1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/crankshaft/arm64/lithium-codegen-arm64.h"
6
7 #include "src/arm64/frames-arm64.h"
8 #include "src/base/bits.h"
9 #include "src/code-factory.h"
10 #include "src/code-stubs.h"
11 #include "src/crankshaft/arm64/lithium-gap-resolver-arm64.h"
12 #include "src/crankshaft/hydrogen-osr.h"
13 #include "src/ic/ic.h"
14 #include "src/ic/stub-cache.h"
15
16 namespace v8 {
17 namespace internal {
18
19
20 class SafepointGenerator final : public CallWrapper {
21 public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)22 SafepointGenerator(LCodeGen* codegen,
23 LPointerMap* pointers,
24 Safepoint::DeoptMode mode)
25 : codegen_(codegen),
26 pointers_(pointers),
27 deopt_mode_(mode) { }
~SafepointGenerator()28 virtual ~SafepointGenerator() { }
29
BeforeCall(int call_size) const30 virtual void BeforeCall(int call_size) const { }
31
AfterCall() const32 virtual void AfterCall() const {
33 codegen_->RecordSafepoint(pointers_, deopt_mode_);
34 }
35
36 private:
37 LCodeGen* codegen_;
38 LPointerMap* pointers_;
39 Safepoint::DeoptMode deopt_mode_;
40 };
41
PushSafepointRegistersScope(LCodeGen * codegen)42 LCodeGen::PushSafepointRegistersScope::PushSafepointRegistersScope(
43 LCodeGen* codegen)
44 : codegen_(codegen) {
45 DCHECK(codegen_->info()->is_calling());
46 DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple);
47 codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters;
48
49 UseScratchRegisterScope temps(codegen_->masm_);
50 // Preserve the value of lr which must be saved on the stack (the call to
51 // the stub will clobber it).
52 Register to_be_pushed_lr =
53 temps.UnsafeAcquire(StoreRegistersStateStub::to_be_pushed_lr());
54 codegen_->masm_->Mov(to_be_pushed_lr, lr);
55 StoreRegistersStateStub stub(codegen_->isolate());
56 codegen_->masm_->CallStub(&stub);
57 }
58
~PushSafepointRegistersScope()59 LCodeGen::PushSafepointRegistersScope::~PushSafepointRegistersScope() {
60 DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters);
61 RestoreRegistersStateStub stub(codegen_->isolate());
62 codegen_->masm_->CallStub(&stub);
63 codegen_->expected_safepoint_kind_ = Safepoint::kSimple;
64 }
65
66 #define __ masm()->
67
68 // Emit code to branch if the given condition holds.
69 // The code generated here doesn't modify the flags and they must have
70 // been set by some prior instructions.
71 //
72 // The EmitInverted function simply inverts the condition.
73 class BranchOnCondition : public BranchGenerator {
74 public:
BranchOnCondition(LCodeGen * codegen,Condition cond)75 BranchOnCondition(LCodeGen* codegen, Condition cond)
76 : BranchGenerator(codegen),
77 cond_(cond) { }
78
Emit(Label * label) const79 virtual void Emit(Label* label) const {
80 __ B(cond_, label);
81 }
82
EmitInverted(Label * label) const83 virtual void EmitInverted(Label* label) const {
84 if (cond_ != al) {
85 __ B(NegateCondition(cond_), label);
86 }
87 }
88
89 private:
90 Condition cond_;
91 };
92
93
94 // Emit code to compare lhs and rhs and branch if the condition holds.
95 // This uses MacroAssembler's CompareAndBranch function so it will handle
96 // converting the comparison to Cbz/Cbnz if the right-hand side is 0.
97 //
98 // EmitInverted still compares the two operands but inverts the condition.
99 class CompareAndBranch : public BranchGenerator {
100 public:
CompareAndBranch(LCodeGen * codegen,Condition cond,const Register & lhs,const Operand & rhs)101 CompareAndBranch(LCodeGen* codegen,
102 Condition cond,
103 const Register& lhs,
104 const Operand& rhs)
105 : BranchGenerator(codegen),
106 cond_(cond),
107 lhs_(lhs),
108 rhs_(rhs) { }
109
Emit(Label * label) const110 virtual void Emit(Label* label) const {
111 __ CompareAndBranch(lhs_, rhs_, cond_, label);
112 }
113
EmitInverted(Label * label) const114 virtual void EmitInverted(Label* label) const {
115 __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label);
116 }
117
118 private:
119 Condition cond_;
120 const Register& lhs_;
121 const Operand& rhs_;
122 };
123
124
125 // Test the input with the given mask and branch if the condition holds.
