));
435 }
436 
437 
Clear()438 void ConstPool::Clear() {
439   shared_entries_.clear();
440   shared_entries_count = 0;
441   unique_entries_.clear();
442   first_use_ = -1;
443 }
444 
445 
CanBeShared(RelocInfo::Mode mode)446 bool ConstPool::CanBeShared(RelocInfo::Mode mode) {
447   // Constant pool currently does not support 32-bit entries.
448   DCHECK(mode != RelocInfo::NONE32);
449 
450   return RelocInfo::IsNone(mode) ||
451          (!assm_->serializer_enabled() &&
452           (mode >= RelocInfo::FIRST_SHAREABLE_RELOC_MODE));
453 }
454 
455 
EmitMarker()456 void ConstPool::EmitMarker() {
457   // A constant pool size is expressed in number of 32-bits words.
458   // Currently all entries are 64-bit.
459   // + 1 is for the crash guard.
460   // + 0/1 for alignment.
461   int word_count = EntryCount() * 2 + 1 +
462                    (IsAligned(assm_->pc_offset(), 8) ? 0 : 1);
463   assm_->Emit(LDR_x_lit                          |
464               Assembler::ImmLLiteral(word_count) |
465               Assembler::Rt(xzr));
466 }
467 
468 
AreConsistentForPair(const MemOperand & operandA,const MemOperand & operandB,int access_size_log2)469 MemOperand::PairResult MemOperand::AreConsistentForPair(
470     const MemOperand& operandA,
471     const MemOperand& operandB,
472     int access_size_log2) {
473   DCHECK(access_size_log2 >= 0);
474   DCHECK(access_size_log2 <= 3);
475   // Step one: check that they share the same base, that the mode is Offset
476   // and that the offset is a multiple of access size.
477   if (!operandA.base().Is(operandB.base()) ||
478       (operandA.addrmode() != Offset) ||
479       (operandB.addrmode() != Offset) ||
480       ((operandA.offset() & ((1 << access_size_log2) - 1)) != 0)) {
481     return kNotPair;
482   }
483   // Step two: check that the offsets are contiguous and that the range
484   // is OK for ldp/stp.
485   if ((operandB.offset() == operandA.offset() + (1 << access_size_log2)) &&
486       is_int7(operandA.offset() >> access_size_log2)) {
487     return kPairAB;
488   }
489   if ((operandA.offset() == operandB.offset() + (1 << access_size_log2)) &&
490       is_int7(operandB.offset() >> access_size_log2)) {
491     return kPairBA;
492   }
493   return kNotPair;
494 }
495 
496 
EmitGuard()497 void ConstPool::EmitGuard() {
498 #ifdef DEBUG
499   Instruction* instr = reinterpret_cast<Instruction*>(assm_->pc());
500   DCHECK(instr->preceding()->IsLdrLiteralX() &&
501          instr->preceding()->Rt() == xzr.code());
502 #endif
503   assm_->EmitPoolGuard();
504 }
505 
506 
EmitEntries()507 void ConstPool::EmitEntries() {
508   DCHECK(IsAligned(assm_->pc_offset(), 8));
509 
510   typedef std::multimap<uint64_t, int>::const_iterator SharedEntriesIterator;
511   SharedEntriesIterator value_it;
512   // Iterate through the keys (constant pool values).
513   for (value_it = shared_entries_.begin();
514        value_it != shared_entries_.end();
515        value_it = shared_entries_.upper_bound(value_it->first)) {
516     std::pair<SharedEntriesIterator, SharedEntriesIterator> range;
517     uint64_t data = value_it->first;
518     range = shared_entries_.equal_range(data);
519     SharedEntriesIterator offset_it;
520     // Iterate through the offsets of a given key.
521     for (offset_it = range.first; offset_it != range.second; offset_it++) {
522       Instruction* instr = assm_->InstructionAt(offset_it->second);
523 
524       // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
525       DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
526       instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
527     }
528     assm_->dc64(data);
529   }
530   shared_entries_.clear();
531   shared_entries_count = 0;
532 
533   // Emit unique entries.
534   std::vector<std::pair<uint64_t, int> >::const_iterator unique_it;
535   for (unique_it = unique_entries_.begin();
536        unique_it != unique_entries_.end();
537        unique_it++) {
538     Instruction* instr = assm_->InstructionAt(unique_it->second);
539 
540     // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
541     DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
542     instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
543     assm_->dc64(unique_it->first);
544   }
545   unique_entries_.clear();
546   first_use_ = -1;
547 }
548 
549 
550 // Assembler
Assembler(Isolate * isolate,void * buffer,int buffer_size)551 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
552     : AssemblerBase(isolate, buffer, buffer_size),
553       constpool_(this),
554       recorded_ast_id_(TypeFeedbackId::None()),
555       unresolved_branches_() {
556   const_pool_blocked_nesting_ = 0;
557   veneer_pool_blocked_nesting_ = 0;
558   Reset();
559 }
560 
561 
~Assembler()562 Assembler::~Assembler() {
563   DCHECK(constpool_.IsEmpty());
564   DCHECK(const_pool_blocked_nesting_ == 0);
565   DCHECK(veneer_pool_blocked_nesting_ == 0);
566 }
567 
568 
Reset()569 void Assembler::Reset() {
570 #ifdef DEBUG
571   DCHECK((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
572   DCHECK(const_pool_blocked_nesting_ == 0);
573   DCHECK(veneer_pool_blocked_nesting_ == 0);
574   DCHECK(unresolved_branches_.empty());
575   memset(buffer_, 0, pc_ - buffer_);
576 #endif
577   pc_ = buffer_;
578   reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
579                                reinterpret_cast<byte*>(pc_));
580   constpool_.Clear();
581   next_constant_pool_check_ = 0;
582   next_veneer_pool_check_ = kMaxInt;
583   no_const_pool_before_ = 0;
584   ClearRecordedAstId();
585 }
586 
587 
GetCode(CodeDesc * desc)588 void Assembler::GetCode(CodeDesc* desc) {
589   // Emit constant pool if necessary.
590   CheckConstPool(true, false);
591   DCHECK(constpool_.IsEmpty());
592 
593   // Set up code descriptor.
594   if (desc) {
595     desc->buffer = reinterpret_cast<byte*>(buffer_);
596     desc->buffer_size = buffer_size_;
597     desc->instr_size = pc_offset();
598     desc->reloc_size =
599         static_cast<int>((reinterpret_cast<byte*>(buffer_) + buffer_size_) -
600                          reloc_info_writer.pos());
601     desc->origin = this;
602     desc->constant_pool_size = 0;
603     desc->unwinding_info_size = 0;
604     desc->unwinding_info = nullptr;
605   }
606 }
607 
608 
Align(int m)609 void Assembler::Align(int m) {
610   DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
611   while ((pc_offset() & (m - 1)) != 0) {
612     nop();
613   }
614 }
615 
616 
CheckLabelLinkChain(Label const * label)617 void Assembler::CheckLabelLinkChain(Label const * label) {
618 #ifdef DEBUG
619   if (label->is_linked()) {
620     static const int kMaxLinksToCheck = 64;  // Avoid O(n2) behaviour.
621     int links_checked = 0;
622     int64_t linkoffset = label->pos();
623     bool end_of_chain = false;
624     while (!end_of_chain) {
625       if (++links_checked > kMaxLinksToCheck) break;
626       Instruction * link = InstructionAt(linkoffset);
627       int64_t linkpcoffset = link->ImmPCOffset();
628       int64_t prevlinkoffset = linkoffset + linkpcoffset;
629 
630       end_of_chain = (linkoffset == prevlinkoffset);
631       linkoffset = linkoffset + linkpcoffset;
632     }
633   }
634 #endif
635 }
636 
637 
RemoveBranchFromLabelLinkChain(Instruction * branch,Label * label,Instruction * label_veneer)638 void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
639                                                Label* label,
640                                                Instruction* label_veneer) {
641   DCHECK(label->is_linked());
642 
643   CheckLabelLinkChain(label);
644 
645   Instruction* link = InstructionAt(label->pos());
646   Instruction* prev_link = link;
647   Instruction* next_link;
648   bool end_of_chain = false;
649 
650   while (link != branch && !end_of_chain) {
651     next_link = link->ImmPCOffsetTarget();
652     end_of_chain = (link == next_link);
653     prev_link = link;
654     link = next_link;
655   }
656 
657   DCHECK(branch == link);
658   next_link = branch->ImmPCOffsetTarget();
659 
660   if (branch == prev_link) {
661     // The branch is the first instruction in the chain.
662     if (branch == next_link) {
663       // It is also the last instruction in the chain, so it is the only branch
664       // currently referring to this label.
665       label->Unuse();
666     } else {
667       label->link_to(
668           static_cast<int>(reinterpret_cast<byte*>(next_link) - buffer_));
669     }
670 
671   } else if (branch == next_link) {
672     // The branch is the last (but not also the first) instruction in the chain.
673     prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
674 
675   } else {
676     // The branch is in the middle of the chain.
677     if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
678       prev_link->SetImmPCOffsetTarget(isolate(), next_link);
679     } else if (label_veneer != NULL) {
680       // Use the veneer for all previous links in the chain.
681       prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
682 
683       end_of_chain = false;
684       link = next_link;
685       while (!end_of_chain) {
686         next_link = link->ImmPCOffsetTarget();
687         end_of_chain = (link == next_link);
688         link->SetImmPCOffsetTarget(isolate(), label_veneer);
689         link = next_link;
690       }
691     } else {
692       // The assert below will fire.
693       // Some other work could be attempted to fix up the chain, but it would be
694       // rather complicated. If we crash here, we may want to consider using an
695       // other mechanism than a chain of branches.
696       //
697       // Note that this situation currently should not happen, as we always call
698       // this function with a veneer to the target label.
699       // However this could happen with a MacroAssembler in the following state:
700       //    [previous code]
701       //    B(label);
702       //    [20KB code]
703       //    Tbz(label);   // First tbz. Pointing to unconditional branch.
704       //    [20KB code]
705       //    Tbz(label);   // Second tbz. Pointing to the first tbz.
706       //    [more code]
707       // and this function is called to remove the first tbz from the label link
708       // chain. Since tbz has a range of +-32KB, the second tbz cannot point to
709       // the unconditional branch.
710       CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
711       UNREACHABLE();
712     }
713   }
714 
715   CheckLabelLinkChain(label);
716 }
717 
718 
bind(Label * label)719 void Assembler::bind(Label* label) {
720   // Bind label to the address at pc_. All instructions (most likely branches)
721   // that are linked to this label will be updated to point to the newly-bound
722   // label.
723 
724   DCHECK(!label->is_near_linked());
725   DCHECK(!label->is_bound());
726 
727   DeleteUnresolvedBranchInfoForLabel(label);
728 
729   // If the label is linked, the link chain looks something like this:
730   //
731   // |--I----I-------I-------L
732   // |---------------------->| pc_offset
733   // |-------------->|         linkoffset = label->pos()
734   //         |<------|         link->ImmPCOffset()
735   // |------>|                 prevlinkoffset = linkoffset + link->ImmPCOffset()
736   //
737   // On each iteration, the last link is updated and then removed from the
738   // chain until only one remains. At that point, the label is bound.
739   //
740   // If the label is not linked, no preparation is required before binding.
741   while (label->is_linked()) {
742     int linkoffset = label->pos();
743     Instruction* link = InstructionAt(linkoffset);
744     int prevlinkoffset = linkoffset + static_cast<int>(link->ImmPCOffset());
745 
746     CheckLabelLinkChain(label);
747 
748     DCHECK(linkoffset >= 0);
749     DCHECK(linkoffset < pc_offset());
750     DCHECK((linkoffset > prevlinkoffset) ||
751            (linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
752     DCHECK(prevlinkoffset >= 0);
753 
754     // Update the link to point to the label.
755     if (link->IsUnresolvedInternalReference()) {
756       // Internal references do not get patched to an instruction but directly
757       // to an address.
758       internal_reference_positions_.push_back(linkoffset);
759       PatchingAssembler patcher(isolate(), link, 2);
760       patcher.dc64(reinterpret_cast<uintptr_t>(pc_));
761     } else {
762       link->SetImmPCOffsetTarget(isolate(),
763                                  reinterpret_cast<Instruction*>(pc_));
764     }
765 
766     // Link the label to the previous link in the chain.
767     if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
768       // We hit kStartOfLabelLinkChain, so the chain is fully processed.
769       label->Unuse();
770     } else {
771       // Update the label for the next iteration.
772       label->link_to(prevlinkoffset);
773     }
774   }
775   label->bind_to(pc_offset());
776 
777   DCHECK(label->is_bound());
778   DCHECK(!label->is_linked());
779 }
780 
781 
LinkAndGetByteOffsetTo(Label * label)782 int Assembler::LinkAndGetByteOffsetTo(Label* label) {
783   DCHECK(sizeof(*pc_) == 1);
784   CheckLabelLinkChain(label);
785 
786   int offset;
787   if (label->is_bound()) {
788     // The label is bound, so it does not need to be updated. Referring
789     // instructions must link directly to the label as they will not be
790     // updated.
791     //
792     // In this case, label->pos() returns the offset of the label from the
793     // start of the buffer.
794     //
795     // Note that offset can be zero for self-referential instructions. (This
796     // could be useful for ADR, for example.)
797     offset = label->pos() - pc_offset();
798     DCHECK(offset <= 0);
799   } else {
800     if (label->is_linked()) {
801       // The label is linked, so the referring instruction should be added onto
802       // the end of the label's link chain.
