1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_ARM64
6 
7 #include "src/base/bits.h"
8 #include "src/base/division-by-constant.h"
9 #include "src/bootstrapper.h"
10 #include "src/codegen.h"
11 #include "src/debug/debug.h"
12 #include "src/register-configuration.h"
13 #include "src/runtime/runtime.h"
14 
15 #include "src/arm64/frames-arm64.h"
16 #include "src/arm64/macro-assembler-arm64.h"
17 
18 namespace v8 {
19 namespace internal {
20 
21 // Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros.
22 #define __
23 
24 
MacroAssembler(Isolate * arg_isolate,byte * buffer,unsigned buffer_size,CodeObjectRequired create_code_object)25 MacroAssembler::MacroAssembler(Isolate* arg_isolate, byte* buffer,
26                                unsigned buffer_size,
27                                CodeObjectRequired create_code_object)
28     : Assembler(arg_isolate, buffer, buffer_size),
29       generating_stub_(false),
30 #if DEBUG
31       allow_macro_instructions_(true),
32 #endif
33       has_frame_(false),
34       use_real_aborts_(true),
35       sp_(jssp),
36       tmp_list_(DefaultTmpList()),
37       fptmp_list_(DefaultFPTmpList()) {
38   if (create_code_object == CodeObjectRequired::kYes) {
39     code_object_ =
40         Handle<Object>::New(isolate()->heap()->undefined_value(), isolate());
41   }
42 }
43 
44 
DefaultTmpList()45 CPURegList MacroAssembler::DefaultTmpList() {
46   return CPURegList(ip0, ip1);
47 }
48 
49 
DefaultFPTmpList()50 CPURegList MacroAssembler::DefaultFPTmpList() {
51   return CPURegList(fp_scratch1, fp_scratch2);
52 }
53 
54 
LogicalMacro(const Register & rd,const Register & rn,const Operand & operand,LogicalOp op)55 void MacroAssembler::LogicalMacro(const Register& rd,
56                                   const Register& rn,
57                                   const Operand& operand,
58                                   LogicalOp op) {
59   UseScratchRegisterScope temps(this);
60 
61   if (operand.NeedsRelocation(this)) {
62     Register temp = temps.AcquireX();
63     Ldr(temp, operand.immediate());
64     Logical(rd, rn, temp, op);
65 
66   } else if (operand.IsImmediate()) {
67     int64_t immediate = operand.ImmediateValue();
68     unsigned reg_size = rd.SizeInBits();
69 
70     // If the operation is NOT, invert the operation and immediate.
71     if ((op & NOT) == NOT) {
72       op = static_cast<LogicalOp>(op & ~NOT);
73       immediate = ~immediate;
74     }
75 
76     // Ignore the top 32 bits of an immediate if we're moving to a W register.
77     if (rd.Is32Bits()) {
78       // Check that the top 32 bits are consistent.
79       DCHECK(((immediate >> kWRegSizeInBits) == 0) ||
80              ((immediate >> kWRegSizeInBits) == -1));
81       immediate &= kWRegMask;
82     }
83 
84     DCHECK(rd.Is64Bits() || is_uint32(immediate));
85 
86     // Special cases for all set or all clear immediates.
87     if (immediate == 0) {
88       switch (op) {
89         case AND:
90           Mov(rd, 0);
91           return;
92         case ORR:  // Fall through.
93         case EOR:
94           Mov(rd, rn);
95           return;
96         case ANDS:  // Fall through.
97         case BICS:
98           break;
99         default:
100           UNREACHABLE();
101       }
102     } else if ((rd.Is64Bits() && (immediate == -1L)) ||
103                (rd.Is32Bits() && (immediate == 0xffffffffL))) {
104       switch (op) {
105         case AND:
106           Mov(rd, rn);
107           return;
108         case ORR:
109           Mov(rd, immediate);
110           return;
111         case EOR:
112           Mvn(rd, rn);
113           return;
114         case ANDS:  // Fall through.
115         case BICS:
116           break;
117         default:
118           UNREACHABLE();
119       }
120     }
121 
122     unsigned n, imm_s, imm_r;
123     if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
124       // Immediate can be encoded in the instruction.
125       LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
126     } else {
127       // Immediate can't be encoded: synthesize using move immediate.
128       Register temp = temps.AcquireSameSizeAs(rn);
129       Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate);
130       if (rd.Is(csp)) {
131         // If rd is the stack pointer we cannot use it as the destination
132         // register so we use the temp register as an intermediate again.
133         Logical(temp, rn, imm_operand, op);
134         Mov(csp, temp);
135         AssertStackConsistency();
136       } else {
137         Logical(rd, rn, imm_operand, op);
138       }
139     }
140 
141   } else if (operand.IsExtendedRegister()) {
142     DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
143     // Add/sub extended supports shift <= 4. We want to support exactly the
144     // same modes here.
145     DCHECK(operand.shift_amount() <= 4);
146     DCHECK(operand.reg().Is64Bits() ||
147            ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
148     Register temp = temps.AcquireSameSizeAs(rn);
149     EmitExtendShift(temp, operand.reg(), operand.extend(),
150                     operand.shift_amount());
151     Logical(rd, rn, temp, op);
152 
153   } else {
154     // The operand can be encoded in the instruction.
155     DCHECK(operand.IsShiftedRegister());
156     Logical(rd, rn, operand, op);
157   }
158 }
159 
160 
Mov(const Register & rd,uint64_t imm)161 void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
162   DCHECK(allow_macro_instructions_);
163   DCHECK(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
164   DCHECK(!rd.IsZero());
165 
166   // TODO(all) extend to support more immediates.
167   //
168   // Immediates on Aarch64 can be produced using an initial value, and zero to
169   // three move keep operations.
170   //
171   // Initial values can be generated with:
172   //  1. 64-bit move zero (movz).
173   //  2. 32-bit move inverted (movn).
174   //  3. 64-bit move inverted.
175   //  4. 32-bit orr immediate.
176   //  5. 64-bit orr immediate.
177   // Move-keep may then be used to modify each of the 16-bit half-words.
178   //
179   // The code below supports all five initial value generators, and
180   // applying move-keep operations to move-zero and move-inverted initial
181   // values.
182 
183   // Try to move the immediate in one instruction, and if that fails, switch to
184   // using multiple instructions.
185   if (!TryOneInstrMoveImmediate(rd, imm)) {
186     unsigned reg_size = rd.SizeInBits();
187 
188     // Generic immediate case. Imm will be represented by
189     //   [imm3, imm2, imm1, imm0], where each imm is 16 bits.
190     // A move-zero or move-inverted is generated for the first non-zero or
191     // non-0xffff immX, and a move-keep for subsequent non-zero immX.
192 
193     uint64_t ignored_halfword = 0;
194     bool invert_move = false;
195     // If the number of 0xffff halfwords is greater than the number of 0x0000
196     // halfwords, it's more efficient to use move-inverted.
197     if (CountClearHalfWords(~imm, reg_size) >
198         CountClearHalfWords(imm, reg_size)) {
199       ignored_halfword = 0xffffL;
200       invert_move = true;
201     }
202 
203     // Mov instructions can't move immediate values into the stack pointer, so
204     // set up a temporary register, if needed.
205     UseScratchRegisterScope temps(this);
206     Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
207 
208     // Iterate through the halfwords. Use movn/movz for the first non-ignored
209     // halfword, and movk for subsequent halfwords.
210     DCHECK((reg_size % 16) == 0);
211     bool first_mov_done = false;
212     for (int i = 0; i < (rd.SizeInBits() / 16); i++) {
213       uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
214       if (imm16 != ignored_halfword) {
215         if (!first_mov_done) {
216           if (invert_move) {
217             movn(temp, (~imm16) & 0xffffL, 16 * i);
218           } else {
219             movz(temp, imm16, 16 * i);
220           }
221           first_mov_done = true;
222         } else {
223           // Construct a wider constant.
224           movk(temp, imm16, 16 * i);
225         }
226       }
227     }
228     DCHECK(first_mov_done);
229 
230     // Move the temporary if the original destination register was the stack
231     // pointer.
232     if (rd.IsSP()) {
233       mov(rd, temp);
234       AssertStackConsistency();
235     }
236   }
237 }
238 
239 
Mov(const Register & rd,const Operand & operand,DiscardMoveMode discard_mode)240 void MacroAssembler::Mov(const Register& rd,
241                          const Operand& operand,
242                          DiscardMoveMode discard_mode) {
243   DCHECK(allow_macro_instructions_);
244   DCHECK(!rd.IsZero());
245 
246   // Provide a swap register for instructions that need to write into the
247   // system stack pointer (and can't do this inherently).
248   UseScratchRegisterScope temps(this);
249   Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd;
250 
251   if (operand.NeedsRelocation(this)) {
252     Ldr(dst, operand.immediate());
253 
254   } else if (operand.IsImmediate()) {
255     // Call the macro assembler for generic immediates.
256     Mov(dst, operand.ImmediateValue());
257 
258   } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
259     // Emit a shift instruction if moving a shifted register. This operation
260     // could also be achieved using an orr instruction (like orn used by Mvn),
261     // but using a shift instruction makes the disassembly clearer.
262     EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
263 
264   } else if (operand.IsExtendedRegister()) {
265     // Emit an extend instruction if moving an extended register. This handles
266     // extend with post-shift operations, too.
267     EmitExtendShift(dst, operand.reg(), operand.extend(),
268                     operand.shift_amount());
269 
270   } else {
271     // Otherwise, emit a register move only if the registers are distinct, or
272     // if they are not X registers.
273     //
274     // Note that mov(w0, w0) is not a no-op because it clears the top word of
275     // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
276     // registers is not required to clear the top word of the X register. In
277     // this case, the instruction is discarded.
278     //
279     // If csp is an operand, add #0 is emitted, otherwise, orr #0.
280     if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
281                                   (discard_mode == kDontDiscardForSameWReg))) {
282       Assembler::mov(rd, operand.reg());
283     }
284     // This case can handle writes into the system stack pointer directly.
285     dst = rd;
286   }
287 
288   // Copy the result to the system stack pointer.
289   if (!dst.Is(rd)) {
290     DCHECK(rd.IsSP());
291     Assembler::mov(rd, dst);
292   }
293 }
294 
295 
Mvn(const Register & rd,const Operand & operand)296 void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
297   DCHECK(allow_macro_instructions_);
298 
299   if (operand.NeedsRelocation(this)) {
300     Ldr(rd, operand.immediate());
301     mvn(rd, rd);
302 
303   } else if (operand.IsImmediate()) {
304     // Call the macro assembler for generic immediates.
305     Mov(rd, ~operand.ImmediateValue());
306 
307   } else if (operand.IsExtendedRegister()) {
308     // Emit two instructions for the extend case. This differs from Mov, as
309     // the extend and invert can't be achieved in one instruction.
310     EmitExtendShift(rd, operand.reg(), operand.extend(),
311                     operand.shift_amount());
312     mvn(rd, rd);
313 
314   } else {
315     mvn(rd, operand);
316   }
317 }
318 
319 
CountClearHalfWords(uint64_t imm,unsigned reg_size)320 unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
321   DCHECK((reg_size % 8) == 0);
322   int count = 0;
323   for (unsigned i = 0; i < (reg_size / 16); i++) {
324     if ((imm & 0xffff) == 0) {
325       count++;
326     }
327     imm >>= 16;
328   }
329   return count;
330 }
331 
332 
333 // The movz instruction can generate immediates containing an arbitrary 16-bit
334 // half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
IsImmMovz(uint64_t imm,unsigned reg_size)335 bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
336   DCHECK((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
337   return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
338 }
339 
340 
341 // The movn instruction can generate immediates containing an arbitrary 16-bit
342 // half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
IsImmMovn(uint64_t imm,unsigned reg_size)343 bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
344   return IsImmMovz(~imm, reg_size);
345 }
346 
347 
ConditionalCompareMacro(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)348 void MacroAssembler::ConditionalCompareMacro(const Register& rn,
349                                              const Operand& operand,
350                                              StatusFlags nzcv,
351                                              Condition cond,
352                                              ConditionalCompareOp op) {
353   DCHECK((cond != al) && (cond != nv));
354   if (operand.NeedsRelocation(this)) {
355     UseScratchRegisterScope temps(this);
356     Register temp = temps.AcquireX();
357     Ldr(temp, operand.immediate());
358     ConditionalCompareMacro(rn, temp, nzcv, cond, op);
359 
360   } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
361              (operand.IsImmediate() &&
362               IsImmConditionalCompare(operand.ImmediateValue()))) {
363     // The immediate can be encoded in the instruction, or the operand is an
364     // unshifted register: call the assembler.
365     ConditionalCompare(rn, operand, nzcv, cond, op);
366 
367   } else {
368     // The operand isn't directly supported by the instruction: perform the
369     // operation on a temporary register.
370     UseScratchRegisterScope temps(this);
371     Register temp = temps.AcquireSameSizeAs(rn);
372     Mov(temp, operand);
373     ConditionalCompare(rn, temp, nzcv, cond, op);
374   }
375 }
376 
377 
Csel(const Register & rd,const Register & rn,const Operand & operand,Condition cond)378 void MacroAssembler::Csel(const Register& rd,
379                           const Register& rn,
380                           const Operand& operand,
381                           Condition cond) {
382   DCHECK(allow_macro_instructions_);
383   DCHECK(!rd.IsZero());
384   DCHECK((cond != al) && (cond != nv));
385   if (operand.IsImmediate()) {
386     // Immediate argument. Handle special cases of 0, 1 and -1 using zero
387     // register.
388     int64_t imm = operand.ImmediateValue();
389     Register zr = AppropriateZeroRegFor(rn);
390     if (imm == 0) {
391       csel(rd, rn, zr, cond);
392     } else if (imm == 1) {
393       csinc(rd, rn, zr, cond);
394     } else if (imm == -1) {
395       csinv(rd, rn, zr, cond);
396     } else {
397       UseScratchRegisterScope temps(this);
398       Register temp = temps.AcquireSameSizeAs(rn);
399       Mov(temp, imm);
400       csel(rd, rn, temp, cond);
401     }
402   } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
403     // Unshifted register argument.
404     csel(rd, rn, operand.reg(), cond);
405   } else {
406     // All other arguments.
407     UseScratchRegisterScope temps(this);
408     Register temp = temps.AcquireSameSizeAs(rn);
409     Mov(temp, operand);
410     csel(rd, rn, temp, cond);
411   }
412 }
413 
414 
TryOneInstrMoveImmediate(const Register & dst,int64_t imm)415 bool MacroAssembler::TryOneInstrMoveImmediate(const Register& dst,
416                                               int64_t imm) {
417   unsigned n, imm_s, imm_r;
418   int reg_size = dst.SizeInBits();
419   if (IsImmMovz(imm, reg_size) && !dst.IsSP()) {
420     // Immediate can be represented in a move zero instruction. Movz can't write
421     // to the stack pointer.
422     movz(dst, imm);
423     return true;
424   } else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) {
425     // Immediate can be represented in a move not instruction. Movn can't write
426     // to the stack pointer.
427     movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask));
428     return true;
429   } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
430     // Immediate can be represented in a logical orr instruction.
431     LogicalImmediate(dst, AppropriateZeroRegFor(dst), n, imm_s, imm_r, ORR);
432     return true;
433   }
434   return false;
435 }
436 
437 
MoveImmediateForShiftedOp(const Register & dst,int64_t imm)438 Operand MacroAssembler::MoveImmediateForShiftedOp(const Register& dst,
439                                                   int64_t imm) {
440   int reg_size = dst.SizeInBits();
441 
442   // Encode the immediate in a single move instruction, if possible.
443   if (TryOneInstrMoveImmediate(dst, imm)) {
444     // The move was successful; nothing to do here.
445   } else {
446     // Pre-shift the immediate to the least-significant bits of the register.
447     int shift_low = CountTrailingZeros(imm, reg_size);
448     int64_t imm_low = imm >> shift_low;
449 
450     // Pre-shift the immediate to the most-significant bits of the register. We
451     // insert set bits in the least-significant bits, as this creates a
452     // different immediate that may be encodable using movn or orr-immediate.
453     // If this new immediate is encodable, the set bits will be eliminated by
454     // the post shift on the following instruction.
455     int shift_high = CountLeadingZeros(imm, reg_size);
456     int64_t imm_high = (imm << shift_high) | ((1 << shift_high) - 1);
457 
458     if (TryOneInstrMoveImmediate(dst, imm_low)) {
459       // The new immediate has been moved into the destination's low bits:
460       // return a new leftward-shifting operand.
461       return Operand(dst, LSL, shift_low);
462     } else if (TryOneInstrMoveImmediate(dst, imm_high)) {
463       // The new immediate has been moved into the destination's high bits:
464       // return a new rightward-shifting operand.
465       return Operand(dst, LSR, shift_high);
466     } else {
467       // Use the generic move operation to set up the immediate.
468       Mov(dst, imm);
469     }
470   }
471   return Operand(dst);
472 }
473 
474 
AddSubMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)475 void MacroAssembler::AddSubMacro(const Register& rd,
476                                  const Register& rn,
477                                  const Operand& operand,
478                                  FlagsUpdate S,
479                                  AddSubOp op) {
480   if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
481       !operand.NeedsRelocation(this) && (S == LeaveFlags)) {
482     // The instruction would be a nop. Avoid generating useless code.
483     return;
484   }
485 
486   if (operand.NeedsRelocation(this)) {
487     UseScratchRegisterScope temps(this);
488     Register temp = temps.AcquireX();
489     Ldr(temp, operand.immediate());
490     AddSubMacro(rd, rn, temp, S, op);
491   } else if ((operand.IsImmediate() &&
492               !IsImmAddSub(operand.ImmediateValue()))      ||
493              (rn.IsZero() && !operand.IsShiftedRegister()) ||
494              (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
495     UseScratchRegisterScope temps(this);
496     Register temp = temps.AcquireSameSizeAs(rn);
497     if (operand.IsImmediate()) {
498       Operand imm_operand =
499           MoveImmediateForShiftedOp(temp, operand.ImmediateValue());
500       AddSub(rd, rn, imm_operand, S, op);
501     } else {
502       Mov(temp, operand);
503       AddSub(rd, rn, temp, S, op);
504     }
505   } else {
506     AddSub(rd, rn, operand, S, op);
507   }
508 }
509 
510 
AddSubWithCarryMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)511 void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
512                                           const Register& rn,
513                                           const Operand& operand,
514                                           FlagsUpdate S,
515                                           AddSubWithCarryOp op) {
516   DCHECK(rd.SizeInBits() == rn.SizeInBits());
517   UseScratchRegisterScope temps(this);
518 
519   if (operand.NeedsRelocation(this)) {
520     Register temp = temps.AcquireX();
521     Ldr(temp, operand.immediate());
522     AddSubWithCarryMacro(rd, rn, temp, S, op);
523 
524   } else if (operand.IsImmediate() ||
525              (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
526     // Add/sub with carry (immediate or ROR shifted register.)
527     Register temp = temps.AcquireSameSizeAs(rn);
528     Mov(temp, operand);
529     AddSubWithCarry(rd, rn, temp, S, op);
530 
531   } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
532     // Add/sub with carry (shifted register).
533     DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
534     DCHECK(operand.shift() != ROR);
535     DCHECK(is_uintn(operand.shift_amount(),
536           rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2
537                                              : kWRegSizeInBitsLog2));
538     Register temp = temps.AcquireSameSizeAs(rn);
539     EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
540     AddSubWithCarry(rd, rn, temp, S, op);
541 
542   } else if (operand.IsExtendedRegister()) {
543     // Add/sub with carry (extended register).
544     DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
545     // Add/sub extended supports a shift <= 4. We want to support exactly the
546     // same modes.
547     DCHECK(operand.shift_amount() <= 4);
548     DCHECK(operand.reg().Is64Bits() ||
549            ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
550     Register temp = temps.AcquireSameSizeAs(rn);
551     EmitExtendShift(temp, operand.reg(), operand.extend(),
552                     operand.shift_amount());
553     AddSubWithCarry(rd, rn, temp, S, op);
554 
555   } else {
556     // The addressing mode is directly supported by the instruction.
557     AddSubWithCarry(rd, rn, operand, S, op);
558   }
559 }
560 
561 
LoadStoreMacro(const CPURegister & rt,const MemOperand & addr,LoadStoreOp op)562 void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
563                                     const MemOperand& addr,
564                                     LoadStoreOp op) {
565   int64_t offset = addr.offset();
566   LSDataSize size = CalcLSDataSize(op);
567 
568   // Check if an immediate offset fits in the immediate field of the
569   // appropriate instruction. If not, emit two instructions to perform
570   // the operation.
571   if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
572       !IsImmLSUnscaled(offset)) {
573     // Immediate offset that can't be encoded using unsigned or unscaled
574     // addressing modes.
575     UseScratchRegisterScope temps(this);
576     Register temp = temps.AcquireSameSizeAs(addr.base());
577     Mov(temp, addr.offset());
578     LoadStore(rt, MemOperand(addr.base(), temp), op);
579   } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
580     // Post-index beyond unscaled addressing range.
581     LoadStore(rt, MemOperand(addr.base()), op);
582     add(addr.base(), addr.base(), offset);
583   } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
584     // Pre-index beyond unscaled addressing range.
585     add(addr.base(), addr.base(), offset);
586     LoadStore(rt, MemOperand(addr.base()), op);
587   } else {
588     // Encodable in one load/store instruction.
589     LoadStore(rt, addr, op);
590   }
591 }
592 
LoadStorePairMacro(const CPURegister & rt,const CPURegister & rt2,const MemOperand & addr,LoadStorePairOp op)593 void MacroAssembler::LoadStorePairMacro(const CPURegister& rt,
594                                         const CPURegister& rt2,
595                                         const MemOperand& addr,
596                                         LoadStorePairOp op) {
597   // TODO(all): Should we support register offset for load-store-pair?
598   DCHECK(!addr.IsRegisterOffset());
599 
600   int64_t offset = addr.offset();
601   LSDataSize size = CalcLSPairDataSize(op);
602 
603   // Check if the offset fits in the immediate field of the appropriate
604   // instruction. If not, emit two instructions to perform the operation.
605   if (IsImmLSPair(offset, size)) {
606     // Encodable in one load/store pair instruction.
607     LoadStorePair(rt, rt2, addr, op);
608   } else {
609     Register base = addr.base();
610     if (addr.IsImmediateOffset()) {
611       UseScratchRegisterScope temps(this);
612       Register temp = temps.AcquireSameSizeAs(base);
613       Add(temp, base, offset);
614       LoadStorePair(rt, rt2, MemOperand(temp), op);
615     } else if (addr.IsPostIndex()) {
616       LoadStorePair(rt, rt2, MemOperand(base), op);
617       Add(base, base, offset);
618     } else {
619       DCHECK(addr.IsPreIndex());
620       Add(base, base, offset);
621       LoadStorePair(rt, rt2, MemOperand(base), op);
622     }
623   }
624 }
625 
626 
Load(const Register & rt,const MemOperand & addr,Representation r)627 void MacroAssembler::Load(const Register& rt,
628                           const MemOperand& addr,
629                           Representation r) {
630   DCHECK(!r.IsDouble());
631 
632   if (r.IsInteger8()) {
633     Ldrsb(rt, addr);
634   } else if (r.IsUInteger8()) {
635     Ldrb(rt, addr);
636   } else if (r.IsInteger16()) {
637     Ldrsh(rt, addr);
638   } else if (r.IsUInteger16()) {
639     Ldrh(rt, addr);
640   } else if (r.IsInteger32()) {
641     Ldr(rt.W(), addr);
642   } else {
643     DCHECK(rt.Is64Bits());
644     Ldr(rt, addr);
645   }
646 }
647 
648 
Store(const Register & rt,const MemOperand & addr,Representation r)649 void MacroAssembler::Store(const Register& rt,
650                            const MemOperand& addr,
651                            Representation r) {
652   DCHECK(!r.IsDouble());
653 
654   if (r.IsInteger8() || r.IsUInteger8()) {
655     Strb(rt, addr);
656   } else if (r.IsInteger16() || r.IsUInteger16()) {
657     Strh(rt, addr);
658   } else if (r.IsInteger32()) {
659     Str(rt.W(), addr);
660   } else {
661     DCHECK(rt.Is64Bits());
662     if (r.IsHeapObject()) {
663       AssertNotSmi(rt);
664     } else if (r.IsSmi()) {
665       AssertSmi(rt);
666     }
667     Str(rt, addr);
668   }
669 }
670 
671 
NeedExtraInstructionsOrRegisterBranch(Label * label,ImmBranchType b_type)672 bool MacroAssembler::NeedExtraInstructionsOrRegisterBranch(
673     Label *label, ImmBranchType b_type) {
674   bool need_longer_range = false;
675   // There are two situations in which we care about the offset being out of
676   // range:
677   //  - The label is bound but too far away.
