1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/bignum-dtoa.h"
6 
7 #include <cmath>
8 
9 #include "src/base/logging.h"
10 #include "src/bignum.h"
11 #include "src/double.h"
12 #include "src/utils.h"
13 
14 namespace v8 {
15 namespace internal {
16 
NormalizedExponent(uint64_t significand,int exponent)17 static int NormalizedExponent(uint64_t significand, int exponent) {
18   DCHECK(significand != 0);
19   while ((significand & Double::kHiddenBit) == 0) {
20     significand = significand << 1;
21     exponent = exponent - 1;
22   }
23   return exponent;
24 }
25 
26 
27 // Forward declarations:
28 // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
29 static int EstimatePower(int exponent);
30 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
31 // and denominator.
32 static void InitialScaledStartValues(double v,
33                                      int estimated_power,
34                                      bool need_boundary_deltas,
35                                      Bignum* numerator,
36                                      Bignum* denominator,
37                                      Bignum* delta_minus,
38                                      Bignum* delta_plus);
39 // Multiplies numerator/denominator so that its values lies in the range 1-10.
40 // Returns decimal_point s.t.
41 //  v = numerator'/denominator' * 10^(decimal_point-1)
42 //     where numerator' and denominator' are the values of numerator and
43 //     denominator after the call to this function.
44 static void FixupMultiply10(int estimated_power, bool is_even,
45                             int* decimal_point,
46                             Bignum* numerator, Bignum* denominator,
47                             Bignum* delta_minus, Bignum* delta_plus);
48 // Generates digits from the left to the right and stops when the generated
49 // digits yield the shortest decimal representation of v.
50 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
51                                    Bignum* delta_minus, Bignum* delta_plus,
52                                    bool is_even,
53                                    Vector<char> buffer, int* length);
54 // Generates 'requested_digits' after the decimal point.
55 static void BignumToFixed(int requested_digits, int* decimal_point,
56                           Bignum* numerator, Bignum* denominator,
57                           Vector<char>(buffer), int* length);
58 // Generates 'count' digits of numerator/denominator.
59 // Once 'count' digits have been produced rounds the result depending on the
60 // remainder (remainders of exactly .5 round upwards). Might update the
61 // decimal_point when rounding up (for example for 0.9999).
62 static void GenerateCountedDigits(int count, int* decimal_point,
63                                   Bignum* numerator, Bignum* denominator,
64                                   Vector<char>(buffer), int* length);
65 
66 
BignumDtoa(double v,BignumDtoaMode mode,int requested_digits,Vector<char> buffer,int * length,int * decimal_point)67 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
68                 Vector<char> buffer, int* length, int* decimal_point) {
69   DCHECK(v > 0);
70   DCHECK(!Double(v).IsSpecial());
71   uint64_t significand = Double(v).Significand();
72   bool is_even = (significand & 1) == 0;
73   int exponent = Double(v).Exponent();
74   int normalized_exponent = NormalizedExponent(significand, exponent);
75   // estimated_power might be too low by 1.
76   int estimated_power = EstimatePower(normalized_exponent);
77 
78   // Shortcut for Fixed.
79   // The requested digits correspond to the digits after the point. If the
80   // number is much too small, then there is no need in trying to get any
81   // digits.
82   if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
83     buffer[0] = '\0';
84     *length = 0;
85     // Set decimal-point to -requested_digits. This is what Gay does.
86     // Note that it should not have any effect anyways since the string is
87     // empty.
88     *decimal_point = -requested_digits;
89     return;
90   }
91 
92   Bignum numerator;
93   Bignum denominator;
94   Bignum delta_minus;
95   Bignum delta_plus;
96   // Make sure the bignum can grow large enough. The smallest double equals
97   // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
98   // The maximum double is 1.7976931348623157e308 which needs fewer than
99   // 308*4 binary digits.
100   DCHECK(Bignum::kMaxSignificantBits >= 324*4);
101   bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
102   InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
103                            &numerator, &denominator,
104                            &delta_minus, &delta_plus);
105   // We now have v = (numerator / denominator) * 10^estimated_power.