803       //
804       // In this case, label->pos() returns the offset of the last linked
805       // instruction from the start of the buffer.
806       offset = label->pos() - pc_offset();
807       DCHECK(offset != kStartOfLabelLinkChain);
808       // Note that the offset here needs to be PC-relative only so that the
809       // first instruction in a buffer can link to an unbound label. Otherwise,
810       // the offset would be 0 for this case, and 0 is reserved for
811       // kStartOfLabelLinkChain.
812     } else {
813       // The label is unused, so it now becomes linked and the referring
814       // instruction is at the start of the new link chain.
815       offset = kStartOfLabelLinkChain;
816     }
817     // The instruction at pc is now the last link in the label's chain.
818     label->link_to(pc_offset());
819   }
820 
821   return offset;
822 }
823 
824 
DeleteUnresolvedBranchInfoForLabelTraverse(Label * label)825 void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) {
826   DCHECK(label->is_linked());
827   CheckLabelLinkChain(label);
828 
829   int link_offset = label->pos();
830   int link_pcoffset;
831   bool end_of_chain = false;
832 
833   while (!end_of_chain) {
834     Instruction * link = InstructionAt(link_offset);
835     link_pcoffset = static_cast<int>(link->ImmPCOffset());
836 
837     // ADR instructions are not handled by veneers.
838     if (link->IsImmBranch()) {
839       int max_reachable_pc =
840           static_cast<int>(InstructionOffset(link) +
841                            Instruction::ImmBranchRange(link->BranchType()));
842       typedef std::multimap<int, FarBranchInfo>::iterator unresolved_info_it;
843       std::pair<unresolved_info_it, unresolved_info_it> range;
844       range = unresolved_branches_.equal_range(max_reachable_pc);
845       unresolved_info_it it;
846       for (it = range.first; it != range.second; ++it) {
847         if (it->second.pc_offset_ == link_offset) {
848           unresolved_branches_.erase(it);
849           break;
850         }
851       }
852     }
853 
854     end_of_chain = (link_pcoffset == 0);
855     link_offset = link_offset + link_pcoffset;
856   }
857 }
858 
859 
DeleteUnresolvedBranchInfoForLabel(Label * label)860 void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
861   if (unresolved_branches_.empty()) {
862     DCHECK(next_veneer_pool_check_ == kMaxInt);
863     return;
864   }
865 
866   if (label->is_linked()) {
867     // Branches to this label will be resolved when the label is bound, normally
868     // just after all the associated info has been deleted.
869     DeleteUnresolvedBranchInfoForLabelTraverse(label);
870   }
871   if (unresolved_branches_.empty()) {
872     next_veneer_pool_check_ = kMaxInt;
873   } else {
874     next_veneer_pool_check_ =
875       unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
876   }
877 }
878 
879 
StartBlockConstPool()880 void Assembler::StartBlockConstPool() {
881   if (const_pool_blocked_nesting_++ == 0) {
882     // Prevent constant pool checks happening by setting the next check to
883     // the biggest possible offset.
884     next_constant_pool_check_ = kMaxInt;
885   }
886 }
887 
888 
EndBlockConstPool()889 void Assembler::EndBlockConstPool() {
890   if (--const_pool_blocked_nesting_ == 0) {
891     // Check the constant pool hasn't been blocked for too long.
892     DCHECK(pc_offset() < constpool_.MaxPcOffset());
893     // Two cases:
894     //  * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
895     //    still blocked
896     //  * no_const_pool_before_ < next_constant_pool_check_ and the next emit
897     //    will trigger a check.
898     next_constant_pool_check_ = no_const_pool_before_;
899   }
900 }
901 
902 
is_const_pool_blocked() const903 bool Assembler::is_const_pool_blocked() const {
904   return (const_pool_blocked_nesting_ > 0) ||
905          (pc_offset() < no_const_pool_before_);
906 }
907 
908 
IsConstantPoolAt(Instruction * instr)909 bool Assembler::IsConstantPoolAt(Instruction* instr) {
910   // The constant pool marker is made of two instructions. These instructions
911   // will never be emitted by the JIT, so checking for the first one is enough:
912   // 0: ldr xzr, #<size of pool>
913   bool result = instr->IsLdrLiteralX() && (instr->Rt() == kZeroRegCode);
914 
915   // It is still worth asserting the marker is complete.
916   // 4: blr xzr
917   DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() &&
918                      instr->following()->Rn() == kZeroRegCode));
919 
920   return result;
921 }
922 
923 
ConstantPoolSizeAt(Instruction * instr)924 int Assembler::ConstantPoolSizeAt(Instruction* instr) {
925 #ifdef USE_SIMULATOR
926   // Assembler::debug() embeds constants directly into the instruction stream.
927   // Although this is not a genuine constant pool, treat it like one to avoid
928   // disassembling the constants.
929   if ((instr->Mask(ExceptionMask) == HLT) &&
930       (instr->ImmException() == kImmExceptionIsDebug)) {
931     const char* message =
932         reinterpret_cast<const char*>(
933             instr->InstructionAtOffset(kDebugMessageOffset));
934     int size = static_cast<int>(kDebugMessageOffset + strlen(message) + 1);
935     return RoundUp(size, kInstructionSize) / kInstructionSize;
936   }
937   // Same for printf support, see MacroAssembler::CallPrintf().
938   if ((instr->Mask(ExceptionMask) == HLT) &&
939       (instr->ImmException() == kImmExceptionIsPrintf)) {
940     return kPrintfLength / kInstructionSize;
941   }
942 #endif
943   if (IsConstantPoolAt(instr)) {
944     return instr->ImmLLiteral();
945   } else {
946     return -1;
947   }
948 }
949 
950 
EmitPoolGuard()951 void Assembler::EmitPoolGuard() {
952   // We must generate only one instruction as this is used in scopes that
953   // control the size of the code generated.
954   Emit(BLR | Rn(xzr));
955 }
956 
957 
StartBlockVeneerPool()958 void Assembler::StartBlockVeneerPool() {
959   ++veneer_pool_blocked_nesting_;
960 }
961 
962 
EndBlockVeneerPool()963 void Assembler::EndBlockVeneerPool() {
964   if (--veneer_pool_blocked_nesting_ == 0) {
965     // Check the veneer pool hasn't been blocked for too long.
966     DCHECK(unresolved_branches_.empty() ||
967            (pc_offset() < unresolved_branches_first_limit()));
968   }
969 }
970 
971 
br(const Register & xn)972 void Assembler::br(const Register& xn) {
973   DCHECK(xn.Is64Bits());
974   Emit(BR | Rn(xn));
975 }
976 
977 
blr(const Register & xn)978 void Assembler::blr(const Register& xn) {
979   DCHECK(xn.Is64Bits());
980   // The pattern 'blr xzr' is used as a guard to detect when execution falls
981   // through the constant pool. It should not be emitted.
982   DCHECK(!xn.Is(xzr));
983   Emit(BLR | Rn(xn));
984 }
985 
986 
ret(const Register & xn)987 void Assembler::ret(const Register& xn) {
988   DCHECK(xn.Is64Bits());
989   Emit(RET | Rn(xn));
990 }
991 
992 
b(int imm26)993 void Assembler::b(int imm26) {
994   Emit(B | ImmUncondBranch(imm26));
995 }
996 
997 
b(Label * label)998 void Assembler::b(Label* label) {
999   b(LinkAndGetInstructionOffsetTo(label));
1000 }
1001 
1002 
b(int imm19,Condition cond)1003 void Assembler::b(int imm19, Condition cond) {
1004   Emit(B_cond | ImmCondBranch(imm19) | cond);
1005 }
1006 
1007 
b(Label * label,Condition cond)1008 void Assembler::b(Label* label, Condition cond) {
1009   b(LinkAndGetInstructionOffsetTo(label), cond);
1010 }
1011 
1012 
bl(int imm26)1013 void Assembler::bl(int imm26) {
1014   Emit(BL | ImmUncondBranch(imm26));
1015 }
1016 
1017 
bl(Label * label)1018 void Assembler::bl(Label* label) {
1019   bl(LinkAndGetInstructionOffsetTo(label));
1020 }
1021 
1022 
cbz(const Register & rt,int imm19)1023 void Assembler::cbz(const Register& rt,
1024                     int imm19) {
1025   Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
1026 }
1027 
1028 
cbz(const Register & rt,Label * label)1029 void Assembler::cbz(const Register& rt,
1030                     Label* label) {
1031   cbz(rt, LinkAndGetInstructionOffsetTo(label));
1032 }
1033 
1034 
cbnz(const Register & rt,int imm19)1035 void Assembler::cbnz(const Register& rt,
1036                      int imm19) {
1037   Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
1038 }
1039 
1040 
cbnz(const Register & rt,Label * label)1041 void Assembler::cbnz(const Register& rt,
1042                      Label* label) {
1043   cbnz(rt, LinkAndGetInstructionOffsetTo(label));
1044 }
1045 
1046 
tbz(const Register & rt,unsigned bit_pos,int imm14)1047 void Assembler::tbz(const Register& rt,
1048                     unsigned bit_pos,
1049                     int imm14) {
1050   DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1051   Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1052 }
1053 
1054 
tbz(const Register & rt,unsigned bit_pos,Label * label)1055 void Assembler::tbz(const Register& rt,
1056                     unsigned bit_pos,
1057                     Label* label) {
1058   tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1059 }
1060 
1061 
tbnz(const Register & rt,unsigned bit_pos,int imm14)1062 void Assembler::tbnz(const Register& rt,
1063                      unsigned bit_pos,
1064                      int imm14) {
1065   DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1066   Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1067 }
1068 
1069 
tbnz(const Register & rt,unsigned bit_pos,Label * label)1070 void Assembler::tbnz(const Register& rt,
1071                      unsigned bit_pos,
1072                      Label* label) {
1073   tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1074 }
1075 
1076 
adr(const Register & rd,int imm21)1077 void Assembler::adr(const Register& rd, int imm21) {
1078   DCHECK(rd.Is64Bits());
1079   Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
1080 }
1081 
1082 
adr(const Register & rd,Label * label)1083 void Assembler::adr(const Register& rd, Label* label) {
1084   adr(rd, LinkAndGetByteOffsetTo(label));
1085 }
1086 
1087 
add(const Register & rd,const Register & rn,const Operand & operand)1088 void Assembler::add(const Register& rd,
1089                     const Register& rn,
1090                     const Operand& operand) {
1091   AddSub(rd, rn, operand, LeaveFlags, ADD);
1092 }
1093 
1094 
adds(const Register & rd,const Register & rn,const Operand & operand)1095 void Assembler::adds(const Register& rd,
1096                      const Register& rn,
1097                      const Operand& operand) {
1098   AddSub(rd, rn, operand, SetFlags, ADD);
1099 }
1100 
1101 
cmn(const Register & rn,const Operand & operand)1102 void Assembler::cmn(const Register& rn,
1103                     const Operand& operand) {
1104   Register zr = AppropriateZeroRegFor(rn);
1105   adds(zr, rn, operand);
1106 }
1107 
1108 
sub(const Register & rd,const Register & rn,const Operand & operand)1109 void Assembler::sub(const Register& rd,
1110                     const Register& rn,
1111                     const Operand& operand) {
1112   AddSub(rd, rn, operand, LeaveFlags, SUB);
1113 }
1114 
1115 
subs(const Register & rd,const Register & rn,const Operand & operand)1116 void Assembler::subs(const Register& rd,
1117                      const Register& rn,
1118                      const Operand& operand) {
1119   AddSub(rd, rn, operand, SetFlags, SUB);
1120 }
1121 
1122 
cmp(const Register & rn,const Operand & operand)1123 void Assembler::cmp(const Register& rn, const Operand& operand) {
1124   Register zr = AppropriateZeroRegFor(rn);
1125   subs(zr, rn, operand);
1126 }
1127 
1128 
neg(const Register & rd,const Operand & operand)1129 void Assembler::neg(const Register& rd, const Operand& operand) {
1130   Register zr = AppropriateZeroRegFor(rd);
1131   sub(rd, zr, operand);
1132 }
1133 
1134 
negs(const Register & rd,const Operand & operand)1135 void Assembler::negs(const Register& rd, const Operand& operand) {
1136   Register zr = AppropriateZeroRegFor(rd);
1137   subs(rd, zr, operand);
1138 }
1139 
1140 
adc(const Register & rd,const Register & rn,const Operand & operand)1141 void Assembler::adc(const Register& rd,
1142                     const Register& rn,
1143                     const Operand& operand) {
1144   AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
1145 }
1146 
1147 
adcs(const Register & rd,const Register & rn,const Operand & operand)1148 void Assembler::adcs(const Register& rd,
1149                      const Register& rn,
1150                      const Operand& operand) {
1151   AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
1152 }
1153 
1154 
sbc(const Register & rd,const Register & rn,const Operand & operand)1155 void Assembler::sbc(const Register& rd,
1156                     const Register& rn,
1157                     const Operand& operand) {
1158   AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
1159 }
1160 
1161 
sbcs(const Register & rd,const Register & rn,const Operand & operand)1162 void Assembler::sbcs(const Register& rd,
1163                      const Register& rn,
1164                      const Operand& operand) {
1165   AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
1166 }
1167 
1168 
ngc(const Register & rd,const Operand & operand)1169 void Assembler::ngc(const Register& rd, const Operand& operand) {
1170   Register zr = AppropriateZeroRegFor(rd);
1171   sbc(rd, zr, operand);
1172 }
1173 
1174 
ngcs(const Register & rd,const Operand & operand)1175 void Assembler::ngcs(const Register& rd, const Operand& operand) {
1176   Register zr = AppropriateZeroRegFor(rd);
1177   sbcs(rd, zr, operand);
1178 }
1179 
1180 
1181 // Logical instructions.
