1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/compiler/branch-elimination.h"
6 
7 #include "src/compiler/js-graph.h"
8 #include "src/compiler/node-properties.h"
9 #include "src/compiler/simplified-operator.h"
10 
11 namespace v8 {
12 namespace internal {
13 namespace compiler {
14 
BranchElimination(Editor * editor,JSGraph * js_graph,Zone * zone)15 BranchElimination::BranchElimination(Editor* editor, JSGraph* js_graph,
16                                      Zone* zone)
17     : AdvancedReducer(editor),
18       jsgraph_(js_graph),
19       node_conditions_(zone, js_graph->graph()->NodeCount()),
20       zone_(zone),
21       dead_(js_graph->graph()->NewNode(js_graph->common()->Dead())) {}
22 
~BranchElimination()23 BranchElimination::~BranchElimination() {}
24 
25 
Reduce(Node * node)26 Reduction BranchElimination::Reduce(Node* node) {
27   switch (node->opcode()) {
28     case IrOpcode::kDead:
29       return NoChange();
30     case IrOpcode::kDeoptimizeIf:
31     case IrOpcode::kDeoptimizeUnless:
32       return ReduceDeoptimizeConditional(node);
33     case IrOpcode::kMerge:
34       return ReduceMerge(node);
35     case IrOpcode::kLoop:
36       return ReduceLoop(node);
37     case IrOpcode::kBranch:
38       return ReduceBranch(node);
39     case IrOpcode::kIfFalse:
40       return ReduceIf(node, false);
41     case IrOpcode::kIfTrue:
42       return ReduceIf(node, true);
43     case IrOpcode::kStart:
44       return ReduceStart(node);
45     default:
46       if (node->op()->ControlOutputCount() > 0) {
47         return ReduceOtherControl(node);
48       }
49       break;
50   }
51   return NoChange();
52 }
53 
54 
ReduceBranch(Node * node)55 Reduction BranchElimination::ReduceBranch(Node* node) {
56   Node* condition = node->InputAt(0);
57   Node* control_input = NodeProperties::GetControlInput(node, 0);
58   const ControlPathConditions* from_input = node_conditions_.Get(control_input);
59   if (from_input != nullptr) {
60     Maybe<bool> condition_value = from_input->LookupCondition(condition);
61     // If we know the condition we can discard the branch.
62     if (condition_value.IsJust()) {
63       bool known_value = condition_value.FromJust();
64       for (Node* const use : node->uses()) {
65         switch (use->opcode()) {
66           case IrOpcode::kIfTrue:
67             Replace(use, known_value ? control_input : dead());
68             break;
69           case IrOpcode::kIfFalse:
70             Replace(use, known_value ? dead() : control_input);
71             break;
72           default:
73             UNREACHABLE();
74         }
75       }
76       return Replace(dead());
77     }
78   }
79   return TakeConditionsFromFirstControl(node);
80 }
81 
ReduceDeoptimizeConditional(Node * node)82 Reduction BranchElimination::ReduceDeoptimizeConditional(Node* node) {
83   DCHECK(node->opcode() == IrOpcode::kDeoptimizeIf ||
84          node->opcode() == IrOpcode::kDeoptimizeUnless);
85   bool condition_is_true = node->opcode() == IrOpcode::kDeoptimizeUnless;
86   DeoptimizeReason reason = DeoptimizeReasonOf(node->op());
87   Node* condition = NodeProperties::GetValueInput(node, 0);
88   Node* frame_state = NodeProperties::GetValueInput(node, 1);
89   Node* effect = NodeProperties::GetEffectInput(node);
90   Node* control = NodeProperties::GetControlInput(node);
91   ControlPathConditions const* conditions = node_conditions_.Get(control);
92   // If we do not know anything about the predecessor, do not propagate just
93   // yet because we will have to recompute anyway once we compute the
94   // predecessor.
95   if (conditions == nullptr) {
96     return UpdateConditions(node, conditions);
97   }
98   Maybe<bool> condition_value = conditions->LookupCondition(condition);
99   if (condition_value.IsJust()) {
100     // If we know the condition we can discard the branch.