678   //  - The label is not bound but linked, and the previous branch
679   //    instruction in the chain is too far away.
680   if (label->is_bound() || label->is_linked()) {
681     need_longer_range =
682       !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset());
683   }
684   if (!need_longer_range && !label->is_bound()) {
685     int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type);
686     unresolved_branches_.insert(
687         std::pair<int, FarBranchInfo>(max_reachable_pc,
688                                       FarBranchInfo(pc_offset(), label)));
689     // Also maintain the next pool check.
690     next_veneer_pool_check_ =
691       Min(next_veneer_pool_check_,
692           max_reachable_pc - kVeneerDistanceCheckMargin);
693   }
694   return need_longer_range;
695 }
696 
697 
Adr(const Register & rd,Label * label,AdrHint hint)698 void MacroAssembler::Adr(const Register& rd, Label* label, AdrHint hint) {
699   DCHECK(allow_macro_instructions_);
700   DCHECK(!rd.IsZero());
701 
702   if (hint == kAdrNear) {
703     adr(rd, label);
704     return;
705   }
706 
707   DCHECK(hint == kAdrFar);
708   if (label->is_bound()) {
709     int label_offset = label->pos() - pc_offset();
710     if (Instruction::IsValidPCRelOffset(label_offset)) {
711       adr(rd, label);
712     } else {
713       DCHECK(label_offset <= 0);
714       int min_adr_offset = -(1 << (Instruction::ImmPCRelRangeBitwidth - 1));
715       adr(rd, min_adr_offset);
716       Add(rd, rd, label_offset - min_adr_offset);
717     }
718   } else {
719     UseScratchRegisterScope temps(this);
720     Register scratch = temps.AcquireX();
721 
722     InstructionAccurateScope scope(
723         this, PatchingAssembler::kAdrFarPatchableNInstrs);
724     adr(rd, label);
725     for (int i = 0; i < PatchingAssembler::kAdrFarPatchableNNops; ++i) {
726       nop(ADR_FAR_NOP);
727     }
728     movz(scratch, 0);
729   }
730 }
731 
732 
B(Label * label,BranchType type,Register reg,int bit)733 void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
734   DCHECK((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) &&
735          (bit == -1 || type >= kBranchTypeFirstUsingBit));
736   if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
737     B(static_cast<Condition>(type), label);
738   } else {
739     switch (type) {
740       case always:        B(label);              break;
741       case never:         break;
742       case reg_zero:      Cbz(reg, label);       break;
743       case reg_not_zero:  Cbnz(reg, label);      break;
744       case reg_bit_clear: Tbz(reg, bit, label);  break;
745       case reg_bit_set:   Tbnz(reg, bit, label); break;
746       default:
747         UNREACHABLE();
748     }
749   }
750 }
751 
752 
B(Label * label,Condition cond)753 void MacroAssembler::B(Label* label, Condition cond) {
754   DCHECK(allow_macro_instructions_);
755   DCHECK((cond != al) && (cond != nv));
756 
757   Label done;
758   bool need_extra_instructions =
759     NeedExtraInstructionsOrRegisterBranch(label, CondBranchType);
760 
761   if (need_extra_instructions) {
762     b(&done, NegateCondition(cond));
763     B(label);
764   } else {
765     b(label, cond);
766   }
767   bind(&done);
768 }
769 
770 
Tbnz(const Register & rt,unsigned bit_pos,Label * label)771 void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
772   DCHECK(allow_macro_instructions_);
773 
774   Label done;
775   bool need_extra_instructions =
776     NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
777 
778   if (need_extra_instructions) {
779     tbz(rt, bit_pos, &done);
780     B(label);
781   } else {
782     tbnz(rt, bit_pos, label);
783   }
784   bind(&done);
785 }
786 
787 
Tbz(const Register & rt,unsigned bit_pos,Label * label)788 void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
789   DCHECK(allow_macro_instructions_);
790 
791   Label done;
792   bool need_extra_instructions =
793     NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
794 
795   if (need_extra_instructions) {
796     tbnz(rt, bit_pos, &done);
797     B(label);
798   } else {
799     tbz(rt, bit_pos, label);
800   }
801   bind(&done);
802 }
803 
804 
Cbnz(const Register & rt,Label * label)805 void MacroAssembler::Cbnz(const Register& rt, Label* label) {
806   DCHECK(allow_macro_instructions_);
807 
808   Label done;
809   bool need_extra_instructions =
810     NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
811 
812   if (need_extra_instructions) {
813     cbz(rt, &done);
814     B(label);
815   } else {
816     cbnz(rt, label);
817   }
818   bind(&done);
819 }
820 
821 
Cbz(const Register & rt,Label * label)822 void MacroAssembler::Cbz(const Register& rt, Label* label) {
823   DCHECK(allow_macro_instructions_);
824 
825   Label done;
826   bool need_extra_instructions =
827     NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
828 
829   if (need_extra_instructions) {
830     cbnz(rt, &done);
831     B(label);
832   } else {
833     cbz(rt, label);
834   }
835   bind(&done);
836 }
837 
838 
839 // Pseudo-instructions.
840 
841 
Abs(const Register & rd,const Register & rm,Label * is_not_representable,Label * is_representable)842 void MacroAssembler::Abs(const Register& rd, const Register& rm,
843                          Label* is_not_representable,
844                          Label* is_representable) {
845   DCHECK(allow_macro_instructions_);
846   DCHECK(AreSameSizeAndType(rd, rm));
847 
848   Cmp(rm, 1);
849   Cneg(rd, rm, lt);
850 
851   // If the comparison sets the v flag, the input was the smallest value
852   // representable by rm, and the mathematical result of abs(rm) is not
853   // representable using two's complement.
854   if ((is_not_representable != NULL) && (is_representable != NULL)) {
855     B(is_not_representable, vs);
856     B(is_representable);
857   } else if (is_not_representable != NULL) {
858     B(is_not_representable, vs);
859   } else if (is_representable != NULL) {
860     B(is_representable, vc);
861   }
862 }
863 
864 
865 // Abstracted stack operations.
866 
867 
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)868 void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
869                           const CPURegister& src2, const CPURegister& src3) {
870   DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
871 
872   int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
873   int size = src0.SizeInBytes();
874 
875   PushPreamble(count, size);
876   PushHelper(count, size, src0, src1, src2, src3);
877 }
878 
879 
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3,const CPURegister & src4,const CPURegister & src5,const CPURegister & src6,const CPURegister & src7)880 void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
881                           const CPURegister& src2, const CPURegister& src3,
882                           const CPURegister& src4, const CPURegister& src5,
883                           const CPURegister& src6, const CPURegister& src7) {
884   DCHECK(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7));
885 
886   int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid();
887   int size = src0.SizeInBytes();
888 
889   PushPreamble(count, size);
890   PushHelper(4, size, src0, src1, src2, src3);
891   PushHelper(count - 4, size, src4, src5, src6, src7);
892 }
893 
894 
Pop(const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)895 void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
896                          const CPURegister& dst2, const CPURegister& dst3) {
897   // It is not valid to pop into the same register more than once in one
898   // instruction, not even into the zero register.
899   DCHECK(!AreAliased(dst0, dst1, dst2, dst3));
900   DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
901   DCHECK(dst0.IsValid());
902 
903   int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
904   int size = dst0.SizeInBytes();
905 
906   PopHelper(count, size, dst0, dst1, dst2, dst3);
907   PopPostamble(count, size);
908 }
909 
910 
Pop(const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3,const CPURegister & dst4,const CPURegister & dst5,const CPURegister & dst6,const CPURegister & dst7)911 void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
912                          const CPURegister& dst2, const CPURegister& dst3,
913                          const CPURegister& dst4, const CPURegister& dst5,
914                          const CPURegister& dst6, const CPURegister& dst7) {
915   // It is not valid to pop into the same register more than once in one
916   // instruction, not even into the zero register.
917   DCHECK(!AreAliased(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7));
918   DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7));
919   DCHECK(dst0.IsValid());
920 
921   int count = 5 + dst5.IsValid() + dst6.IsValid() + dst7.IsValid();
922   int size = dst0.SizeInBytes();
923 
924   PopHelper(4, size, dst0, dst1, dst2, dst3);
925   PopHelper(count - 4, size, dst4, dst5, dst6, dst7);
926   PopPostamble(count, size);
927 }
928 
929 
Push(const Register & src0,const FPRegister & src1)930 void MacroAssembler::Push(const Register& src0, const FPRegister& src1) {
931   int size = src0.SizeInBytes() + src1.SizeInBytes();
932 
933   PushPreamble(size);
934   // Reserve room for src0 and push src1.
935   str(src1, MemOperand(StackPointer(), -size, PreIndex));
936   // Fill the gap with src0.
937   str(src0, MemOperand(StackPointer(), src1.SizeInBytes()));
938 }
939 
940 
PushQueued(PreambleDirective preamble_directive)941 void MacroAssembler::PushPopQueue::PushQueued(
942     PreambleDirective preamble_directive) {
943   if (queued_.empty()) return;
944 
945   if (preamble_directive == WITH_PREAMBLE) {
946     masm_->PushPreamble(size_);
947   }
948 
949   size_t count = queued_.size();
950   size_t index = 0;
951   while (index < count) {
952     // PushHelper can only handle registers with the same size and type, and it
953     // can handle only four at a time. Batch them up accordingly.
954     CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
955     int batch_index = 0;
956     do {
957       batch[batch_index++] = queued_[index++];
958     } while ((batch_index < 4) && (index < count) &&
959              batch[0].IsSameSizeAndType(queued_[index]));
960 
961     masm_->PushHelper(batch_index, batch[0].SizeInBytes(),
962                       batch[0], batch[1], batch[2], batch[3]);
963   }
964 
965   queued_.clear();
966 }
967 
968 
PopQueued()969 void MacroAssembler::PushPopQueue::PopQueued() {
970   if (queued_.empty()) return;
971 
972   size_t count = queued_.size();
973   size_t index = 0;
974   while (index < count) {
975     // PopHelper can only handle registers with the same size and type, and it
976     // can handle only four at a time. Batch them up accordingly.
977     CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
978     int batch_index = 0;
979     do {
980       batch[batch_index++] = queued_[index++];
981     } while ((batch_index < 4) && (index < count) &&
982              batch[0].IsSameSizeAndType(queued_[index]));
983 
984     masm_->PopHelper(batch_index, batch[0].SizeInBytes(),
985                      batch[0], batch[1], batch[2], batch[3]);
986   }
987 
988   masm_->PopPostamble(size_);
989   queued_.clear();
990 }
991 
992 
PushCPURegList(CPURegList registers)993 void MacroAssembler::PushCPURegList(CPURegList registers) {
994   int size = registers.RegisterSizeInBytes();
995 
996   PushPreamble(registers.Count(), size);
997   // Push up to four registers at a time because if the current stack pointer is
998   // csp and reg_size is 32, registers must be pushed in blocks of four in order
999   // to maintain the 16-byte alignment for csp.
1000   while (!registers.IsEmpty()) {
1001     int count_before = registers.Count();
1002     const CPURegister& src0 = registers.PopHighestIndex();
1003     const CPURegister& src1 = registers.PopHighestIndex();
1004     const CPURegister& src2 = registers.PopHighestIndex();
1005     const CPURegister& src3 = registers.PopHighestIndex();
1006     int count = count_before - registers.Count();
1007     PushHelper(count, size, src0, src1, src2, src3);
1008   }
1009 }
1010 
1011 
PopCPURegList(CPURegList registers)1012 void MacroAssembler::PopCPURegList(CPURegList registers) {
1013   int size = registers.RegisterSizeInBytes();
1014 
1015   // Pop up to four registers at a time because if the current stack pointer is
1016   // csp and reg_size is 32, registers must be pushed in blocks of four in
1017   // order to maintain the 16-byte alignment for csp.
1018   while (!registers.IsEmpty()) {
1019     int count_before = registers.Count();
1020     const CPURegister& dst0 = registers.PopLowestIndex();
1021     const CPURegister& dst1 = registers.PopLowestIndex();
1022     const CPURegister& dst2 = registers.PopLowestIndex();
1023     const CPURegister& dst3 = registers.PopLowestIndex();
1024     int count = count_before - registers.Count();
1025     PopHelper(count, size, dst0, dst1, dst2, dst3);
1026   }
1027   PopPostamble(registers.Count(), size);
1028 }
1029 
1030 
PushMultipleTimes(CPURegister src,int count)1031 void MacroAssembler::PushMultipleTimes(CPURegister src, int count) {
1032   int size = src.SizeInBytes();
1033 
1034   PushPreamble(count, size);
1035 
1036   if (FLAG_optimize_for_size && count > 8) {
1037     UseScratchRegisterScope temps(this);
1038     Register temp = temps.AcquireX();
1039 
1040     Label loop;
1041     __ Mov(temp, count / 2);
1042     __ Bind(&loop);
1043     PushHelper(2, size, src, src, NoReg, NoReg);
1044     __ Subs(temp, temp, 1);
1045     __ B(ne, &loop);
1046 
1047     count %= 2;
1048   }
1049 
1050   // Push up to four registers at a time if possible because if the current
1051   // stack pointer is csp and the register size is 32, registers must be pushed
1052   // in blocks of four in order to maintain the 16-byte alignment for csp.
1053   while (count >= 4) {
1054     PushHelper(4, size, src, src, src, src);
1055     count -= 4;
1056   }
1057   if (count >= 2) {
1058     PushHelper(2, size, src, src, NoReg, NoReg);
1059     count -= 2;
1060   }
1061   if (count == 1) {
1062     PushHelper(1, size, src, NoReg, NoReg, NoReg);
1063     count -= 1;
1064   }
1065   DCHECK(count == 0);
1066 }
1067 
1068 
PushMultipleTimes(CPURegister src,Register count)1069 void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) {
1070   PushPreamble(Operand(count, UXTW, WhichPowerOf2(src.SizeInBytes())));
1071 
1072   UseScratchRegisterScope temps(this);
1073   Register temp = temps.AcquireSameSizeAs(count);
1074 
1075   if (FLAG_optimize_for_size) {
1076     Label loop, done;
1077 
1078     Subs(temp, count, 1);
1079     B(mi, &done);
1080 
1081     // Push all registers individually, to save code size.
1082     Bind(&loop);
1083     Subs(temp, temp, 1);
1084     PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1085     B(pl, &loop);
1086 
1087     Bind(&done);
1088   } else {
1089     Label loop, leftover2, leftover1, done;
1090 
1091     Subs(temp, count, 4);
1092     B(mi, &leftover2);
1093 
1094     // Push groups of four first.
1095     Bind(&loop);
1096     Subs(temp, temp, 4);
1097     PushHelper(4, src.SizeInBytes(), src, src, src, src);
1098     B(pl, &loop);
1099 
1100     // Push groups of two.
1101     Bind(&leftover2);
1102     Tbz(count, 1, &leftover1);
1103     PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg);
1104 
1105     // Push the last one (if required).
1106     Bind(&leftover1);
1107     Tbz(count, 0, &done);
1108     PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1109 
1110     Bind(&done);
1111   }
1112 }
1113 
1114 
PushHelper(int count,int size,const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)1115 void MacroAssembler::PushHelper(int count, int size,
1116                                 const CPURegister& src0,
1117                                 const CPURegister& src1,
1118                                 const CPURegister& src2,
1119                                 const CPURegister& src3) {
1120   // Ensure that we don't unintentially modify scratch or debug registers.
1121   InstructionAccurateScope scope(this);
1122 
1123   DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
1124   DCHECK(size == src0.SizeInBytes());
1125 
1126   // When pushing multiple registers, the store order is chosen such that
1127   // Push(a, b) is equivalent to Push(a) followed by Push(b).
1128   switch (count) {
1129     case 1:
1130       DCHECK(src1.IsNone() && src2.IsNone() && src3.IsNone());
1131       str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
1132       break;
1133     case 2:
1134       DCHECK(src2.IsNone() && src3.IsNone());
1135       stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
1136       break;
1137     case 3:
1138       DCHECK(src3.IsNone());
1139       stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
1140       str(src0, MemOperand(StackPointer(), 2 * size));
1141       break;
1142     case 4:
1143       // Skip over 4 * size, then fill in the gap. This allows four W registers
1144       // to be pushed using csp, whilst maintaining 16-byte alignment for csp
1145       // at all times.
1146       stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
1147       stp(src1, src0, MemOperand(StackPointer(), 2 * size));
1148       break;
1149     default:
1150       UNREACHABLE();
1151   }
1152 }
1153 
1154 
PopHelper(int count,int size,const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)1155 void MacroAssembler::PopHelper(int count, int size,
1156                                const CPURegister& dst0,
1157                                const CPURegister& dst1,
1158                                const CPURegister& dst2,
1159                                const CPURegister& dst3) {
1160   // Ensure that we don't unintentially modify scratch or debug registers.
1161   InstructionAccurateScope scope(this);
1162 
1163   DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
1164   DCHECK(size == dst0.SizeInBytes());
1165 
1166   // When popping multiple registers, the load order is chosen such that
1167   // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
1168   switch (count) {
1169     case 1:
1170       DCHECK(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
1171       ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
1172       break;
1173     case 2:
1174       DCHECK(dst2.IsNone() && dst3.IsNone());
1175       ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
1176       break;
1177     case 3:
1178       DCHECK(dst3.IsNone());
1179       ldr(dst2, MemOperand(StackPointer(), 2 * size));
1180       ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
1181       break;
1182     case 4:
1183       // Load the higher addresses first, then load the lower addresses and
1184       // skip the whole block in the second instruction. This allows four W
1185       // registers to be popped using csp, whilst maintaining 16-byte alignment
1186       // for csp at all times.
1187       ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
1188       ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
1189       break;
1190     default:
1191       UNREACHABLE();
1192   }
1193 }
1194 
1195 
PushPreamble(Operand total_size)1196 void MacroAssembler::PushPreamble(Operand total_size) {
1197   if (csp.Is(StackPointer())) {
1198     // If the current stack pointer is csp, then it must be aligned to 16 bytes
1199     // on entry and the total size of the specified registers must also be a
1200     // multiple of 16 bytes.
1201     if (total_size.IsImmediate()) {
1202       DCHECK((total_size.ImmediateValue() % 16) == 0);
1203     }
1204 
1205     // Don't check access size for non-immediate sizes. It's difficult to do
1206     // well, and it will be caught by hardware (or the simulator) anyway.
1207   } else {
1208     // Even if the current stack pointer is not the system stack pointer (csp),
1209     // the system stack pointer will still be modified in order to comply with
1210     // ABI rules about accessing memory below the system stack pointer.
1211     BumpSystemStackPointer(total_size);
1212   }
1213 }
1214 
1215 
PopPostamble(Operand total_size)1216 void MacroAssembler::PopPostamble(Operand total_size) {
1217   if (csp.Is(StackPointer())) {
1218     // If the current stack pointer is csp, then it must be aligned to 16 bytes
1219     // on entry and the total size of the specified registers must also be a
1220     // multiple of 16 bytes.
1221     if (total_size.IsImmediate()) {
1222       DCHECK((total_size.ImmediateValue() % 16) == 0);
1223     }
1224 
1225     // Don't check access size for non-immediate sizes. It's difficult to do
1226     // well, and it will be caught by hardware (or the simulator) anyway.
1227   } else if (emit_debug_code()) {
1228     // It is safe to leave csp where it is when unwinding the JavaScript stack,
1229     // but if we keep it matching StackPointer, the simulator can detect memory
1230     // accesses in the now-free part of the stack.
1231     SyncSystemStackPointer();
1232   }
1233 }
1234 
1235 
Poke(const CPURegister & src,const Operand & offset)1236 void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) {
1237   if (offset.IsImmediate()) {
1238     DCHECK(offset.ImmediateValue() >= 0);
1239   } else if (emit_debug_code()) {
1240     Cmp(xzr, offset);
1241     Check(le, kStackAccessBelowStackPointer);
1242   }
1243 
1244   Str(src, MemOperand(StackPointer(), offset));
1245 }
1246 
1247 
Peek(const CPURegister & dst,const Operand & offset)1248 void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) {
1249   if (offset.IsImmediate()) {
1250     DCHECK(offset.ImmediateValue() >= 0);
1251   } else if (emit_debug_code()) {
1252     Cmp(xzr, offset);
1253     Check(le, kStackAccessBelowStackPointer);
1254   }
1255 
1256   Ldr(dst, MemOperand(StackPointer(), offset));
1257 }
1258 
1259 
PokePair(const CPURegister & src1,const CPURegister & src2,int offset)1260 void MacroAssembler::PokePair(const CPURegister& src1,
1261                               const CPURegister& src2,
1262                               int offset) {
1263   DCHECK(AreSameSizeAndType(src1, src2));
1264   DCHECK((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
1265   Stp(src1, src2, MemOperand(StackPointer(), offset));
1266 }
1267 
1268 
PeekPair(const CPURegister & dst1,const CPURegister & dst2,int offset)1269 void MacroAssembler::PeekPair(const CPURegister& dst1,
1270                               const CPURegister& dst2,
1271                               int offset) {
1272   DCHECK(AreSameSizeAndType(dst1, dst2));
1273   DCHECK((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
1274   Ldp(dst1, dst2, MemOperand(StackPointer(), offset));
1275 }
1276 
1277 
PushCalleeSavedRegisters()1278 void MacroAssembler::PushCalleeSavedRegisters() {
1279   // Ensure that the macro-assembler doesn't use any scratch registers.
1280   InstructionAccurateScope scope(this);
1281 
1282   // This method must not be called unless the current stack pointer is the
1283   // system stack pointer (csp).
1284   DCHECK(csp.Is(StackPointer()));
1285 
1286   MemOperand tos(csp, -2 * static_cast<int>(kXRegSize), PreIndex);
1287 
1288   stp(d14, d15, tos);
1289   stp(d12, d13, tos);
1290   stp(d10, d11, tos);
1291   stp(d8, d9, tos);
1292 
1293   stp(x29, x30, tos);
1294   stp(x27, x28, tos);    // x28 = jssp
1295   stp(x25, x26, tos);
1296   stp(x23, x24, tos);
1297   stp(x21, x22, tos);
1298   stp(x19, x20, tos);
1299 }
1300 
1301 
PopCalleeSavedRegisters()1302 void MacroAssembler::PopCalleeSavedRegisters() {
1303   // Ensure that the macro-assembler doesn't use any scratch registers.
1304   InstructionAccurateScope scope(this);
1305 
1306   // This method must not be called unless the current stack pointer is the
1307   // system stack pointer (csp).
1308   DCHECK(csp.Is(StackPointer()));
1309 
1310   MemOperand tos(csp, 2 * kXRegSize, PostIndex);
1311 
1312   ldp(x19, x20, tos);
1313   ldp(x21, x22, tos);
1314   ldp(x23, x24, tos);
1315   ldp(x25, x26, tos);
1316   ldp(x27, x28, tos);    // x28 = jssp
1317   ldp(x29, x30, tos);
1318 
1319   ldp(d8, d9, tos);
1320   ldp(d10, d11, tos);
1321   ldp(d12, d13, tos);
1322   ldp(d14, d15, tos);
1323 }
1324 
1325 
AssertStackConsistency()1326 void MacroAssembler::AssertStackConsistency() {
1327   // Avoid emitting code when !use_real_abort() since non-real aborts cause too
1328   // much code to be generated.
1329   if (emit_debug_code() && use_real_aborts()) {
1330     if (csp.Is(StackPointer())) {
1331       // Always check the alignment of csp if ALWAYS_ALIGN_CSP is true.  We
1332       // can't check the alignment of csp without using a scratch register (or
1333       // clobbering the flags), but the processor (or simulator) will abort if
1334       // it is not properly aligned during a load.