and_(const Register & rd,const Register & rn,const Operand & operand)1182 void Assembler::and_(const Register& rd,
1183                      const Register& rn,
1184                      const Operand& operand) {
1185   Logical(rd, rn, operand, AND);
1186 }
1187 
1188 
ands(const Register & rd,const Register & rn,const Operand & operand)1189 void Assembler::ands(const Register& rd,
1190                      const Register& rn,
1191                      const Operand& operand) {
1192   Logical(rd, rn, operand, ANDS);
1193 }
1194 
1195 
tst(const Register & rn,const Operand & operand)1196 void Assembler::tst(const Register& rn,
1197                     const Operand& operand) {
1198   ands(AppropriateZeroRegFor(rn), rn, operand);
1199 }
1200 
1201 
bic(const Register & rd,const Register & rn,const Operand & operand)1202 void Assembler::bic(const Register& rd,
1203                     const Register& rn,
1204                     const Operand& operand) {
1205   Logical(rd, rn, operand, BIC);
1206 }
1207 
1208 
bics(const Register & rd,const Register & rn,const Operand & operand)1209 void Assembler::bics(const Register& rd,
1210                      const Register& rn,
1211                      const Operand& operand) {
1212   Logical(rd, rn, operand, BICS);
1213 }
1214 
1215 
orr(const Register & rd,const Register & rn,const Operand & operand)1216 void Assembler::orr(const Register& rd,
1217                     const Register& rn,
1218                     const Operand& operand) {
1219   Logical(rd, rn, operand, ORR);
1220 }
1221 
1222 
orn(const Register & rd,const Register & rn,const Operand & operand)1223 void Assembler::orn(const Register& rd,
1224                     const Register& rn,
1225                     const Operand& operand) {
1226   Logical(rd, rn, operand, ORN);
1227 }
1228 
1229 
eor(const Register & rd,const Register & rn,const Operand & operand)1230 void Assembler::eor(const Register& rd,
1231                     const Register& rn,
1232                     const Operand& operand) {
1233   Logical(rd, rn, operand, EOR);
1234 }
1235 
1236 
eon(const Register & rd,const Register & rn,const Operand & operand)1237 void Assembler::eon(const Register& rd,
1238                     const Register& rn,
1239                     const Operand& operand) {
1240   Logical(rd, rn, operand, EON);
1241 }
1242 
1243 
lslv(const Register & rd,const Register & rn,const Register & rm)1244 void Assembler::lslv(const Register& rd,
1245                      const Register& rn,
1246                      const Register& rm) {
1247   DCHECK(rd.SizeInBits() == rn.SizeInBits());
1248   DCHECK(rd.SizeInBits() == rm.SizeInBits());
1249   Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
1250 }
1251 
1252 
lsrv(const Register & rd,const Register & rn,const Register & rm)1253 void Assembler::lsrv(const Register& rd,
1254                      const Register& rn,
1255                      const Register& rm) {
1256   DCHECK(rd.SizeInBits() == rn.SizeInBits());
1257   DCHECK(rd.SizeInBits() == rm.SizeInBits());
1258   Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
1259 }
1260 
1261 
asrv(const Register & rd,const Register & rn,const Register & rm)1262 void Assembler::asrv(const Register& rd,
1263                      const Register& rn,
1264                      const Register& rm) {
1265   DCHECK(rd.SizeInBits() == rn.SizeInBits());
1266   DCHECK(rd.SizeInBits() == rm.SizeInBits());
1267   Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
1268 }
1269 
1270 
rorv(const Register & rd,const Register & rn,const Register & rm)1271 void Assembler::rorv(const Register& rd,
1272                      const Register& rn,
1273                      const Register& rm) {
1274   DCHECK(rd.SizeInBits() == rn.SizeInBits());
1275   DCHECK(rd.SizeInBits() == rm.SizeInBits());
1276   Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
1277 }
1278 
1279 
1280 // Bitfield operations.
bfm(const Register & rd,const Register & rn,int immr,int imms)1281 void Assembler::bfm(const Register& rd, const Register& rn, int immr,
1282                     int imms) {
1283   DCHECK(rd.SizeInBits() == rn.SizeInBits());
1284   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1285   Emit(SF(rd) | BFM | N |
1286        ImmR(immr, rd.SizeInBits()) |
1287        ImmS(imms, rn.SizeInBits()) |
1288        Rn(rn) | Rd(rd));
1289 }
1290 
1291 
sbfm(const Register & rd,const Register & rn,int immr,int imms)1292 void Assembler::sbfm(const Register& rd, const Register& rn, int immr,
1293                      int imms) {
1294   DCHECK(rd.Is64Bits() || rn.Is32Bits());
1295   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1296   Emit(SF(rd) | SBFM | N |
1297        ImmR(immr, rd.SizeInBits()) |
1298        ImmS(imms, rn.SizeInBits()) |
1299        Rn(rn) | Rd(rd));
1300 }
1301 
1302 
ubfm(const Register & rd,const Register & rn,int immr,int imms)1303 void Assembler::ubfm(const Register& rd, const Register& rn, int immr,
1304                      int imms) {
1305   DCHECK(rd.SizeInBits() == rn.SizeInBits());
1306   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1307   Emit(SF(rd) | UBFM | N |
1308        ImmR(immr, rd.SizeInBits()) |
1309        ImmS(imms, rn.SizeInBits()) |
1310        Rn(rn) | Rd(rd));
1311 }
1312 
1313 
extr(const Register & rd,const Register & rn,const Register & rm,int lsb)1314 void Assembler::extr(const Register& rd, const Register& rn, const Register& rm,
1315                      int lsb) {
1316   DCHECK(rd.SizeInBits() == rn.SizeInBits());
1317   DCHECK(rd.SizeInBits() == rm.SizeInBits());
1318   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1319   Emit(SF(rd) | EXTR | N | Rm(rm) |
1320        ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
1321 }
1322 
1323 
csel(const Register & rd,const Register & rn,const Register & rm,Condition cond)1324 void Assembler::csel(const Register& rd,
1325                      const Register& rn,
1326                      const Register& rm,
1327                      Condition cond) {
1328   ConditionalSelect(rd, rn, rm, cond, CSEL);
1329 }
1330 
1331 
csinc(const Register & rd,const Register & rn,const Register & rm,Condition cond)1332 void Assembler::csinc(const Register& rd,
1333                       const Register& rn,
1334                       const Register& rm,
1335                       Condition cond) {
1336   ConditionalSelect(rd, rn, rm, cond, CSINC);
1337 }
1338 
1339 
csinv(const Register & rd,const Register & rn,const Register & rm,Condition cond)1340 void Assembler::csinv(const Register& rd,
1341                       const Register& rn,
1342                       const Register& rm,
1343                       Condition cond) {
1344   ConditionalSelect(rd, rn, rm, cond, CSINV);
1345 }
1346 
1347 
csneg(const Register & rd,const Register & rn,const Register & rm,Condition cond)1348 void Assembler::csneg(const Register& rd,
1349                       const Register& rn,
1350                       const Register& rm,
1351                       Condition cond) {
1352   ConditionalSelect(rd, rn, rm, cond, CSNEG);
1353 }
1354 
1355 
cset(const Register & rd,Condition cond)1356 void Assembler::cset(const Register &rd, Condition cond) {
1357   DCHECK((cond != al) && (cond != nv));
1358   Register zr = AppropriateZeroRegFor(rd);
1359   csinc(rd, zr, zr, NegateCondition(cond));
1360 }
1361 
1362 
csetm(const Register & rd,Condition cond)1363 void Assembler::csetm(const Register &rd, Condition cond) {
1364   DCHECK((cond != al) && (cond != nv));
1365   Register zr = AppropriateZeroRegFor(rd);
1366   csinv(rd, zr, zr, NegateCondition(cond));
1367 }
1368 
1369 
cinc(const Register & rd,const Register & rn,Condition cond)1370 void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
1371   DCHECK((cond != al) && (cond != nv));
1372   csinc(rd, rn, rn, NegateCondition(cond));
1373 }
1374 
1375 
cinv(const Register & rd,const Register & rn,Condition cond)1376 void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
1377   DCHECK((cond != al) && (cond != nv));
1378   csinv(rd, rn, rn, NegateCondition(cond));
1379 }
1380 
1381 
cneg(const Register & rd,const Register & rn,Condition cond)1382 void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
1383   DCHECK((cond != al) && (cond != nv));
1384   csneg(rd, rn, rn, NegateCondition(cond));
1385 }
1386 
1387 
ConditionalSelect(const Register & rd,const Register & rn,const Register & rm,Condition cond,ConditionalSelectOp op)1388 void Assembler::ConditionalSelect(const Register& rd,
1389                                   const Register& rn,
1390                                   const Register& rm,
1391                                   Condition cond,
1392                                   ConditionalSelectOp op) {
1393   DCHECK(rd.SizeInBits() == rn.SizeInBits());
1394   DCHECK(rd.SizeInBits() == rm.SizeInBits());
1395   Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
1396 }
1397 
1398 
ccmn(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)1399 void Assembler::ccmn(const Register& rn,
1400                      const Operand& operand,
1401                      StatusFlags nzcv,
1402                      Condition cond) {
1403   ConditionalCompare(rn, operand, nzcv, cond, CCMN);
1404 }
1405 
1406 
ccmp(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)1407 void Assembler::ccmp(const Register& rn,
1408                      const Operand& operand,
1409                      StatusFlags nzcv,
1410                      Condition cond) {
1411   ConditionalCompare(rn, operand, nzcv, cond, CCMP);
1412 }
1413 
1414 
DataProcessing3Source(const Register & rd,const Register & rn,const Register & rm,const Register & ra,DataProcessing3SourceOp op)1415 void Assembler::DataProcessing3Source(const Register& rd,
1416                                       const Register& rn,
1417                                       const Register& rm,
1418                                       const Register& ra,
1419                                       DataProcessing3SourceOp op) {
1420   Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
1421 }
1422 
1423 
mul(const Register & rd,const Register & rn,const Register & rm)1424 void Assembler::mul(const Register& rd,
1425                     const Register& rn,
1426                     const Register& rm) {
1427   DCHECK(AreSameSizeAndType(rd, rn, rm));
1428   Register zr = AppropriateZeroRegFor(rn);
1429   DataProcessing3Source(rd, rn, rm, zr, MADD);
1430 }
1431 
1432 
madd(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1433 void Assembler::madd(const Register& rd,
1434                      const Register& rn,
1435                      const Register& rm,
1436                      const Register& ra) {
1437   DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1438   DataProcessing3Source(rd, rn, rm, ra, MADD);
1439 }
1440 
1441 
mneg(const Register & rd,const Register & rn,const Register & rm)1442 void Assembler::mneg(const Register& rd,
1443                      const Register& rn,
1444                      const Register& rm) {
1445   DCHECK(AreSameSizeAndType(rd, rn, rm));
1446   Register zr = AppropriateZeroRegFor(rn);
1447   DataProcessing3Source(rd, rn, rm, zr, MSUB);
1448 }
1449 
1450 
msub(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1451 void Assembler::msub(const Register& rd,
1452                      const Register& rn,
1453                      const Register& rm,
1454                      const Register& ra) {
1455   DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1456   DataProcessing3Source(rd, rn, rm, ra, MSUB);
1457 }
1458 
1459 
smaddl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1460 void Assembler::smaddl(const Register& rd,
1461                        const Register& rn,
1462                        const Register& rm,
1463                        const Register& ra) {
1464   DCHECK(rd.Is64Bits() && ra.Is64Bits());
1465   DCHECK(rn.Is32Bits() && rm.Is32Bits());
1466   DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
1467 }
1468 
1469 
smsubl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1470 void Assembler::smsubl(const Register& rd,
1471                        const Register& rn,
1472                        const Register& rm,
1473                        const Register& ra) {
1474   DCHECK(rd.Is64Bits() && ra.Is64Bits());
1475   DCHECK(rn.Is32Bits() && rm.Is32Bits());
1476   DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
1477 }
1478 
1479 
umaddl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1480 void Assembler::umaddl(const Register& rd,
1481                        const Register& rn,
1482                        const Register& rm,
1483                        const Register& ra) {
1484   DCHECK(rd.Is64Bits() && ra.Is64Bits());
1485   DCHECK(rn.Is32Bits() && rm.Is32Bits());
1486   DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
1487 }
1488 
1489 
umsubl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1490 void Assembler::umsubl(const Register& rd,
1491                        const Register& rn,
1492                        const Register& rm,
1493                        const Register& ra) {
1494   DCHECK(rd.Is64Bits() && ra.Is64Bits());
1495   DCHECK(rn.Is32Bits() && rm.Is32Bits());
1496   DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
1497 }
1498 
1499 
smull(const Register & rd,const Register & rn,const Register & rm)1500 void Assembler::smull(const Register& rd,
1501                       const Register& rn,
1502                       const Register& rm) {
1503   DCHECK(rd.Is64Bits());
1504   DCHECK(rn.Is32Bits() && rm.Is32Bits());
1505   DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
1506 }
1507 
1508 
smulh(const Register & rd,const Register & rn,const Register & rm)1509 void Assembler::smulh(const Register& rd,
1510                       const Register& rn,
1511                       const Register& rm) {
1512   DCHECK(AreSameSizeAndType(rd, rn, rm));
1513   DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
1514 }
1515 
1516 
sdiv(const Register & rd,const Register & rn,const Register & rm)1517 void Assembler::sdiv(const Register& rd,
1518                      const Register& rn,
1519                      const Register& rm) {
1520   DCHECK(rd.SizeInBits() == rn.SizeInBits());
1521   DCHECK(rd.SizeInBits() == rm.SizeInBits());
1522   Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
1523 }
1524 
1525 
udiv(const Register & rd,const Register & rn,const Register & rm)1526 void Assembler::udiv(const Register& rd,
1527                      const Register& rn,
1528                      const Register& rm) {
1529   DCHECK(rd.SizeInBits() == rn.SizeInBits());
1530   DCHECK(rd.SizeInBits() == rm.SizeInBits());
1531   Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
1532 }
1533 
1534 
rbit(const Register & rd,const Register & rn)1535 void Assembler::rbit(const Register& rd,
1536                      const Register& rn) {
1537   DataProcessing1Source(rd, rn, RBIT);
1538 }
1539 
1540 
rev16(const Register & rd,const Register & rn)1541 void Assembler::rev16(const Register& rd,
1542                       const Register& rn) {
1543   DataProcessing1Source(rd, rn, REV16);
1544 }
1545 
1546 
rev32(const Register & rd,const Register & rn)1547 void Assembler::rev32(const Register& rd,
1548                       const Register& rn) {
1549   DCHECK(rd.Is64Bits());
1550   DataProcessing1Source(rd, rn, REV);
1551 }
1552 
1553 
rev(const Register & rd,const Register & rn)1554 void Assembler::rev(const Register& rd,
1555                     const Register& rn) {
1556   DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
1557 }
1558 
1559 
clz(const Register & rd,const Register & rn)1560 void Assembler::clz(const Register& rd,
1561                     const Register& rn) {
1562   DataProcessing1Source(rd, rn, CLZ);
1563 }
1564 
1565 
cls(const Register & rd,const Register & rn)1566 void Assembler::cls(const Register& rd,
1567                     const Register& rn) {
1568   DataProcessing1Source(rd, rn, CLS);
1569 }
1570 
1571 
ldp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & src)1572 void Assembler::ldp(const CPURegister& rt,
1573                     const CPURegister& rt2,
1574                     const MemOperand& src) {
1575   LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
1576 }
1577 
1578 
stp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & dst)1579 void Assembler::stp(const CPURegister& rt,
1580                     const CPURegister& rt2,
1581                     const MemOperand& dst) {
1582   LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
1583 }
1584 
1585 
ldpsw(const Register & rt,const Register & rt2,const MemOperand & src)1586 void Assembler::ldpsw(const Register& rt,
1587                       const Register& rt2,
1588                       const MemOperand& src) {
1589   DCHECK(rt.Is64Bits());
1590   LoadStorePair(rt, rt2, src, LDPSW_x);
1591 }
1592 
1593 
LoadStorePair(const CPURegister & rt,const CPURegister & rt2,const MemOperand & addr,LoadStorePairOp op)1594 void Assembler::LoadStorePair(const CPURegister& rt,
1595                               const CPURegister& rt2,
1596                               const MemOperand& addr,
1597                               LoadStorePairOp op) {
1598   // 'rt' and 'rt2' can only be aliased for stores.