106   FixupMultiply10(estimated_power, is_even, decimal_point,
107                   &numerator, &denominator,
108                   &delta_minus, &delta_plus);
109   // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
110   //  1 <= (numerator + delta_plus) / denominator < 10
111   switch (mode) {
112     case BIGNUM_DTOA_SHORTEST:
113       GenerateShortestDigits(&numerator, &denominator,
114                              &delta_minus, &delta_plus,
115                              is_even, buffer, length);
116       break;
117     case BIGNUM_DTOA_FIXED:
118       BignumToFixed(requested_digits, decimal_point,
119                     &numerator, &denominator,
120                     buffer, length);
121       break;
122     case BIGNUM_DTOA_PRECISION:
123       GenerateCountedDigits(requested_digits, decimal_point,
124                             &numerator, &denominator,
125                             buffer, length);
126       break;
127     default:
128       UNREACHABLE();
129   }
130   buffer[*length] = '\0';
131 }
132 
133 
134 // The procedure starts generating digits from the left to the right and stops
135 // when the generated digits yield the shortest decimal representation of v. A
136 // decimal representation of v is a number lying closer to v than to any other
137 // double, so it converts to v when read.
138 //
139 // This is true if d, the decimal representation, is between m- and m+, the
140 // upper and lower boundaries. d must be strictly between them if !is_even.
141 //           m- := (numerator - delta_minus) / denominator
142 //           m+ := (numerator + delta_plus) / denominator
143 //
144 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
145 //   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
146 //   will be produced. This should be the standard precondition.
GenerateShortestDigits(Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus,bool is_even,Vector<char> buffer,int * length)147 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
148                                    Bignum* delta_minus, Bignum* delta_plus,
149                                    bool is_even,
150                                    Vector<char> buffer, int* length) {
151   // Small optimization: if delta_minus and delta_plus are the same just reuse
152   // one of the two bignums.
153   if (Bignum::Equal(*delta_minus, *delta_plus)) {
154     delta_plus = delta_minus;
155   }
156   *length = 0;
157   while (true) {
158     uint16_t digit;
159     digit = numerator->DivideModuloIntBignum(*denominator);
160     DCHECK(digit <= 9);  // digit is a uint16_t and therefore always positive.
161     // digit = numerator / denominator (integer division).
162     // numerator = numerator % denominator.
163     buffer[(*length)++] = digit + '0';
164 
165     // Can we stop already?
166     // If the remainder of the division is less than the distance to the lower
167     // boundary we can stop. In this case we simply round down (discarding the
168     // remainder).
169     // Similarly we test if we can round up (using the upper boundary).
170     bool in_delta_room_minus;
171     bool in_delta_room_plus;
172     if (is_even) {
173       in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
174     } else {
175       in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
176     }
177     if (is_even) {
178       in_delta_room_plus =
179           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
180     } else {
181       in_delta_room_plus =
182           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
183     }
184     if (!in_delta_room_minus && !in_delta_room_plus) {
185       // Prepare for next iteration.
186       numerator->Times10();
187       delta_minus->Times10();
188       // We optimized delta_plus to be equal to delta_minus (if they share the
189       // same value). So don't multiply delta_plus if they point to the same
190       // object.
191       if (delta_minus != delta_plus) {
192         delta_plus->Times10();
193       }
194     } else if (in_delta_room_minus && in_delta_room_plus) {
195       // Let's see if 2*numerator < denominator.
196       // If yes, then the next digit would be < 5 and we can round down.
197       int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
198       if (compare < 0) {
199         // Remaining digits are less than .5. -> Round down (== do nothing).
200       } else if (compare > 0) {
201         // Remaining digits are more than .5 of denominator. -> Round up.
202         // Note that the last digit could not be a '9' as otherwise the whole
203         // loop would have stopped earlier.
204         // We still have an assert here in case the preconditions were not
205         // satisfied.
206         DCHECK(buffer[(*length) - 1] != '9');
207         buffer[(*length) - 1]++;
208       } else {
209         // Halfway case.
210         // TODO(floitsch): need a way to solve half-way cases.
211         //   For now let's round towards even (since this is what Gay seems to
212         //   do).
213 
214         if ((buffer[(*length) - 1] - '0') % 2 == 0) {
215           // Round down => Do nothing.
216         } else {
217           DCHECK(buffer[(*length) - 1] != '9');
218           buffer[(*length) - 1]++;
219         }
220       }
221       return;
222     } else if (in_delta_room_minus) {
223       // Round down (== do nothing).
224       return;
225     } else {  // in_delta_room_plus
226       // Round up.