1335       ldr(xzr, MemOperand(csp, 0));
1336     }
1337     if (FLAG_enable_slow_asserts && !csp.Is(StackPointer())) {
1338       Label ok;
1339       // Check that csp <= StackPointer(), preserving all registers and NZCV.
1340       sub(StackPointer(), csp, StackPointer());
1341       cbz(StackPointer(), &ok);                 // Ok if csp == StackPointer().
1342       tbnz(StackPointer(), kXSignBit, &ok);     // Ok if csp < StackPointer().
1343 
1344       // Avoid generating AssertStackConsistency checks for the Push in Abort.
1345       { DontEmitDebugCodeScope dont_emit_debug_code_scope(this);
1346         // Restore StackPointer().
1347         sub(StackPointer(), csp, StackPointer());
1348         Abort(kTheCurrentStackPointerIsBelowCsp);
1349       }
1350 
1351       bind(&ok);
1352       // Restore StackPointer().
1353       sub(StackPointer(), csp, StackPointer());
1354     }
1355   }
1356 }
1357 
AssertCspAligned()1358 void MacroAssembler::AssertCspAligned() {
1359   if (emit_debug_code() && use_real_aborts()) {
1360     // TODO(titzer): use a real assert for alignment check?
1361     UseScratchRegisterScope scope(this);
1362     Register temp = scope.AcquireX();
1363     ldr(temp, MemOperand(csp));
1364   }
1365 }
1366 
AssertFPCRState(Register fpcr)1367 void MacroAssembler::AssertFPCRState(Register fpcr) {
1368   if (emit_debug_code()) {
1369     Label unexpected_mode, done;
1370     UseScratchRegisterScope temps(this);
1371     if (fpcr.IsNone()) {
1372       fpcr = temps.AcquireX();
1373       Mrs(fpcr, FPCR);
1374     }
1375 
1376     // Settings left to their default values:
1377     //   - Assert that flush-to-zero is not set.
1378     Tbnz(fpcr, FZ_offset, &unexpected_mode);
1379     //   - Assert that the rounding mode is nearest-with-ties-to-even.
1380     STATIC_ASSERT(FPTieEven == 0);
1381     Tst(fpcr, RMode_mask);
1382     B(eq, &done);
1383 
1384     Bind(&unexpected_mode);
1385     Abort(kUnexpectedFPCRMode);
1386 
1387     Bind(&done);
1388   }
1389 }
1390 
1391 
CanonicalizeNaN(const FPRegister & dst,const FPRegister & src)1392 void MacroAssembler::CanonicalizeNaN(const FPRegister& dst,
1393                                      const FPRegister& src) {
1394   AssertFPCRState();
1395 
1396   // Subtracting 0.0 preserves all inputs except for signalling NaNs, which
1397   // become quiet NaNs. We use fsub rather than fadd because fsub preserves -0.0
1398   // inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0.
1399   Fsub(dst, src, fp_zero);
1400 }
1401 
1402 
LoadRoot(CPURegister destination,Heap::RootListIndex index)1403 void MacroAssembler::LoadRoot(CPURegister destination,
1404                               Heap::RootListIndex index) {
1405   // TODO(jbramley): Most root values are constants, and can be synthesized
1406   // without a load. Refer to the ARM back end for details.
1407   Ldr(destination, MemOperand(root, index << kPointerSizeLog2));
1408 }
1409 
1410 
StoreRoot(Register source,Heap::RootListIndex index)1411 void MacroAssembler::StoreRoot(Register source,
1412                                Heap::RootListIndex index) {
1413   DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
1414   Str(source, MemOperand(root, index << kPointerSizeLog2));
1415 }
1416 
1417 
LoadTrueFalseRoots(Register true_root,Register false_root)1418 void MacroAssembler::LoadTrueFalseRoots(Register true_root,
1419                                         Register false_root) {
1420   STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex);
1421   Ldp(true_root, false_root,
1422       MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2));
1423 }
1424 
1425 
LoadHeapObject(Register result,Handle<HeapObject> object)1426 void MacroAssembler::LoadHeapObject(Register result,
1427                                     Handle<HeapObject> object) {
1428   Mov(result, Operand(object));
1429 }
1430 
1431 
LoadInstanceDescriptors(Register map,Register descriptors)1432 void MacroAssembler::LoadInstanceDescriptors(Register map,
1433                                              Register descriptors) {
1434   Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
1435 }
1436 
1437 
NumberOfOwnDescriptors(Register dst,Register map)1438 void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
1439   Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
1440   DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
1441 }
1442 
1443 
EnumLengthUntagged(Register dst,Register map)1444 void MacroAssembler::EnumLengthUntagged(Register dst, Register map) {
1445   STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
1446   Ldrsw(dst, FieldMemOperand(map, Map::kBitField3Offset));
1447   And(dst, dst, Map::EnumLengthBits::kMask);
1448 }
1449 
1450 
EnumLengthSmi(Register dst,Register map)1451 void MacroAssembler::EnumLengthSmi(Register dst, Register map) {
1452   EnumLengthUntagged(dst, map);
1453   SmiTag(dst, dst);
1454 }
1455 
1456 
LoadAccessor(Register dst,Register holder,int accessor_index,AccessorComponent accessor)1457 void MacroAssembler::LoadAccessor(Register dst, Register holder,
1458                                   int accessor_index,
1459                                   AccessorComponent accessor) {
1460   Ldr(dst, FieldMemOperand(holder, HeapObject::kMapOffset));
1461   LoadInstanceDescriptors(dst, dst);
1462   Ldr(dst,
1463       FieldMemOperand(dst, DescriptorArray::GetValueOffset(accessor_index)));
1464   int offset = accessor == ACCESSOR_GETTER ? AccessorPair::kGetterOffset
1465                                            : AccessorPair::kSetterOffset;
1466   Ldr(dst, FieldMemOperand(dst, offset));
1467 }
1468 
1469 
CheckEnumCache(Register object,Register scratch0,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Label * call_runtime)1470 void MacroAssembler::CheckEnumCache(Register object, Register scratch0,
1471                                     Register scratch1, Register scratch2,
1472                                     Register scratch3, Register scratch4,
1473                                     Label* call_runtime) {
1474   DCHECK(!AreAliased(object, scratch0, scratch1, scratch2, scratch3, scratch4));
1475 
1476   Register empty_fixed_array_value = scratch0;
1477   Register current_object = scratch1;
1478   Register null_value = scratch4;
1479 
1480   LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
1481   Label next, start;
1482 
1483   Mov(current_object, object);
1484 
1485   // Check if the enum length field is properly initialized, indicating that
1486   // there is an enum cache.
1487   Register map = scratch2;
1488   Register enum_length = scratch3;
1489   Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1490 
1491   EnumLengthUntagged(enum_length, map);
1492   Cmp(enum_length, kInvalidEnumCacheSentinel);
1493   B(eq, call_runtime);
1494 
1495   LoadRoot(null_value, Heap::kNullValueRootIndex);
1496   B(&start);
1497 
1498   Bind(&next);
1499   Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1500 
1501   // For all objects but the receiver, check that the cache is empty.
1502   EnumLengthUntagged(enum_length, map);
1503   Cbnz(enum_length, call_runtime);
1504 
1505   Bind(&start);
1506 
1507   // Check that there are no elements. Register current_object contains the
1508   // current JS object we've reached through the prototype chain.
1509   Label no_elements;
1510   Ldr(current_object, FieldMemOperand(current_object,
1511                                       JSObject::kElementsOffset));
1512   Cmp(current_object, empty_fixed_array_value);
1513   B(eq, &no_elements);
1514 
1515   // Second chance, the object may be using the empty slow element dictionary.
1516   CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex);
1517   B(ne, call_runtime);
1518 
1519   Bind(&no_elements);
1520   Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset));
1521   Cmp(current_object, null_value);
1522   B(ne, &next);
1523 }
1524 
1525 
TestJSArrayForAllocationMemento(Register receiver,Register scratch1,Register scratch2,Label * no_memento_found)1526 void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver,
1527                                                      Register scratch1,
1528                                                      Register scratch2,
1529                                                      Label* no_memento_found) {
1530   Label map_check;
1531   Label top_check;
1532   ExternalReference new_space_allocation_top_adr =
1533       ExternalReference::new_space_allocation_top_address(isolate());
1534   const int kMementoMapOffset = JSArray::kSize - kHeapObjectTag;
1535   const int kMementoLastWordOffset =
1536       kMementoMapOffset + AllocationMemento::kSize - kPointerSize;
1537 
1538   // Bail out if the object is not in new space.
1539   JumpIfNotInNewSpace(receiver, no_memento_found);
1540   Add(scratch1, receiver, kMementoLastWordOffset);
1541   // If the object is in new space, we need to check whether it is on the same
1542   // page as the current top.
1543   Mov(scratch2, new_space_allocation_top_adr);
1544   Ldr(scratch2, MemOperand(scratch2));
1545   Eor(scratch2, scratch1, scratch2);
1546   Tst(scratch2, ~Page::kPageAlignmentMask);
1547   B(eq, &top_check);
1548   // The object is on a different page than allocation top. Bail out if the
1549   // object sits on the page boundary as no memento can follow and we cannot
1550   // touch the memory following it.
1551   Eor(scratch2, scratch1, receiver);
1552   Tst(scratch2, ~Page::kPageAlignmentMask);
1553   B(ne, no_memento_found);
1554   // Continue with the actual map check.
1555   jmp(&map_check);
1556   // If top is on the same page as the current object, we need to check whether
1557   // we are below top.
1558   bind(&top_check);
1559   Mov(scratch2, new_space_allocation_top_adr);
1560   Ldr(scratch2, MemOperand(scratch2));
1561   Cmp(scratch1, scratch2);
1562   B(ge, no_memento_found);
1563   // Memento map check.
1564   bind(&map_check);
1565   Ldr(scratch1, MemOperand(receiver, kMementoMapOffset));
1566   Cmp(scratch1, Operand(isolate()->factory()->allocation_memento_map()));
1567 }
1568 
1569 
InNewSpace(Register object,Condition cond,Label * branch)1570 void MacroAssembler::InNewSpace(Register object,
1571                                 Condition cond,
1572                                 Label* branch) {
1573   DCHECK(cond == eq || cond == ne);
1574   UseScratchRegisterScope temps(this);
1575   CheckPageFlag(object, temps.AcquireSameSizeAs(object),
1576                 MemoryChunk::kIsInNewSpaceMask, cond, branch);
1577 }
1578 
1579 
AssertSmi(Register object,BailoutReason reason)1580 void MacroAssembler::AssertSmi(Register object, BailoutReason reason) {
1581   if (emit_debug_code()) {
1582     STATIC_ASSERT(kSmiTag == 0);
1583     Tst(object, kSmiTagMask);
1584     Check(eq, reason);
1585   }
1586 }
1587 
1588 
AssertNotSmi(Register object,BailoutReason reason)1589 void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) {
1590   if (emit_debug_code()) {
1591     STATIC_ASSERT(kSmiTag == 0);
1592     Tst(object, kSmiTagMask);
1593     Check(ne, reason);
1594   }
1595 }
1596 
1597 
AssertName(Register object)1598 void MacroAssembler::AssertName(Register object) {
1599   if (emit_debug_code()) {
1600     AssertNotSmi(object, kOperandIsASmiAndNotAName);
1601 
1602     UseScratchRegisterScope temps(this);
1603     Register temp = temps.AcquireX();
1604 
1605     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1606     CompareInstanceType(temp, temp, LAST_NAME_TYPE);
1607     Check(ls, kOperandIsNotAName);
1608   }
1609 }
1610 
1611 
AssertFunction(Register object)1612 void MacroAssembler::AssertFunction(Register object) {
1613   if (emit_debug_code()) {
1614     AssertNotSmi(object, kOperandIsASmiAndNotAFunction);
1615 
1616     UseScratchRegisterScope temps(this);
1617     Register temp = temps.AcquireX();
1618 
1619     CompareObjectType(object, temp, temp, JS_FUNCTION_TYPE);
1620     Check(eq, kOperandIsNotAFunction);
1621   }
1622 }
1623 
1624 
AssertBoundFunction(Register object)1625 void MacroAssembler::AssertBoundFunction(Register object) {
1626   if (emit_debug_code()) {
1627     AssertNotSmi(object, kOperandIsASmiAndNotABoundFunction);
1628 
1629     UseScratchRegisterScope temps(this);
1630     Register temp = temps.AcquireX();
1631 
1632     CompareObjectType(object, temp, temp, JS_BOUND_FUNCTION_TYPE);
1633     Check(eq, kOperandIsNotABoundFunction);
1634   }
1635 }
1636 
AssertGeneratorObject(Register object)1637 void MacroAssembler::AssertGeneratorObject(Register object) {
1638   if (emit_debug_code()) {
1639     AssertNotSmi(object, kOperandIsASmiAndNotAGeneratorObject);
1640 
1641     UseScratchRegisterScope temps(this);
1642     Register temp = temps.AcquireX();
1643 
1644     CompareObjectType(object, temp, temp, JS_GENERATOR_OBJECT_TYPE);
1645     Check(eq, kOperandIsNotAGeneratorObject);
1646   }
1647 }
1648 
AssertReceiver(Register object)1649 void MacroAssembler::AssertReceiver(Register object) {
1650   if (emit_debug_code()) {
1651     AssertNotSmi(object, kOperandIsASmiAndNotAReceiver);
1652 
1653     UseScratchRegisterScope temps(this);
1654     Register temp = temps.AcquireX();
1655 
1656     STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
1657     CompareObjectType(object, temp, temp, FIRST_JS_RECEIVER_TYPE);
1658     Check(hs, kOperandIsNotAReceiver);
1659   }
1660 }
1661 
1662 
AssertUndefinedOrAllocationSite(Register object,Register scratch)1663 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
1664                                                      Register scratch) {
1665   if (emit_debug_code()) {
1666     Label done_checking;
1667     AssertNotSmi(object);
1668     JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking);
1669     Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1670     CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
1671     Assert(eq, kExpectedUndefinedOrCell);
1672     Bind(&done_checking);
1673   }
1674 }
1675 
1676 
AssertString(Register object)1677 void MacroAssembler::AssertString(Register object) {
1678   if (emit_debug_code()) {
1679     UseScratchRegisterScope temps(this);
1680     Register temp = temps.AcquireX();
1681     STATIC_ASSERT(kSmiTag == 0);
1682     Tst(object, kSmiTagMask);
1683     Check(ne, kOperandIsASmiAndNotAString);
1684     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1685     CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
1686     Check(lo, kOperandIsNotAString);
1687   }
1688 }
1689 
1690 
AssertPositiveOrZero(Register value)1691 void MacroAssembler::AssertPositiveOrZero(Register value) {
1692   if (emit_debug_code()) {
1693     Label done;
1694     int sign_bit = value.Is64Bits() ? kXSignBit : kWSignBit;
1695     Tbz(value, sign_bit, &done);
1696     Abort(kUnexpectedNegativeValue);
1697     Bind(&done);
1698   }
1699 }
1700 
AssertNotNumber(Register value)1701 void MacroAssembler::AssertNotNumber(Register value) {
1702   if (emit_debug_code()) {
1703     STATIC_ASSERT(kSmiTag == 0);
1704     Tst(value, kSmiTagMask);
1705     Check(ne, kOperandIsANumber);
1706     Label done;
1707     JumpIfNotHeapNumber(value, &done);
1708     Abort(kOperandIsANumber);
1709     Bind(&done);
1710   }
1711 }
1712 
AssertNumber(Register value)1713 void MacroAssembler::AssertNumber(Register value) {
1714   if (emit_debug_code()) {
1715     Label done;
1716     JumpIfSmi(value, &done);
1717     JumpIfHeapNumber(value, &done);
1718     Abort(kOperandIsNotANumber);
1719     Bind(&done);
1720   }
1721 }
1722 
CallStub(CodeStub * stub,TypeFeedbackId ast_id)1723 void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
1724   DCHECK(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
1725   Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
1726 }
1727 
1728 
TailCallStub(CodeStub * stub)1729 void MacroAssembler::TailCallStub(CodeStub* stub) {
1730   Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
1731 }
1732 
1733 
CallRuntime(const Runtime::Function * f,int num_arguments,SaveFPRegsMode save_doubles)1734 void MacroAssembler::CallRuntime(const Runtime::Function* f,
1735                                  int num_arguments,
1736                                  SaveFPRegsMode save_doubles) {
1737   // All arguments must be on the stack before this function is called.
1738   // x0 holds the return value after the call.
1739 
1740   // Check that the number of arguments matches what the function expects.
1741   // If f->nargs is -1, the function can accept a variable number of arguments.
1742   CHECK(f->nargs < 0 || f->nargs == num_arguments);
1743 
1744   // Place the necessary arguments.
1745   Mov(x0, num_arguments);
1746   Mov(x1, ExternalReference(f, isolate()));
1747 
1748   CEntryStub stub(isolate(), 1, save_doubles);
1749   CallStub(&stub);
1750 }
1751 
1752 
CallExternalReference(const ExternalReference & ext,int num_arguments)1753 void MacroAssembler::CallExternalReference(const ExternalReference& ext,
1754                                            int num_arguments) {
1755   Mov(x0, num_arguments);
1756   Mov(x1, ext);
1757 
1758   CEntryStub stub(isolate(), 1);
1759   CallStub(&stub);
1760 }
1761 
JumpToExternalReference(const ExternalReference & builtin,bool builtin_exit_frame)1762 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
1763                                              bool builtin_exit_frame) {
1764   Mov(x1, builtin);
1765   CEntryStub stub(isolate(), 1, kDontSaveFPRegs, kArgvOnStack,
1766                   builtin_exit_frame);
1767   Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
1768 }
1769 
TailCallRuntime(Runtime::FunctionId fid)1770 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
1771   const Runtime::Function* function = Runtime::FunctionForId(fid);
1772   DCHECK_EQ(1, function->result_size);
1773   if (function->nargs >= 0) {
1774     // TODO(1236192): Most runtime routines don't need the number of
1775     // arguments passed in because it is constant. At some point we
1776     // should remove this need and make the runtime routine entry code
1777     // smarter.
1778     Mov(x0, function->nargs);
1779   }
1780   JumpToExternalReference(ExternalReference(fid, isolate()));
1781 }
1782 
1783 
InitializeNewString(Register string,Register length,Heap::RootListIndex map_index,Register scratch1,Register scratch2)1784 void MacroAssembler::InitializeNewString(Register string,
1785                                          Register length,
1786                                          Heap::RootListIndex map_index,
1787                                          Register scratch1,
1788                                          Register scratch2) {
1789   DCHECK(!AreAliased(string, length, scratch1, scratch2));
1790   LoadRoot(scratch2, map_index);
1791   SmiTag(scratch1, length);
1792   Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
1793 
1794   Mov(scratch2, String::kEmptyHashField);
1795   Str(scratch1, FieldMemOperand(string, String::kLengthOffset));
1796   Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset));
1797 }
1798 
1799 
ActivationFrameAlignment()1800 int MacroAssembler::ActivationFrameAlignment() {
1801 #if V8_HOST_ARCH_ARM64
1802   // Running on the real platform. Use the alignment as mandated by the local
1803   // environment.
1804   // Note: This will break if we ever start generating snapshots on one ARM
1805   // platform for another ARM platform with a different alignment.
1806   return base::OS::ActivationFrameAlignment();
1807 #else  // V8_HOST_ARCH_ARM64
1808   // If we are using the simulator then we should always align to the expected
1809   // alignment. As the simulator is used to generate snapshots we do not know
1810   // if the target platform will need alignment, so this is controlled from a
1811   // flag.
1812   return FLAG_sim_stack_alignment;
1813 #endif  // V8_HOST_ARCH_ARM64
1814 }
1815 
1816 
CallCFunction(ExternalReference function,int num_of_reg_args)1817 void MacroAssembler::CallCFunction(ExternalReference function,
1818                                    int num_of_reg_args) {
1819   CallCFunction(function, num_of_reg_args, 0);
1820 }
1821 
1822 
CallCFunction(ExternalReference function,int num_of_reg_args,int num_of_double_args)1823 void MacroAssembler::CallCFunction(ExternalReference function,
1824                                    int num_of_reg_args,
1825                                    int num_of_double_args) {
1826   UseScratchRegisterScope temps(this);
1827   Register temp = temps.AcquireX();
1828   Mov(temp, function);
1829   CallCFunction(temp, num_of_reg_args, num_of_double_args);
1830 }
1831 
1832 
CallCFunction(Register function,int num_of_reg_args,int num_of_double_args)1833 void MacroAssembler::CallCFunction(Register function,
1834                                    int num_of_reg_args,
1835                                    int num_of_double_args) {
1836   DCHECK(has_frame());
1837   // We can pass 8 integer arguments in registers. If we need to pass more than
1838   // that, we'll need to implement support for passing them on the stack.
1839   DCHECK(num_of_reg_args <= 8);
1840 
1841   // If we're passing doubles, we're limited to the following prototypes
1842   // (defined by ExternalReference::Type):
1843   //  BUILTIN_COMPARE_CALL:  int f(double, double)
1844   //  BUILTIN_FP_FP_CALL:    double f(double, double)
1845   //  BUILTIN_FP_CALL:       double f(double)
1846   //  BUILTIN_FP_INT_CALL:   double f(double, int)
1847   if (num_of_double_args > 0) {
1848     DCHECK(num_of_reg_args <= 1);
1849     DCHECK((num_of_double_args + num_of_reg_args) <= 2);
1850   }
1851 
1852 
1853   // If the stack pointer is not csp, we need to derive an aligned csp from the
1854   // current stack pointer.
1855   const Register old_stack_pointer = StackPointer();
1856   if (!csp.Is(old_stack_pointer)) {
1857     AssertStackConsistency();
1858 
1859     int sp_alignment = ActivationFrameAlignment();
1860     // The ABI mandates at least 16-byte alignment.
1861     DCHECK(sp_alignment >= 16);
1862     DCHECK(base::bits::IsPowerOfTwo32(sp_alignment));
1863 
1864     // The current stack pointer is a callee saved register, and is preserved
1865     // across the call.
1866     DCHECK(kCalleeSaved.IncludesAliasOf(old_stack_pointer));
1867 
1868     // Align and synchronize the system stack pointer with jssp.
1869     Bic(csp, old_stack_pointer, sp_alignment - 1);
1870     SetStackPointer(csp);
1871   }
1872 
1873   // Call directly. The function called cannot cause a GC, or allow preemption,
1874   // so the return address in the link register stays correct.
1875   Call(function);
1876 
1877   if (!csp.Is(old_stack_pointer)) {
1878     if (emit_debug_code()) {
1879       // Because the stack pointer must be aligned on a 16-byte boundary, the
1880       // aligned csp can be up to 12 bytes below the jssp. This is the case
1881       // where we only pushed one W register on top of an aligned jssp.
1882       UseScratchRegisterScope temps(this);
1883       Register temp = temps.AcquireX();
1884       DCHECK(ActivationFrameAlignment() == 16);
1885       Sub(temp, csp, old_stack_pointer);
1886       // We want temp <= 0 && temp >= -12.