1599   DCHECK(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
1600   DCHECK(AreSameSizeAndType(rt, rt2));
1601   DCHECK(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op)));
1602   int offset = static_cast<int>(addr.offset());
1603 
1604   Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
1605                 ImmLSPair(offset, CalcLSPairDataSize(op));
1606 
1607   Instr addrmodeop;
1608   if (addr.IsImmediateOffset()) {
1609     addrmodeop = LoadStorePairOffsetFixed;
1610   } else {
1611     // Pre-index and post-index modes.
1612     DCHECK(!rt.Is(addr.base()));
1613     DCHECK(!rt2.Is(addr.base()));
1614     DCHECK(addr.offset() != 0);
1615     if (addr.IsPreIndex()) {
1616       addrmodeop = LoadStorePairPreIndexFixed;
1617     } else {
1618       DCHECK(addr.IsPostIndex());
1619       addrmodeop = LoadStorePairPostIndexFixed;
1620     }
1621   }
1622   Emit(addrmodeop | memop);
1623 }
1624 
1625 
1626 // Memory instructions.
ldrb(const Register & rt,const MemOperand & src)1627 void Assembler::ldrb(const Register& rt, const MemOperand& src) {
1628   LoadStore(rt, src, LDRB_w);
1629 }
1630 
1631 
strb(const Register & rt,const MemOperand & dst)1632 void Assembler::strb(const Register& rt, const MemOperand& dst) {
1633   LoadStore(rt, dst, STRB_w);
1634 }
1635 
1636 
ldrsb(const Register & rt,const MemOperand & src)1637 void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
1638   LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
1639 }
1640 
1641 
ldrh(const Register & rt,const MemOperand & src)1642 void Assembler::ldrh(const Register& rt, const MemOperand& src) {
1643   LoadStore(rt, src, LDRH_w);
1644 }
1645 
1646 
strh(const Register & rt,const MemOperand & dst)1647 void Assembler::strh(const Register& rt, const MemOperand& dst) {
1648   LoadStore(rt, dst, STRH_w);
1649 }
1650 
1651 
ldrsh(const Register & rt,const MemOperand & src)1652 void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
1653   LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
1654 }
1655 
1656 
ldr(const CPURegister & rt,const MemOperand & src)1657 void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
1658   LoadStore(rt, src, LoadOpFor(rt));
1659 }
1660 
1661 
str(const CPURegister & rt,const MemOperand & src)1662 void Assembler::str(const CPURegister& rt, const MemOperand& src) {
1663   LoadStore(rt, src, StoreOpFor(rt));
1664 }
1665 
1666 
ldrsw(const Register & rt,const MemOperand & src)1667 void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
1668   DCHECK(rt.Is64Bits());
1669   LoadStore(rt, src, LDRSW_x);
1670 }
1671 
1672 
ldr_pcrel(const CPURegister & rt,int imm19)1673 void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) {
1674   // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
1675   // constant pool. It should not be emitted.
1676   DCHECK(!rt.IsZero());
1677   Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt));
1678 }
1679 
1680 
ldr(const CPURegister & rt,const Immediate & imm)1681 void Assembler::ldr(const CPURegister& rt, const Immediate& imm) {
1682   // Currently we only support 64-bit literals.
1683   DCHECK(rt.Is64Bits());
1684 
1685   RecordRelocInfo(imm.rmode(), imm.value());
1686   BlockConstPoolFor(1);
1687   // The load will be patched when the constpool is emitted, patching code
1688   // expect a load literal with offset 0.
1689   ldr_pcrel(rt, 0);
1690 }
1691 
ldar(const Register & rt,const Register & rn)1692 void Assembler::ldar(const Register& rt, const Register& rn) {
1693   DCHECK(rn.Is64Bits());
1694   LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAR_w : LDAR_x;
1695   Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1696 }
1697 
ldaxr(const Register & rt,const Register & rn)1698 void Assembler::ldaxr(const Register& rt, const Register& rn) {
1699   DCHECK(rn.Is64Bits());
1700   LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAXR_w : LDAXR_x;
1701   Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1702 }
1703 
stlr(const Register & rt,const Register & rn)1704 void Assembler::stlr(const Register& rt, const Register& rn) {
1705   DCHECK(rn.Is64Bits());
1706   LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLR_w : STLR_x;
1707   Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1708 }
1709 
stlxr(const Register & rs,const Register & rt,const Register & rn)1710 void Assembler::stlxr(const Register& rs, const Register& rt,
1711                       const Register& rn) {
1712   DCHECK(rs.Is32Bits());
1713   DCHECK(rn.Is64Bits());
1714   LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLXR_w : STLXR_x;
1715   Emit(op | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
1716 }
1717 
ldarb(const Register & rt,const Register & rn)1718 void Assembler::ldarb(const Register& rt, const Register& rn) {
1719   DCHECK(rt.Is32Bits());
1720   DCHECK(rn.Is64Bits());
1721   Emit(LDAR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1722 }
1723 
ldaxrb(const Register & rt,const Register & rn)1724 void Assembler::ldaxrb(const Register& rt, const Register& rn) {
1725   DCHECK(rt.Is32Bits());
1726   DCHECK(rn.Is64Bits());
1727   Emit(LDAXR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1728 }
1729 
stlrb(const Register & rt,const Register & rn)1730 void Assembler::stlrb(const Register& rt, const Register& rn) {
1731   DCHECK(rt.Is32Bits());
1732   DCHECK(rn.Is64Bits());
1733   Emit(STLR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1734 }
1735 
stlxrb(const Register & rs,const Register & rt,const Register & rn)1736 void Assembler::stlxrb(const Register& rs, const Register& rt,
1737                        const Register& rn) {
1738   DCHECK(rs.Is32Bits());
1739   DCHECK(rt.Is32Bits());
1740   DCHECK(rn.Is64Bits());
1741   Emit(STLXR_b | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
1742 }
1743 
ldarh(const Register & rt,const Register & rn)1744 void Assembler::ldarh(const Register& rt, const Register& rn) {
1745   DCHECK(rt.Is32Bits());
1746   DCHECK(rn.Is64Bits());
1747   Emit(LDAR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1748 }
1749 
ldaxrh(const Register & rt,const Register & rn)1750 void Assembler::ldaxrh(const Register& rt, const Register& rn) {
1751   DCHECK(rt.Is32Bits());
1752   DCHECK(rn.Is64Bits());
1753   Emit(LDAXR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1754 }
1755 
stlrh(const Register & rt,const Register & rn)1756 void Assembler::stlrh(const Register& rt, const Register& rn) {
1757   DCHECK(rt.Is32Bits());
1758   DCHECK(rn.Is64Bits());
1759   Emit(STLR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1760 }
1761 
stlxrh(const Register & rs,const Register & rt,const Register & rn)1762 void Assembler::stlxrh(const Register& rs, const Register& rt,
1763                        const Register& rn) {
1764   DCHECK(rs.Is32Bits());
1765   DCHECK(rt.Is32Bits());
1766   DCHECK(rn.Is64Bits());
1767   Emit(STLXR_h | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
1768 }
1769 
mov(const Register & rd,const Register & rm)1770 void Assembler::mov(const Register& rd, const Register& rm) {
1771   // Moves involving the stack pointer are encoded as add immediate with
1772   // second operand of zero. Otherwise, orr with first operand zr is
1773   // used.