227       // Note again that the last digit could not be '9' since this would have
228       // stopped the loop earlier.
229       // We still have an DCHECK here, in case the preconditions were not
230       // satisfied.
231       DCHECK(buffer[(*length) -1] != '9');
232       buffer[(*length) - 1]++;
233       return;
234     }
235   }
236 }
237 
238 
239 // Let v = numerator / denominator < 10.
240 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
241 // from left to right. Once 'count' digits have been produced we decide wether
242 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
243 // as 9.999999 propagate a carry all the way, and change the
244 // exponent (decimal_point), when rounding upwards.
GenerateCountedDigits(int count,int * decimal_point,Bignum * numerator,Bignum * denominator,Vector<char> (buffer),int * length)245 static void GenerateCountedDigits(int count, int* decimal_point,
246                                   Bignum* numerator, Bignum* denominator,
247                                   Vector<char>(buffer), int* length) {
248   DCHECK(count >= 0);
249   for (int i = 0; i < count - 1; ++i) {
250     uint16_t digit;
251     digit = numerator->DivideModuloIntBignum(*denominator);
252     DCHECK(digit <= 9);  // digit is a uint16_t and therefore always positive.
253     // digit = numerator / denominator (integer division).
254     // numerator = numerator % denominator.
255     buffer[i] = digit + '0';
256     // Prepare for next iteration.
257     numerator->Times10();
258   }
259   // Generate the last digit.
260   uint16_t digit;
261   digit = numerator->DivideModuloIntBignum(*denominator);
262   if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
263     digit++;
264   }
265   buffer[count - 1] = digit + '0';
266   // Correct bad digits (in case we had a sequence of '9's). Propagate the
267   // carry until we hat a non-'9' or til we reach the first digit.
268   for (int i = count - 1; i > 0; --i) {
269     if (buffer[i] != '0' + 10) break;
270     buffer[i] = '0';
271     buffer[i - 1]++;
272   }
273   if (buffer[0] == '0' + 10) {
274     // Propagate a carry past the top place.
275     buffer[0] = '1';
276     (*decimal_point)++;
277   }
278   *length = count;
279 }
280 
281 
282 // Generates 'requested_digits' after the decimal point. It might omit
283 // trailing '0's. If the input number is too small then no digits at all are
284 // generated (ex.: 2 fixed digits for 0.00001).
285 //
286 // Input verifies:  1 <= (numerator + delta) / denominator < 10.
BignumToFixed(int requested_digits,int * decimal_point,Bignum * numerator,Bignum * denominator,Vector<char> (buffer),int * length)287 static void BignumToFixed(int requested_digits, int* decimal_point,
288                           Bignum* numerator, Bignum* denominator,
289                           Vector<char>(buffer), int* length) {
290   // Note that we have to look at more than just the requested_digits, since
291   // a number could be rounded up. Example: v=0.5 with requested_digits=0.
292   // Even though the power of v equals 0 we can't just stop here.
293   if (-(*decimal_point) > requested_digits) {
294     // The number is definitively too small.
295     // Ex: 0.001 with requested_digits == 1.
296     // Set decimal-point to -requested_digits. This is what Gay does.
297     // Note that it should not have any effect anyways since the string is
298     // empty.
299     *decimal_point = -requested_digits;
300     *length = 0;
301     return;
302   } else if (-(*decimal_point) == requested_digits) {
303     // We only need to verify if the number rounds down or up.
304     // Ex: 0.04 and 0.06 with requested_digits == 1.
305     DCHECK(*decimal_point == -requested_digits);
306     // Initially the fraction lies in range (1, 10]. Multiply the denominator
307     // by 10 so that we can compare more easily.
308     denominator->Times10();
309     if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
310       // If the fraction is >= 0.5 then we have to include the rounded
311       // digit.
312       buffer[0] = '1';
313       *length = 1;
314       (*decimal_point)++;
315     } else {
316       // Note that we caught most of similar cases earlier.
317       *length = 0;
318     }
319     return;
320   } else {
321     // The requested digits correspond to the digits after the point.
322     // The variable 'needed_digits' includes the digits before the point.
323     int needed_digits = (*decimal_point) + requested_digits;
324     GenerateCountedDigits(needed_digits, decimal_point,
325                           numerator, denominator,
326                           buffer, length);
327   }
328 }
329 
330 
331 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
332 // v = f * 2^exponent and 2^52 <= f < 2^53.