1887       Cmp(temp, 0);
1888       Ccmp(temp, -12, NFlag, le);
1889       Check(ge, kTheStackWasCorruptedByMacroAssemblerCall);
1890     }
1891     SetStackPointer(old_stack_pointer);
1892   }
1893 }
1894 
1895 
Jump(Register target)1896 void MacroAssembler::Jump(Register target) {
1897   Br(target);
1898 }
1899 
1900 
Jump(intptr_t target,RelocInfo::Mode rmode,Condition cond)1901 void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
1902                           Condition cond) {
1903   if (cond == nv) return;
1904   UseScratchRegisterScope temps(this);
1905   Register temp = temps.AcquireX();
1906   Label done;
1907   if (cond != al) B(NegateCondition(cond), &done);
1908   Mov(temp, Operand(target, rmode));
1909   Br(temp);
1910   Bind(&done);
1911 }
1912 
1913 
Jump(Address target,RelocInfo::Mode rmode,Condition cond)1914 void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode,
1915                           Condition cond) {
1916   DCHECK(!RelocInfo::IsCodeTarget(rmode));
1917   Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
1918 }
1919 
1920 
Jump(Handle<Code> code,RelocInfo::Mode rmode,Condition cond)1921 void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
1922                           Condition cond) {
1923   DCHECK(RelocInfo::IsCodeTarget(rmode));
1924   AllowDeferredHandleDereference embedding_raw_address;
1925   Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
1926 }
1927 
1928 
Call(Register target)1929 void MacroAssembler::Call(Register target) {
1930   BlockPoolsScope scope(this);
1931 #ifdef DEBUG
1932   Label start_call;
1933   Bind(&start_call);
1934 #endif
1935 
1936   Blr(target);
1937 
1938 #ifdef DEBUG
1939   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
1940 #endif
1941 }
1942 
1943 
Call(Label * target)1944 void MacroAssembler::Call(Label* target) {
1945   BlockPoolsScope scope(this);
1946 #ifdef DEBUG
1947   Label start_call;
1948   Bind(&start_call);
1949 #endif
1950 
1951   Bl(target);
1952 
1953 #ifdef DEBUG
1954   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
1955 #endif
1956 }
1957 
1958 
1959 // MacroAssembler::CallSize is sensitive to changes in this function, as it
1960 // requires to know how many instructions are used to branch to the target.
Call(Address target,RelocInfo::Mode rmode)1961 void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) {
1962   BlockPoolsScope scope(this);
1963 #ifdef DEBUG
1964   Label start_call;
1965   Bind(&start_call);
1966 #endif
1967 
1968   // Addresses always have 64 bits, so we shouldn't encounter NONE32.
1969   DCHECK(rmode != RelocInfo::NONE32);
1970 
1971   UseScratchRegisterScope temps(this);
1972   Register temp = temps.AcquireX();
1973 
1974   if (rmode == RelocInfo::NONE64) {
1975     // Addresses are 48 bits so we never need to load the upper 16 bits.
1976     uint64_t imm = reinterpret_cast<uint64_t>(target);
1977     // If we don't use ARM tagged addresses, the 16 higher bits must be 0.
1978     DCHECK(((imm >> 48) & 0xffff) == 0);
1979     movz(temp, (imm >> 0) & 0xffff, 0);
1980     movk(temp, (imm >> 16) & 0xffff, 16);
1981     movk(temp, (imm >> 32) & 0xffff, 32);
1982   } else {
1983     Ldr(temp, Immediate(reinterpret_cast<intptr_t>(target), rmode));
1984   }
1985   Blr(temp);
1986 #ifdef DEBUG
1987   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode));
1988 #endif
1989 }
1990 
1991 
Call(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)1992 void MacroAssembler::Call(Handle<Code> code,
1993                           RelocInfo::Mode rmode,
1994                           TypeFeedbackId ast_id) {
1995 #ifdef DEBUG
1996   Label start_call;
1997   Bind(&start_call);
1998 #endif
1999 
2000   if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) {
2001     SetRecordedAstId(ast_id);
2002     rmode = RelocInfo::CODE_TARGET_WITH_ID;
2003   }
2004 
2005   AllowDeferredHandleDereference embedding_raw_address;
2006   Call(reinterpret_cast<Address>(code.location()), rmode);
2007 
2008 #ifdef DEBUG
2009   // Check the size of the code generated.
2010   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id));
2011 #endif
2012 }
2013 
2014 
CallSize(Register target)2015 int MacroAssembler::CallSize(Register target) {
2016   USE(target);
2017   return kInstructionSize;
2018 }
2019 
2020 
CallSize(Label * target)2021 int MacroAssembler::CallSize(Label* target) {
2022   USE(target);
2023   return kInstructionSize;
2024 }
2025 
2026 
CallSize(Address target,RelocInfo::Mode rmode)2027 int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) {
2028   USE(target);
2029 
2030   // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2031   DCHECK(rmode != RelocInfo::NONE32);
2032 
2033   if (rmode == RelocInfo::NONE64) {
2034     return kCallSizeWithoutRelocation;
2035   } else {
2036     return kCallSizeWithRelocation;
2037   }
2038 }
2039 
2040 
CallSize(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)2041 int MacroAssembler::CallSize(Handle<Code> code,
2042                              RelocInfo::Mode rmode,
2043                              TypeFeedbackId ast_id) {
2044   USE(code);
2045   USE(ast_id);
2046 
2047   // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2048   DCHECK(rmode != RelocInfo::NONE32);
2049 
2050   if (rmode == RelocInfo::NONE64) {
2051     return kCallSizeWithoutRelocation;
2052   } else {
2053     return kCallSizeWithRelocation;
2054   }
2055 }
2056 
2057 
JumpIfHeapNumber(Register object,Label * on_heap_number,SmiCheckType smi_check_type)2058 void MacroAssembler::JumpIfHeapNumber(Register object, Label* on_heap_number,
2059                                       SmiCheckType smi_check_type) {
2060   Label on_not_heap_number;
2061 
2062   if (smi_check_type == DO_SMI_CHECK) {
2063     JumpIfSmi(object, &on_not_heap_number);
2064   }
2065 
2066   AssertNotSmi(object);
2067 
2068   UseScratchRegisterScope temps(this);
2069   Register temp = temps.AcquireX();
2070   Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2071   JumpIfRoot(temp, Heap::kHeapNumberMapRootIndex, on_heap_number);
2072 
2073   Bind(&on_not_heap_number);
2074 }
2075 
2076 
JumpIfNotHeapNumber(Register object,Label * on_not_heap_number,SmiCheckType smi_check_type)2077 void MacroAssembler::JumpIfNotHeapNumber(Register object,
2078                                          Label* on_not_heap_number,
2079                                          SmiCheckType smi_check_type) {
2080   if (smi_check_type == DO_SMI_CHECK) {
2081     JumpIfSmi(object, on_not_heap_number);
2082   }
2083 
2084   AssertNotSmi(object);
2085 
2086   UseScratchRegisterScope temps(this);
2087   Register temp = temps.AcquireX();
2088   Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2089   JumpIfNotRoot(temp, Heap::kHeapNumberMapRootIndex, on_not_heap_number);
2090 }
2091 
2092 
TryRepresentDoubleAsInt(Register as_int,FPRegister value,FPRegister scratch_d,Label * on_successful_conversion,Label * on_failed_conversion)2093 void MacroAssembler::TryRepresentDoubleAsInt(Register as_int,
2094                                              FPRegister value,
2095                                              FPRegister scratch_d,
2096                                              Label* on_successful_conversion,
2097                                              Label* on_failed_conversion) {
2098   // Convert to an int and back again, then compare with the original value.
2099   Fcvtzs(as_int, value);
2100   Scvtf(scratch_d, as_int);
2101   Fcmp(value, scratch_d);
2102 
2103   if (on_successful_conversion) {
2104     B(on_successful_conversion, eq);
2105   }
2106   if (on_failed_conversion) {
2107     B(on_failed_conversion, ne);
2108   }
2109 }
2110 
2111 
TestForMinusZero(DoubleRegister input)2112 void MacroAssembler::TestForMinusZero(DoubleRegister input) {
2113   UseScratchRegisterScope temps(this);
2114   Register temp = temps.AcquireX();
2115   // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will
2116   // cause overflow.
2117   Fmov(temp, input);
2118   Cmp(temp, 1);
2119 }
2120 
2121 
JumpIfMinusZero(DoubleRegister input,Label * on_negative_zero)2122 void MacroAssembler::JumpIfMinusZero(DoubleRegister input,
2123                                      Label* on_negative_zero) {
2124   TestForMinusZero(input);
2125   B(vs, on_negative_zero);
2126 }
2127 
2128 
JumpIfMinusZero(Register input,Label * on_negative_zero)2129 void MacroAssembler::JumpIfMinusZero(Register input,
2130                                      Label* on_negative_zero) {
2131   DCHECK(input.Is64Bits());
2132   // Floating point value is in an integer register. Detect -0.0 by subtracting
2133   // 1 (cmp), which will cause overflow.
2134   Cmp(input, 1);
2135   B(vs, on_negative_zero);
2136 }
2137 
2138 
ClampInt32ToUint8(Register output,Register input)2139 void MacroAssembler::ClampInt32ToUint8(Register output, Register input) {
2140   // Clamp the value to [0..255].
2141   Cmp(input.W(), Operand(input.W(), UXTB));
2142   // If input < input & 0xff, it must be < 0, so saturate to 0.
2143   Csel(output.W(), wzr, input.W(), lt);
2144   // If input <= input & 0xff, it must be <= 255. Otherwise, saturate to 255.
2145   Csel(output.W(), output.W(), 255, le);
2146 }
2147 
2148 
ClampInt32ToUint8(Register in_out)2149 void MacroAssembler::ClampInt32ToUint8(Register in_out) {
2150   ClampInt32ToUint8(in_out, in_out);
2151 }
2152 
2153 
ClampDoubleToUint8(Register output,DoubleRegister input,DoubleRegister dbl_scratch)2154 void MacroAssembler::ClampDoubleToUint8(Register output,
2155                                         DoubleRegister input,
2156                                         DoubleRegister dbl_scratch) {
2157   // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types:
2158   //   - Inputs lower than 0 (including -infinity) produce 0.
2159   //   - Inputs higher than 255 (including +infinity) produce 255.
2160   // Also, it seems that PIXEL types use round-to-nearest rather than
2161   // round-towards-zero.
2162 
2163   // Squash +infinity before the conversion, since Fcvtnu will normally
2164   // convert it to 0.
2165   Fmov(dbl_scratch, 255);
2166   Fmin(dbl_scratch, dbl_scratch, input);
2167 
2168   // Convert double to unsigned integer. Values less than zero become zero.
2169   // Values greater than 255 have already been clamped to 255.
2170   Fcvtnu(output, dbl_scratch);
2171 }
2172 
InitializeFieldsWithFiller(Register current_address,Register end_address,Register filler)2173 void MacroAssembler::InitializeFieldsWithFiller(Register current_address,
2174                                                 Register end_address,
2175                                                 Register filler) {
2176   DCHECK(!current_address.Is(csp));
2177   UseScratchRegisterScope temps(this);
2178   Register distance_in_words = temps.AcquireX();
2179   Label done;
2180 
2181   // Calculate the distance. If it's <= zero then there's nothing to do.
2182   Subs(distance_in_words, end_address, current_address);
2183   B(le, &done);
2184 
2185   // There's at least one field to fill, so do this unconditionally.
2186   Str(filler, MemOperand(current_address));
2187 
2188   // If the distance_in_words consists of odd number of words we advance
2189   // start_address by one word, otherwise the pairs loop will ovwerite the
2190   // field that was stored above.
2191   And(distance_in_words, distance_in_words, kPointerSize);
2192   Add(current_address, current_address, distance_in_words);
2193 
2194   // Store filler to memory in pairs.
2195   Label loop, entry;
2196   B(&entry);
2197   Bind(&loop);
2198   Stp(filler, filler, MemOperand(current_address, 2 * kPointerSize, PostIndex));
2199   Bind(&entry);
2200   Cmp(current_address, end_address);
2201   B(lo, &loop);
2202 
2203   Bind(&done);
2204 }
2205 
2206 
JumpIfEitherIsNotSequentialOneByteStrings(Register first,Register second,Register scratch1,Register scratch2,Label * failure,SmiCheckType smi_check)2207 void MacroAssembler::JumpIfEitherIsNotSequentialOneByteStrings(
2208     Register first, Register second, Register scratch1, Register scratch2,
2209     Label* failure, SmiCheckType smi_check) {
2210   if (smi_check == DO_SMI_CHECK) {
2211     JumpIfEitherSmi(first, second, failure);
2212   } else if (emit_debug_code()) {
2213     DCHECK(smi_check == DONT_DO_SMI_CHECK);
2214     Label not_smi;
2215     JumpIfEitherSmi(first, second, NULL, &not_smi);
2216 
2217     // At least one input is a smi, but the flags indicated a smi check wasn't
2218     // needed.
2219     Abort(kUnexpectedSmi);
2220 
2221     Bind(&not_smi);
2222   }
2223 
2224   // Test that both first and second are sequential one-byte strings.
2225   Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
2226   Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
2227   Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
2228   Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
2229 
2230   JumpIfEitherInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, scratch1,
2231                                                  scratch2, failure);
2232 }
2233 
2234 
JumpIfEitherInstanceTypeIsNotSequentialOneByte(Register first,Register second,Register scratch1,Register scratch2,Label * failure)2235 void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialOneByte(
2236     Register first, Register second, Register scratch1, Register scratch2,
2237     Label* failure) {
2238   DCHECK(!AreAliased(scratch1, second));
2239   DCHECK(!AreAliased(scratch1, scratch2));
2240   const int kFlatOneByteStringMask =
2241       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2242   const int kFlatOneByteStringTag =
2243       kStringTag | kOneByteStringTag | kSeqStringTag;
2244   And(scratch1, first, kFlatOneByteStringMask);
2245   And(scratch2, second, kFlatOneByteStringMask);
2246   Cmp(scratch1, kFlatOneByteStringTag);
2247   Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq);
2248   B(ne, failure);
2249 }
2250 
2251 
JumpIfInstanceTypeIsNotSequentialOneByte(Register type,Register scratch,Label * failure)2252 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
2253                                                               Register scratch,
2254                                                               Label* failure) {
2255   const int kFlatOneByteStringMask =
2256       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2257   const int kFlatOneByteStringTag =
2258       kStringTag | kOneByteStringTag | kSeqStringTag;
2259   And(scratch, type, kFlatOneByteStringMask);
2260   Cmp(scratch, kFlatOneByteStringTag);
2261   B(ne, failure);
2262 }
2263 
2264 
JumpIfBothInstanceTypesAreNotSequentialOneByte(Register first,Register second,Register scratch1,Register scratch2,Label * failure)2265 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
2266     Register first, Register second, Register scratch1, Register scratch2,
2267     Label* failure) {
2268   DCHECK(!AreAliased(first, second, scratch1, scratch2));
2269   const int kFlatOneByteStringMask =
2270       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2271   const int kFlatOneByteStringTag =
2272       kStringTag | kOneByteStringTag | kSeqStringTag;
2273   And(scratch1, first, kFlatOneByteStringMask);
2274   And(scratch2, second, kFlatOneByteStringMask);
2275   Cmp(scratch1, kFlatOneByteStringTag);
2276   Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq);
2277   B(ne, failure);
2278 }
2279 
2280 
JumpIfNotUniqueNameInstanceType(Register type,Label * not_unique_name)2281 void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register type,
2282                                                      Label* not_unique_name) {
2283   STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
2284   // if ((type is string && type is internalized) || type == SYMBOL_TYPE) {
2285   //   continue
2286   // } else {
2287   //   goto not_unique_name
2288   // }
2289   Tst(type, kIsNotStringMask | kIsNotInternalizedMask);
2290   Ccmp(type, SYMBOL_TYPE, ZFlag, ne);
2291   B(ne, not_unique_name);
2292 }
2293 
PrepareForTailCall(const ParameterCount & callee_args_count,Register caller_args_count_reg,Register scratch0,Register scratch1)2294 void MacroAssembler::PrepareForTailCall(const ParameterCount& callee_args_count,
2295                                         Register caller_args_count_reg,
2296                                         Register scratch0, Register scratch1) {
2297 #if DEBUG
2298   if (callee_args_count.is_reg()) {
2299     DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0,
2300                        scratch1));
2301   } else {
2302     DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1));
2303   }
2304 #endif
2305 
2306   // Calculate the end of destination area where we will put the arguments
2307   // after we drop current frame. We add kPointerSize to count the receiver
2308   // argument which is not included into formal parameters count.
2309   Register dst_reg = scratch0;
2310   __ add(dst_reg, fp, Operand(caller_args_count_reg, LSL, kPointerSizeLog2));
2311   __ add(dst_reg, dst_reg,
2312          Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize));
2313 
2314   Register src_reg = caller_args_count_reg;
2315   // Calculate the end of source area. +kPointerSize is for the receiver.
2316   if (callee_args_count.is_reg()) {
2317     add(src_reg, jssp, Operand(callee_args_count.reg(), LSL, kPointerSizeLog2));
2318     add(src_reg, src_reg, Operand(kPointerSize));
2319   } else {
2320     add(src_reg, jssp,
2321         Operand((callee_args_count.immediate() + 1) * kPointerSize));
2322   }
2323 
2324   if (FLAG_debug_code) {
2325     __ Cmp(src_reg, dst_reg);
2326     __ Check(lo, kStackAccessBelowStackPointer);
2327   }
2328 
2329   // Restore caller's frame pointer and return address now as they will be
2330   // overwritten by the copying loop.
2331   __ Ldr(lr, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
2332   __ Ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2333 
2334   // Now copy callee arguments to the caller frame going backwards to avoid
2335   // callee arguments corruption (source and destination areas could overlap).
2336 
2337   // Both src_reg and dst_reg are pointing to the word after the one to copy,
2338   // so they must be pre-decremented in the loop.
2339   Register tmp_reg = scratch1;
2340   Label loop, entry;
2341   __ B(&entry);
2342   __ bind(&loop);
2343   __ Ldr(tmp_reg, MemOperand(src_reg, -kPointerSize, PreIndex));
2344   __ Str(tmp_reg, MemOperand(dst_reg, -kPointerSize, PreIndex));
2345   __ bind(&entry);
2346   __ Cmp(jssp, src_reg);
2347   __ B(ne, &loop);
2348 
2349   // Leave current frame.
2350   __ Mov(jssp, dst_reg);
2351   __ SetStackPointer(jssp);
2352   __ AssertStackConsistency();
2353 }
2354 
InvokePrologue(const ParameterCount & expected,const ParameterCount & actual,Label * done,InvokeFlag flag,bool * definitely_mismatches,const CallWrapper & call_wrapper)2355 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2356                                     const ParameterCount& actual,
2357                                     Label* done,
2358                                     InvokeFlag flag,
2359                                     bool* definitely_mismatches,
2360                                     const CallWrapper& call_wrapper) {
2361   bool definitely_matches = false;
2362   *definitely_mismatches = false;
2363   Label regular_invoke;
2364 
2365   // Check whether the expected and actual arguments count match. If not,
2366   // setup registers according to contract with ArgumentsAdaptorTrampoline:
2367   //  x0: actual arguments count.
2368   //  x1: function (passed through to callee).
2369   //  x2: expected arguments count.
2370 
2371   // The code below is made a lot easier because the calling code already sets
2372   // up actual and expected registers according to the contract if values are
2373   // passed in registers.
2374   DCHECK(actual.is_immediate() || actual.reg().is(x0));
2375   DCHECK(expected.is_immediate() || expected.reg().is(x2));
2376 
2377   if (expected.is_immediate()) {
2378     DCHECK(actual.is_immediate());
2379     Mov(x0, actual.immediate());
2380     if (expected.immediate() == actual.immediate()) {
2381       definitely_matches = true;
2382 
2383     } else {
2384       if (expected.immediate() ==
2385           SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
2386         // Don't worry about adapting arguments for builtins that
2387         // don't want that done. Skip adaption code by making it look
2388         // like we have a match between expected and actual number of
2389         // arguments.
2390         definitely_matches = true;
2391       } else {
2392         *definitely_mismatches = true;
2393         // Set up x2 for the argument adaptor.
2394         Mov(x2, expected.immediate());
2395       }
2396     }
2397 
2398   } else {  // expected is a register.
2399     Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
2400                                               : Operand(actual.reg());
2401     Mov(x0, actual_op);
2402     // If actual == expected perform a regular invocation.
2403     Cmp(expected.reg(), actual_op);
2404     B(eq, &regular_invoke);
2405   }
2406 
2407   // If the argument counts may mismatch, generate a call to the argument
2408   // adaptor.
2409   if (!definitely_matches) {
2410     Handle<Code> adaptor =
2411         isolate()->builtins()->ArgumentsAdaptorTrampoline();
2412     if (flag == CALL_FUNCTION) {
2413       call_wrapper.BeforeCall(CallSize(adaptor));
2414       Call(adaptor);
2415       call_wrapper.AfterCall();
2416       if (!*definitely_mismatches) {
2417         // If the arg counts don't match, no extra code is emitted by
2418         // MAsm::InvokeFunctionCode and we can just fall through.
2419         B(done);
2420       }
2421     } else {
2422       Jump(adaptor, RelocInfo::CODE_TARGET);
2423     }
2424   }
2425   Bind(&regular_invoke);
2426 }
2427 
2428 
FloodFunctionIfStepping(Register fun,Register new_target,const ParameterCount & expected,const ParameterCount & actual)2429 void MacroAssembler::FloodFunctionIfStepping(Register fun, Register new_target,
2430                                              const ParameterCount& expected,
2431                                              const ParameterCount& actual) {
2432   Label skip_flooding;
2433   ExternalReference last_step_action =
2434       ExternalReference::debug_last_step_action_address(isolate());
2435   STATIC_ASSERT(StepFrame > StepIn);
2436   Mov(x4, Operand(last_step_action));
2437   Ldrsb(x4, MemOperand(x4));
2438   CompareAndBranch(x4, Operand(StepIn), lt, &skip_flooding);
2439   {
2440     FrameScope frame(this,
2441                      has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
2442     if (expected.is_reg()) {
2443       SmiTag(expected.reg());
2444       Push(expected.reg());
2445     }
2446     if (actual.is_reg()) {
2447       SmiTag(actual.reg());
2448       Push(actual.reg());
2449     }
2450     if (new_target.is_valid()) {
2451       Push(new_target);
2452     }
2453     Push(fun);
2454     Push(fun);
2455     CallRuntime(Runtime::kDebugPrepareStepInIfStepping);
2456     Pop(fun);
2457     if (new_target.is_valid()) {
2458       Pop(new_target);
2459     }
2460     if (actual.is_reg()) {
2461       Pop(actual.reg());
2462       SmiUntag(actual.reg());
2463     }
2464     if (expected.is_reg()) {
2465       Pop(expected.reg());
2466       SmiUntag(expected.reg());
2467     }
2468   }
2469   bind(&skip_flooding);
2470 }
2471 
2472 
InvokeFunctionCode(Register function,Register new_target,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2473 void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
2474                                         const ParameterCount& expected,
2475                                         const ParameterCount& actual,
2476                                         InvokeFlag flag,
2477                                         const CallWrapper& call_wrapper) {
2478   // You can't call a function without a valid frame.
2479   DCHECK(flag == JUMP_FUNCTION || has_frame());
2480   DCHECK(function.is(x1));
2481   DCHECK_IMPLIES(new_target.is_valid(), new_target.is(x3));
2482 
2483   FloodFunctionIfStepping(function, new_target, expected, actual);
2484 
2485   // Clear the new.target register if not given.
2486   if (!new_target.is_valid()) {
2487     LoadRoot(x3, Heap::kUndefinedValueRootIndex);
2488   }
2489 
2490   Label done;
2491   bool definitely_mismatches = false;
2492   InvokePrologue(expected, actual, &done, flag, &definitely_mismatches,
2493                  call_wrapper);
2494 
2495   // If we are certain that actual != expected, then we know InvokePrologue will
2496   // have handled the call through the argument adaptor mechanism.
2497   // The called function expects the call kind in x5.
2498   if (!definitely_mismatches) {
2499     // We call indirectly through the code field in the function to
2500     // allow recompilation to take effect without changing any of the
2501     // call sites.
2502     Register code = x4;
2503     Ldr(code, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2504     if (flag == CALL_FUNCTION) {
2505       call_wrapper.BeforeCall(CallSize(code));
2506       Call(code);
2507       call_wrapper.AfterCall();
2508     } else {
2509       DCHECK(flag == JUMP_FUNCTION);
2510       Jump(code);
2511     }
2512   }
2513 
2514   // Continue here if InvokePrologue does handle the invocation due to
2515   // mismatched parameter counts.
2516   Bind(&done);
2517 }
2518 
2519 
InvokeFunction(Register function,Register new_target,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2520 void MacroAssembler::InvokeFunction(Register function,
2521                                     Register new_target,
2522                                     const ParameterCount& actual,
2523                                     InvokeFlag flag,
2524                                     const CallWrapper& call_wrapper) {
2525   // You can't call a function without a valid frame.
2526   DCHECK(flag == JUMP_FUNCTION || has_frame());
2527 
2528   // Contract with called JS functions requires that function is passed in x1.