1774   if (rd.IsSP() || rm.IsSP()) {
1775     add(rd, rm, 0);
1776   } else {
1777     orr(rd, AppropriateZeroRegFor(rd), rm);
1778   }
1779 }
1780 
1781 
mvn(const Register & rd,const Operand & operand)1782 void Assembler::mvn(const Register& rd, const Operand& operand) {
1783   orn(rd, AppropriateZeroRegFor(rd), operand);
1784 }
1785 
1786 
mrs(const Register & rt,SystemRegister sysreg)1787 void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
1788   DCHECK(rt.Is64Bits());
1789   Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
1790 }
1791 
1792 
msr(SystemRegister sysreg,const Register & rt)1793 void Assembler::msr(SystemRegister sysreg, const Register& rt) {
1794   DCHECK(rt.Is64Bits());
1795   Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
1796 }
1797 
1798 
hint(SystemHint code)1799 void Assembler::hint(SystemHint code) {
1800   Emit(HINT | ImmHint(code) | Rt(xzr));
1801 }
1802 
1803 
dmb(BarrierDomain domain,BarrierType type)1804 void Assembler::dmb(BarrierDomain domain, BarrierType type) {
1805   Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1806 }
1807 
1808 
dsb(BarrierDomain domain,BarrierType type)1809 void Assembler::dsb(BarrierDomain domain, BarrierType type) {
1810   Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1811 }
1812 
1813 
isb()1814 void Assembler::isb() {
1815   Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
1816 }
1817 
1818 
fmov(FPRegister fd,double imm)1819 void Assembler::fmov(FPRegister fd, double imm) {
1820   DCHECK(fd.Is64Bits());
1821   DCHECK(IsImmFP64(imm));
1822   Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
1823 }
1824 
1825 
fmov(FPRegister fd,float imm)1826 void Assembler::fmov(FPRegister fd, float imm) {
1827   DCHECK(fd.Is32Bits());
1828   DCHECK(IsImmFP32(imm));
1829   Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
1830 }
1831 
1832 
fmov(Register rd,FPRegister fn)1833 void Assembler::fmov(Register rd, FPRegister fn) {
1834   DCHECK(rd.SizeInBits() == fn.SizeInBits());
1835   FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
1836   Emit(op | Rd(rd) | Rn(fn));
1837 }
1838 
1839 
fmov(FPRegister fd,Register rn)1840 void Assembler::fmov(FPRegister fd, Register rn) {
1841   DCHECK(fd.SizeInBits() == rn.SizeInBits());
1842   FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
1843   Emit(op | Rd(fd) | Rn(rn));
1844 }
1845 
1846 
fmov(FPRegister fd,FPRegister fn)1847 void Assembler::fmov(FPRegister fd, FPRegister fn) {
1848   DCHECK(fd.SizeInBits() == fn.SizeInBits());
1849   Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
1850 }
1851 
1852 
fadd(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1853 void Assembler::fadd(const FPRegister& fd,
1854                      const FPRegister& fn,
1855                      const FPRegister& fm) {
1856   FPDataProcessing2Source(fd, fn, fm, FADD);
1857 }
1858 
1859 
fsub(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1860 void Assembler::fsub(const FPRegister& fd,
1861                      const FPRegister& fn,
1862                      const FPRegister& fm) {
1863   FPDataProcessing2Source(fd, fn, fm, FSUB);
1864 }
1865 
1866 
fmul(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1867 void Assembler::fmul(const FPRegister& fd,
1868                      const FPRegister& fn,
1869                      const FPRegister& fm) {
1870   FPDataProcessing2Source(fd, fn, fm, FMUL);
1871 }
1872 
1873 
fmadd(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1874 void Assembler::fmadd(const FPRegister& fd,
1875                       const FPRegister& fn,
1876                       const FPRegister& fm,
1877                       const FPRegister& fa) {
1878   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
1879 }
1880 
1881 
fmsub(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1882 void Assembler::fmsub(const FPRegister& fd,
1883                       const FPRegister& fn,
1884                       const FPRegister& fm,
1885                       const FPRegister& fa) {
1886   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
1887 }
1888 
1889 
fnmadd(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1890 void Assembler::fnmadd(const FPRegister& fd,
1891                        const FPRegister& fn,
1892                        const FPRegister& fm,
1893                        const FPRegister& fa) {
1894   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
1895 }
1896 
1897 
fnmsub(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1898 void Assembler::fnmsub(const FPRegister& fd,
1899                        const FPRegister& fn,
1900                        const FPRegister& fm,
1901                        const FPRegister& fa) {
1902   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
1903 }
1904 
1905 
fdiv(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1906 void Assembler::fdiv(const FPRegister& fd,
1907                      const FPRegister& fn,
1908                      const FPRegister& fm) {
1909   FPDataProcessing2Source(fd, fn, fm, FDIV);
1910 }
1911 
1912 
fmax(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1913 void Assembler::fmax(const FPRegister& fd,
1914                      const FPRegister& fn,
1915                      const FPRegister& fm) {
1916   FPDataProcessing2Source(fd, fn, fm, FMAX);
1917 }
1918 
1919 
fmaxnm(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1920 void Assembler::fmaxnm(const FPRegister& fd,
1921                        const FPRegister& fn,
1922                        const FPRegister& fm) {
1923   FPDataProcessing2Source(fd, fn, fm, FMAXNM);
1924 }
1925 
1926 
fmin(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1927 void Assembler::fmin(const FPRegister& fd,
1928                      const FPRegister& fn,
1929                      const FPRegister& fm) {
1930   FPDataProcessing2Source(fd, fn, fm, FMIN);
1931 }
1932 
1933 
fminnm(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1934 void Assembler::fminnm(const FPRegister& fd,
1935                        const FPRegister& fn,
1936                        const FPRegister& fm) {
1937   FPDataProcessing2Source(fd, fn, fm, FMINNM);
1938 }
1939 
1940 
fabs(const FPRegister & fd,const FPRegister & fn)1941 void Assembler::fabs(const FPRegister& fd,
1942                      const FPRegister& fn) {
1943   DCHECK(fd.SizeInBits() == fn.SizeInBits());
1944   FPDataProcessing1Source(fd, fn, FABS);
1945 }
1946 
1947 
fneg(const FPRegister & fd,const FPRegister & fn)1948 void Assembler::fneg(const FPRegister& fd,
1949                      const FPRegister& fn) {
1950   DCHECK(fd.SizeInBits() == fn.SizeInBits());
1951   FPDataProcessing1Source(fd, fn, FNEG);
1952 }
1953 
1954 
fsqrt(const FPRegister & fd,const FPRegister & fn)1955 void Assembler::fsqrt(const FPRegister& fd,
1956                       const FPRegister& fn) {
1957   DCHECK(fd.SizeInBits() == fn.SizeInBits());
1958   FPDataProcessing1Source(fd, fn, FSQRT);
1959 }
1960 
1961 
frinta(const FPRegister & fd,const FPRegister & fn)1962 void Assembler::frinta(const FPRegister& fd,
1963                        const FPRegister& fn) {
1964   DCHECK(fd.SizeInBits() == fn.SizeInBits());
1965   FPDataProcessing1Source(fd, fn, FRINTA);
1966 }
1967 
1968 
frintm(const FPRegister & fd,const FPRegister & fn)1969 void Assembler::frintm(const FPRegister& fd,
1970                        const FPRegister& fn) {
1971   DCHECK(fd.SizeInBits() == fn.SizeInBits());
1972   FPDataProcessing1Source(fd, fn, FRINTM);
1973 }
1974 
1975 
frintn(const FPRegister & fd,const FPRegister & fn)1976 void Assembler::frintn(const FPRegister& fd,
1977                        const FPRegister& fn) {
1978   DCHECK(fd.SizeInBits() == fn.SizeInBits());
1979   FPDataProcessing1Source(fd, fn, FRINTN);
1980 }
1981 
1982 
frintp(const FPRegister & fd,const FPRegister & fn)1983 void Assembler::frintp(const FPRegister& fd, const FPRegister& fn) {
1984   DCHECK(fd.SizeInBits() == fn.SizeInBits());
1985   FPDataProcessing1Source(fd, fn, FRINTP);
1986 }
1987 
1988 
frintz(const FPRegister & fd,const FPRegister & fn)1989 void Assembler::frintz(const FPRegister& fd,
1990                        const FPRegister& fn) {
1991   DCHECK(fd.SizeInBits() == fn.SizeInBits());
1992   FPDataProcessing1Source(fd, fn, FRINTZ);
1993 }
1994 
1995 
fcmp(const FPRegister & fn,const FPRegister & fm)1996 void Assembler::fcmp(const FPRegister& fn,
1997                      const FPRegister& fm) {
1998   DCHECK(fn.SizeInBits() == fm.SizeInBits());
1999   Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
2000 }
2001 
2002 
fcmp(const FPRegister & fn,double value)2003 void Assembler::fcmp(const FPRegister& fn,
2004                      double value) {
2005   USE(value);
2006   // Although the fcmp instruction can strictly only take an immediate value of
2007   // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
2008   // affect the result of the comparison.
2009   DCHECK(value == 0.0);
2010   Emit(FPType(fn) | FCMP_zero | Rn(fn));
2011 }
2012 
2013 
fccmp(const FPRegister & fn,const FPRegister & fm,StatusFlags nzcv,Condition cond)2014 void Assembler::fccmp(const FPRegister& fn,
2015                       const FPRegister& fm,
2016                       StatusFlags nzcv,
2017                       Condition cond) {
2018   DCHECK(fn.SizeInBits() == fm.SizeInBits());
2019   Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
2020 }
2021 
2022 
fcsel(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,Condition cond)2023 void Assembler::fcsel(const FPRegister& fd,
2024                       const FPRegister& fn,
2025                       const FPRegister& fm,
2026                       Condition cond) {
2027   DCHECK(fd.SizeInBits() == fn.SizeInBits());
2028   DCHECK(fd.SizeInBits() == fm.SizeInBits());
2029   Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
2030 }
2031 
2032 
FPConvertToInt(const Register & rd,const FPRegister & fn,FPIntegerConvertOp op)2033 void Assembler::FPConvertToInt(const Register& rd,
2034                                const FPRegister& fn,
2035                                FPIntegerConvertOp op) {
2036   Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
2037 }
2038 
2039 
fcvt(const FPRegister & fd,const FPRegister & fn)2040 void Assembler::fcvt(const FPRegister& fd,
2041                      const FPRegister& fn) {
2042   if (fd.Is64Bits()) {
2043     // Convert float to double.
2044     DCHECK(fn.Is32Bits());
2045     FPDataProcessing1Source(fd, fn, FCVT_ds);
2046   } else {
2047     // Convert double to float.
2048     DCHECK(fn.Is64Bits());
2049     FPDataProcessing1Source(fd, fn, FCVT_sd);
2050   }
2051 }
2052 
2053 
fcvtau(const Register & rd,const FPRegister & fn)2054 void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
2055   FPConvertToInt(rd, fn, FCVTAU);
2056 }
2057 
2058 
fcvtas(const Register & rd,const FPRegister & fn)2059 void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
2060   FPConvertToInt(rd, fn, FCVTAS);
2061 }
2062 
2063 
fcvtmu(const Register & rd,const FPRegister & fn)2064 void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
2065   FPConvertToInt(rd, fn, FCVTMU);
2066 }
2067 
2068 
fcvtms(const Register & rd,const FPRegister & fn)2069 void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
2070   FPConvertToInt(rd, fn, FCVTMS);
2071 }
2072 
2073 
fcvtnu(const Register & rd,const FPRegister & fn)2074 void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
2075   FPConvertToInt(rd, fn, FCVTNU);
2076 }
2077 
2078 
fcvtns(const Register & rd,const FPRegister & fn)2079 void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
2080   FPConvertToInt(rd, fn, FCVTNS);
2081 }
2082 
2083 
fcvtzu(const Register & rd,const FPRegister & fn)2084 void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
2085   FPConvertToInt(rd, fn, FCVTZU);
2086 }
2087 
2088 
fcvtzs(const Register & rd,const FPRegister & fn)2089 void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
2090   FPConvertToInt(rd, fn, FCVTZS);
2091 }
2092 
2093 
scvtf(const FPRegister & fd,const Register & rn,unsigned fbits)2094 void Assembler::scvtf(const FPRegister& fd,
2095                       const Register& rn,
2096                       unsigned fbits) {
2097   if (fbits == 0) {
2098     Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
2099   } else {
2100     Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2101          Rd(fd));
2102   }
2103 }
2104 
2105 
ucvtf(const FPRegister & fd,const Register & rn,unsigned fbits)2106 void Assembler::ucvtf(const FPRegister& fd,
2107                       const Register& rn,
2108                       unsigned fbits) {
2109   if (fbits == 0) {
2110     Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
2111   } else {
2112     Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2113          Rd(fd));
2114   }
2115 }
2116 
2117 
dcptr(Label * label)2118 void Assembler::dcptr(Label* label) {
2119   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2120   if (label->is_bound()) {
2121     // The label is bound, so it does not need to be updated and the internal
2122     // reference should be emitted.
2123     //
2124     // In this case, label->pos() returns the offset of the label from the
2125     // start of the buffer.
2126     internal_reference_positions_.push_back(pc_offset());
2127     dc64(reinterpret_cast<uintptr_t>(buffer_ + label->pos()));
2128   } else {
2129     int32_t offset;
2130     if (label->is_linked()) {
2131       // The label is linked, so the internal reference should be added
2132       // onto the end of the label's link chain.
2133       //
2134       // In this case, label->pos() returns the offset of the last linked
2135       // instruction from the start of the buffer.
2136       offset = label->pos() - pc_offset();
2137       DCHECK(offset != kStartOfLabelLinkChain);
2138     } else {
2139       // The label is unused, so it now becomes linked and the internal
2140       // reference is at the start of the new link chain.
2141       offset = kStartOfLabelLinkChain;
2142     }
2143     // The instruction at pc is now the last link in the label's chain.
2144     label->link_to(pc_offset());
2145 
2146     // Traditionally the offset to the previous instruction in the chain is
2147     // encoded in the instruction payload (e.g. branch range) but internal
2148     // references are not instructions so while unbound they are encoded as
2149     // two consecutive brk instructions. The two 16-bit immediates are used
2150     // to encode the offset.
2151     offset >>= kInstructionSizeLog2;
2152     DCHECK(is_int32(offset));
2153     uint32_t high16 = unsigned_bitextract_32(31, 16, offset);
2154     uint32_t low16 = unsigned_bitextract_32(15, 0, offset);
2155 
2156     brk(high16);
2157     brk(low16);
2158   }
2159 }
2160 
2161 
2162 // Note:
2163 // Below, a difference in case for the same letter indicates a
2164 // negated bit.
2165 // If b is 1, then B is 0.
ImmFP32(float imm)2166 Instr Assembler::ImmFP32(float imm) {
2167   DCHECK(IsImmFP32(imm));
2168   // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
2169   uint32_t bits = float_to_rawbits(imm);
2170   // bit7: a000.0000
2171   uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
2172   // bit6: 0b00.0000
2173   uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
2174   // bit5_to_0: 00cd.efgh
2175   uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
2176 
2177   return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
2178 }
2179 
2180 
ImmFP64(double imm)2181 Instr Assembler::ImmFP64(double imm) {
2182   DCHECK(IsImmFP64(imm));
2183   // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2184   //       0000.0000.0000.0000.0000.0000.0000.0000
2185   uint64_t bits = double_to_rawbits(imm);
2186   // bit7: a000.0000
2187   uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
2188   // bit6: 0b00.0000
2189   uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
2190   // bit5_to_0: 00cd.efgh
2191   uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
2192 
2193   return static_cast<Instr>((bit7 | bit6 | bit5_to_0) << ImmFP_offset);
2194 }
2195 
2196 
2197 // Code generation helpers.
MoveWide(const Register & rd,uint64_t imm,int shift,MoveWideImmediateOp mov_op)2198 void Assembler::MoveWide(const Register& rd,
2199                          uint64_t imm,
2200                          int shift,
2201                          MoveWideImmediateOp mov_op) {
2202   // Ignore the top 32 bits of an immediate if we're moving to a W register.