333 // v is hence a normalized double with the given exponent. The output is an
334 // approximation for the exponent of the decimal approimation .digits * 10^k.
335 //
336 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
337 // Note: this property holds for v's upper boundary m+ too.
338 //    10^k <= m+ < 10^k+1.
339 //   (see explanation below).
340 //
341 // Examples:
342 //  EstimatePower(0)   => 16
343 //  EstimatePower(-52) => 0
344 //
345 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
EstimatePower(int exponent)346 static int EstimatePower(int exponent) {
347   // This function estimates log10 of v where v = f*2^e (with e == exponent).
348   // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
349   // Note that f is bounded by its container size. Let p = 53 (the double's
350   // significand size). Then 2^(p-1) <= f < 2^p.
351   //
352   // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
353   // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
354   // The computed number undershoots by less than 0.631 (when we compute log3
355   // and not log10).
356   //
357   // Optimization: since we only need an approximated result this computation
358   // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
359   // not really measurable, though.
360   //
361   // Since we want to avoid overshooting we decrement by 1e10 so that
362   // floating-point imprecisions don't affect us.
363   //
364   // Explanation for v's boundary m+: the computation takes advantage of
365   // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
366   // (even for denormals where the delta can be much more important).
367 
368   const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
369 
370   // For doubles len(f) == 53 (don't forget the hidden bit).
371   const int kSignificandSize = 53;
372   double estimate =
373       std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
374   return static_cast<int>(estimate);
375 }
376 
377 
378 // See comments for InitialScaledStartValues.
InitialScaledStartValuesPositiveExponent(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)379 static void InitialScaledStartValuesPositiveExponent(
380     double v, int estimated_power, bool need_boundary_deltas,
381     Bignum* numerator, Bignum* denominator,
382     Bignum* delta_minus, Bignum* delta_plus) {
383   // A positive exponent implies a positive power.
384   DCHECK(estimated_power >= 0);
385   // Since the estimated_power is positive we simply multiply the denominator
386   // by 10^estimated_power.
387 
388   // numerator = v.
389   numerator->AssignUInt64(Double(v).Significand());
390   numerator->ShiftLeft(Double(v).Exponent());
391   // denominator = 10^estimated_power.
392   denominator->AssignPowerUInt16(10, estimated_power);
393 
394   if (need_boundary_deltas) {
395     // Introduce a common denominator so that the deltas to the boundaries are
396     // integers.
397     denominator->ShiftLeft(1);
398     numerator->ShiftLeft(1);
399     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
400     // denominator (of 2) delta_plus equals 2^e.
401     delta_plus->AssignUInt16(1);
402     delta_plus->ShiftLeft(Double(v).Exponent());
403     // Same for delta_minus (with adjustments below if f == 2^p-1).
404     delta_minus->AssignUInt16(1);
405     delta_minus->ShiftLeft(Double(v).Exponent());
406 
407     // If the significand (without the hidden bit) is 0, then the lower
408     // boundary is closer than just half a ulp (unit in the last place).
409     // There is only one exception: if the next lower number is a denormal then
410     // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
411     // have to test it in the other function where exponent < 0).
412     uint64_t v_bits = Double(v).AsUint64();
413     if ((v_bits & Double::kSignificandMask) == 0) {
414       // The lower boundary is closer at half the distance of "normal" numbers.
415       // Increase the common denominator and adapt all but the delta_minus.
416       denominator->ShiftLeft(1);  // *2
417       numerator->ShiftLeft(1);    // *2
418       delta_plus->ShiftLeft(1);   // *2
419     }
420   }
421 }
422 
423 
424 // See comments for InitialScaledStartValues
InitialScaledStartValuesNegativeExponentPositivePower(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)425 static void InitialScaledStartValuesNegativeExponentPositivePower(
426     double v, int estimated_power, bool need_boundary_deltas,
427     Bignum* numerator, Bignum* denominator,
428     Bignum* delta_minus, Bignum* delta_plus) {
429   uint64_t significand = Double(v).Significand();
430   int exponent = Double(v).Exponent();
431   // v = f * 2^e with e < 0, and with estimated_power >= 0.
432   // This means that e is close to 0 (have a look at how estimated_power is
433   // computed).