2529   // (See FullCodeGenerator::Generate().)
2530   DCHECK(function.is(x1));
2531 
2532   Register expected_reg = x2;
2533 
2534   Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2535   // The number of arguments is stored as an int32_t, and -1 is a marker
2536   // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
2537   // extension to correctly handle it.
2538   Ldr(expected_reg, FieldMemOperand(function,
2539                                     JSFunction::kSharedFunctionInfoOffset));
2540   Ldrsw(expected_reg,
2541         FieldMemOperand(expected_reg,
2542                         SharedFunctionInfo::kFormalParameterCountOffset));
2543 
2544   ParameterCount expected(expected_reg);
2545   InvokeFunctionCode(function, new_target, expected, actual, flag,
2546                      call_wrapper);
2547 }
2548 
2549 
InvokeFunction(Register function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2550 void MacroAssembler::InvokeFunction(Register function,
2551                                     const ParameterCount& expected,
2552                                     const ParameterCount& actual,
2553                                     InvokeFlag flag,
2554                                     const CallWrapper& call_wrapper) {
2555   // You can't call a function without a valid frame.
2556   DCHECK(flag == JUMP_FUNCTION || has_frame());
2557 
2558   // Contract with called JS functions requires that function is passed in x1.
2559   // (See FullCodeGenerator::Generate().)
2560   DCHECK(function.Is(x1));
2561 
2562   // Set up the context.
2563   Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2564 
2565   InvokeFunctionCode(function, no_reg, expected, actual, flag, call_wrapper);
2566 }
2567 
2568 
InvokeFunction(Handle<JSFunction> function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2569 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2570                                     const ParameterCount& expected,
2571                                     const ParameterCount& actual,
2572                                     InvokeFlag flag,
2573                                     const CallWrapper& call_wrapper) {
2574   // Contract with called JS functions requires that function is passed in x1.
2575   // (See FullCodeGenerator::Generate().)
2576   __ LoadObject(x1, function);
2577   InvokeFunction(x1, expected, actual, flag, call_wrapper);
2578 }
2579 
2580 
TryConvertDoubleToInt64(Register result,DoubleRegister double_input,Label * done)2581 void MacroAssembler::TryConvertDoubleToInt64(Register result,
2582                                              DoubleRegister double_input,
2583                                              Label* done) {
2584   // Try to convert with an FPU convert instruction. It's trivial to compute
2585   // the modulo operation on an integer register so we convert to a 64-bit
2586   // integer.
2587   //
2588   // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff)
2589   // when the double is out of range. NaNs and infinities will be converted to 0
2590   // (as ECMA-262 requires).
2591   Fcvtzs(result.X(), double_input);
2592 
2593   // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not
2594   // representable using a double, so if the result is one of those then we know
2595   // that saturation occured, and we need to manually handle the conversion.
2596   //
2597   // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
2598   // 1 will cause signed overflow.
2599   Cmp(result.X(), 1);
2600   Ccmp(result.X(), -1, VFlag, vc);
2601 
2602   B(vc, done);
2603 }
2604 
2605 
TruncateDoubleToI(Register result,DoubleRegister double_input)2606 void MacroAssembler::TruncateDoubleToI(Register result,
2607                                        DoubleRegister double_input) {
2608   Label done;
2609 
2610   // Try to convert the double to an int64. If successful, the bottom 32 bits
2611   // contain our truncated int32 result.
2612   TryConvertDoubleToInt64(result, double_input, &done);
2613 
2614   const Register old_stack_pointer = StackPointer();
2615   if (csp.Is(old_stack_pointer)) {
2616     // This currently only happens during compiler-unittest. If it arises
2617     // during regular code generation the DoubleToI stub should be updated to
2618     // cope with csp and have an extra parameter indicating which stack pointer
2619     // it should use.
2620     Push(jssp, xzr);  // Push xzr to maintain csp required 16-bytes alignment.
2621     Mov(jssp, csp);
2622     SetStackPointer(jssp);
2623   }
2624 
2625   // If we fell through then inline version didn't succeed - call stub instead.
2626   Push(lr, double_input);
2627 
2628   DoubleToIStub stub(isolate(),
2629                      jssp,
2630                      result,
2631                      0,
2632                      true,   // is_truncating
2633                      true);  // skip_fastpath
2634   CallStub(&stub);  // DoubleToIStub preserves any registers it needs to clobber
2635 
2636   DCHECK_EQ(xzr.SizeInBytes(), double_input.SizeInBytes());
2637   Pop(xzr, lr);  // xzr to drop the double input on the stack.
2638 
2639   if (csp.Is(old_stack_pointer)) {
2640     Mov(csp, jssp);
2641     SetStackPointer(csp);
2642     AssertStackConsistency();
2643     Pop(xzr, jssp);
2644   }
2645 
2646   Bind(&done);
2647 }
2648 
2649 
TruncateHeapNumberToI(Register result,Register object)2650 void MacroAssembler::TruncateHeapNumberToI(Register result,
2651                                            Register object) {
2652   Label done;
2653   DCHECK(!result.is(object));
2654   DCHECK(jssp.Is(StackPointer()));
2655 
2656   Ldr(fp_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
2657 
2658   // Try to convert the double to an int64. If successful, the bottom 32 bits
2659   // contain our truncated int32 result.
2660   TryConvertDoubleToInt64(result, fp_scratch, &done);
2661 
2662   // If we fell through then inline version didn't succeed - call stub instead.
2663   Push(lr);
2664   DoubleToIStub stub(isolate(),
2665                      object,
2666                      result,
2667                      HeapNumber::kValueOffset - kHeapObjectTag,
2668                      true,   // is_truncating
2669                      true);  // skip_fastpath
2670   CallStub(&stub);  // DoubleToIStub preserves any registers it needs to clobber
2671   Pop(lr);
2672 
2673   Bind(&done);
2674 }
2675 
StubPrologue(StackFrame::Type type,int frame_slots)2676 void MacroAssembler::StubPrologue(StackFrame::Type type, int frame_slots) {
2677   UseScratchRegisterScope temps(this);
2678   frame_slots -= TypedFrameConstants::kFixedSlotCountAboveFp;
2679   Register temp = temps.AcquireX();
2680   Mov(temp, Smi::FromInt(type));
2681   Push(lr, fp);
2682   Mov(fp, StackPointer());
2683   Claim(frame_slots);
2684   str(temp, MemOperand(fp, TypedFrameConstants::kFrameTypeOffset));
2685 }
2686 
Prologue(bool code_pre_aging)2687 void MacroAssembler::Prologue(bool code_pre_aging) {
2688   if (code_pre_aging) {
2689     Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
2690     __ EmitCodeAgeSequence(stub);
2691   } else {
2692     __ EmitFrameSetupForCodeAgePatching();
2693   }
2694 }
2695 
2696 
EmitLoadTypeFeedbackVector(Register vector)2697 void MacroAssembler::EmitLoadTypeFeedbackVector(Register vector) {
2698   Ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2699   Ldr(vector, FieldMemOperand(vector, JSFunction::kLiteralsOffset));
2700   Ldr(vector, FieldMemOperand(vector, LiteralsArray::kFeedbackVectorOffset));
2701 }
2702 
2703 
EnterFrame(StackFrame::Type type,bool load_constant_pool_pointer_reg)2704 void MacroAssembler::EnterFrame(StackFrame::Type type,
2705                                 bool load_constant_pool_pointer_reg) {
2706   // Out-of-line constant pool not implemented on arm64.
2707   UNREACHABLE();
2708 }
2709 
2710 
EnterFrame(StackFrame::Type type)2711 void MacroAssembler::EnterFrame(StackFrame::Type type) {
2712   DCHECK(jssp.Is(StackPointer()));
2713   UseScratchRegisterScope temps(this);
2714   Register type_reg = temps.AcquireX();
2715   Register code_reg = temps.AcquireX();
2716 
2717   if (type == StackFrame::INTERNAL) {
2718     Mov(type_reg, Smi::FromInt(type));
2719     Push(lr, fp);
2720     Push(type_reg);
2721     Mov(code_reg, Operand(CodeObject()));
2722     Push(code_reg);
2723     Add(fp, jssp, InternalFrameConstants::kFixedFrameSizeFromFp);
2724     // jssp[4] : lr
2725     // jssp[3] : fp
2726     // jssp[1] : type
2727     // jssp[0] : [code object]
2728   } else {
2729     Mov(type_reg, Smi::FromInt(type));
2730     Push(lr, fp);
2731     Push(type_reg);
2732     Add(fp, jssp, TypedFrameConstants::kFixedFrameSizeFromFp);
2733     // jssp[2] : lr
2734     // jssp[1] : fp
2735     // jssp[0] : type
2736   }
2737 }
2738 
2739 
LeaveFrame(StackFrame::Type type)2740 void MacroAssembler::LeaveFrame(StackFrame::Type type) {
2741   DCHECK(jssp.Is(StackPointer()));
2742   // Drop the execution stack down to the frame pointer and restore
2743   // the caller frame pointer and return address.
2744   Mov(jssp, fp);
2745   AssertStackConsistency();
2746   Pop(fp, lr);
2747 }
2748 
2749 
ExitFramePreserveFPRegs()2750 void MacroAssembler::ExitFramePreserveFPRegs() {
2751   PushCPURegList(kCallerSavedFP);
2752 }
2753 
2754 
ExitFrameRestoreFPRegs()2755 void MacroAssembler::ExitFrameRestoreFPRegs() {
2756   // Read the registers from the stack without popping them. The stack pointer
2757   // will be reset as part of the unwinding process.
2758   CPURegList saved_fp_regs = kCallerSavedFP;
2759   DCHECK(saved_fp_regs.Count() % 2 == 0);
2760 
2761   int offset = ExitFrameConstants::kLastExitFrameField;
2762   while (!saved_fp_regs.IsEmpty()) {
2763     const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
2764     const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
2765     offset -= 2 * kDRegSize;
2766     Ldp(dst1, dst0, MemOperand(fp, offset));
2767   }
2768 }
2769 
EnterBuiltinFrame(Register context,Register target,Register argc)2770 void MacroAssembler::EnterBuiltinFrame(Register context, Register target,
2771                                        Register argc) {
2772   Push(lr, fp, context, target);
2773   add(fp, jssp, Operand(2 * kPointerSize));
2774   Push(argc);
2775 }
2776 
LeaveBuiltinFrame(Register context,Register target,Register argc)2777 void MacroAssembler::LeaveBuiltinFrame(Register context, Register target,
2778                                        Register argc) {
2779   Pop(argc);
2780   Pop(target, context, fp, lr);
2781 }
2782 
EnterExitFrame(bool save_doubles,const Register & scratch,int extra_space,StackFrame::Type frame_type)2783 void MacroAssembler::EnterExitFrame(bool save_doubles, const Register& scratch,
2784                                     int extra_space,
2785                                     StackFrame::Type frame_type) {
2786   DCHECK(jssp.Is(StackPointer()));
2787   DCHECK(frame_type == StackFrame::EXIT ||
2788          frame_type == StackFrame::BUILTIN_EXIT);
2789 
2790   // Set up the new stack frame.
2791   Push(lr, fp);
2792   Mov(fp, StackPointer());
2793   Mov(scratch, Smi::FromInt(frame_type));
2794   Push(scratch);
2795   Push(xzr);
2796   Mov(scratch, Operand(CodeObject()));
2797   Push(scratch);
2798   //          fp[8]: CallerPC (lr)
2799   //    fp -> fp[0]: CallerFP (old fp)
2800   //          fp[-8]: STUB marker
2801   //          fp[-16]: Space reserved for SPOffset.
2802   //  jssp -> fp[-24]: CodeObject()
2803   STATIC_ASSERT((2 * kPointerSize) == ExitFrameConstants::kCallerSPOffset);
2804   STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
2805   STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
2806   STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kSPOffset);
2807   STATIC_ASSERT((-3 * kPointerSize) == ExitFrameConstants::kCodeOffset);
2808 
2809   // Save the frame pointer and context pointer in the top frame.
2810   Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
2811                                          isolate())));
2812   Str(fp, MemOperand(scratch));
2813   Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
2814                                          isolate())));
2815   Str(cp, MemOperand(scratch));
2816 
2817   STATIC_ASSERT((-3 * kPointerSize) == ExitFrameConstants::kLastExitFrameField);
2818   if (save_doubles) {
2819     ExitFramePreserveFPRegs();
2820   }
2821 
2822   // Reserve space for the return address and for user requested memory.
2823   // We do this before aligning to make sure that we end up correctly
2824   // aligned with the minimum of wasted space.
2825   Claim(extra_space + 1, kXRegSize);
2826   //         fp[8]: CallerPC (lr)
2827   //   fp -> fp[0]: CallerFP (old fp)
2828   //         fp[-8]: STUB marker
2829   //         fp[-16]: Space reserved for SPOffset.
2830   //         fp[-24]: CodeObject()
2831   //         fp[-24 - fp_size]: Saved doubles (if save_doubles is true).
2832   //         jssp[8]: Extra space reserved for caller (if extra_space != 0).
2833   // jssp -> jssp[0]: Space reserved for the return address.
2834 
2835   // Align and synchronize the system stack pointer with jssp.
2836   AlignAndSetCSPForFrame();
2837   DCHECK(csp.Is(StackPointer()));
2838 
2839   //         fp[8]: CallerPC (lr)
2840   //   fp -> fp[0]: CallerFP (old fp)
2841   //         fp[-8]: STUB marker
2842   //         fp[-16]: Space reserved for SPOffset.
2843   //         fp[-24]: CodeObject()
2844   //         fp[-24 - fp_size]: Saved doubles (if save_doubles is true).
2845   //         csp[8]: Memory reserved for the caller if extra_space != 0.
2846   //                 Alignment padding, if necessary.
2847   //  csp -> csp[0]: Space reserved for the return address.
2848 
2849   // ExitFrame::GetStateForFramePointer expects to find the return address at
2850   // the memory address immediately below the pointer stored in SPOffset.
2851   // It is not safe to derive much else from SPOffset, because the size of the
2852   // padding can vary.
2853   Add(scratch, csp, kXRegSize);
2854   Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
2855 }
2856 
2857 
2858 // Leave the current exit frame.
LeaveExitFrame(bool restore_doubles,const Register & scratch,bool restore_context)2859 void MacroAssembler::LeaveExitFrame(bool restore_doubles,
2860                                     const Register& scratch,
2861                                     bool restore_context) {
2862   DCHECK(csp.Is(StackPointer()));
2863 
2864   if (restore_doubles) {
2865     ExitFrameRestoreFPRegs();
2866   }
2867 
2868   // Restore the context pointer from the top frame.
2869   if (restore_context) {
2870     Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
2871                                            isolate())));
2872     Ldr(cp, MemOperand(scratch));
2873   }
2874 
2875   if (emit_debug_code()) {
2876     // Also emit debug code to clear the cp in the top frame.
2877     Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
2878                                            isolate())));
2879     Str(xzr, MemOperand(scratch));
2880   }
2881   // Clear the frame pointer from the top frame.
2882   Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
2883                                          isolate())));
2884   Str(xzr, MemOperand(scratch));
2885 
2886   // Pop the exit frame.
2887   //         fp[8]: CallerPC (lr)
2888   //   fp -> fp[0]: CallerFP (old fp)
2889   //         fp[...]: The rest of the frame.
2890   Mov(jssp, fp);
2891   SetStackPointer(jssp);
2892   AssertStackConsistency();
2893   Pop(fp, lr);
2894 }
2895 
2896 
SetCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2897 void MacroAssembler::SetCounter(StatsCounter* counter, int value,
2898                                 Register scratch1, Register scratch2) {
2899   if (FLAG_native_code_counters && counter->Enabled()) {
2900     Mov(scratch1, value);
2901     Mov(scratch2, ExternalReference(counter));
2902     Str(scratch1.W(), MemOperand(scratch2));
2903   }
2904 }
2905 
2906 
IncrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2907 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
2908                                       Register scratch1, Register scratch2) {
2909   DCHECK(value != 0);
2910   if (FLAG_native_code_counters && counter->Enabled()) {
2911     Mov(scratch2, ExternalReference(counter));
2912     Ldr(scratch1.W(), MemOperand(scratch2));
2913     Add(scratch1.W(), scratch1.W(), value);
2914     Str(scratch1.W(), MemOperand(scratch2));
2915   }
2916 }
2917 
2918 
DecrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2919 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
2920                                       Register scratch1, Register scratch2) {
2921   IncrementCounter(counter, -value, scratch1, scratch2);
2922 }
2923 
2924 
LoadContext(Register dst,int context_chain_length)2925 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2926   if (context_chain_length > 0) {
2927     // Move up the chain of contexts to the context containing the slot.
2928     Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2929     for (int i = 1; i < context_chain_length; i++) {
2930       Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2931     }
2932   } else {
2933     // Slot is in the current function context.  Move it into the
2934     // destination register in case we store into it (the write barrier
2935     // cannot be allowed to destroy the context in cp).
2936     Mov(dst, cp);
2937   }
2938 }
2939 
2940 
DebugBreak()2941 void MacroAssembler::DebugBreak() {
2942   Mov(x0, 0);
2943   Mov(x1, ExternalReference(Runtime::kHandleDebuggerStatement, isolate()));
2944   CEntryStub ces(isolate(), 1);
2945   DCHECK(AllowThisStubCall(&ces));
2946   Call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT);
2947 }
2948 
2949 
PushStackHandler()2950 void MacroAssembler::PushStackHandler() {
2951   DCHECK(jssp.Is(StackPointer()));
2952   // Adjust this code if the asserts don't hold.
2953   STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize);
2954   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
2955 
2956   // For the JSEntry handler, we must preserve the live registers x0-x4.
2957   // (See JSEntryStub::GenerateBody().)
2958 
2959   // Link the current handler as the next handler.
2960   Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
2961   Ldr(x10, MemOperand(x11));
2962   Push(x10);
2963 
2964   // Set this new handler as the current one.
2965   Str(jssp, MemOperand(x11));
2966 }
2967 
2968 
PopStackHandler()2969 void MacroAssembler::PopStackHandler() {
2970   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2971   Pop(x10);
2972   Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
2973   Drop(StackHandlerConstants::kSize - kXRegSize, kByteSizeInBytes);
2974   Str(x10, MemOperand(x11));
2975 }
2976 
2977 
Allocate(int object_size,Register result,Register scratch1,Register scratch2,Label * gc_required,AllocationFlags flags)2978 void MacroAssembler::Allocate(int object_size,
2979                               Register result,
2980                               Register scratch1,
2981                               Register scratch2,
2982                               Label* gc_required,
2983                               AllocationFlags flags) {
2984   DCHECK(object_size <= kMaxRegularHeapObjectSize);
2985   DCHECK((flags & ALLOCATION_FOLDED) == 0);
2986   if (!FLAG_inline_new) {
2987     if (emit_debug_code()) {
2988       // Trash the registers to simulate an allocation failure.
2989       // We apply salt to the original zap value to easily spot the values.
2990       Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
2991       Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
2992       Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
2993     }
2994     B(gc_required);
2995     return;
2996   }
2997 
2998   UseScratchRegisterScope temps(this);
2999   Register scratch3 = temps.AcquireX();
3000 
3001   DCHECK(!AreAliased(result, scratch1, scratch2, scratch3));
3002   DCHECK(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
3003 
3004   // Make object size into bytes.
3005   if ((flags & SIZE_IN_WORDS) != 0) {
3006     object_size *= kPointerSize;
3007   }
3008   DCHECK(0 == (object_size & kObjectAlignmentMask));
3009 
3010   // Check relative positions of allocation top and limit addresses.
3011   // The values must be adjacent in memory to allow the use of LDP.
3012   ExternalReference heap_allocation_top =
3013       AllocationUtils::GetAllocationTopReference(isolate(), flags);
3014   ExternalReference heap_allocation_limit =
3015       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3016   intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3017   intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3018   DCHECK((limit - top) == kPointerSize);
3019 
3020   // Set up allocation top address and allocation limit registers.
3021   Register top_address = scratch1;
3022   Register alloc_limit = scratch2;
3023   Register result_end = scratch3;
3024   Mov(top_address, Operand(heap_allocation_top));
3025 
3026   if ((flags & RESULT_CONTAINS_TOP) == 0) {
3027     // Load allocation top into result and allocation limit into alloc_limit.
3028     Ldp(result, alloc_limit, MemOperand(top_address));
3029   } else {
3030     if (emit_debug_code()) {
3031       // Assert that result actually contains top on entry.
3032       Ldr(alloc_limit, MemOperand(top_address));
3033       Cmp(result, alloc_limit);
3034       Check(eq, kUnexpectedAllocationTop);
3035     }
3036     // Load allocation limit. Result already contains allocation top.
3037     Ldr(alloc_limit, MemOperand(top_address, limit - top));
3038   }
3039 
3040   // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3041   // the same alignment on ARM64.
3042   STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3043 
3044   // Calculate new top and bail out if new space is exhausted.
3045   Adds(result_end, result, object_size);
3046   Ccmp(result_end, alloc_limit, NoFlag, cc);
3047   B(hi, gc_required);
3048 
3049   if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) {
3050     // The top pointer is not updated for allocation folding dominators.
3051     Str(result_end, MemOperand(top_address));
3052   }
3053 
3054   // Tag the object.
3055   ObjectTag(result, result);
3056 }
3057 
3058 
Allocate(Register object_size,Register result,Register result_end,Register scratch,Label * gc_required,AllocationFlags flags)3059 void MacroAssembler::Allocate(Register object_size, Register result,
3060                               Register result_end, Register scratch,
3061                               Label* gc_required, AllocationFlags flags) {
3062   if (!FLAG_inline_new) {
3063     if (emit_debug_code()) {
3064       // Trash the registers to simulate an allocation failure.
3065       // We apply salt to the original zap value to easily spot the values.
3066       Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3067       Mov(scratch, (kDebugZapValue & ~0xffL) | 0x21L);
3068       Mov(result_end, (kDebugZapValue & ~0xffL) | 0x21L);
3069     }
3070     B(gc_required);
3071     return;
3072   }
3073 
3074   UseScratchRegisterScope temps(this);
3075   Register scratch2 = temps.AcquireX();
3076 
3077   // |object_size| and |result_end| may overlap, other registers must not.
3078   DCHECK(!AreAliased(object_size, result, scratch, scratch2));
3079   DCHECK(!AreAliased(result_end, result, scratch, scratch2));
3080   DCHECK(object_size.Is64Bits() && result.Is64Bits() && scratch.Is64Bits() &&
3081          result_end.Is64Bits());
3082 
3083   // Check relative positions of allocation top and limit addresses.
3084   // The values must be adjacent in memory to allow the use of LDP.
3085   ExternalReference heap_allocation_top =
3086       AllocationUtils::GetAllocationTopReference(isolate(), flags);
3087   ExternalReference heap_allocation_limit =
3088       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3089   intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3090   intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3091   DCHECK((limit - top) == kPointerSize);
3092 
3093   // Set up allocation top address and allocation limit registers.
3094   Register top_address = scratch;
3095   Register alloc_limit = scratch2;
3096   Mov(top_address, heap_allocation_top);
3097 
3098   if ((flags & RESULT_CONTAINS_TOP) == 0) {
3099     // Load allocation top into result and allocation limit into alloc_limit.
3100     Ldp(result, alloc_limit, MemOperand(top_address));
3101   } else {
3102     if (emit_debug_code()) {
3103       // Assert that result actually contains top on entry.
3104       Ldr(alloc_limit, MemOperand(top_address));
3105       Cmp(result, alloc_limit);
3106       Check(eq, kUnexpectedAllocationTop);
3107     }
3108     // Load allocation limit. Result already contains allocation top.
3109     Ldr(alloc_limit, MemOperand(top_address, limit - top));
3110   }
3111 
3112   // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3113   // the same alignment on ARM64.
3114   STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3115 
3116   // Calculate new top and bail out if new space is exhausted
3117   if ((flags & SIZE_IN_WORDS) != 0) {
3118     Adds(result_end, result, Operand(object_size, LSL, kPointerSizeLog2));
3119   } else {
3120     Adds(result_end, result, object_size);
3121   }
3122 
3123   if (emit_debug_code()) {
3124     Tst(result_end, kObjectAlignmentMask);
3125     Check(eq, kUnalignedAllocationInNewSpace);
3126   }
3127 
3128   Ccmp(result_end, alloc_limit, NoFlag, cc);
3129   B(hi, gc_required);
3130 
3131   if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) {
3132     // The top pointer is not updated for allocation folding dominators.