2203   if (rd.Is32Bits()) {
2204     // Check that the top 32 bits are zero (a positive 32-bit number) or top
2205     // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
2206     DCHECK(((imm >> kWRegSizeInBits) == 0) ||
2207            ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
2208     imm &= kWRegMask;
2209   }
2210 
2211   if (shift >= 0) {
2212     // Explicit shift specified.
2213     DCHECK((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
2214     DCHECK(rd.Is64Bits() || (shift == 0) || (shift == 16));
2215     shift /= 16;
2216   } else {
2217     // Calculate a new immediate and shift combination to encode the immediate
2218     // argument.
2219     shift = 0;
2220     if ((imm & ~0xffffUL) == 0) {
2221       // Nothing to do.
2222     } else if ((imm & ~(0xffffUL << 16)) == 0) {
2223       imm >>= 16;
2224       shift = 1;
2225     } else if ((imm & ~(0xffffUL << 32)) == 0) {
2226       DCHECK(rd.Is64Bits());
2227       imm >>= 32;
2228       shift = 2;
2229     } else if ((imm & ~(0xffffUL << 48)) == 0) {
2230       DCHECK(rd.Is64Bits());
2231       imm >>= 48;
2232       shift = 3;
2233     }
2234   }
2235 
2236   DCHECK(is_uint16(imm));
2237 
2238   Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) |
2239        ImmMoveWide(static_cast<int>(imm)) | ShiftMoveWide(shift));
2240 }
2241 
2242 
AddSub(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)2243 void Assembler::AddSub(const Register& rd,
2244                        const Register& rn,
2245                        const Operand& operand,
2246                        FlagsUpdate S,
2247                        AddSubOp op) {
2248   DCHECK(rd.SizeInBits() == rn.SizeInBits());
2249   DCHECK(!operand.NeedsRelocation(this));
2250   if (operand.IsImmediate()) {
2251     int64_t immediate = operand.ImmediateValue();
2252     DCHECK(IsImmAddSub(immediate));
2253     Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2254     Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
2255          ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
2256   } else if (operand.IsShiftedRegister()) {
2257     DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2258     DCHECK(operand.shift() != ROR);
2259 
2260     // For instructions of the form:
2261     //   add/sub   wsp, <Wn>, <Wm> [, LSL #0-3 ]
2262     //   add/sub   <Wd>, wsp, <Wm> [, LSL #0-3 ]
2263     //   add/sub   wsp, wsp, <Wm> [, LSL #0-3 ]
2264     //   adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
2265     // or their 64-bit register equivalents, convert the operand from shifted to
2266     // extended register mode, and emit an add/sub extended instruction.
2267     if (rn.IsSP() || rd.IsSP()) {
2268       DCHECK(!(rd.IsSP() && (S == SetFlags)));
2269       DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
2270                                AddSubExtendedFixed | op);
2271     } else {
2272       DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
2273     }
2274   } else {
2275     DCHECK(operand.IsExtendedRegister());
2276     DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
2277   }
2278 }
2279 
2280 
AddSubWithCarry(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)2281 void Assembler::AddSubWithCarry(const Register& rd,
2282                                 const Register& rn,
2283                                 const Operand& operand,
2284                                 FlagsUpdate S,
2285                                 AddSubWithCarryOp op) {
2286   DCHECK(rd.SizeInBits() == rn.SizeInBits());
2287   DCHECK(rd.SizeInBits() == operand.reg().SizeInBits());
2288   DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2289   DCHECK(!operand.NeedsRelocation(this));
2290   Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
2291 }
2292 
2293 
hlt(int code)2294 void Assembler::hlt(int code) {
2295   DCHECK(is_uint16(code));
2296   Emit(HLT | ImmException(code));
2297 }
2298 
2299 
brk(int code)2300 void Assembler::brk(int code) {
2301   DCHECK(is_uint16(code));
2302   Emit(BRK | ImmException(code));
2303 }
2304 
2305 
EmitStringData(const char * string)2306 void Assembler::EmitStringData(const char* string) {
2307   size_t len = strlen(string) + 1;
2308   DCHECK(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap));
2309   EmitData(string, static_cast<int>(len));
2310   // Pad with NULL characters until pc_ is aligned.
2311   const char pad[] = {'\0', '\0', '\0', '\0'};
2312   STATIC_ASSERT(sizeof(pad) == kInstructionSize);
2313   EmitData(pad, RoundUp(pc_offset(), kInstructionSize) - pc_offset());
2314 }
2315 
2316 
debug(const char * message,uint32_t code,Instr params)2317 void Assembler::debug(const char* message, uint32_t code, Instr params) {
2318 #ifdef USE_SIMULATOR
2319   // Don't generate simulator specific code if we are building a snapshot, which
2320   // might be run on real hardware.
2321   if (!serializer_enabled()) {
2322     // The arguments to the debug marker need to be contiguous in memory, so
2323     // make sure we don't try to emit pools.
2324     BlockPoolsScope scope(this);
2325 
2326     Label start;
2327     bind(&start);
2328 
2329     // Refer to instructions-arm64.h for a description of the marker and its
2330     // arguments.
2331     hlt(kImmExceptionIsDebug);
2332     DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset);
2333     dc32(code);
2334     DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset);
2335     dc32(params);
2336     DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset);
2337     EmitStringData(message);
2338     hlt(kImmExceptionIsUnreachable);
2339 
2340     return;
2341   }
2342   // Fall through if Serializer is enabled.
2343 #endif
2344 
2345   if (params & BREAK) {
2346     hlt(kImmExceptionIsDebug);
2347   }
2348 }
2349 
2350 
Logical(const Register & rd,const Register & rn,const Operand & operand,LogicalOp op)2351 void Assembler::Logical(const Register& rd,
2352                         const Register& rn,
2353                         const Operand& operand,
2354                         LogicalOp op) {
2355   DCHECK(rd.SizeInBits() == rn.SizeInBits());
2356   DCHECK(!operand.NeedsRelocation(this));
2357   if (operand.IsImmediate()) {
2358     int64_t immediate = operand.ImmediateValue();
2359     unsigned reg_size = rd.SizeInBits();
2360 
2361     DCHECK(immediate != 0);
2362     DCHECK(immediate != -1);
2363     DCHECK(rd.Is64Bits() || is_uint32(immediate));
2364 
2365     // If the operation is NOT, invert the operation and immediate.
2366     if ((op & NOT) == NOT) {
2367       op = static_cast<LogicalOp>(op & ~NOT);
2368       immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
2369     }
2370 
2371     unsigned n, imm_s, imm_r;
2372     if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
2373       // Immediate can be encoded in the instruction.
2374       LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
2375     } else {
2376       // This case is handled in the macro assembler.
2377       UNREACHABLE();
2378     }
2379   } else {
2380     DCHECK(operand.IsShiftedRegister());
2381     DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2382     Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
2383     DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
2384   }
2385 }
2386 
2387 
LogicalImmediate(const Register & rd,const Register & rn,unsigned n,unsigned imm_s,unsigned imm_r,LogicalOp op)2388 void Assembler::LogicalImmediate(const Register& rd,
2389                                  const Register& rn,
2390                                  unsigned n,
2391                                  unsigned imm_s,
2392                                  unsigned imm_r,
2393                                  LogicalOp op) {
2394   unsigned reg_size = rd.SizeInBits();
2395   Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
2396   Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
2397        ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
2398        Rn(rn));
2399 }
2400 
2401 
ConditionalCompare(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)2402 void Assembler::ConditionalCompare(const Register& rn,
2403                                    const Operand& operand,
2404                                    StatusFlags nzcv,
2405                                    Condition cond,
2406                                    ConditionalCompareOp op) {
2407   Instr ccmpop;
2408   DCHECK(!operand.NeedsRelocation(this));
2409   if (operand.IsImmediate()) {
2410     int64_t immediate = operand.ImmediateValue();
2411     DCHECK(IsImmConditionalCompare(immediate));
2412     ccmpop = ConditionalCompareImmediateFixed | op |
2413              ImmCondCmp(static_cast<unsigned>(immediate));
2414   } else {
2415     DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2416     ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
2417   }
2418   Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
2419 }
2420 
2421 
DataProcessing1Source(const Register & rd,const Register & rn,DataProcessing1SourceOp op)2422 void Assembler::DataProcessing1Source(const Register& rd,
2423                                       const Register& rn,
2424                                       DataProcessing1SourceOp op) {
2425   DCHECK(rd.SizeInBits() == rn.SizeInBits());
2426   Emit(SF(rn) | op | Rn(rn) | Rd(rd));
2427 }
2428 
2429 
FPDataProcessing1Source(const FPRegister & fd,const FPRegister & fn,FPDataProcessing1SourceOp op)2430 void Assembler::FPDataProcessing1Source(const FPRegister& fd,
2431                                         const FPRegister& fn,
2432                                         FPDataProcessing1SourceOp op) {
2433   Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
2434 }
2435 
2436 
FPDataProcessing2Source(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,FPDataProcessing2SourceOp op)2437 void Assembler::FPDataProcessing2Source(const FPRegister& fd,
2438                                         const FPRegister& fn,
2439                                         const FPRegister& fm,
2440                                         FPDataProcessing2SourceOp op) {
2441   DCHECK(fd.SizeInBits() == fn.SizeInBits());
2442   DCHECK(fd.SizeInBits() == fm.SizeInBits());
2443   Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
2444 }
2445 
2446 
FPDataProcessing3Source(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa,FPDataProcessing3SourceOp op)2447 void Assembler::FPDataProcessing3Source(const FPRegister& fd,
2448                                         const FPRegister& fn,
2449                                         const FPRegister& fm,
2450                                         const FPRegister& fa,
2451                                         FPDataProcessing3SourceOp op) {
2452   DCHECK(AreSameSizeAndType(fd, fn, fm, fa));
2453   Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
2454 }
2455 
2456 
EmitShift(const Register & rd,const Register & rn,Shift shift,unsigned shift_amount)2457 void Assembler::EmitShift(const Register& rd,
2458                           const Register& rn,
2459                           Shift shift,
2460                           unsigned shift_amount) {
2461   switch (shift) {
2462     case LSL:
2463       lsl(rd, rn, shift_amount);
2464       break;
2465     case LSR:
2466       lsr(rd, rn, shift_amount);
2467       break;
2468     case ASR:
2469       asr(rd, rn, shift_amount);
2470       break;
2471     case ROR:
2472       ror(rd, rn, shift_amount);
2473       break;
2474     default:
2475       UNREACHABLE();
2476   }
2477 }
2478 
2479 
EmitExtendShift(const Register & rd,const Register & rn,Extend extend,unsigned left_shift)2480 void Assembler::EmitExtendShift(const Register& rd,
2481                                 const Register& rn,
2482                                 Extend extend,
2483                                 unsigned left_shift) {
2484   DCHECK(rd.SizeInBits() >= rn.SizeInBits());
2485   unsigned reg_size = rd.SizeInBits();
2486   // Use the correct size of register.
2487   Register rn_ = Register::Create(rn.code(), rd.SizeInBits());
2488   // Bits extracted are high_bit:0.
2489   unsigned high_bit = (8 << (extend & 0x3)) - 1;
2490   // Number of bits left in the result that are not introduced by the shift.
2491   unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
2492 
2493   if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
2494     switch (extend) {
2495       case UXTB:
2496       case UXTH:
2497       case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
2498       case SXTB:
2499       case SXTH:
2500       case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
2501       case UXTX:
2502       case SXTX: {
2503         DCHECK(rn.SizeInBits() == kXRegSizeInBits);
2504         // Nothing to extend. Just shift.
2505         lsl(rd, rn_, left_shift);
2506         break;
2507       }
2508       default: UNREACHABLE();
2509     }
2510   } else {
2511     // No need to extend as the extended bits would be shifted away.
2512     lsl(rd, rn_, left_shift);
2513   }
2514 }
2515 
2516 
DataProcShiftedRegister(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,Instr op)2517 void Assembler::DataProcShiftedRegister(const Register& rd,
2518                                         const Register& rn,
2519                                         const Operand& operand,
2520                                         FlagsUpdate S,
2521                                         Instr op) {
2522   DCHECK(operand.IsShiftedRegister());
2523   DCHECK(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
2524   DCHECK(!operand.NeedsRelocation(this));
2525   Emit(SF(rd) | op | Flags(S) |
2526        ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
2527        Rm(operand.reg()) | Rn(rn) | Rd(rd));
2528 }
2529 
2530 
DataProcExtendedRegister(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,Instr op)2531 void Assembler::DataProcExtendedRegister(const Register& rd,
2532                                          const Register& rn,
2533                                          const Operand& operand,
2534                                          FlagsUpdate S,
2535                                          Instr op) {
2536   DCHECK(!operand.NeedsRelocation(this));
2537   Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2538   Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
2539        ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
2540        dest_reg | RnSP(rn));
2541 }
2542 
2543 
IsImmAddSub(int64_t immediate)2544 bool Assembler::IsImmAddSub(int64_t immediate) {
2545   return is_uint12(immediate) ||
2546          (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
2547 }
2548 
LoadStore(const CPURegister & rt,const MemOperand & addr,LoadStoreOp op)2549 void Assembler::LoadStore(const CPURegister& rt,
2550                           const MemOperand& addr,
2551                           LoadStoreOp op) {
2552   Instr memop = op | Rt(rt) | RnSP(addr.base());
2553 
2554   if (addr.IsImmediateOffset()) {
2555     LSDataSize size = CalcLSDataSize(op);
2556     if (IsImmLSScaled(addr.offset(), size)) {
2557       int offset = static_cast<int>(addr.offset());
2558       // Use the scaled addressing mode.