101     if (condition_is_true == condition_value.FromJust()) {
102       // We don't update the conditions here, because we're replacing {node}
103       // with the {control} node that already contains the right information.
104       ReplaceWithValue(node, dead(), effect, control);
105     } else {
106       control =
107           graph()->NewNode(common()->Deoptimize(DeoptimizeKind::kEager, reason),
108                            frame_state, effect, control);
109       // TODO(bmeurer): This should be on the AdvancedReducer somehow.
110       NodeProperties::MergeControlToEnd(graph(), common(), control);
111       Revisit(graph()->end());
112     }
113     return Replace(dead());
114   }
115   return UpdateConditions(
116       node, conditions->AddCondition(zone_, condition, condition_is_true));
117 }
118 
ReduceIf(Node * node,bool is_true_branch)119 Reduction BranchElimination::ReduceIf(Node* node, bool is_true_branch) {
120   // Add the condition to the list arriving from the input branch.
121   Node* branch = NodeProperties::GetControlInput(node, 0);
122   const ControlPathConditions* from_branch = node_conditions_.Get(branch);
123   // If we do not know anything about the predecessor, do not propagate just
124   // yet because we will have to recompute anyway once we compute the
125   // predecessor.
126   if (from_branch == nullptr) {
127     return UpdateConditions(node, nullptr);
128   }
129   Node* condition = branch->InputAt(0);
130   return UpdateConditions(
131       node, from_branch->AddCondition(zone_, condition, is_true_branch));
132 }
133 
134 
ReduceLoop(Node * node)135 Reduction BranchElimination::ReduceLoop(Node* node) {
136   // Here we rely on having only reducible loops:
137   // The loop entry edge always dominates the header, so we can just use
138   // the information from the loop entry edge.
139   return TakeConditionsFromFirstControl(node);
140 }
141 
142 
ReduceMerge(Node * node)143 Reduction BranchElimination::ReduceMerge(Node* node) {
144   // Shortcut for the case when we do not know anything about some
145   // input.
146   for (int i = 0; i < node->InputCount(); i++) {
147     if (node_conditions_.Get(node->InputAt(i)) == nullptr) {
148       return UpdateConditions(node, nullptr);
149     }
150   }
151 
152   const ControlPathConditions* first = node_conditions_.Get(node->InputAt(0));
153   // Make a copy of the first input's conditions and merge with the conditions
154   // from other inputs.
155   ControlPathConditions* conditions =
156       new (zone_->New(sizeof(ControlPathConditions)))
157           ControlPathConditions(*first);
158   for (int i = 1; i < node->InputCount(); i++) {
159     conditions->Merge(*(node_conditions_.Get(node->InputAt(i))));
160   }
161 
162   return UpdateConditions(node, conditions);
163 }
164 
165 
ReduceStart(Node * node)166 Reduction BranchElimination::ReduceStart(Node* node) {
167   return UpdateConditions(node, ControlPathConditions::Empty(zone_));
168 }
169 
170 
171 const BranchElimination::ControlPathConditions*
Get(Node * node)172 BranchElimination::PathConditionsForControlNodes::Get(Node* node) {
173   if (static_cast<size_t>(node->id()) < info_for_node_.size()) {
174     return info_for_node_[node->id()];
175   }
176   return nullptr;
177 }
178 
179 
Set(Node * node,const ControlPathConditions * conditions)180 void BranchElimination::PathConditionsForControlNodes::Set(
181     Node* node, const ControlPathConditions* conditions) {
182   size_t index = static_cast<size_t>(node->id());
183   if (index >= info_for_node_.size()) {
184     info_for_node_.resize(index + 1, nullptr);
185   }
186   info_for_node_[index] = conditions;
187 }
188 
189 
ReduceOtherControl(Node * node)190 Reduction BranchElimination::ReduceOtherControl(Node* node) {
191   DCHECK_EQ(1, node->op()->ControlInputCount());
192   return TakeConditionsFromFirstControl(node);
193 }
194 
195 
TakeConditionsFromFirstControl(Node * node)196 Reduction BranchElimination::TakeConditionsFromFirstControl(Node* node) {
197   // We just propagate the information from the control input (ideally,
198   // we would only revisit control uses if there is change).