126 // If the condition is 'eq' or 'ne' this will use MacroAssembler's
127 // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
128 // conversion to Tbz/Tbnz when possible.
129 class TestAndBranch : public BranchGenerator {
130 public:
TestAndBranch(LCodeGen * codegen,Condition cond,const Register & value,uint64_t mask)131 TestAndBranch(LCodeGen* codegen,
132 Condition cond,
133 const Register& value,
134 uint64_t mask)
135 : BranchGenerator(codegen),
136 cond_(cond),
137 value_(value),
138 mask_(mask) { }
139
Emit(Label * label) const140 virtual void Emit(Label* label) const {
141 switch (cond_) {
142 case eq:
143 __ TestAndBranchIfAllClear(value_, mask_, label);
144 break;
145 case ne:
146 __ TestAndBranchIfAnySet(value_, mask_, label);
147 break;
148 default:
149 __ Tst(value_, mask_);
150 __ B(cond_, label);
151 }
152 }
153
EmitInverted(Label * label) const154 virtual void EmitInverted(Label* label) const {
155 // The inverse of "all clear" is "any set" and vice versa.
156 switch (cond_) {
157 case eq:
158 __ TestAndBranchIfAnySet(value_, mask_, label);
159 break;
160 case ne:
161 __ TestAndBranchIfAllClear(value_, mask_, label);
162 break;
163 default:
164 __ Tst(value_, mask_);
165 __ B(NegateCondition(cond_), label);
166 }
167 }
168
169 private:
170 Condition cond_;
171 const Register& value_;
172 uint64_t mask_;
173 };
174
175
176 // Test the input and branch if it is non-zero and not a NaN.
177 class BranchIfNonZeroNumber : public BranchGenerator {
178 public:
BranchIfNonZeroNumber(LCodeGen * codegen,const FPRegister & value,const FPRegister & scratch)179 BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
180 const FPRegister& scratch)
181 : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
182
Emit(Label * label) const183 virtual void Emit(Label* label) const {
184 __ Fabs(scratch_, value_);
185 // Compare with 0.0. Because scratch_ is positive, the result can be one of
186 // nZCv (equal), nzCv (greater) or nzCV (unordered).
187 __ Fcmp(scratch_, 0.0);
188 __ B(gt, label);
189 }
190
EmitInverted(Label * label) const191 virtual void EmitInverted(Label* label) const {
192 __ Fabs(scratch_, value_);
193 __ Fcmp(scratch_, 0.0);
194 __ B(le, label);
195 }
196
197 private:
198 const FPRegister& value_;
199 const FPRegister& scratch_;
200 };
201
202
203 // Test the input and branch if it is a heap number.
204 class BranchIfHeapNumber : public BranchGenerator {
205 public:
BranchIfHeapNumber(LCodeGen * codegen,const Register & value)206 BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
207 : BranchGenerator(codegen), value_(value) { }
208
Emit(Label * label) const209 virtual void Emit(Label* label) const {
210 __ JumpIfHeapNumber(value_, label);
211 }
212
EmitInverted(Label * label) const213 virtual void EmitInverted(Label* label) const {
214 __ JumpIfNotHeapNumber(value_, label);
215 }
216
217 private:
218 const Register& value_;
219 };
220
221
222 // Test the input and branch if it is the specified root value.
223 class BranchIfRoot : public BranchGenerator {
224 public:
BranchIfRoot(LCodeGen * codegen,const Register & value,Heap::RootListIndex index)225 BranchIfRoot(LCodeGen* codegen, const Register& value,
226 Heap::RootListIndex index)
227 : BranchGenerator(codegen), value_(value), index_(index) { }
228
Emit(Label * label) const229 virtual void Emit(Label* label) const {
230 __ JumpIfRoot(value_, index_, label);
231 }
232
EmitInverted(Label * label) const233 virtual void EmitInverted(Label* label) const {
234 __ JumpIfNotRoot(value_, index_, label);
235 }
236
237 private:
238 const Register& value_;
239 const Heap::RootListIndex index_;
240 };
241
242
WriteTranslation(LEnvironment * environment,Translation * translation)243 void LCodeGen::WriteTranslation(LEnvironment* environment,
244 Translation* translation) {
245 if (environment == NULL) return;
246
247 // The translation includes one command per value in the environment.