434 
435   // numerator = significand
436   //  since v = significand * 2^exponent this is equivalent to
437   //  numerator = v * / 2^-exponent
438   numerator->AssignUInt64(significand);
439   // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
440   denominator->AssignPowerUInt16(10, estimated_power);
441   denominator->ShiftLeft(-exponent);
442 
443   if (need_boundary_deltas) {
444     // Introduce a common denominator so that the deltas to the boundaries are
445     // integers.
446     denominator->ShiftLeft(1);
447     numerator->ShiftLeft(1);
448     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
449     // denominator (of 2) delta_plus equals 2^e.
450     // Given that the denominator already includes v's exponent the distance
451     // to the boundaries is simply 1.
452     delta_plus->AssignUInt16(1);
453     // Same for delta_minus (with adjustments below if f == 2^p-1).
454     delta_minus->AssignUInt16(1);
455 
456     // If the significand (without the hidden bit) is 0, then the lower
457     // boundary is closer than just one ulp (unit in the last place).
458     // There is only one exception: if the next lower number is a denormal
459     // then the distance is 1 ulp. Since the exponent is close to zero
460     // (otherwise estimated_power would have been negative) this cannot happen
461     // here either.
462     uint64_t v_bits = Double(v).AsUint64();
463     if ((v_bits & Double::kSignificandMask) == 0) {
464       // The lower boundary is closer at half the distance of "normal" numbers.
465       // Increase the denominator and adapt all but the delta_minus.
466       denominator->ShiftLeft(1);  // *2
467       numerator->ShiftLeft(1);    // *2
468       delta_plus->ShiftLeft(1);   // *2
469     }
470   }
471 }
472 
473 
474 // See comments for InitialScaledStartValues
InitialScaledStartValuesNegativeExponentNegativePower(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)475 static void InitialScaledStartValuesNegativeExponentNegativePower(
476     double v, int estimated_power, bool need_boundary_deltas,
477     Bignum* numerator, Bignum* denominator,
478     Bignum* delta_minus, Bignum* delta_plus) {
479   const uint64_t kMinimalNormalizedExponent =
480       V8_2PART_UINT64_C(0x00100000, 00000000);
481   uint64_t significand = Double(v).Significand();
482   int exponent = Double(v).Exponent();
483   // Instead of multiplying the denominator with 10^estimated_power we
484   // multiply all values (numerator and deltas) by 10^-estimated_power.
485 
486   // Use numerator as temporary container for power_ten.
487   Bignum* power_ten = numerator;
488   power_ten->AssignPowerUInt16(10, -estimated_power);
489 
490   if (need_boundary_deltas) {
491     // Since power_ten == numerator we must make a copy of 10^estimated_power
492     // before we complete the computation of the numerator.
493     // delta_plus = delta_minus = 10^estimated_power
494     delta_plus->AssignBignum(*power_ten);
495     delta_minus->AssignBignum(*power_ten);
496   }
497 
498   // numerator = significand * 2 * 10^-estimated_power
499   //  since v = significand * 2^exponent this is equivalent to
500   // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
501   // Remember: numerator has been abused as power_ten. So no need to assign it
502   //  to itself.
503   DCHECK(numerator == power_ten);
504   numerator->MultiplyByUInt64(significand);
505 
506   // denominator = 2 * 2^-exponent with exponent < 0.
507   denominator->AssignUInt16(1);
508   denominator->ShiftLeft(-exponent);
509 
510   if (need_boundary_deltas) {
511     // Introduce a common denominator so that the deltas to the boundaries are
512     // integers.
513     numerator->ShiftLeft(1);
514     denominator->ShiftLeft(1);
515     // With this shift the boundaries have their correct value, since
516     // delta_plus = 10^-estimated_power, and
517     // delta_minus = 10^-estimated_power.
518     // These assignments have been done earlier.
519 
520     // The special case where the lower boundary is twice as close.
521     // This time we have to look out for the exception too.
522     uint64_t v_bits = Double(v).AsUint64();
523     if ((v_bits & Double::kSignificandMask) == 0 &&
524         // The only exception where a significand == 0 has its boundaries at
525         // "normal" distances:
526         (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
527       numerator->ShiftLeft(1);    // *2
528       denominator->ShiftLeft(1);  // *2
529       delta_plus->ShiftLeft(1);   // *2
530     }
531   }
532 }
533 
534 
535 // Let v = significand * 2^exponent.