3133     Str(result_end, MemOperand(top_address));
3134   }
3135 
3136   // Tag the object.
3137   ObjectTag(result, result);
3138 }
3139 
FastAllocate(int object_size,Register result,Register scratch1,Register scratch2,AllocationFlags flags)3140 void MacroAssembler::FastAllocate(int object_size, Register result,
3141                                   Register scratch1, Register scratch2,
3142                                   AllocationFlags flags) {
3143   DCHECK(object_size <= kMaxRegularHeapObjectSize);
3144 
3145   DCHECK(!AreAliased(result, scratch1, scratch2));
3146   DCHECK(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
3147 
3148   // Make object size into bytes.
3149   if ((flags & SIZE_IN_WORDS) != 0) {
3150     object_size *= kPointerSize;
3151   }
3152   DCHECK(0 == (object_size & kObjectAlignmentMask));
3153 
3154   ExternalReference heap_allocation_top =
3155       AllocationUtils::GetAllocationTopReference(isolate(), flags);
3156 
3157   // Set up allocation top address and allocation limit registers.
3158   Register top_address = scratch1;
3159   Register result_end = scratch2;
3160   Mov(top_address, Operand(heap_allocation_top));
3161   Ldr(result, MemOperand(top_address));
3162 
3163   // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3164   // the same alignment on ARM64.
3165   STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3166 
3167   // Calculate new top and write it back.
3168   Adds(result_end, result, object_size);
3169   Str(result_end, MemOperand(top_address));
3170 
3171   ObjectTag(result, result);
3172 }
3173 
FastAllocate(Register object_size,Register result,Register result_end,Register scratch,AllocationFlags flags)3174 void MacroAssembler::FastAllocate(Register object_size, Register result,
3175                                   Register result_end, Register scratch,
3176                                   AllocationFlags flags) {
3177   // |object_size| and |result_end| may overlap, other registers must not.
3178   DCHECK(!AreAliased(object_size, result, scratch));
3179   DCHECK(!AreAliased(result_end, result, scratch));
3180   DCHECK(object_size.Is64Bits() && result.Is64Bits() && scratch.Is64Bits() &&
3181          result_end.Is64Bits());
3182 
3183   ExternalReference heap_allocation_top =
3184       AllocationUtils::GetAllocationTopReference(isolate(), flags);
3185 
3186   // Set up allocation top address and allocation limit registers.
3187   Register top_address = scratch;
3188   Mov(top_address, heap_allocation_top);
3189   Ldr(result, MemOperand(top_address));
3190 
3191   // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3192   // the same alignment on ARM64.
3193   STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3194 
3195   // Calculate new top and write it back.
3196   if ((flags & SIZE_IN_WORDS) != 0) {
3197     Adds(result_end, result, Operand(object_size, LSL, kPointerSizeLog2));
3198   } else {
3199     Adds(result_end, result, object_size);
3200   }
3201   Str(result_end, MemOperand(top_address));
3202 
3203   if (emit_debug_code()) {
3204     Tst(result_end, kObjectAlignmentMask);
3205     Check(eq, kUnalignedAllocationInNewSpace);
3206   }
3207 
3208   ObjectTag(result, result);
3209 }
3210 
AllocateTwoByteString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)3211 void MacroAssembler::AllocateTwoByteString(Register result,
3212                                            Register length,
3213                                            Register scratch1,
3214                                            Register scratch2,
3215                                            Register scratch3,
3216                                            Label* gc_required) {
3217   DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3));
3218   // Calculate the number of bytes needed for the characters in the string while
3219   // observing object alignment.
3220   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3221   Add(scratch1, length, length);  // Length in bytes, not chars.
3222   Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
3223   Bic(scratch1, scratch1, kObjectAlignmentMask);
3224 
3225   // Allocate two-byte string in new space.
3226   Allocate(scratch1, result, scratch2, scratch3, gc_required,
3227            NO_ALLOCATION_FLAGS);
3228 
3229   // Set the map, length and hash field.
3230   InitializeNewString(result,
3231                       length,
3232                       Heap::kStringMapRootIndex,
3233                       scratch1,
3234                       scratch2);
3235 }
3236 
3237 
AllocateOneByteString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)3238 void MacroAssembler::AllocateOneByteString(Register result, Register length,
3239                                            Register scratch1, Register scratch2,
3240                                            Register scratch3,
3241                                            Label* gc_required) {
3242   DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3));
3243   // Calculate the number of bytes needed for the characters in the string while
3244   // observing object alignment.
3245   STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3246   STATIC_ASSERT(kCharSize == 1);
3247   Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
3248   Bic(scratch1, scratch1, kObjectAlignmentMask);
3249 
3250   // Allocate one-byte string in new space.
3251   Allocate(scratch1, result, scratch2, scratch3, gc_required,
3252            NO_ALLOCATION_FLAGS);
3253 
3254   // Set the map, length and hash field.
3255   InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
3256                       scratch1, scratch2);
3257 }
3258 
3259 
AllocateTwoByteConsString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3260 void MacroAssembler::AllocateTwoByteConsString(Register result,
3261                                                Register length,
3262                                                Register scratch1,
3263                                                Register scratch2,
3264                                                Label* gc_required) {
3265   Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
3266            NO_ALLOCATION_FLAGS);
3267 
3268   InitializeNewString(result,
3269                       length,
3270                       Heap::kConsStringMapRootIndex,
3271                       scratch1,
3272                       scratch2);
3273 }
3274 
3275 
AllocateOneByteConsString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3276 void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
3277                                                Register scratch1,
3278                                                Register scratch2,
3279                                                Label* gc_required) {
3280   Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
3281            NO_ALLOCATION_FLAGS);
3282 
3283   InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
3284                       scratch1, scratch2);
3285 }
3286 
3287 
AllocateTwoByteSlicedString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3288 void MacroAssembler::AllocateTwoByteSlicedString(Register result,
3289                                                  Register length,
3290                                                  Register scratch1,
3291                                                  Register scratch2,
3292                                                  Label* gc_required) {
3293   DCHECK(!AreAliased(result, length, scratch1, scratch2));
3294   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3295            NO_ALLOCATION_FLAGS);
3296 
3297   InitializeNewString(result,
3298                       length,
3299                       Heap::kSlicedStringMapRootIndex,
3300                       scratch1,
3301                       scratch2);
3302 }
3303 
3304 
AllocateOneByteSlicedString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3305 void MacroAssembler::AllocateOneByteSlicedString(Register result,
3306                                                  Register length,
3307                                                  Register scratch1,
3308                                                  Register scratch2,
3309                                                  Label* gc_required) {
3310   DCHECK(!AreAliased(result, length, scratch1, scratch2));
3311   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3312            NO_ALLOCATION_FLAGS);
3313 
3314   InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
3315                       scratch1, scratch2);
3316 }
3317 
3318 
3319 // Allocates a heap number or jumps to the need_gc label if the young space
3320 // is full and a scavenge is needed.
AllocateHeapNumber(Register result,Label * gc_required,Register scratch1,Register scratch2,CPURegister value,CPURegister heap_number_map,MutableMode mode)3321 void MacroAssembler::AllocateHeapNumber(Register result,
3322                                         Label* gc_required,
3323                                         Register scratch1,
3324                                         Register scratch2,
3325                                         CPURegister value,
3326                                         CPURegister heap_number_map,
3327                                         MutableMode mode) {
3328   DCHECK(!value.IsValid() || value.Is64Bits());
3329   UseScratchRegisterScope temps(this);
3330 
3331   // Allocate an object in the heap for the heap number and tag it as a heap
3332   // object.
3333   Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
3334            NO_ALLOCATION_FLAGS);
3335 
3336   Heap::RootListIndex map_index = mode == MUTABLE
3337       ? Heap::kMutableHeapNumberMapRootIndex
3338       : Heap::kHeapNumberMapRootIndex;
3339 
3340   // Prepare the heap number map.
3341   if (!heap_number_map.IsValid()) {
3342     // If we have a valid value register, use the same type of register to store
3343     // the map so we can use STP to store both in one instruction.
3344     if (value.IsValid() && value.IsFPRegister()) {
3345       heap_number_map = temps.AcquireD();
3346     } else {
3347       heap_number_map = scratch1;
3348     }
3349     LoadRoot(heap_number_map, map_index);
3350   }
3351   if (emit_debug_code()) {
3352     Register map;
3353     if (heap_number_map.IsFPRegister()) {
3354       map = scratch1;
3355       Fmov(map, DoubleRegister(heap_number_map));
3356     } else {
3357       map = Register(heap_number_map);
3358     }
3359     AssertRegisterIsRoot(map, map_index);
3360   }
3361 
3362   // Store the heap number map and the value in the allocated object.
3363   if (value.IsSameSizeAndType(heap_number_map)) {
3364     STATIC_ASSERT(HeapObject::kMapOffset + kPointerSize ==
3365                   HeapNumber::kValueOffset);
3366     Stp(heap_number_map, value,
3367         FieldMemOperand(result, HeapObject::kMapOffset));
3368   } else {
3369     Str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
3370     if (value.IsValid()) {
3371       Str(value, FieldMemOperand(result, HeapNumber::kValueOffset));
3372     }
3373   }
3374 }
3375 
3376 
JumpIfObjectType(Register object,Register map,Register type_reg,InstanceType type,Label * if_cond_pass,Condition cond)3377 void MacroAssembler::JumpIfObjectType(Register object,
3378                                       Register map,
3379                                       Register type_reg,
3380                                       InstanceType type,
3381                                       Label* if_cond_pass,
3382                                       Condition cond) {
3383   CompareObjectType(object, map, type_reg, type);
3384   B(cond, if_cond_pass);
3385 }
3386 
3387 
AllocateJSValue(Register result,Register constructor,Register value,Register scratch1,Register scratch2,Label * gc_required)3388 void MacroAssembler::AllocateJSValue(Register result, Register constructor,
3389                                      Register value, Register scratch1,
3390                                      Register scratch2, Label* gc_required) {
3391   DCHECK(!result.is(constructor));
3392   DCHECK(!result.is(scratch1));
3393   DCHECK(!result.is(scratch2));
3394   DCHECK(!result.is(value));
3395 
3396   // Allocate JSValue in new space.
3397   Allocate(JSValue::kSize, result, scratch1, scratch2, gc_required,
3398            NO_ALLOCATION_FLAGS);
3399 
3400   // Initialize the JSValue.
3401   LoadGlobalFunctionInitialMap(constructor, scratch1, scratch2);
3402   Str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset));
3403   LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
3404   Str(scratch1, FieldMemOperand(result, JSObject::kPropertiesOffset));
3405   Str(scratch1, FieldMemOperand(result, JSObject::kElementsOffset));
3406   Str(value, FieldMemOperand(result, JSValue::kValueOffset));
3407   STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
3408 }
3409 
3410 
JumpIfNotObjectType(Register object,Register map,Register type_reg,InstanceType type,Label * if_not_object)3411 void MacroAssembler::JumpIfNotObjectType(Register object,
3412                                          Register map,
3413                                          Register type_reg,
3414                                          InstanceType type,
3415                                          Label* if_not_object) {
3416   JumpIfObjectType(object, map, type_reg, type, if_not_object, ne);
3417 }
3418 
3419 
3420 // Sets condition flags based on comparison, and returns type in type_reg.
CompareObjectType(Register object,Register map,Register type_reg,InstanceType type)3421 void MacroAssembler::CompareObjectType(Register object,
3422                                        Register map,
3423                                        Register type_reg,
3424                                        InstanceType type) {
3425   Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
3426   CompareInstanceType(map, type_reg, type);
3427 }
3428 
3429 
3430 // Sets condition flags based on comparison, and returns type in type_reg.
CompareInstanceType(Register map,Register type_reg,InstanceType type)3431 void MacroAssembler::CompareInstanceType(Register map,
3432                                          Register type_reg,
3433                                          InstanceType type) {
3434   Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
3435   Cmp(type_reg, type);
3436 }
3437 
3438 
CompareObjectMap(Register obj,Heap::RootListIndex index)3439 void MacroAssembler::CompareObjectMap(Register obj, Heap::RootListIndex index) {
3440   UseScratchRegisterScope temps(this);
3441   Register obj_map = temps.AcquireX();
3442   Ldr(obj_map, FieldMemOperand(obj, HeapObject::kMapOffset));
3443   CompareRoot(obj_map, index);
3444 }
3445 
3446 
CompareObjectMap(Register obj,Register scratch,Handle<Map> map)3447 void MacroAssembler::CompareObjectMap(Register obj, Register scratch,
3448                                       Handle<Map> map) {
3449   Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3450   CompareMap(scratch, map);
3451 }
3452 
3453 
CompareMap(Register obj_map,Handle<Map> map)3454 void MacroAssembler::CompareMap(Register obj_map,
3455                                 Handle<Map> map) {
3456   Cmp(obj_map, Operand(map));
3457 }
3458 
3459 
CheckMap(Register obj,Register scratch,Handle<Map> map,Label * fail,SmiCheckType smi_check_type)3460 void MacroAssembler::CheckMap(Register obj,
3461                               Register scratch,
3462                               Handle<Map> map,
3463                               Label* fail,
3464                               SmiCheckType smi_check_type) {
3465   if (smi_check_type == DO_SMI_CHECK) {
3466     JumpIfSmi(obj, fail);
3467   }
3468 
3469   CompareObjectMap(obj, scratch, map);
3470   B(ne, fail);
3471 }
3472 
3473 
CheckMap(Register obj,Register scratch,Heap::RootListIndex index,Label * fail,SmiCheckType smi_check_type)3474 void MacroAssembler::CheckMap(Register obj,
3475                               Register scratch,
3476                               Heap::RootListIndex index,
3477                               Label* fail,
3478                               SmiCheckType smi_check_type) {
3479   if (smi_check_type == DO_SMI_CHECK) {
3480     JumpIfSmi(obj, fail);
3481   }
3482   Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3483   JumpIfNotRoot(scratch, index, fail);
3484 }
3485 
3486 
CheckMap(Register obj_map,Handle<Map> map,Label * fail,SmiCheckType smi_check_type)3487 void MacroAssembler::CheckMap(Register obj_map,
3488                               Handle<Map> map,
3489                               Label* fail,
3490                               SmiCheckType smi_check_type) {
3491   if (smi_check_type == DO_SMI_CHECK) {
3492     JumpIfSmi(obj_map, fail);
3493   }
3494 
3495   CompareMap(obj_map, map);
3496   B(ne, fail);
3497 }
3498 
3499 
DispatchWeakMap(Register obj,Register scratch1,Register scratch2,Handle<WeakCell> cell,Handle<Code> success,SmiCheckType smi_check_type)3500 void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1,
3501                                      Register scratch2, Handle<WeakCell> cell,
3502                                      Handle<Code> success,
3503                                      SmiCheckType smi_check_type) {
3504   Label fail;
3505   if (smi_check_type == DO_SMI_CHECK) {
3506     JumpIfSmi(obj, &fail);
3507   }
3508   Ldr(scratch1, FieldMemOperand(obj, HeapObject::kMapOffset));
3509   CmpWeakValue(scratch1, cell, scratch2);
3510   B(ne, &fail);
3511   Jump(success, RelocInfo::CODE_TARGET);
3512   Bind(&fail);
3513 }
3514 
3515 
CmpWeakValue(Register value,Handle<WeakCell> cell,Register scratch)3516 void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell,
3517                                   Register scratch) {
3518   Mov(scratch, Operand(cell));
3519   Ldr(scratch, FieldMemOperand(scratch, WeakCell::kValueOffset));
3520   Cmp(value, scratch);
3521 }
3522 
3523 
GetWeakValue(Register value,Handle<WeakCell> cell)3524 void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) {
3525   Mov(value, Operand(cell));
3526   Ldr(value, FieldMemOperand(value, WeakCell::kValueOffset));
3527 }
3528 
3529 
LoadWeakValue(Register value,Handle<WeakCell> cell,Label * miss)3530 void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
3531                                    Label* miss) {
3532   GetWeakValue(value, cell);
3533   JumpIfSmi(value, miss);
3534 }
3535 
3536 
TestMapBitfield(Register object,uint64_t mask)3537 void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) {
3538   UseScratchRegisterScope temps(this);
3539   Register temp = temps.AcquireX();
3540   Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
3541   Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
3542   Tst(temp, mask);
3543 }
3544 
3545 
LoadElementsKindFromMap(Register result,Register map)3546 void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) {
3547   // Load the map's "bit field 2".
3548   __ Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset));
3549   // Retrieve elements_kind from bit field 2.
3550   DecodeField<Map::ElementsKindBits>(result);
3551 }
3552 
3553 
GetMapConstructor(Register result,Register map,Register temp,Register temp2)3554 void MacroAssembler::GetMapConstructor(Register result, Register map,
3555                                        Register temp, Register temp2) {
3556   Label done, loop;
3557   Ldr(result, FieldMemOperand(map, Map::kConstructorOrBackPointerOffset));
3558   Bind(&loop);
3559   JumpIfSmi(result, &done);
3560   CompareObjectType(result, temp, temp2, MAP_TYPE);
3561   B(ne, &done);
3562   Ldr(result, FieldMemOperand(result, Map::kConstructorOrBackPointerOffset));
3563   B(&loop);
3564   Bind(&done);
3565 }
3566 
3567 
TryGetFunctionPrototype(Register function,Register result,Register scratch,Label * miss)3568 void MacroAssembler::TryGetFunctionPrototype(Register function, Register result,
3569                                              Register scratch, Label* miss) {
3570   DCHECK(!AreAliased(function, result, scratch));
3571 
3572   // Get the prototype or initial map from the function.
3573   Ldr(result,
3574       FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3575 
3576   // If the prototype or initial map is the hole, don't return it and simply
3577   // miss the cache instead. This will allow us to allocate a prototype object
3578   // on-demand in the runtime system.
3579   JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss);
3580 
3581   // If the function does not have an initial map, we're done.
3582   Label done;
3583   JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done);
3584 
3585   // Get the prototype from the initial map.
3586   Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3587 
3588   // All done.
3589   Bind(&done);
3590 }
3591 
3592 
PushRoot(Heap::RootListIndex index)3593 void MacroAssembler::PushRoot(Heap::RootListIndex index) {
3594   UseScratchRegisterScope temps(this);
3595   Register temp = temps.AcquireX();
3596   LoadRoot(temp, index);
3597   Push(temp);
3598 }
3599 
3600 
CompareRoot(const Register & obj,Heap::RootListIndex index)3601 void MacroAssembler::CompareRoot(const Register& obj,
3602                                  Heap::RootListIndex index) {
3603   UseScratchRegisterScope temps(this);
3604   Register temp = temps.AcquireX();
3605   DCHECK(!AreAliased(obj, temp));
3606   LoadRoot(temp, index);
3607   Cmp(obj, temp);
3608 }
3609 
3610 
JumpIfRoot(const Register & obj,Heap::RootListIndex index,Label * if_equal)3611 void MacroAssembler::JumpIfRoot(const Register& obj,
3612                                 Heap::RootListIndex index,
3613                                 Label* if_equal) {
3614   CompareRoot(obj, index);
3615   B(eq, if_equal);
3616 }
3617 
3618 
JumpIfNotRoot(const Register & obj,Heap::RootListIndex index,Label * if_not_equal)3619 void MacroAssembler::JumpIfNotRoot(const Register& obj,
3620                                    Heap::RootListIndex index,
3621                                    Label* if_not_equal) {
3622   CompareRoot(obj, index);
3623   B(ne, if_not_equal);
3624 }
3625 
3626 
CompareAndSplit(const Register & lhs,const Operand & rhs,Condition cond,Label * if_true,Label * if_false,Label * fall_through)3627 void MacroAssembler::CompareAndSplit(const Register& lhs,
3628                                      const Operand& rhs,
3629                                      Condition cond,
3630                                      Label* if_true,
3631                                      Label* if_false,
3632                                      Label* fall_through) {
3633   if ((if_true == if_false) && (if_false == fall_through)) {
3634     // Fall through.
3635   } else if (if_true == if_false) {
3636     B(if_true);
3637   } else if (if_false == fall_through) {
3638     CompareAndBranch(lhs, rhs, cond, if_true);
3639   } else if (if_true == fall_through) {
3640     CompareAndBranch(lhs, rhs, NegateCondition(cond), if_false);
3641   } else {
3642     CompareAndBranch(lhs, rhs, cond, if_true);
3643     B(if_false);
3644   }
3645 }
3646 
3647 
TestAndSplit(const Register & reg,uint64_t bit_pattern,Label * if_all_clear,Label * if_any_set,Label * fall_through)3648 void MacroAssembler::TestAndSplit(const Register& reg,
3649                                   uint64_t bit_pattern,
3650                                   Label* if_all_clear,
3651                                   Label* if_any_set,
3652                                   Label* fall_through) {
3653   if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
3654     // Fall through.
3655   } else if (if_all_clear == if_any_set) {
3656     B(if_all_clear);
3657   } else if (if_all_clear == fall_through) {
3658     TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3659   } else if (if_any_set == fall_through) {
3660     TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
3661   } else {
3662     TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3663     B(if_all_clear);
3664   }
3665 }
3666 
CheckFastObjectElements(Register map,Register scratch,Label * fail)3667 void MacroAssembler::CheckFastObjectElements(Register map,
3668                                              Register scratch,
3669                                              Label* fail) {
3670   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3671   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3672   STATIC_ASSERT(FAST_ELEMENTS == 2);
3673   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3674   Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3675   Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
3676   // If cond==ls, set cond=hi, otherwise compare.
3677   Ccmp(scratch,
3678        Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi);
3679   B(hi, fail);
3680 }
3681 
3682 
3683 // Note: The ARM version of this clobbers elements_reg, but this version does
3684 // not. Some uses of this in ARM64 assume that elements_reg will be preserved.
StoreNumberToDoubleElements(Register value_reg,Register key_reg,Register elements_reg,Register scratch1,FPRegister fpscratch1,Label * fail,int elements_offset)3685 void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
3686                                                  Register key_reg,
3687                                                  Register elements_reg,
3688                                                  Register scratch1,
3689                                                  FPRegister fpscratch1,
3690                                                  Label* fail,
3691                                                  int elements_offset) {
3692   DCHECK(!AreAliased(value_reg, key_reg, elements_reg, scratch1));
3693   Label store_num;
3694 
3695   // Speculatively convert the smi to a double - all smis can be exactly
3696   // represented as a double.
3697   SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag);
3698 
3699   // If value_reg is a smi, we're done.
3700   JumpIfSmi(value_reg, &store_num);
3701 
3702   // Ensure that the object is a heap number.
3703   JumpIfNotHeapNumber(value_reg, fail);
3704 
3705   Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
3706 
3707   // Canonicalize NaNs.
3708   CanonicalizeNaN(fpscratch1);
3709 
3710   // Store the result.
3711   Bind(&store_num);
3712   Add(scratch1, elements_reg,
3713       Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2));
3714   Str(fpscratch1,
3715       FieldMemOperand(scratch1,
3716                       FixedDoubleArray::kHeaderSize - elements_offset));
3717 }
3718 
3719 
AllowThisStubCall(CodeStub * stub)3720 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
3721   return has_frame_ || !stub->SometimesSetsUpAFrame();
3722 }
3723 
EmitSeqStringSetCharCheck(Register string,Register index,SeqStringSetCharCheckIndexType index_type,Register scratch,uint32_t encoding_mask)3724 void MacroAssembler::EmitSeqStringSetCharCheck(
3725     Register string,
3726     Register index,
3727     SeqStringSetCharCheckIndexType index_type,
3728     Register scratch,
3729     uint32_t encoding_mask) {
3730   DCHECK(!AreAliased(string, index, scratch));
3731 
3732   if (index_type == kIndexIsSmi) {
3733     AssertSmi(index);
3734   }
3735 
3736   // Check that string is an object.
3737   AssertNotSmi(string, kNonObject);
3738 
3739   // Check that string has an appropriate map.