248 int translation_size = environment->translation_size();
249
250 WriteTranslation(environment->outer(), translation);
251 WriteTranslationFrame(environment, translation);
252
253 int object_index = 0;
254 int dematerialized_index = 0;
255 for (int i = 0; i < translation_size; ++i) {
256 LOperand* value = environment->values()->at(i);
257 AddToTranslation(
258 environment, translation, value, environment->HasTaggedValueAt(i),
259 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
260 }
261 }
262
263
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)264 void LCodeGen::AddToTranslation(LEnvironment* environment,
265 Translation* translation,
266 LOperand* op,
267 bool is_tagged,
268 bool is_uint32,
269 int* object_index_pointer,
270 int* dematerialized_index_pointer) {
271 if (op == LEnvironment::materialization_marker()) {
272 int object_index = (*object_index_pointer)++;
273 if (environment->ObjectIsDuplicateAt(object_index)) {
274 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
275 translation->DuplicateObject(dupe_of);
276 return;
277 }
278 int object_length = environment->ObjectLengthAt(object_index);
279 if (environment->ObjectIsArgumentsAt(object_index)) {
280 translation->BeginArgumentsObject(object_length);
281 } else {
282 translation->BeginCapturedObject(object_length);
283 }
284 int dematerialized_index = *dematerialized_index_pointer;
285 int env_offset = environment->translation_size() + dematerialized_index;
286 *dematerialized_index_pointer += object_length;
287 for (int i = 0; i < object_length; ++i) {
288 LOperand* value = environment->values()->at(env_offset + i);
289 AddToTranslation(environment,
290 translation,
291 value,
292 environment->HasTaggedValueAt(env_offset + i),
293 environment->HasUint32ValueAt(env_offset + i),
294 object_index_pointer,
295 dematerialized_index_pointer);
296 }
297 return;
298 }
299
300 if (op->IsStackSlot()) {
301 int index = op->index();
302 if (is_tagged) {
303 translation->StoreStackSlot(index);
304 } else if (is_uint32) {
305 translation->StoreUint32StackSlot(index);
306 } else {
307 translation->StoreInt32StackSlot(index);
308 }
309 } else if (op->IsDoubleStackSlot()) {
310 int index = op->index();
311 translation->StoreDoubleStackSlot(index);
312 } else if (op->IsRegister()) {
313 Register reg = ToRegister(op);
314 if (is_tagged) {
315 translation->StoreRegister(reg);
316 } else if (is_uint32) {
317 translation->StoreUint32Register(reg);
318 } else {
319 translation->StoreInt32Register(reg);
320 }
321 } else if (op->IsDoubleRegister()) {
322 DoubleRegister reg = ToDoubleRegister(op);
323 translation->StoreDoubleRegister(reg);
324 } else if (op->IsConstantOperand()) {
325 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
326 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
327 translation->StoreLiteral(src_index);
328 } else {
329 UNREACHABLE();
330 }
331 }
332
333
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)334 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
335 Safepoint::DeoptMode mode) {
336 environment->set_has_been_used();
337 if (!environment->HasBeenRegistered()) {
338 int frame_count = 0;
339 int jsframe_count = 0;
340 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
341 ++frame_count;
342 if (e->frame_type() == JS_FUNCTION) {
343 ++jsframe_count;
344 }
345 }
346 Translation translation(&translations_, frame_count, jsframe_count, zone());
347 WriteTranslation(environment, &translation);
348 int deoptimization_index = deoptimizations_.length();
349 int pc_offset = masm()->pc_offset();
350 environment->Register(deoptimization_index,
351 translation.index(),
352 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
353 deoptimizations_.Add(environment, zone());
354 }
355 }
356
357
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)358 void LCodeGen::CallCode(Handle<Code> code,
359 RelocInfo::Mode mode,
360 LInstruction* instr) {
361 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
362 }
363
364
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)365 void LCodeGen::CallCodeGeneric(Handle<Code> code,
366 RelocInfo::Mode mode,
367 LInstruction* instr,
368 SafepointMode safepoint_mode) {
369 DCHECK(instr != NULL);
370
371 Assembler::BlockPoolsScope scope(masm_);
372 __ Call(code, mode);
373 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
374
375 if ((code->kind() == Code::BINARY_OP_IC) ||
376 (code->kind() == Code::COMPARE_IC)) {
377 // Signal that we don't inline smi code before these stubs in the
378 // optimizing code generator.