199   const ControlPathConditions* from_input =
200       node_conditions_.Get(NodeProperties::GetControlInput(node, 0));
201   return UpdateConditions(node, from_input);
202 }
203 
204 
UpdateConditions(Node * node,const ControlPathConditions * conditions)205 Reduction BranchElimination::UpdateConditions(
206     Node* node, const ControlPathConditions* conditions) {
207   const ControlPathConditions* original = node_conditions_.Get(node);
208   // Only signal that the node has Changed if the condition information has
209   // changed.
210   if (conditions != original) {
211     if (conditions == nullptr || original == nullptr ||
212         *conditions != *original) {
213       node_conditions_.Set(node, conditions);
214       return Changed(node);
215     }
216   }
217   return NoChange();
218 }
219 
220 
221 // static
222 const BranchElimination::ControlPathConditions*
Empty(Zone * zone)223 BranchElimination::ControlPathConditions::Empty(Zone* zone) {
224   return new (zone->New(sizeof(ControlPathConditions)))
225       ControlPathConditions(nullptr, 0);
226 }
227 
228 
Merge(const ControlPathConditions & other)229 void BranchElimination::ControlPathConditions::Merge(
230     const ControlPathConditions& other) {
231   // Change the current condition list to a longest common tail
232   // of this condition list and the other list. (The common tail
233   // should correspond to the list from the common dominator.)
234 
235   // First, we throw away the prefix of the longer list, so that
236   // we have lists of the same length.
237   size_t other_size = other.condition_count_;
238   BranchCondition* other_condition = other.head_;
239   while (other_size > condition_count_) {
240     other_condition = other_condition->next;
241     other_size--;
242   }
243   while (condition_count_ > other_size) {
244     head_ = head_->next;
245     condition_count_--;
246   }
247 
248   // Then we go through both lists in lock-step until we find
249   // the common tail.
250   while (head_ != other_condition) {
251     DCHECK(condition_count_ > 0);
252     condition_count_--;
253     other_condition = other_condition->next;
254     head_ = head_->next;
255   }
256 }
257 
258 
259 const BranchElimination::ControlPathConditions*
AddCondition(Zone * zone,Node * condition,bool is_true) const260 BranchElimination::ControlPathConditions::AddCondition(Zone* zone,
261                                                        Node* condition,
262                                                        bool is_true) const {
263   DCHECK(LookupCondition(condition).IsNothing());
264 
265   BranchCondition* new_head = new (zone->New(sizeof(BranchCondition)))
266       BranchCondition(condition, is_true, head_);
267 
268   ControlPathConditions* conditions =
269       new (zone->New(sizeof(ControlPathConditions)))
270           ControlPathConditions(new_head, condition_count_ + 1);
271   return conditions;
272 }
273 
274 
LookupCondition(Node * condition) const275 Maybe<bool> BranchElimination::ControlPathConditions::LookupCondition(
276     Node* condition) const {
277   for (BranchCondition* current = head_; current != nullptr;
278        current = current->next) {
279     if (current->condition == condition) {
280       return Just<bool>(current->is_true);
281     }
282   }
283   return Nothing<bool>();
284 }
285 
286 
operator ==(const ControlPathConditions & other) const287 bool BranchElimination::ControlPathConditions::operator==(
288     const ControlPathConditions& other) const {
289   if (condition_count_ != other.condition_count_) return false;
290   BranchCondition* this_condition = head_;
291   BranchCondition* other_condition = other.head_;
292   while (true) {
293     if (this_condition == other_condition) return true;
294     if (this_condition->condition != other_condition->condition ||
295         this_condition->is_true != other_condition->is_true) {
296       return false;
297     }
298     this_condition = this_condition->next;
299     other_condition = other_condition->next;
300   }
301   UNREACHABLE();
302   return false;
303 }
304 
graph() const305 Graph* BranchElimination::graph() const { return jsgraph()->graph(); }
306 
common() const307 CommonOperatorBuilder* BranchElimination::common() const {
308   return jsgraph()->common();
309 }
310 
311 }  // namespace compiler
312 }  // namespace internal
313 }  // namespace v8
314