3740   Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
3741   Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
3742 
3743   And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask);
3744   Cmp(scratch, encoding_mask);
3745   Check(eq, kUnexpectedStringType);
3746 
3747   Ldr(scratch, FieldMemOperand(string, String::kLengthOffset));
3748   Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch));
3749   Check(lt, kIndexIsTooLarge);
3750 
3751   DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
3752   Cmp(index, 0);
3753   Check(ge, kIndexIsNegative);
3754 }
3755 
3756 
3757 // Compute the hash code from the untagged key. This must be kept in sync with
3758 // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
3759 // code-stub-hydrogen.cc
GetNumberHash(Register key,Register scratch)3760 void MacroAssembler::GetNumberHash(Register key, Register scratch) {
3761   DCHECK(!AreAliased(key, scratch));
3762 
3763   // Xor original key with a seed.
3764   LoadRoot(scratch, Heap::kHashSeedRootIndex);
3765   Eor(key, key, Operand::UntagSmi(scratch));
3766 
3767   // The algorithm uses 32-bit integer values.
3768   key = key.W();
3769   scratch = scratch.W();
3770 
3771   // Compute the hash code from the untagged key.  This must be kept in sync
3772   // with ComputeIntegerHash in utils.h.
3773   //
3774   // hash = ~hash + (hash <<1 15);
3775   Mvn(scratch, key);
3776   Add(key, scratch, Operand(key, LSL, 15));
3777   // hash = hash ^ (hash >> 12);
3778   Eor(key, key, Operand(key, LSR, 12));
3779   // hash = hash + (hash << 2);
3780   Add(key, key, Operand(key, LSL, 2));
3781   // hash = hash ^ (hash >> 4);
3782   Eor(key, key, Operand(key, LSR, 4));
3783   // hash = hash * 2057;
3784   Mov(scratch, Operand(key, LSL, 11));
3785   Add(key, key, Operand(key, LSL, 3));
3786   Add(key, key, scratch);
3787   // hash = hash ^ (hash >> 16);
3788   Eor(key, key, Operand(key, LSR, 16));
3789   Bic(key, key, Operand(0xc0000000u));
3790 }
3791 
RecordWriteCodeEntryField(Register js_function,Register code_entry,Register scratch)3792 void MacroAssembler::RecordWriteCodeEntryField(Register js_function,
3793                                                Register code_entry,
3794                                                Register scratch) {
3795   const int offset = JSFunction::kCodeEntryOffset;
3796 
3797   // Since a code entry (value) is always in old space, we don't need to update
3798   // remembered set. If incremental marking is off, there is nothing for us to
3799   // do.
3800   if (!FLAG_incremental_marking) return;
3801 
3802   DCHECK(js_function.is(x1));
3803   DCHECK(code_entry.is(x7));
3804   DCHECK(scratch.is(x5));
3805   AssertNotSmi(js_function);
3806 
3807   if (emit_debug_code()) {
3808     UseScratchRegisterScope temps(this);
3809     Register temp = temps.AcquireX();
3810     Add(scratch, js_function, offset - kHeapObjectTag);
3811     Ldr(temp, MemOperand(scratch));
3812     Cmp(temp, code_entry);
3813     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
3814   }
3815 
3816   // First, check if a write barrier is even needed. The tests below
3817   // catch stores of Smis and stores into young gen.
3818   Label done;
3819 
3820   CheckPageFlagClear(code_entry, scratch,
3821                      MemoryChunk::kPointersToHereAreInterestingMask, &done);
3822   CheckPageFlagClear(js_function, scratch,
3823                      MemoryChunk::kPointersFromHereAreInterestingMask, &done);
3824 
3825   const Register dst = scratch;
3826   Add(dst, js_function, offset - kHeapObjectTag);
3827 
3828   // Save caller-saved registers.Both input registers (x1 and x7) are caller
3829   // saved, so there is no need to push them.
3830   PushCPURegList(kCallerSaved);
3831 
3832   int argument_count = 3;
3833 
3834   Mov(x0, js_function);
3835   Mov(x1, dst);
3836   Mov(x2, ExternalReference::isolate_address(isolate()));
3837 
3838   {
3839     AllowExternalCallThatCantCauseGC scope(this);
3840     CallCFunction(
3841         ExternalReference::incremental_marking_record_write_code_entry_function(
3842             isolate()),
3843         argument_count);
3844   }
3845 
3846   // Restore caller-saved registers.
3847   PopCPURegList(kCallerSaved);
3848 
3849   Bind(&done);
3850 }
3851 
RememberedSetHelper(Register object,Register address,Register scratch1,SaveFPRegsMode fp_mode,RememberedSetFinalAction and_then)3852 void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
3853                                          Register address,
3854                                          Register scratch1,
3855                                          SaveFPRegsMode fp_mode,
3856                                          RememberedSetFinalAction and_then) {
3857   DCHECK(!AreAliased(object, address, scratch1));
3858   Label done, store_buffer_overflow;
3859   if (emit_debug_code()) {
3860     Label ok;
3861     JumpIfNotInNewSpace(object, &ok);
3862     Abort(kRememberedSetPointerInNewSpace);
3863     bind(&ok);
3864   }
3865   UseScratchRegisterScope temps(this);
3866   Register scratch2 = temps.AcquireX();
3867 
3868   // Load store buffer top.
3869   Mov(scratch2, ExternalReference::store_buffer_top(isolate()));
3870   Ldr(scratch1, MemOperand(scratch2));
3871   // Store pointer to buffer and increment buffer top.
3872   Str(address, MemOperand(scratch1, kPointerSize, PostIndex));
3873   // Write back new top of buffer.
3874   Str(scratch1, MemOperand(scratch2));
3875   // Call stub on end of buffer.
3876   // Check for end of buffer.
3877   Tst(scratch1, StoreBuffer::kStoreBufferMask);
3878   if (and_then == kFallThroughAtEnd) {
3879     B(ne, &done);
3880   } else {
3881     DCHECK(and_then == kReturnAtEnd);
3882     B(eq, &store_buffer_overflow);
3883     Ret();
3884   }
3885 
3886   Bind(&store_buffer_overflow);
3887   Push(lr);
3888   StoreBufferOverflowStub store_buffer_overflow_stub(isolate(), fp_mode);
3889   CallStub(&store_buffer_overflow_stub);
3890   Pop(lr);
3891 
3892   Bind(&done);
3893   if (and_then == kReturnAtEnd) {
3894     Ret();
3895   }
3896 }
3897 
3898 
PopSafepointRegisters()3899 void MacroAssembler::PopSafepointRegisters() {
3900   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
3901   PopXRegList(kSafepointSavedRegisters);
3902   Drop(num_unsaved);
3903 }
3904 
3905 
PushSafepointRegisters()3906 void MacroAssembler::PushSafepointRegisters() {
3907   // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
3908   // adjust the stack for unsaved registers.
3909   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
3910   DCHECK(num_unsaved >= 0);
3911   Claim(num_unsaved);
3912   PushXRegList(kSafepointSavedRegisters);
3913 }
3914 
3915 
PushSafepointRegistersAndDoubles()3916 void MacroAssembler::PushSafepointRegistersAndDoubles() {
3917   PushSafepointRegisters();
3918   PushCPURegList(CPURegList(
3919       CPURegister::kFPRegister, kDRegSizeInBits,
3920       RegisterConfiguration::Crankshaft()->allocatable_double_codes_mask()));
3921 }
3922 
3923 
PopSafepointRegistersAndDoubles()3924 void MacroAssembler::PopSafepointRegistersAndDoubles() {
3925   PopCPURegList(CPURegList(
3926       CPURegister::kFPRegister, kDRegSizeInBits,
3927       RegisterConfiguration::Crankshaft()->allocatable_double_codes_mask()));
3928   PopSafepointRegisters();
3929 }
3930 
3931 
SafepointRegisterStackIndex(int reg_code)3932 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
3933   // Make sure the safepoint registers list is what we expect.
3934   DCHECK(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff);
3935 
3936   // Safepoint registers are stored contiguously on the stack, but not all the
3937   // registers are saved. The following registers are excluded:
3938   //  - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
3939   //    the macro assembler.
3940   //  - x28 (jssp) because JS stack pointer doesn't need to be included in
3941   //    safepoint registers.
3942   //  - x31 (csp) because the system stack pointer doesn't need to be included
3943   //    in safepoint registers.
3944   //
3945   // This function implements the mapping of register code to index into the
3946   // safepoint register slots.
3947   if ((reg_code >= 0) && (reg_code <= 15)) {
3948     return reg_code;
3949   } else if ((reg_code >= 18) && (reg_code <= 27)) {
3950     // Skip ip0 and ip1.
3951     return reg_code - 2;
3952   } else if ((reg_code == 29) || (reg_code == 30)) {
3953     // Also skip jssp.
3954     return reg_code - 3;
3955   } else {
3956     // This register has no safepoint register slot.
3957     UNREACHABLE();
3958     return -1;
3959   }
3960 }
3961 
CheckPageFlag(const Register & object,const Register & scratch,int mask,Condition cc,Label * condition_met)3962 void MacroAssembler::CheckPageFlag(const Register& object,
3963                                    const Register& scratch, int mask,
3964                                    Condition cc, Label* condition_met) {
3965   And(scratch, object, ~Page::kPageAlignmentMask);
3966   Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
3967   if (cc == eq) {
3968     TestAndBranchIfAnySet(scratch, mask, condition_met);
3969   } else {
3970     TestAndBranchIfAllClear(scratch, mask, condition_met);
3971   }
3972 }
3973 
CheckPageFlagSet(const Register & object,const Register & scratch,int mask,Label * if_any_set)3974 void MacroAssembler::CheckPageFlagSet(const Register& object,
3975                                       const Register& scratch,
3976                                       int mask,
3977                                       Label* if_any_set) {
3978   And(scratch, object, ~Page::kPageAlignmentMask);
3979   Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
3980   TestAndBranchIfAnySet(scratch, mask, if_any_set);
3981 }
3982 
3983 
CheckPageFlagClear(const Register & object,const Register & scratch,int mask,Label * if_all_clear)3984 void MacroAssembler::CheckPageFlagClear(const Register& object,
3985                                         const Register& scratch,
3986                                         int mask,
3987                                         Label* if_all_clear) {
3988   And(scratch, object, ~Page::kPageAlignmentMask);
3989   Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
3990   TestAndBranchIfAllClear(scratch, mask, if_all_clear);
3991 }
3992 
3993 
RecordWriteField(Register object,int offset,Register value,Register scratch,LinkRegisterStatus lr_status,SaveFPRegsMode save_fp,RememberedSetAction remembered_set_action,SmiCheck smi_check,PointersToHereCheck pointers_to_here_check_for_value)3994 void MacroAssembler::RecordWriteField(
3995     Register object,
3996     int offset,
3997     Register value,
3998     Register scratch,
3999     LinkRegisterStatus lr_status,
4000     SaveFPRegsMode save_fp,
4001     RememberedSetAction remembered_set_action,
4002     SmiCheck smi_check,
4003     PointersToHereCheck pointers_to_here_check_for_value) {
4004   // First, check if a write barrier is even needed. The tests below
4005   // catch stores of Smis.
4006   Label done;
4007 
4008   // Skip the barrier if writing a smi.
4009   if (smi_check == INLINE_SMI_CHECK) {
4010     JumpIfSmi(value, &done);
4011   }
4012 
4013   // Although the object register is tagged, the offset is relative to the start
4014   // of the object, so offset must be a multiple of kPointerSize.
4015   DCHECK(IsAligned(offset, kPointerSize));
4016 
4017   Add(scratch, object, offset - kHeapObjectTag);
4018   if (emit_debug_code()) {
4019     Label ok;
4020     Tst(scratch, (1 << kPointerSizeLog2) - 1);
4021     B(eq, &ok);
4022     Abort(kUnalignedCellInWriteBarrier);
4023     Bind(&ok);
4024   }
4025 
4026   RecordWrite(object,
4027               scratch,
4028               value,
4029               lr_status,
4030               save_fp,
4031               remembered_set_action,
4032               OMIT_SMI_CHECK,
4033               pointers_to_here_check_for_value);
4034 
4035   Bind(&done);
4036 
4037   // Clobber clobbered input registers when running with the debug-code flag
4038   // turned on to provoke errors.
4039   if (emit_debug_code()) {
4040     Mov(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
4041     Mov(scratch, Operand(bit_cast<int64_t>(kZapValue + 8)));
4042   }
4043 }
4044 
4045 
4046 // Will clobber: object, map, dst.
4047 // If lr_status is kLRHasBeenSaved, lr will also be clobbered.
RecordWriteForMap(Register object,Register map,Register dst,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode)4048 void MacroAssembler::RecordWriteForMap(Register object,
4049                                        Register map,
4050                                        Register dst,
4051                                        LinkRegisterStatus lr_status,
4052                                        SaveFPRegsMode fp_mode) {
4053   ASM_LOCATION("MacroAssembler::RecordWrite");
4054   DCHECK(!AreAliased(object, map));
4055 
4056   if (emit_debug_code()) {
4057     UseScratchRegisterScope temps(this);
4058     Register temp = temps.AcquireX();
4059 
4060     CompareObjectMap(map, temp, isolate()->factory()->meta_map());
4061     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4062   }
4063 
4064   if (!FLAG_incremental_marking) {
4065     return;
4066   }
4067 
4068   if (emit_debug_code()) {
4069     UseScratchRegisterScope temps(this);
4070     Register temp = temps.AcquireX();
4071 
4072     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4073     Cmp(temp, map);
4074     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4075   }
4076 
4077   // First, check if a write barrier is even needed. The tests below
4078   // catch stores of smis and stores into the young generation.
4079   Label done;
4080 
4081   // A single check of the map's pages interesting flag suffices, since it is
4082   // only set during incremental collection, and then it's also guaranteed that
4083   // the from object's page's interesting flag is also set.  This optimization
4084   // relies on the fact that maps can never be in new space.
4085   CheckPageFlagClear(map,
4086                      map,  // Used as scratch.
4087                      MemoryChunk::kPointersToHereAreInterestingMask,
4088                      &done);
4089 
4090   // Record the actual write.
4091   if (lr_status == kLRHasNotBeenSaved) {
4092     Push(lr);
4093   }
4094   Add(dst, object, HeapObject::kMapOffset - kHeapObjectTag);
4095   RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
4096                        fp_mode);
4097   CallStub(&stub);
4098   if (lr_status == kLRHasNotBeenSaved) {
4099     Pop(lr);
4100   }
4101 
4102   Bind(&done);
4103 
4104   // Count number of write barriers in generated code.
4105   isolate()->counters()->write_barriers_static()->Increment();
4106   IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, map,
4107                    dst);
4108 
4109   // Clobber clobbered registers when running with the debug-code flag
4110   // turned on to provoke errors.
4111   if (emit_debug_code()) {
4112     Mov(dst, Operand(bit_cast<int64_t>(kZapValue + 12)));
4113     Mov(map, Operand(bit_cast<int64_t>(kZapValue + 16)));
4114   }
4115 }
4116 
4117 
4118 // Will clobber: object, address, value.
4119 // If lr_status is kLRHasBeenSaved, lr will also be clobbered.
4120 //
4121 // The register 'object' contains a heap object pointer. The heap object tag is
4122 // shifted away.
RecordWrite(Register object,Register address,Register value,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode,RememberedSetAction remembered_set_action,SmiCheck smi_check,PointersToHereCheck pointers_to_here_check_for_value)4123 void MacroAssembler::RecordWrite(
4124     Register object,
4125     Register address,
4126     Register value,
4127     LinkRegisterStatus lr_status,
4128     SaveFPRegsMode fp_mode,
4129     RememberedSetAction remembered_set_action,
4130     SmiCheck smi_check,
4131     PointersToHereCheck pointers_to_here_check_for_value) {
4132   ASM_LOCATION("MacroAssembler::RecordWrite");
4133   DCHECK(!AreAliased(object, value));
4134 
4135   if (emit_debug_code()) {
4136     UseScratchRegisterScope temps(this);
4137     Register temp = temps.AcquireX();
4138 
4139     Ldr(temp, MemOperand(address));
4140     Cmp(temp, value);
4141     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4142   }
4143 
4144   // First, check if a write barrier is even needed. The tests below
4145   // catch stores of smis and stores into the young generation.
4146   Label done;
4147 
4148   if (smi_check == INLINE_SMI_CHECK) {
4149     DCHECK_EQ(0, kSmiTag);
4150     JumpIfSmi(value, &done);
4151   }
4152 
4153   if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
4154     CheckPageFlagClear(value,
4155                        value,  // Used as scratch.
4156                        MemoryChunk::kPointersToHereAreInterestingMask,
4157                        &done);
4158   }
4159   CheckPageFlagClear(object,
4160                      value,  // Used as scratch.
4161                      MemoryChunk::kPointersFromHereAreInterestingMask,
4162                      &done);
4163 
4164   // Record the actual write.
4165   if (lr_status == kLRHasNotBeenSaved) {
4166     Push(lr);
4167   }
4168   RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
4169                        fp_mode);
4170   CallStub(&stub);
4171   if (lr_status == kLRHasNotBeenSaved) {
4172     Pop(lr);
4173   }
4174 
4175   Bind(&done);
4176 
4177   // Count number of write barriers in generated code.
4178   isolate()->counters()->write_barriers_static()->Increment();
4179   IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, address,
4180                    value);
4181 
4182   // Clobber clobbered registers when running with the debug-code flag
4183   // turned on to provoke errors.
4184   if (emit_debug_code()) {
4185     Mov(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
4186     Mov(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
4187   }
4188 }
4189 
4190 
AssertHasValidColor(const Register & reg)4191 void MacroAssembler::AssertHasValidColor(const Register& reg) {
4192   if (emit_debug_code()) {
4193     // The bit sequence is backward. The first character in the string
4194     // represents the least significant bit.
4195     DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
4196 
4197     Label color_is_valid;
4198     Tbnz(reg, 0, &color_is_valid);
4199     Tbz(reg, 1, &color_is_valid);
4200     Abort(kUnexpectedColorFound);
4201     Bind(&color_is_valid);
4202   }
4203 }
4204 
4205 
GetMarkBits(Register addr_reg,Register bitmap_reg,Register shift_reg)4206 void MacroAssembler::GetMarkBits(Register addr_reg,
4207                                  Register bitmap_reg,
4208                                  Register shift_reg) {
4209   DCHECK(!AreAliased(addr_reg, bitmap_reg, shift_reg));
4210   DCHECK(addr_reg.Is64Bits() && bitmap_reg.Is64Bits() && shift_reg.Is64Bits());
4211   // addr_reg is divided into fields:
4212   // |63        page base        20|19    high      8|7   shift   3|2  0|
4213   // 'high' gives the index of the cell holding color bits for the object.
4214   // 'shift' gives the offset in the cell for this object's color.
4215   const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
4216   UseScratchRegisterScope temps(this);
4217   Register temp = temps.AcquireX();
4218   Ubfx(temp, addr_reg, kShiftBits, kPageSizeBits - kShiftBits);
4219   Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask);
4220   Add(bitmap_reg, bitmap_reg, Operand(temp, LSL, Bitmap::kBytesPerCellLog2));
4221   // bitmap_reg:
4222   // |63        page base        20|19 zeros 15|14      high      3|2  0|
4223   Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
4224 }
4225 
4226 
HasColor(Register object,Register bitmap_scratch,Register shift_scratch,Label * has_color,int first_bit,int second_bit)4227 void MacroAssembler::HasColor(Register object,
4228                               Register bitmap_scratch,
4229                               Register shift_scratch,
4230                               Label* has_color,
4231                               int first_bit,
4232                               int second_bit) {
4233   // See mark-compact.h for color definitions.
4234   DCHECK(!AreAliased(object, bitmap_scratch, shift_scratch));
4235 
4236   GetMarkBits(object, bitmap_scratch, shift_scratch);
4237   Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4238   // Shift the bitmap down to get the color of the object in bits [1:0].
4239   Lsr(bitmap_scratch, bitmap_scratch, shift_scratch);
4240 
4241   AssertHasValidColor(bitmap_scratch);
4242 
4243   // These bit sequences are backwards. The first character in the string
4244   // represents the least significant bit.
4245   DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4246   DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
4247   DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
4248 
4249   // Check for the color.
4250   if (first_bit == 0) {
4251     // Checking for white.
4252     DCHECK(second_bit == 0);
4253     // We only need to test the first bit.
4254     Tbz(bitmap_scratch, 0, has_color);
4255   } else {
4256     Label other_color;
4257     // Checking for grey or black.
4258     Tbz(bitmap_scratch, 0, &other_color);
4259     if (second_bit == 0) {
4260       Tbz(bitmap_scratch, 1, has_color);
4261     } else {
4262       Tbnz(bitmap_scratch, 1, has_color);
4263     }
4264     Bind(&other_color);
4265   }
4266 
4267   // Fall through if it does not have the right color.
4268 }
4269 
4270 
JumpIfBlack(Register object,Register scratch0,Register scratch1,Label * on_black)4271 void MacroAssembler::JumpIfBlack(Register object,
4272                                  Register scratch0,
4273                                  Register scratch1,
4274                                  Label* on_black) {
4275   DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
4276   HasColor(object, scratch0, scratch1, on_black, 1, 1);  // kBlackBitPattern.
4277 }
4278 
4279 
JumpIfDictionaryInPrototypeChain(Register object,Register scratch0,Register scratch1,Label * found)4280 void MacroAssembler::JumpIfDictionaryInPrototypeChain(
4281     Register object,
4282     Register scratch0,
4283     Register scratch1,
4284     Label* found) {
4285   DCHECK(!AreAliased(object, scratch0, scratch1));
4286   Register current = scratch0;
4287   Label loop_again, end;
4288 
4289   // Scratch contains elements pointer.
4290   Mov(current, object);
4291   Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
4292   Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
4293   CompareAndBranch(current, Heap::kNullValueRootIndex, eq, &end);
4294 
4295   // Loop based on the map going up the prototype chain.
4296   Bind(&loop_again);
4297   Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
4298   STATIC_ASSERT(JS_PROXY_TYPE < JS_OBJECT_TYPE);
4299   STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE);
4300   CompareInstanceType(current, scratch1, JS_OBJECT_TYPE);
4301   B(lo, found);
4302   Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
4303   DecodeField<Map::ElementsKindBits>(scratch1);
4304   CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found);
4305   Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
4306   CompareAndBranch(current, Heap::kNullValueRootIndex, ne, &loop_again);
4307 
4308   Bind(&end);
4309 }
4310 
4311 
JumpIfWhite(Register value,Register bitmap_scratch,Register shift_scratch,Register load_scratch,Register length_scratch,Label * value_is_white)4312 void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch,
4313                                  Register shift_scratch, Register load_scratch,
4314                                  Register length_scratch,
4315                                  Label* value_is_white) {
4316   DCHECK(!AreAliased(
4317       value, bitmap_scratch, shift_scratch, load_scratch, length_scratch));
4318 
4319   // These bit sequences are backwards. The first character in the string
4320   // represents the least significant bit.
4321   DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4322   DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
4323   DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
4324 
4325   GetMarkBits(value, bitmap_scratch, shift_scratch);
4326   Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4327   Lsr(load_scratch, load_scratch, shift_scratch);
4328 
4329   AssertHasValidColor(load_scratch);
4330 
4331   // If the value is black or grey we don't need to do anything.
4332   // Since both black and grey have a 1 in the first position and white does
4333   // not have a 1 there we only need to check one bit.