379 InlineSmiCheckInfo::EmitNotInlined(masm());
380 }
381 }
382
383
DoCallNewArray(LCallNewArray * instr)384 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
385 DCHECK(instr->IsMarkedAsCall());
386 DCHECK(ToRegister(instr->context()).is(cp));
387 DCHECK(ToRegister(instr->constructor()).is(x1));
388
389 __ Mov(x0, Operand(instr->arity()));
390 __ Mov(x2, instr->hydrogen()->site());
391
392 ElementsKind kind = instr->hydrogen()->elements_kind();
393 AllocationSiteOverrideMode override_mode =
394 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
395 ? DISABLE_ALLOCATION_SITES
396 : DONT_OVERRIDE;
397
398 if (instr->arity() == 0) {
399 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
400 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
401 } else if (instr->arity() == 1) {
402 Label done;
403 if (IsFastPackedElementsKind(kind)) {
404 Label packed_case;
405
406 // We might need to create a holey array; look at the first argument.
407 __ Peek(x10, 0);
408 __ Cbz(x10, &packed_case);
409
410 ElementsKind holey_kind = GetHoleyElementsKind(kind);
411 ArraySingleArgumentConstructorStub stub(isolate(),
412 holey_kind,
413 override_mode);
414 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
415 __ B(&done);
416 __ Bind(&packed_case);
417 }
418
419 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
420 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
421 __ Bind(&done);
422 } else {
423 ArrayNArgumentsConstructorStub stub(isolate());
424 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
425 }
426 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
427
428 DCHECK(ToRegister(instr->result()).is(x0));
429 }
430
431
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)432 void LCodeGen::CallRuntime(const Runtime::Function* function,
433 int num_arguments,
434 LInstruction* instr,
435 SaveFPRegsMode save_doubles) {
436 DCHECK(instr != NULL);
437
438 __ CallRuntime(function, num_arguments, save_doubles);
439
440 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
441 }
442
443
LoadContextFromDeferred(LOperand * context)444 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
445 if (context->IsRegister()) {
446 __ Mov(cp, ToRegister(context));
447 } else if (context->IsStackSlot()) {
448 __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer));
449 } else if (context->IsConstantOperand()) {
450 HConstant* constant =
451 chunk_->LookupConstant(LConstantOperand::cast(context));
452 __ LoadHeapObject(cp,
453 Handle<HeapObject>::cast(constant->handle(isolate())));
454 } else {
455 UNREACHABLE();
456 }
457 }
458
459
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)460 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
461 int argc,
462 LInstruction* instr,
463 LOperand* context) {
464 if (context != nullptr) LoadContextFromDeferred(context);
465 __ CallRuntimeSaveDoubles(id);
466 RecordSafepointWithRegisters(
467 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
468 }
469
470
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)471 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
472 SafepointMode safepoint_mode) {
473 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
474 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
475 } else {
476 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
477 RecordSafepointWithRegisters(
478 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
479 }
480 }
481
482
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)483 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
484 Safepoint::Kind kind,
485 int arguments,
486 Safepoint::DeoptMode deopt_mode) {
487 DCHECK(expected_safepoint_kind_ == kind);
488
489 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
490 Safepoint safepoint = safepoints_.DefineSafepoint(
491 masm(), kind, arguments, deopt_mode);
492
493 for (int i = 0; i < operands->length(); i++) {
494 LOperand* pointer = operands->at(i);
495 if (pointer->IsStackSlot()) {
496 safepoint.DefinePointerSlot(pointer->index(), zone());
497 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
498 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
499 }
500 }
501 }
502
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)503 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
504 Safepoint::DeoptMode deopt_mode) {
505 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
506 }
507
508
RecordSafepoint(Safepoint::DeoptMode deopt_mode)509 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
510 LPointerMap empty_pointers(zone());
511 RecordSafepoint(&empty_pointers, deopt_mode);
512 }
513
514
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)515 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
516 int arguments,
517 Safepoint::DeoptMode deopt_mode) {
518 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
519 }
520
521
GenerateCode()522 bool LCodeGen::GenerateCode() {
523 LPhase phase("Z_Code generation", chunk());
524 DCHECK(is_unused());
525 status_ = GENERATING;
526
527 // Open a frame scope to indicate that there is a frame on the stack. The
528 // NONE indicates that the scope shouldn't actually generate code to set up
529 // the frame (that is done in GeneratePrologue).