536 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
537 // and denominator. The functions GenerateShortestDigits and
538 // GenerateCountedDigits will then convert this ratio to its decimal
539 // representation d, with the required accuracy.
540 // Then d * 10^estimated_power is the representation of v.
541 // (Note: the fraction and the estimated_power might get adjusted before
542 // generating the decimal representation.)
543 //
544 // The initial start values consist of:
545 //  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
546 //  - a scaled (common) denominator.
547 //  optionally (used by GenerateShortestDigits to decide if it has the shortest
548 //  decimal converting back to v):
549 //  - v - m-: the distance to the lower boundary.
550 //  - m+ - v: the distance to the upper boundary.
551 //
552 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
553 //
554 // Let ep == estimated_power, then the returned values will satisfy:
555 //  v / 10^ep = numerator / denominator.
556 //  v's boundarys m- and m+:
557 //    m- / 10^ep == v / 10^ep - delta_minus / denominator
558 //    m+ / 10^ep == v / 10^ep + delta_plus / denominator
559 //  Or in other words:
560 //    m- == v - delta_minus * 10^ep / denominator;
561 //    m+ == v + delta_plus * 10^ep / denominator;
562 //
563 // Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
564 //  or       10^k <= v < 10^(k+1)
565 //  we then have 0.1 <= numerator/denominator < 1
566 //           or    1 <= numerator/denominator < 10
567 //
568 // It is then easy to kickstart the digit-generation routine.
569 //
570 // The boundary-deltas are only filled if need_boundary_deltas is set.
InitialScaledStartValues(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)571 static void InitialScaledStartValues(double v,
572                                      int estimated_power,
573                                      bool need_boundary_deltas,
574                                      Bignum* numerator,
575                                      Bignum* denominator,
576                                      Bignum* delta_minus,
577                                      Bignum* delta_plus) {
578   if (Double(v).Exponent() >= 0) {
579     InitialScaledStartValuesPositiveExponent(
580         v, estimated_power, need_boundary_deltas,
581         numerator, denominator, delta_minus, delta_plus);
582   } else if (estimated_power >= 0) {
583     InitialScaledStartValuesNegativeExponentPositivePower(
584         v, estimated_power, need_boundary_deltas,
585         numerator, denominator, delta_minus, delta_plus);
586   } else {
587     InitialScaledStartValuesNegativeExponentNegativePower(
588         v, estimated_power, need_boundary_deltas,
589         numerator, denominator, delta_minus, delta_plus);
590   }
591 }
592 
593 
594 // This routine multiplies numerator/denominator so that its values lies in the
595 // range 1-10. That is after a call to this function we have:
596 //    1 <= (numerator + delta_plus) /denominator < 10.
597 // Let numerator the input before modification and numerator' the argument
598 // after modification, then the output-parameter decimal_point is such that
599 //  numerator / denominator * 10^estimated_power ==
600 //    numerator' / denominator' * 10^(decimal_point - 1)
601 // In some cases estimated_power was too low, and this is already the case. We
602 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
603 // estimated_power) but do not touch the numerator or denominator.
604 // Otherwise the routine multiplies the numerator and the deltas by 10.
FixupMultiply10(int estimated_power,bool is_even,int * decimal_point,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)605 static void FixupMultiply10(int estimated_power, bool is_even,
606                             int* decimal_point,
607                             Bignum* numerator, Bignum* denominator,
608                             Bignum* delta_minus, Bignum* delta_plus) {
609   bool in_range;
610   if (is_even) {
611     // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
612     // are rounded to the closest floating-point number with even significand.
613     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
614   } else {
615     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
616   }
617   if (in_range) {
618     // Since numerator + delta_plus >= denominator we already have
619     // 1 <= numerator/denominator < 10. Simply update the estimated_power.
620     *decimal_point = estimated_power + 1;
621   } else {
622     *decimal_point = estimated_power;
623     numerator->Times10();
624     if (Bignum::Equal(*delta_minus, *delta_plus)) {
625       delta_minus->Times10();
626       delta_plus->AssignBignum(*delta_minus);
627     } else {
628       delta_minus->Times10();
629       delta_plus->Times10();
630     }
631   }
632 }
633 
634 }  // namespace internal
635 }  // namespace v8
636