4334   Tbz(load_scratch, 0, value_is_white);
4335 }
4336 
4337 
Assert(Condition cond,BailoutReason reason)4338 void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
4339   if (emit_debug_code()) {
4340     Check(cond, reason);
4341   }
4342 }
4343 
4344 
4345 
AssertRegisterIsClear(Register reg,BailoutReason reason)4346 void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) {
4347   if (emit_debug_code()) {
4348     CheckRegisterIsClear(reg, reason);
4349   }
4350 }
4351 
4352 
AssertRegisterIsRoot(Register reg,Heap::RootListIndex index,BailoutReason reason)4353 void MacroAssembler::AssertRegisterIsRoot(Register reg,
4354                                           Heap::RootListIndex index,
4355                                           BailoutReason reason) {
4356   if (emit_debug_code()) {
4357     CompareRoot(reg, index);
4358     Check(eq, reason);
4359   }
4360 }
4361 
4362 
AssertFastElements(Register elements)4363 void MacroAssembler::AssertFastElements(Register elements) {
4364   if (emit_debug_code()) {
4365     UseScratchRegisterScope temps(this);
4366     Register temp = temps.AcquireX();
4367     Label ok;
4368     Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset));
4369     JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok);
4370     JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok);
4371     JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok);
4372     Abort(kJSObjectWithFastElementsMapHasSlowElements);
4373     Bind(&ok);
4374   }
4375 }
4376 
4377 
AssertIsString(const Register & object)4378 void MacroAssembler::AssertIsString(const Register& object) {
4379   if (emit_debug_code()) {
4380     UseScratchRegisterScope temps(this);
4381     Register temp = temps.AcquireX();
4382     STATIC_ASSERT(kSmiTag == 0);
4383     Tst(object, kSmiTagMask);
4384     Check(ne, kOperandIsNotAString);
4385     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4386     CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
4387     Check(lo, kOperandIsNotAString);
4388   }
4389 }
4390 
4391 
Check(Condition cond,BailoutReason reason)4392 void MacroAssembler::Check(Condition cond, BailoutReason reason) {
4393   Label ok;
4394   B(cond, &ok);
4395   Abort(reason);
4396   // Will not return here.
4397   Bind(&ok);
4398 }
4399 
4400 
CheckRegisterIsClear(Register reg,BailoutReason reason)4401 void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) {
4402   Label ok;
4403   Cbz(reg, &ok);
4404   Abort(reason);
4405   // Will not return here.
4406   Bind(&ok);
4407 }
4408 
4409 
Abort(BailoutReason reason)4410 void MacroAssembler::Abort(BailoutReason reason) {
4411 #ifdef DEBUG
4412   RecordComment("Abort message: ");
4413   RecordComment(GetBailoutReason(reason));
4414 
4415   if (FLAG_trap_on_abort) {
4416     Brk(0);
4417     return;
4418   }
4419 #endif
4420 
4421   // Abort is used in some contexts where csp is the stack pointer. In order to
4422   // simplify the CallRuntime code, make sure that jssp is the stack pointer.
4423   // There is no risk of register corruption here because Abort doesn't return.
4424   Register old_stack_pointer = StackPointer();
4425   SetStackPointer(jssp);
4426   Mov(jssp, old_stack_pointer);
4427 
4428   // We need some scratch registers for the MacroAssembler, so make sure we have
4429   // some. This is safe here because Abort never returns.
4430   RegList old_tmp_list = TmpList()->list();
4431   TmpList()->Combine(MacroAssembler::DefaultTmpList());
4432 
4433   if (use_real_aborts()) {
4434     // Avoid infinite recursion; Push contains some assertions that use Abort.
4435     NoUseRealAbortsScope no_real_aborts(this);
4436 
4437     // Check if Abort() has already been initialized.
4438     DCHECK(isolate()->builtins()->Abort()->IsHeapObject());
4439 
4440     Move(x1, Smi::FromInt(static_cast<int>(reason)));
4441 
4442     if (!has_frame_) {
4443       // We don't actually want to generate a pile of code for this, so just
4444       // claim there is a stack frame, without generating one.
4445       FrameScope scope(this, StackFrame::NONE);
4446       Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
4447     } else {
4448       Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
4449     }
4450   } else {
4451     // Load the string to pass to Printf.
4452     Label msg_address;
4453     Adr(x0, &msg_address);
4454 
4455     // Call Printf directly to report the error.
4456     CallPrintf();
4457 
4458     // We need a way to stop execution on both the simulator and real hardware,
4459     // and Unreachable() is the best option.
4460     Unreachable();
4461 
4462     // Emit the message string directly in the instruction stream.
4463     {
4464       BlockPoolsScope scope(this);
4465       Bind(&msg_address);
4466       EmitStringData(GetBailoutReason(reason));
4467     }
4468   }
4469 
4470   SetStackPointer(old_stack_pointer);
4471   TmpList()->set_list(old_tmp_list);
4472 }
4473 
4474 
LoadTransitionedArrayMapConditional(ElementsKind expected_kind,ElementsKind transitioned_kind,Register map_in_out,Register scratch1,Register scratch2,Label * no_map_match)4475 void MacroAssembler::LoadTransitionedArrayMapConditional(
4476     ElementsKind expected_kind,
4477     ElementsKind transitioned_kind,
4478     Register map_in_out,
4479     Register scratch1,
4480     Register scratch2,
4481     Label* no_map_match) {
4482   DCHECK(IsFastElementsKind(expected_kind));
4483   DCHECK(IsFastElementsKind(transitioned_kind));
4484 
4485   // Check that the function's map is the same as the expected cached map.
4486   Ldr(scratch1, NativeContextMemOperand());
4487   Ldr(scratch2,
4488       ContextMemOperand(scratch1, Context::ArrayMapIndex(expected_kind)));
4489   Cmp(map_in_out, scratch2);
4490   B(ne, no_map_match);
4491 
4492   // Use the transitioned cached map.
4493   Ldr(map_in_out,
4494       ContextMemOperand(scratch1, Context::ArrayMapIndex(transitioned_kind)));
4495 }
4496 
4497 
LoadNativeContextSlot(int index,Register dst)4498 void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
4499   Ldr(dst, NativeContextMemOperand());
4500   Ldr(dst, ContextMemOperand(dst, index));
4501 }
4502 
4503 
LoadGlobalFunctionInitialMap(Register function,Register map,Register scratch)4504 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
4505                                                   Register map,
4506                                                   Register scratch) {
4507   // Load the initial map. The global functions all have initial maps.
4508   Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4509   if (emit_debug_code()) {
4510     Label ok, fail;
4511     CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
4512     B(&ok);
4513     Bind(&fail);
4514     Abort(kGlobalFunctionsMustHaveInitialMap);
4515     Bind(&ok);
4516   }
4517 }
4518 
4519 
4520 // This is the main Printf implementation. All other Printf variants call
4521 // PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
PrintfNoPreserve(const char * format,const CPURegister & arg0,const CPURegister & arg1,const CPURegister & arg2,const CPURegister & arg3)4522 void MacroAssembler::PrintfNoPreserve(const char * format,
4523                                       const CPURegister& arg0,
4524                                       const CPURegister& arg1,
4525                                       const CPURegister& arg2,
4526                                       const CPURegister& arg3) {
4527   // We cannot handle a caller-saved stack pointer. It doesn't make much sense
4528   // in most cases anyway, so this restriction shouldn't be too serious.
4529   DCHECK(!kCallerSaved.IncludesAliasOf(__ StackPointer()));
4530 
4531   // The provided arguments, and their proper procedure-call standard registers.
4532   CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3};
4533   CPURegister pcs[kPrintfMaxArgCount] = {NoReg, NoReg, NoReg, NoReg};
4534 
4535   int arg_count = kPrintfMaxArgCount;
4536 
4537   // The PCS varargs registers for printf. Note that x0 is used for the printf
4538   // format string.
4539   static const CPURegList kPCSVarargs =
4540       CPURegList(CPURegister::kRegister, kXRegSizeInBits, 1, arg_count);
4541   static const CPURegList kPCSVarargsFP =
4542       CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, arg_count - 1);
4543 
4544   // We can use caller-saved registers as scratch values, except for the
4545   // arguments and the PCS registers where they might need to go.
4546   CPURegList tmp_list = kCallerSaved;
4547   tmp_list.Remove(x0);      // Used to pass the format string.
4548   tmp_list.Remove(kPCSVarargs);
4549   tmp_list.Remove(arg0, arg1, arg2, arg3);
4550 
4551   CPURegList fp_tmp_list = kCallerSavedFP;
4552   fp_tmp_list.Remove(kPCSVarargsFP);
4553   fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
4554 
4555   // Override the MacroAssembler's scratch register list. The lists will be
4556   // reset automatically at the end of the UseScratchRegisterScope.
4557   UseScratchRegisterScope temps(this);
4558   TmpList()->set_list(tmp_list.list());
4559   FPTmpList()->set_list(fp_tmp_list.list());
4560 
4561   // Copies of the printf vararg registers that we can pop from.
4562   CPURegList pcs_varargs = kPCSVarargs;
4563   CPURegList pcs_varargs_fp = kPCSVarargsFP;
4564 
4565   // Place the arguments. There are lots of clever tricks and optimizations we
4566   // could use here, but Printf is a debug tool so instead we just try to keep
4567   // it simple: Move each input that isn't already in the right place to a
4568   // scratch register, then move everything back.
4569   for (unsigned i = 0; i < kPrintfMaxArgCount; i++) {
4570     // Work out the proper PCS register for this argument.
4571     if (args[i].IsRegister()) {
4572       pcs[i] = pcs_varargs.PopLowestIndex().X();
4573       // We might only need a W register here. We need to know the size of the
4574       // argument so we can properly encode it for the simulator call.
4575       if (args[i].Is32Bits()) pcs[i] = pcs[i].W();
4576     } else if (args[i].IsFPRegister()) {
4577       // In C, floats are always cast to doubles for varargs calls.
4578       pcs[i] = pcs_varargs_fp.PopLowestIndex().D();
4579     } else {
4580       DCHECK(args[i].IsNone());
4581       arg_count = i;
4582       break;
4583     }
4584 
4585     // If the argument is already in the right place, leave it where it is.
4586     if (args[i].Aliases(pcs[i])) continue;
4587 
4588     // Otherwise, if the argument is in a PCS argument register, allocate an
4589     // appropriate scratch register and then move it out of the way.
4590     if (kPCSVarargs.IncludesAliasOf(args[i]) ||
4591         kPCSVarargsFP.IncludesAliasOf(args[i])) {
4592       if (args[i].IsRegister()) {
4593         Register old_arg = Register(args[i]);
4594         Register new_arg = temps.AcquireSameSizeAs(old_arg);
4595         Mov(new_arg, old_arg);
4596         args[i] = new_arg;
4597       } else {
4598         FPRegister old_arg = FPRegister(args[i]);
4599         FPRegister new_arg = temps.AcquireSameSizeAs(old_arg);
4600         Fmov(new_arg, old_arg);
4601         args[i] = new_arg;
4602       }
4603     }
4604   }
4605 
4606   // Do a second pass to move values into their final positions and perform any
4607   // conversions that may be required.
4608   for (int i = 0; i < arg_count; i++) {
4609     DCHECK(pcs[i].type() == args[i].type());
4610     if (pcs[i].IsRegister()) {
4611       Mov(Register(pcs[i]), Register(args[i]), kDiscardForSameWReg);
4612     } else {
4613       DCHECK(pcs[i].IsFPRegister());
4614       if (pcs[i].SizeInBytes() == args[i].SizeInBytes()) {
4615         Fmov(FPRegister(pcs[i]), FPRegister(args[i]));
4616       } else {
4617         Fcvt(FPRegister(pcs[i]), FPRegister(args[i]));
4618       }
4619     }
4620   }
4621 
4622   // Load the format string into x0, as per the procedure-call standard.
4623   //
4624   // To make the code as portable as possible, the format string is encoded
4625   // directly in the instruction stream. It might be cleaner to encode it in a
4626   // literal pool, but since Printf is usually used for debugging, it is
4627   // beneficial for it to be minimally dependent on other features.
4628   Label format_address;
4629   Adr(x0, &format_address);
4630 
4631   // Emit the format string directly in the instruction stream.
4632   { BlockPoolsScope scope(this);
4633     Label after_data;
4634     B(&after_data);
4635     Bind(&format_address);
4636     EmitStringData(format);
4637     Unreachable();
4638     Bind(&after_data);
4639   }
4640 
4641   // We don't pass any arguments on the stack, but we still need to align the C
4642   // stack pointer to a 16-byte boundary for PCS compliance.
4643   if (!csp.Is(StackPointer())) {
4644     Bic(csp, StackPointer(), 0xf);
4645   }
4646 
4647   CallPrintf(arg_count, pcs);
4648 }
4649 
4650 
CallPrintf(int arg_count,const CPURegister * args)4651 void MacroAssembler::CallPrintf(int arg_count, const CPURegister * args) {
4652   // A call to printf needs special handling for the simulator, since the system
4653   // printf function will use a different instruction set and the procedure-call
4654   // standard will not be compatible.
4655 #ifdef USE_SIMULATOR
4656   { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
4657     hlt(kImmExceptionIsPrintf);
4658     dc32(arg_count);          // kPrintfArgCountOffset
4659 
4660     // Determine the argument pattern.
4661     uint32_t arg_pattern_list = 0;
4662     for (int i = 0; i < arg_count; i++) {
4663       uint32_t arg_pattern;
4664       if (args[i].IsRegister()) {
4665         arg_pattern = args[i].Is32Bits() ? kPrintfArgW : kPrintfArgX;
4666       } else {
4667         DCHECK(args[i].Is64Bits());
4668         arg_pattern = kPrintfArgD;
4669       }
4670       DCHECK(arg_pattern < (1 << kPrintfArgPatternBits));
4671       arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i));
4672     }
4673     dc32(arg_pattern_list);   // kPrintfArgPatternListOffset
4674   }
4675 #else
4676   Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE);
4677 #endif
4678 }
4679 
4680 
Printf(const char * format,CPURegister arg0,CPURegister arg1,CPURegister arg2,CPURegister arg3)4681 void MacroAssembler::Printf(const char * format,
4682                             CPURegister arg0,
4683                             CPURegister arg1,
4684                             CPURegister arg2,
4685                             CPURegister arg3) {
4686   // We can only print sp if it is the current stack pointer.
4687   if (!csp.Is(StackPointer())) {
4688     DCHECK(!csp.Aliases(arg0));
4689     DCHECK(!csp.Aliases(arg1));
4690     DCHECK(!csp.Aliases(arg2));
4691     DCHECK(!csp.Aliases(arg3));
4692   }
4693 
4694   // Printf is expected to preserve all registers, so make sure that none are
4695   // available as scratch registers until we've preserved them.
4696   RegList old_tmp_list = TmpList()->list();
4697   RegList old_fp_tmp_list = FPTmpList()->list();
4698   TmpList()->set_list(0);
4699   FPTmpList()->set_list(0);
4700 
4701   // Preserve all caller-saved registers as well as NZCV.
4702   // If csp is the stack pointer, PushCPURegList asserts that the size of each
4703   // list is a multiple of 16 bytes.
4704   PushCPURegList(kCallerSaved);
4705   PushCPURegList(kCallerSavedFP);
4706 
4707   // We can use caller-saved registers as scratch values (except for argN).
4708   CPURegList tmp_list = kCallerSaved;
4709   CPURegList fp_tmp_list = kCallerSavedFP;
4710   tmp_list.Remove(arg0, arg1, arg2, arg3);
4711   fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
4712   TmpList()->set_list(tmp_list.list());
4713   FPTmpList()->set_list(fp_tmp_list.list());
4714 
4715   { UseScratchRegisterScope temps(this);
4716     // If any of the arguments are the current stack pointer, allocate a new
4717     // register for them, and adjust the value to compensate for pushing the
4718     // caller-saved registers.
4719     bool arg0_sp = StackPointer().Aliases(arg0);
4720     bool arg1_sp = StackPointer().Aliases(arg1);
4721     bool arg2_sp = StackPointer().Aliases(arg2);
4722     bool arg3_sp = StackPointer().Aliases(arg3);
4723     if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) {
4724       // Allocate a register to hold the original stack pointer value, to pass
4725       // to PrintfNoPreserve as an argument.
4726       Register arg_sp = temps.AcquireX();
4727       Add(arg_sp, StackPointer(),
4728           kCallerSaved.TotalSizeInBytes() + kCallerSavedFP.TotalSizeInBytes());
4729       if (arg0_sp) arg0 = Register::Create(arg_sp.code(), arg0.SizeInBits());
4730       if (arg1_sp) arg1 = Register::Create(arg_sp.code(), arg1.SizeInBits());
4731       if (arg2_sp) arg2 = Register::Create(arg_sp.code(), arg2.SizeInBits());
4732       if (arg3_sp) arg3 = Register::Create(arg_sp.code(), arg3.SizeInBits());
4733     }
4734 
4735     // Preserve NZCV.
4736     { UseScratchRegisterScope temps(this);
4737       Register tmp = temps.AcquireX();
4738       Mrs(tmp, NZCV);
4739       Push(tmp, xzr);
4740     }
4741 
4742     PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
4743 
4744     // Restore NZCV.
4745     { UseScratchRegisterScope temps(this);
4746       Register tmp = temps.AcquireX();
4747       Pop(xzr, tmp);
4748       Msr(NZCV, tmp);
4749     }
4750   }
4751 
4752   PopCPURegList(kCallerSavedFP);
4753   PopCPURegList(kCallerSaved);
4754 
4755   TmpList()->set_list(old_tmp_list);
4756   FPTmpList()->set_list(old_fp_tmp_list);
4757 }
4758 
4759 
EmitFrameSetupForCodeAgePatching()4760 void MacroAssembler::EmitFrameSetupForCodeAgePatching() {
4761   // TODO(jbramley): Other architectures use the internal memcpy to copy the
4762   // sequence. If this is a performance bottleneck, we should consider caching
4763   // the sequence and copying it in the same way.
4764   InstructionAccurateScope scope(this,
4765                                  kNoCodeAgeSequenceLength / kInstructionSize);
4766   DCHECK(jssp.Is(StackPointer()));
4767   EmitFrameSetupForCodeAgePatching(this);
4768 }
4769 
4770 
4771 
EmitCodeAgeSequence(Code * stub)4772 void MacroAssembler::EmitCodeAgeSequence(Code* stub) {
4773   InstructionAccurateScope scope(this,
4774                                  kNoCodeAgeSequenceLength / kInstructionSize);
4775   DCHECK(jssp.Is(StackPointer()));
4776   EmitCodeAgeSequence(this, stub);
4777 }
4778 
4779 
4780 #undef __
4781 #define __ assm->
4782 
4783 
EmitFrameSetupForCodeAgePatching(Assembler * assm)4784 void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) {
4785   Label start;
4786   __ bind(&start);
4787 
4788   // We can do this sequence using four instructions, but the code ageing
4789   // sequence that patches it needs five, so we use the extra space to try to
4790   // simplify some addressing modes and remove some dependencies (compared to
4791   // using two stp instructions with write-back).
4792   __ sub(jssp, jssp, 4 * kXRegSize);
4793   __ sub(csp, csp, 4 * kXRegSize);
4794   __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSize));
4795   __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSize));
4796   __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
4797 
4798   __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
4799 }
4800 
4801 
EmitCodeAgeSequence(Assembler * assm,Code * stub)4802 void MacroAssembler::EmitCodeAgeSequence(Assembler * assm,
4803                                          Code * stub) {
4804   Label start;
4805   __ bind(&start);
4806   // When the stub is called, the sequence is replaced with the young sequence
4807   // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the
4808   // stub jumps to &start, stored in x0. The young sequence does not call the
4809   // stub so there is no infinite loop here.
4810   //
4811   // A branch (br) is used rather than a call (blr) because this code replaces
4812   // the frame setup code that would normally preserve lr.
4813   __ ldr_pcrel(ip0, kCodeAgeStubEntryOffset >> kLoadLiteralScaleLog2);
4814   __ adr(x0, &start);
4815   __ br(ip0);
4816   // IsCodeAgeSequence in codegen-arm64.cc assumes that the code generated up
4817   // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences.
4818   __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset);
4819   if (stub) {
4820     __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start()));
4821     __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
4822   }
4823 }
4824 
4825 
IsYoungSequence(Isolate * isolate,byte * sequence)4826 bool MacroAssembler::IsYoungSequence(Isolate* isolate, byte* sequence) {
4827   bool is_young = isolate->code_aging_helper()->IsYoung(sequence);
4828   DCHECK(is_young ||
4829          isolate->code_aging_helper()->IsOld(sequence));
4830   return is_young;
4831 }
4832 
4833 
TruncatingDiv(Register result,Register dividend,int32_t divisor)4834 void MacroAssembler::TruncatingDiv(Register result,
4835                                    Register dividend,
4836                                    int32_t divisor) {
4837   DCHECK(!AreAliased(result, dividend));
4838   DCHECK(result.Is32Bits() && dividend.Is32Bits());
4839   base::MagicNumbersForDivision<uint32_t> mag =
4840       base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
4841   Mov(result, mag.multiplier);
4842   Smull(result.X(), dividend, result);
4843   Asr(result.X(), result.X(), 32);
4844   bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
4845   if (divisor > 0 && neg) Add(result, result, dividend);
4846   if (divisor < 0 && !neg && mag.multiplier > 0) Sub(result, result, dividend);
4847   if (mag.shift > 0) Asr(result, result, mag.shift);
4848   Add(result, result, Operand(dividend, LSR, 31));
4849 }
4850 
4851 
4852 #undef __
4853 
4854 
~UseScratchRegisterScope()4855 UseScratchRegisterScope::~UseScratchRegisterScope() {
4856   available_->set_list(old_available_);
4857   availablefp_->set_list(old_availablefp_);
4858 }
4859 
4860 
AcquireSameSizeAs(const Register & reg)4861 Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
4862   int code = AcquireNextAvailable(available_).code();
4863   return Register::Create(code, reg.SizeInBits());
4864 }
4865 
4866 
AcquireSameSizeAs(const FPRegister & reg)4867 FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
4868   int code = AcquireNextAvailable(availablefp_).code();
4869   return FPRegister::Create(code, reg.SizeInBits());
4870 }
4871 
4872 
AcquireNextAvailable(CPURegList * available)4873 CPURegister UseScratchRegisterScope::AcquireNextAvailable(
4874     CPURegList* available) {
4875   CHECK(!available->IsEmpty());
4876   CPURegister result = available->PopLowestIndex();
4877   DCHECK(!AreAliased(result, xzr, csp));
4878   return result;
4879 }
4880 
4881 
UnsafeAcquire(CPURegList * available,const CPURegister & reg)4882 CPURegister UseScratchRegisterScope::UnsafeAcquire(CPURegList* available,
4883                                                    const CPURegister& reg) {
4884   DCHECK(available->IncludesAliasOf(reg));
4885   available->Remove(reg);
4886   return reg;
4887 }
4888 
4889 
4890 #define __ masm->
4891 
4892 
Emit(MacroAssembler * masm,const Register & reg,const Label * smi_check)4893 void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
4894                               const Label* smi_check) {
4895   Assembler::BlockPoolsScope scope(masm);
4896   if (reg.IsValid()) {
4897     DCHECK(smi_check->is_bound());
4898     DCHECK(reg.Is64Bits());
4899 
4900     // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
4901     // 'check' in the other bits. The possible offset is limited in that we
4902     // use BitField to pack the data, and the underlying data type is a
4903     // uint32_t.
4904     uint32_t delta =
4905         static_cast<uint32_t>(__ InstructionsGeneratedSince(smi_check));
4906     __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
4907   } else {
4908     DCHECK(!smi_check->is_bound());
4909 
4910     // An offset of 0 indicates that there is no patch site.
4911     __ InlineData(0);
4912   }
4913 }
4914 
4915 
InlineSmiCheckInfo(Address info)4916 InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
4917     : reg_(NoReg), smi_check_(NULL) {
4918   InstructionSequence* inline_data = InstructionSequence::At(info);
4919   DCHECK(inline_data->IsInlineData());
4920   if (inline_data->IsInlineData()) {
4921     uint64_t payload = inline_data->InlineData();
4922     // We use BitField to decode the payload, and BitField can only handle
4923     // 32-bit values.
4924     DCHECK(is_uint32(payload));
4925     if (payload != 0) {
4926       uint32_t payload32 = static_cast<uint32_t>(payload);
4927       int reg_code = RegisterBits::decode(payload32);
4928       reg_ = Register::XRegFromCode(reg_code);
4929       int smi_check_delta = DeltaBits::decode(payload32);
4930       DCHECK(smi_check_delta != 0);
4931       smi_check_ = inline_data->preceding(smi_check_delta);
4932     }
4933   }
4934 }
4935 
4936 
4937 #undef __
4938 
4939 
4940 }  // namespace internal
4941 }  // namespace v8
4942 
4943 #endif  // V8_TARGET_ARCH_ARM64
4944