530 FrameScope frame_scope(masm_, StackFrame::NONE);
531
532 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
533 GenerateJumpTable() && GenerateSafepointTable();
534 }
535
536
SaveCallerDoubles()537 void LCodeGen::SaveCallerDoubles() {
538 DCHECK(info()->saves_caller_doubles());
539 DCHECK(NeedsEagerFrame());
540 Comment(";;; Save clobbered callee double registers");
541 BitVector* doubles = chunk()->allocated_double_registers();
542 BitVector::Iterator iterator(doubles);
543 int count = 0;
544 while (!iterator.Done()) {
545 // TODO(all): Is this supposed to save just the callee-saved doubles? It
546 // looks like it's saving all of them.
547 FPRegister value = FPRegister::from_code(iterator.Current());
548 __ Poke(value, count * kDoubleSize);
549 iterator.Advance();
550 count++;
551 }
552 }
553
554
RestoreCallerDoubles()555 void LCodeGen::RestoreCallerDoubles() {
556 DCHECK(info()->saves_caller_doubles());
557 DCHECK(NeedsEagerFrame());
558 Comment(";;; Restore clobbered callee double registers");
559 BitVector* doubles = chunk()->allocated_double_registers();
560 BitVector::Iterator iterator(doubles);
561 int count = 0;
562 while (!iterator.Done()) {
563 // TODO(all): Is this supposed to restore just the callee-saved doubles? It
564 // looks like it's restoring all of them.
565 FPRegister value = FPRegister::from_code(iterator.Current());
566 __ Peek(value, count * kDoubleSize);
567 iterator.Advance();
568 count++;
569 }
570 }
571
572
GeneratePrologue()573 bool LCodeGen::GeneratePrologue() {
574 DCHECK(is_generating());
575
576 if (info()->IsOptimizing()) {
577 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
578 }
579
580 DCHECK(__ StackPointer().Is(jssp));
581 info()->set_prologue_offset(masm_->pc_offset());
582 if (NeedsEagerFrame()) {
583 if (info()->IsStub()) {
584 __ StubPrologue(
585 StackFrame::STUB,
586 GetStackSlotCount() + TypedFrameConstants::kFixedSlotCount);
587 } else {
588 __ Prologue(info()->GeneratePreagedPrologue());
589 // Reserve space for the stack slots needed by the code.
590 int slots = GetStackSlotCount();
591 if (slots > 0) {
592 __ Claim(slots, kPointerSize);
593 }
594 }
595 frame_is_built_ = true;
596 }
597
598 if (info()->saves_caller_doubles()) {
599 SaveCallerDoubles();
600 }
601 return !is_aborted();
602 }
603
604
DoPrologue(LPrologue * instr)605 void LCodeGen::DoPrologue(LPrologue* instr) {
606 Comment(";;; Prologue begin");
607
608 // Allocate a local context if needed.
609 if (info()->scope()->NeedsContext()) {
610 Comment(";;; Allocate local context");
611 bool need_write_barrier = true;
612 // Argument to NewContext is the function, which is in x1.
613 int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
614 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
615 if (info()->scope()->is_script_scope()) {
616 __ Mov(x10, Operand(info()->scope()->scope_info()));
617 __ Push(x1, x10);
618 __ CallRuntime(Runtime::kNewScriptContext);
619 deopt_mode = Safepoint::kLazyDeopt;
620 } else {
621 if (slots <= FastNewFunctionContextStub::kMaximumSlots) {
622 FastNewFunctionContextStub stub(isolate());
623 __ Mov(FastNewFunctionContextDescriptor::SlotsRegister(), slots);
624 __ CallStub(&stub);
625 // Result of FastNewFunctionContextStub is always in new space.
626 need_write_barrier = false;
627 } else {
628 __ Push(x1);
629 __ CallRuntime(Runtime::kNewFunctionContext);
630 }
631 }
632 RecordSafepoint(deopt_mode);
633 // Context is returned in x0. It replaces the context passed to us. It's
634 // saved in the stack and kept live in cp.
635 __ Mov(cp, x0);
636 __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
637 // Copy any necessary parameters into the context.