2559       Emit(LoadStoreUnsignedOffsetFixed | memop |
2560            ImmLSUnsigned(offset >> size));
2561     } else if (IsImmLSUnscaled(addr.offset())) {
2562       int offset = static_cast<int>(addr.offset());
2563       // Use the unscaled addressing mode.
2564       Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
2565     } else {
2566       // This case is handled in the macro assembler.
2567       UNREACHABLE();
2568     }
2569   } else if (addr.IsRegisterOffset()) {
2570     Extend ext = addr.extend();
2571     Shift shift = addr.shift();
2572     unsigned shift_amount = addr.shift_amount();
2573 
2574     // LSL is encoded in the option field as UXTX.
2575     if (shift == LSL) {
2576       ext = UXTX;
2577     }
2578 
2579     // Shifts are encoded in one bit, indicating a left shift by the memory
2580     // access size.
2581     DCHECK((shift_amount == 0) ||
2582            (shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
2583     Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
2584          ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
2585   } else {
2586     // Pre-index and post-index modes.
2587     DCHECK(!rt.Is(addr.base()));
2588     if (IsImmLSUnscaled(addr.offset())) {
2589       int offset = static_cast<int>(addr.offset());
2590       if (addr.IsPreIndex()) {
2591         Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
2592       } else {
2593         DCHECK(addr.IsPostIndex());
2594         Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
2595       }
2596     } else {
2597       // This case is handled in the macro assembler.
2598       UNREACHABLE();
2599     }
2600   }
2601 }
2602 
2603 
IsImmLSUnscaled(int64_t offset)2604 bool Assembler::IsImmLSUnscaled(int64_t offset) {
2605   return is_int9(offset);
2606 }
2607 
2608 
IsImmLSScaled(int64_t offset,LSDataSize size)2609 bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) {
2610   bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2611   return offset_is_size_multiple && is_uint12(offset >> size);
2612 }
2613 
2614 
IsImmLSPair(int64_t offset,LSDataSize size)2615 bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) {
2616   bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2617   return offset_is_size_multiple && is_int7(offset >> size);
2618 }
2619 
2620 
IsImmLLiteral(int64_t offset)2621 bool Assembler::IsImmLLiteral(int64_t offset) {
2622   int inst_size = static_cast<int>(kInstructionSizeLog2);
2623   bool offset_is_inst_multiple =
2624       (((offset >> inst_size) << inst_size) == offset);
2625   return offset_is_inst_multiple && is_intn(offset, ImmLLiteral_width);
2626 }
2627 
2628 
2629 // Test if a given value can be encoded in the immediate field of a logical
2630 // instruction.
2631 // If it can be encoded, the function returns true, and values pointed to by n,
2632 // imm_s and imm_r are updated with immediates encoded in the format required
2633 // by the corresponding fields in the logical instruction.
2634 // If it can not be encoded, the function returns false, and the values pointed
2635 // to by n, imm_s and imm_r are undefined.
IsImmLogical(uint64_t value,unsigned width,unsigned * n,unsigned * imm_s,unsigned * imm_r)2636 bool Assembler::IsImmLogical(uint64_t value,
2637                              unsigned width,
2638                              unsigned* n,
2639                              unsigned* imm_s,
2640                              unsigned* imm_r) {
2641   DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
2642   DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
2643 
2644   bool negate = false;
2645 
2646   // Logical immediates are encoded using parameters n, imm_s and imm_r using
2647   // the following table:
2648   //
2649   //    N   imms    immr    size        S             R
2650   //    1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
2651   //    0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
2652   //    0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
2653   //    0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
2654   //    0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
2655   //    0  11110s  xxxxxr     2    UInt(s)       UInt(r)
2656   // (s bits must not be all set)
2657   //
2658   // A pattern is constructed of size bits, where the least significant S+1 bits
2659   // are set. The pattern is rotated right by R, and repeated across a 32 or
2660   // 64-bit value, depending on destination register width.
2661   //
2662   // Put another way: the basic format of a logical immediate is a single
2663   // contiguous stretch of 1 bits, repeated across the whole word at intervals
2664   // given by a power of 2. To identify them quickly, we first locate the
2665   // lowest stretch of 1 bits, then the next 1 bit above that; that combination
2666   // is different for every logical immediate, so it gives us all the
2667   // information we need to identify the only logical immediate that our input
2668   // could be, and then we simply check if that's the value we actually have.
2669   //
2670   // (The rotation parameter does give the possibility of the stretch of 1 bits
2671   // going 'round the end' of the word. To deal with that, we observe that in
2672   // any situation where that happens the bitwise NOT of the value is also a
2673   // valid logical immediate. So we simply invert the input whenever its low bit
2674   // is set, and then we know that the rotated case can't arise.)
2675 
2676   if (value & 1) {
2677     // If the low bit is 1, negate the value, and set a flag to remember that we
2678     // did (so that we can adjust the return values appropriately).
2679     negate = true;
2680     value = ~value;
2681   }
2682 
2683   if (width == kWRegSizeInBits) {
2684     // To handle 32-bit logical immediates, the very easiest thing is to repeat
2685     // the input value twice to make a 64-bit word. The correct encoding of that
2686     // as a logical immediate will also be the correct encoding of the 32-bit
2687     // value.
2688 
2689     // The most-significant 32 bits may not be zero (ie. negate is true) so
2690     // shift the value left before duplicating it.
2691     value <<= kWRegSizeInBits;
2692     value |= value >> kWRegSizeInBits;
2693   }
2694 
2695   // The basic analysis idea: imagine our input word looks like this.
2696   //
2697   //    0011111000111110001111100011111000111110001111100011111000111110
2698   //                                                          c  b    a
2699   //                                                          |<--d-->|
2700   //
2701   // We find the lowest set bit (as an actual power-of-2 value, not its index)
2702   // and call it a. Then we add a to our original number, which wipes out the
2703   // bottommost stretch of set bits and replaces it with a 1 carried into the
2704   // next zero bit. Then we look for the new lowest set bit, which is in
2705   // position b, and subtract it, so now our number is just like the original
2706   // but with the lowest stretch of set bits completely gone. Now we find the
2707   // lowest set bit again, which is position c in the diagram above. Then we'll
2708   // measure the distance d between bit positions a and c (using CLZ), and that
2709   // tells us that the only valid logical immediate that could possibly be equal
2710   // to this number is the one in which a stretch of bits running from a to just
2711   // below b is replicated every d bits.
2712   uint64_t a = LargestPowerOf2Divisor(value);
2713   uint64_t value_plus_a = value + a;
2714   uint64_t b = LargestPowerOf2Divisor(value_plus_a);
2715   uint64_t value_plus_a_minus_b = value_plus_a - b;
2716   uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
2717 
2718   int d, clz_a, out_n;
2719   uint64_t mask;
2720 
2721   if (c != 0) {
2722     // The general case, in which there is more than one stretch of set bits.
2723     // Compute the repeat distance d, and set up a bitmask covering the basic
2724     // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
2725     // of these cases the N bit of the output will be zero.
2726     clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2727     int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
2728     d = clz_a - clz_c;
2729     mask = ((V8_UINT64_C(1) << d) - 1);
2730     out_n = 0;
2731   } else {
2732     // Handle degenerate cases.
2733     //
2734     // If any of those 'find lowest set bit' operations didn't find a set bit at
2735     // all, then the word will have been zero thereafter, so in particular the
2736     // last lowest_set_bit operation will have returned zero. So we can test for
2737     // all the special case conditions in one go by seeing if c is zero.
2738     if (a == 0) {
2739       // The input was zero (or all 1 bits, which will come to here too after we
2740       // inverted it at the start of the function), for which we just return
2741       // false.
2742       return false;
2743     } else {
2744       // Otherwise, if c was zero but a was not, then there's just one stretch
2745       // of set bits in our word, meaning that we have the trivial case of
2746       // d == 64 and only one 'repetition'. Set up all the same variables as in
2747       // the general case above, and set the N bit in the output.
2748       clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2749       d = 64;
2750       mask = ~V8_UINT64_C(0);
2751       out_n = 1;
2752     }
2753   }
2754 
2755   // If the repeat period d is not a power of two, it can't be encoded.
2756   if (!IS_POWER_OF_TWO(d)) {
2757     return false;
2758   }
2759 
2760   if (((b - a) & ~mask) != 0) {
2761     // If the bit stretch (b - a) does not fit within the mask derived from the
2762     // repeat period, then fail.
2763     return false;
2764   }
2765 
2766   // The only possible option is b - a repeated every d bits. Now we're going to
2767   // actually construct the valid logical immediate derived from that
2768   // specification, and see if it equals our original input.
2769   //
2770   // To repeat a value every d bits, we multiply it by a number of the form
2771   // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
2772   // be derived using a table lookup on CLZ(d).
2773   static const uint64_t multipliers[] = {
2774     0x0000000000000001UL,
2775     0x0000000100000001UL,
2776     0x0001000100010001UL,
2777     0x0101010101010101UL,
2778     0x1111111111111111UL,
2779     0x5555555555555555UL,
2780   };
2781   int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
2782   // Ensure that the index to the multipliers array is within bounds.
2783   DCHECK((multiplier_idx >= 0) &&
2784          (static_cast<size_t>(multiplier_idx) < arraysize(multipliers)));
2785   uint64_t multiplier = multipliers[multiplier_idx];
2786   uint64_t candidate = (b - a) * multiplier;
2787 
2788   if (value != candidate) {
2789     // The candidate pattern doesn't match our input value, so fail.
2790     return false;
2791   }
2792 
2793   // We have a match! This is a valid logical immediate, so now we have to
2794   // construct the bits and pieces of the instruction encoding that generates
2795   // it.
2796 
2797   // Count the set bits in our basic stretch. The special case of clz(0) == -1
2798   // makes the answer come out right for stretches that reach the very top of
2799   // the word (e.g. numbers like 0xffffc00000000000).
2800   int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
2801   int s = clz_a - clz_b;
2802 
2803   // Decide how many bits to rotate right by, to put the low bit of that basic
2804   // stretch in position a.
2805   int r;
2806   if (negate) {
2807     // If we inverted the input right at the start of this function, here's
2808     // where we compensate: the number of set bits becomes the number of clear
2809     // bits, and the rotation count is based on position b rather than position
2810     // a (since b is the location of the 'lowest' 1 bit after inversion).
2811     s = d - s;
2812     r = (clz_b + 1) & (d - 1);
2813   } else {
2814     r = (clz_a + 1) & (d - 1);
2815   }
2816 
2817   // Now we're done, except for having to encode the S output in such a way that
2818   // it gives both the number of set bits and the length of the repeated
2819   // segment. The s field is encoded like this:
2820   //
2821   //     imms    size        S
2822   //    ssssss    64    UInt(ssssss)
2823   //    0sssss    32    UInt(sssss)
2824   //    10ssss    16    UInt(ssss)
2825   //    110sss     8    UInt(sss)
2826   //    1110ss     4    UInt(ss)
2827   //    11110s     2    UInt(s)
2828   //
2829   // So we 'or' (-d << 1) with our computed s to form imms.
2830   *n = out_n;
2831   *imm_s = ((-d << 1) | (s - 1)) & 0x3f;
2832   *imm_r = r;
2833 
2834   return true;
2835 }
2836 
2837 
IsImmConditionalCompare(int64_t immediate)2838 bool Assembler::IsImmConditionalCompare(int64_t immediate) {
2839   return is_uint5(immediate);
2840 }
2841 
2842 
IsImmFP32(float imm)2843 bool Assembler::IsImmFP32(float imm) {
2844   // Valid values will have the form:
2845   // aBbb.bbbc.defg.h000.0000.0000.0000.0000
2846   uint32_t bits = float_to_rawbits(imm);
2847   // bits[19..0] are cleared.
2848   if ((bits & 0x7ffff) != 0) {
2849     return false;
2850   }
2851 
2852   // bits[29..25] are all set or all cleared.
2853   uint32_t b_pattern = (bits >> 16) & 0x3e00;
2854   if (b_pattern != 0 && b_pattern != 0x3e00) {
2855     return false;
2856   }
2857 
2858   // bit[30] and bit[29] are opposite.
2859   if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
2860     return false;
2861   }
2862 
2863   return true;
2864 }
2865 
2866 
IsImmFP64(double imm)2867 bool Assembler::IsImmFP64(double imm) {
2868   // Valid values will have the form:
2869   // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2870   // 0000.0000.0000.0000.0000.0000.0000.0000
2871   uint64_t bits = double_to_rawbits(imm);
2872   // bits[47..0] are cleared.
2873   if ((bits & 0xffffffffffffL) != 0) {
2874     return false;
2875   }
2876 
2877   // bits[61..54] are all set or all cleared.
2878   uint32_t b_pattern = (bits >> 48) & 0x3fc0;
2879   if (b_pattern != 0 && b_pattern != 0x3fc0) {
2880     return false;
2881   }
2882 
2883   // bit[62] and bit[61] are opposite.
2884   if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
2885     return false;
2886   }
2887 
2888   return true;
2889 }
2890 
2891 
GrowBuffer()2892 void Assembler::GrowBuffer() {
2893   if (!own_buffer_) FATAL("external code buffer is too small");
2894 
2895   // Compute new buffer size.
2896   CodeDesc desc;  // the new buffer
2897   if (buffer_size_ < 1 * MB) {
2898     desc.buffer_size = 2 * buffer_size_;
2899   } else {
2900     desc.buffer_size = buffer_size_ + 1 * MB;
2901   }
2902   CHECK_GT(desc.buffer_size, 0);  // No overflow.
2903 
2904   byte* buffer = reinterpret_cast<byte*>(buffer_);
2905 
2906   // Set up new buffer.