638 int num_parameters = info()->scope()->num_parameters();
639 int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
640 for (int i = first_parameter; i < num_parameters; i++) {
641 Variable* var = (i == -1) ? info()->scope()->receiver()
642 : info()->scope()->parameter(i);
643 if (var->IsContextSlot()) {
644 Register value = x0;
645 Register scratch = x3;
646
647 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
648 (num_parameters - 1 - i) * kPointerSize;
649 // Load parameter from stack.
650 __ Ldr(value, MemOperand(fp, parameter_offset));
651 // Store it in the context.
652 MemOperand target = ContextMemOperand(cp, var->index());
653 __ Str(value, target);
654 // Update the write barrier. This clobbers value and scratch.
655 if (need_write_barrier) {
656 __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()),
657 value, scratch, GetLinkRegisterState(),
658 kSaveFPRegs);
659 } else if (FLAG_debug_code) {
660 Label done;
661 __ JumpIfInNewSpace(cp, &done);
662 __ Abort(kExpectedNewSpaceObject);
663 __ bind(&done);
664 }
665 }
666 }
667 Comment(";;; End allocate local context");
668 }
669
670 Comment(";;; Prologue end");
671 }
672
673
GenerateOsrPrologue()674 void LCodeGen::GenerateOsrPrologue() {
675 // Generate the OSR entry prologue at the first unknown OSR value, or if there
676 // are none, at the OSR entrypoint instruction.
677 if (osr_pc_offset_ >= 0) return;
678
679 osr_pc_offset_ = masm()->pc_offset();
680
681 // Adjust the frame size, subsuming the unoptimized frame into the
682 // optimized frame.
683 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
684 DCHECK(slots >= 0);
685 __ Claim(slots);
686 }
687
688
GenerateBodyInstructionPre(LInstruction * instr)689 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
690 if (instr->IsCall()) {
691 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
692 }
693 if (!instr->IsLazyBailout() && !instr->IsGap()) {
694 safepoints_.BumpLastLazySafepointIndex();
695 }
696 }
697
698
GenerateDeferredCode()699 bool LCodeGen::GenerateDeferredCode() {
700 DCHECK(is_generating());
701 if (deferred_.length() > 0) {
702 for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
703 LDeferredCode* code = deferred_[i];
704
705 HValue* value =
706 instructions_->at(code->instruction_index())->hydrogen_value();
707 RecordAndWritePosition(value->position());
708
709 Comment(";;; <@%d,#%d> "
710 "-------------------- Deferred %s --------------------",
711 code->instruction_index(),
712 code->instr()->hydrogen_value()->id(),
713 code->instr()->Mnemonic());
714
715 __ Bind(code->entry());
716
717 if (NeedsDeferredFrame()) {
718 Comment(";;; Build frame");
719 DCHECK(!frame_is_built_);
720 DCHECK(info()->IsStub());
721 frame_is_built_ = true;
722 __ Push(lr, fp);
723 __ Mov(fp, Smi::FromInt(StackFrame::STUB));
724 __ Push(fp);
725 __ Add(fp, __ StackPointer(),
726 TypedFrameConstants::kFixedFrameSizeFromFp);
727 Comment(";;; Deferred code");
728 }
729
730 code->Generate();
731
732 if (NeedsDeferredFrame()) {
733 Comment(";;; Destroy frame");
734 DCHECK(frame_is_built_);
735 __ Pop(xzr, fp, lr);
736 frame_is_built_ = false;
737 }
738
739 __ B(code->exit());
740 }
741 }
742
743 // Force constant pool emission at the end of the deferred code to make
744 // sure that no constant pools are emitted after deferred code because
745 // deferred code generation is the last step which generates code. The two
746 // following steps will only output data used by crakshaft.
747 masm()->CheckConstPool(true, false);
748
749 return !is_aborted();
750 }
751
752
GenerateJumpTable()753 bool LCodeGen::GenerateJumpTable() {
754 Label needs_frame, call_deopt_entry;
755
756 if (jump_table_.length() > 0) {
757 Comment(";;; -------------------- Jump table --------------------");
758 Address base = jump_table_[0]->address;
759
760 UseScratchRegisterScope temps(masm());
761 Register entry_offset = temps.AcquireX();
762
763 int length = jump_table_.length();
764 for (int i = 0; i < length; i++) {
765 Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
766 __ Bind(&table_entry->label);
767
768 Address entry = table_entry->address;
769 DeoptComment(table_entry->deopt_info);
770
771 // Second-level deopt table entries are contiguous and small, so instead
772 // of loading the full, absolute address of each one, load the base
773 // address and add an immediate offset.