2907   desc.buffer = NewArray<byte>(desc.buffer_size);
2908   desc.origin = this;
2909 
2910   desc.instr_size = pc_offset();
2911   desc.reloc_size =
2912       static_cast<int>((buffer + buffer_size_) - reloc_info_writer.pos());
2913 
2914   // Copy the data.
2915   intptr_t pc_delta = desc.buffer - buffer;
2916   intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
2917                       (buffer + buffer_size_);
2918   memmove(desc.buffer, buffer, desc.instr_size);
2919   memmove(reloc_info_writer.pos() + rc_delta,
2920           reloc_info_writer.pos(), desc.reloc_size);
2921 
2922   // Switch buffers.
2923   DeleteArray(buffer_);
2924   buffer_ = desc.buffer;
2925   buffer_size_ = desc.buffer_size;
2926   pc_ = reinterpret_cast<byte*>(pc_) + pc_delta;
2927   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2928                                reloc_info_writer.last_pc() + pc_delta);
2929 
2930   // None of our relocation types are pc relative pointing outside the code
2931   // buffer nor pc absolute pointing inside the code buffer, so there is no need
2932   // to relocate any emitted relocation entries.
2933 
2934   // Relocate internal references.
2935   for (auto pos : internal_reference_positions_) {
2936     intptr_t* p = reinterpret_cast<intptr_t*>(buffer_ + pos);
2937     *p += pc_delta;
2938   }
2939 
2940   // Pending relocation entries are also relative, no need to relocate.
2941 }
2942 
2943 
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)2944 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2945   // We do not try to reuse pool constants.
2946   RelocInfo rinfo(isolate(), reinterpret_cast<byte*>(pc_), rmode, data, NULL);
2947   if (((rmode >= RelocInfo::COMMENT) &&
2948        (rmode <= RelocInfo::DEBUG_BREAK_SLOT_AT_TAIL_CALL)) ||
2949       (rmode == RelocInfo::INTERNAL_REFERENCE) ||
2950       (rmode == RelocInfo::CONST_POOL) || (rmode == RelocInfo::VENEER_POOL) ||
2951       (rmode == RelocInfo::DEOPT_SCRIPT_OFFSET) ||
2952       (rmode == RelocInfo::DEOPT_INLINING_ID) ||
2953       (rmode == RelocInfo::DEOPT_REASON) || (rmode == RelocInfo::DEOPT_ID) ||
2954       (rmode == RelocInfo::GENERATOR_CONTINUATION)) {
2955     // Adjust code for new modes.
2956     DCHECK(RelocInfo::IsDebugBreakSlot(rmode) || RelocInfo::IsComment(rmode) ||
2957            RelocInfo::IsDeoptReason(rmode) || RelocInfo::IsDeoptId(rmode) ||
2958            RelocInfo::IsDeoptPosition(rmode) ||
2959            RelocInfo::IsInternalReference(rmode) ||
2960            RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode) ||
2961            RelocInfo::IsGeneratorContinuation(rmode));
2962     // These modes do not need an entry in the constant pool.
2963   } else {
2964     constpool_.RecordEntry(data, rmode);
2965     // Make sure the constant pool is not emitted in place of the next
2966     // instruction for which we just recorded relocation info.
2967     BlockConstPoolFor(1);
2968   }
2969 
2970   if (!RelocInfo::IsNone(rmode)) {
2971     // Don't record external references unless the heap will be serialized.
2972     if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2973         !serializer_enabled() && !emit_debug_code()) {
2974       return;
2975     }
2976     DCHECK(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
2977     if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
2978       RelocInfo reloc_info_with_ast_id(isolate(), reinterpret_cast<byte*>(pc_),
2979                                        rmode, RecordedAstId().ToInt(), NULL);
2980       ClearRecordedAstId();
2981       reloc_info_writer.Write(&reloc_info_with_ast_id);
2982     } else {
2983       reloc_info_writer.Write(&rinfo);
2984     }
2985   }
2986 }
2987 
2988 
BlockConstPoolFor(int instructions)2989 void Assembler::BlockConstPoolFor(int instructions) {
2990   int pc_limit = pc_offset() + instructions * kInstructionSize;
2991   if (no_const_pool_before_ < pc_limit) {
2992     no_const_pool_before_ = pc_limit;
2993     // Make sure the pool won't be blocked for too long.
2994     DCHECK(pc_limit < constpool_.MaxPcOffset());
2995   }
2996 
2997   if (next_constant_pool_check_ < no_const_pool_before_) {
2998     next_constant_pool_check_ = no_const_pool_before_;
2999   }
3000 }
3001 
3002 
CheckConstPool(bool force_emit,bool require_jump)3003 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
3004   // Some short sequence of instruction mustn't be broken up by constant pool
3005   // emission, such sequences are protected by calls to BlockConstPoolFor and
3006   // BlockConstPoolScope.
3007   if (is_const_pool_blocked()) {
3008     // Something is wrong if emission is forced and blocked at the same time.
3009     DCHECK(!force_emit);
3010     return;
3011   }
3012 
3013   // There is nothing to do if there are no pending constant pool entries.
3014   if (constpool_.IsEmpty())  {
3015     // Calculate the offset of the next check.
3016     SetNextConstPoolCheckIn(kCheckConstPoolInterval);
3017     return;
3018   }
3019 
3020   // We emit a constant pool when:
3021   //  * requested to do so by parameter force_emit (e.g. after each function).
3022   //  * the distance to the first instruction accessing the constant pool is
3023   //    kApproxMaxDistToConstPool or more.
3024   //  * the number of entries in the pool is kApproxMaxPoolEntryCount or more.
3025   int dist = constpool_.DistanceToFirstUse();
3026   int count = constpool_.EntryCount();
3027   if (!force_emit &&
3028       (dist < kApproxMaxDistToConstPool) &&
3029       (count < kApproxMaxPoolEntryCount)) {
3030     return;
3031   }
3032 
3033 
3034   // Emit veneers for branches that would go out of range during emission of the
3035   // constant pool.
3036   int worst_case_size = constpool_.WorstCaseSize();
3037   CheckVeneerPool(false, require_jump,
3038                   kVeneerDistanceMargin + worst_case_size);
3039 
3040   // Check that the code buffer is large enough before emitting the constant
3041   // pool (this includes the gap to the relocation information).
3042   int needed_space = worst_case_size + kGap + 1 * kInstructionSize;
3043   while (buffer_space() <= needed_space) {
3044     GrowBuffer();
3045   }
3046 
3047   Label size_check;
3048   bind(&size_check);
3049   constpool_.Emit(require_jump);
3050   DCHECK(SizeOfCodeGeneratedSince(&size_check) <=
3051          static_cast<unsigned>(worst_case_size));
3052 
3053   // Since a constant pool was just emitted, move the check offset forward by
3054   // the standard interval.
3055   SetNextConstPoolCheckIn(kCheckConstPoolInterval);
3056 }
3057 
3058 
ShouldEmitVeneer(int max_reachable_pc,int margin)3059 bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) {
3060   // Account for the branch around the veneers and the guard.
3061   int protection_offset = 2 * kInstructionSize;
3062   return pc_offset() > max_reachable_pc - margin - protection_offset -
3063     static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize);
3064 }
3065 
3066 
RecordVeneerPool(int location_offset,int size)3067 void Assembler::RecordVeneerPool(int location_offset, int size) {
3068   RelocInfo rinfo(isolate(), buffer_ + location_offset, RelocInfo::VENEER_POOL,
3069                   static_cast<intptr_t>(size), NULL);
3070   reloc_info_writer.Write(&rinfo);
3071 }
3072 
3073 
EmitVeneers(bool force_emit,bool need_protection,int margin)3074 void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) {
3075   BlockPoolsScope scope(this);
3076   RecordComment("[ Veneers");
3077 
3078   // The exact size of the veneer pool must be recorded (see the comment at the
3079   // declaration site of RecordConstPool()), but computing the number of
3080   // veneers that will be generated is not obvious. So instead we remember the
3081   // current position and will record the size after the pool has been
3082   // generated.
3083   Label size_check;
3084   bind(&size_check);
3085   int veneer_pool_relocinfo_loc = pc_offset();
3086 
3087   Label end;
3088   if (need_protection) {
3089     b(&end);
3090   }
3091 
3092   EmitVeneersGuard();
3093 
3094   Label veneer_size_check;
3095 
3096   std::multimap<int, FarBranchInfo>::iterator it, it_to_delete;
3097 
3098   it = unresolved_branches_.begin();
3099   while (it != unresolved_branches_.end()) {
3100     if (force_emit || ShouldEmitVeneer(it->first, margin)) {
3101       Instruction* branch = InstructionAt(it->second.pc_offset_);
3102       Label* label = it->second.label_;
3103 
3104 #ifdef DEBUG
3105       bind(&veneer_size_check);
3106 #endif
3107       // Patch the branch to point to the current position, and emit a branch
3108       // to the label.
3109       Instruction* veneer = reinterpret_cast<Instruction*>(pc_);
3110       RemoveBranchFromLabelLinkChain(branch, label, veneer);
3111       branch->SetImmPCOffsetTarget(isolate(), veneer);
3112       b(label);
3113 #ifdef DEBUG
3114       DCHECK(SizeOfCodeGeneratedSince(&veneer_size_check) <=
3115              static_cast<uint64_t>(kMaxVeneerCodeSize));
3116       veneer_size_check.Unuse();
3117 #endif
3118 
3119       it_to_delete = it++;
3120       unresolved_branches_.erase(it_to_delete);
3121     } else {
3122       ++it;
3123     }
3124   }
3125 
3126   // Record the veneer pool size.
3127   int pool_size = static_cast<int>(SizeOfCodeGeneratedSince(&size_check));
3128   RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size);
3129 
3130   if (unresolved_branches_.empty()) {
3131     next_veneer_pool_check_ = kMaxInt;
3132   } else {
3133     next_veneer_pool_check_ =
3134       unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3135   }
3136 
3137   bind(&end);
3138 
3139   RecordComment("]");
3140 }
3141 
3142 
CheckVeneerPool(bool force_emit,bool require_jump,int margin)3143 void Assembler::CheckVeneerPool(bool force_emit, bool require_jump,
3144                                 int margin) {
3145   // There is nothing to do if there are no pending veneer pool entries.
3146   if (unresolved_branches_.empty())  {
3147     DCHECK(next_veneer_pool_check_ == kMaxInt);
3148     return;
3149   }
3150 
3151   DCHECK(pc_offset() < unresolved_branches_first_limit());
3152 
3153   // Some short sequence of instruction mustn't be broken up by veneer pool
3154   // emission, such sequences are protected by calls to BlockVeneerPoolFor and
3155   // BlockVeneerPoolScope.
3156   if (is_veneer_pool_blocked()) {
3157     DCHECK(!force_emit);
3158     return;
3159   }
3160 
3161   if (!require_jump) {
3162     // Prefer emitting veneers protected by an existing instruction.
3163     margin *= kVeneerNoProtectionFactor;
3164   }
3165   if (force_emit || ShouldEmitVeneers(margin)) {
3166     EmitVeneers(force_emit, require_jump, margin);
3167   } else {
3168     next_veneer_pool_check_ =
3169       unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3170   }
3171 }
3172 
3173 
buffer_space() const3174 int Assembler::buffer_space() const {
3175   return static_cast<int>(reloc_info_writer.pos() -
3176                           reinterpret_cast<byte*>(pc_));
3177 }
3178 
3179 
RecordConstPool(int size)3180 void Assembler::RecordConstPool(int size) {
3181   // We only need this for debugger support, to correctly compute offsets in the
3182   // code.
3183   RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
3184 }
3185 
3186 
PatchAdrFar(int64_t target_offset)3187 void PatchingAssembler::PatchAdrFar(int64_t target_offset) {
3188   // The code at the current instruction should be:
3189   //   adr  rd, 0
3190   //   nop  (adr_far)
3191   //   nop  (adr_far)
3192   //   movz scratch, 0
3193 
3194   // Verify the expected code.
3195   Instruction* expected_adr = InstructionAt(0);
3196   CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0));
3197   int rd_code = expected_adr->Rd();
3198   for (int i = 0; i < kAdrFarPatchableNNops; ++i) {
3199     CHECK(InstructionAt((i + 1) * kInstructionSize)->IsNop(ADR_FAR_NOP));
3200   }
3201   Instruction* expected_movz =
3202       InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstructionSize);
3203   CHECK(expected_movz->IsMovz() &&
3204         (expected_movz->ImmMoveWide() == 0) &&
3205         (expected_movz->ShiftMoveWide() == 0));
3206   int scratch_code = expected_movz->Rd();
3207 
3208   // Patch to load the correct address.
3209   Register rd = Register::XRegFromCode(rd_code);
3210   Register scratch = Register::XRegFromCode(scratch_code);
3211   // Addresses are only 48 bits.
3212   adr(rd, target_offset & 0xFFFF);
3213   movz(scratch, (target_offset >> 16) & 0xFFFF, 16);
3214   movk(scratch, (target_offset >> 32) & 0xFFFF, 32);
3215   DCHECK((target_offset >> 48) == 0);
3216   add(rd, rd, scratch);
3217 }
3218 
3219 
3220 }  // namespace internal
3221 }  // namespace v8
3222 
3223 #endif  // V8_TARGET_ARCH_ARM64
3224