774 __ Mov(entry_offset, entry - base);
775
776 if (table_entry->needs_frame) {
777 DCHECK(!info()->saves_caller_doubles());
778 Comment(";;; call deopt with frame");
779 // Save lr before Bl, fp will be adjusted in the needs_frame code.
780 __ Push(lr, fp);
781 // Reuse the existing needs_frame code.
782 __ Bl(&needs_frame);
783 } else {
784 // There is nothing special to do, so just continue to the second-level
785 // table.
786 __ Bl(&call_deopt_entry);
787 }
788
789 masm()->CheckConstPool(false, false);
790 }
791
792 if (needs_frame.is_linked()) {
793 // This variant of deopt can only be used with stubs. Since we don't
794 // have a function pointer to install in the stack frame that we're
795 // building, install a special marker there instead.
796 DCHECK(info()->IsStub());
797
798 Comment(";;; needs_frame common code");
799 UseScratchRegisterScope temps(masm());
800 Register stub_marker = temps.AcquireX();
801 __ Bind(&needs_frame);
802 __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB));
803 __ Push(cp, stub_marker);
804 __ Add(fp, __ StackPointer(), 2 * kPointerSize);
805 }
806
807 // Generate common code for calling the second-level deopt table.
808 __ Bind(&call_deopt_entry);
809
810 if (info()->saves_caller_doubles()) {
811 DCHECK(info()->IsStub());
812 RestoreCallerDoubles();
813 }
814
815 Register deopt_entry = temps.AcquireX();
816 __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base),
817 RelocInfo::RUNTIME_ENTRY));
818 __ Add(deopt_entry, deopt_entry, entry_offset);
819 __ Br(deopt_entry);
820 }
821
822 // Force constant pool emission at the end of the deopt jump table to make
823 // sure that no constant pools are emitted after.
824 masm()->CheckConstPool(true, false);
825
826 // The deoptimization jump table is the last part of the instruction
827 // sequence. Mark the generated code as done unless we bailed out.
828 if (!is_aborted()) status_ = DONE;
829 return !is_aborted();
830 }
831
832
GenerateSafepointTable()833 bool LCodeGen::GenerateSafepointTable() {
834 DCHECK(is_done());
835 // We do not know how much data will be emitted for the safepoint table, so
836 // force emission of the veneer pool.
837 masm()->CheckVeneerPool(true, true);
838 safepoints_.Emit(masm(), GetTotalFrameSlotCount());
839 return !is_aborted();
840 }
841
842
FinishCode(Handle<Code> code)843 void LCodeGen::FinishCode(Handle<Code> code) {
844 DCHECK(is_done());
845 code->set_stack_slots(GetTotalFrameSlotCount());
846 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
847 PopulateDeoptimizationData(code);
848 }
849
DeoptimizeBranch(LInstruction * instr,DeoptimizeReason deopt_reason,BranchType branch_type,Register reg,int bit,Deoptimizer::BailoutType * override_bailout_type)850 void LCodeGen::DeoptimizeBranch(
851 LInstruction* instr, DeoptimizeReason deopt_reason, BranchType branch_type,
852 Register reg, int bit, Deoptimizer::BailoutType* override_bailout_type) {
853 LEnvironment* environment = instr->environment();
854 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
855 Deoptimizer::BailoutType bailout_type =
856 info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
857
858 if (override_bailout_type != NULL) {
859 bailout_type = *override_bailout_type;
860 }
861
862 DCHECK(environment->HasBeenRegistered());
863 int id = environment->deoptimization_index();
864 Address entry =
865 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
866
867 if (entry == NULL) {
868 Abort(kBailoutWasNotPrepared);
869 }
870
871 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
872 Label not_zero;
873 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
874
875 __ Push(x0, x1, x2);
876 __ Mrs(x2, NZCV);
877 __ Mov(x0, count);
878 __ Ldr(w1, MemOperand(x0));
879 __ Subs(x1, x1, 1);
880 __ B(gt, ¬_zero);
881 __ Mov(w1, FLAG_deopt_every_n_times);
882 __ Str(w1, MemOperand(x0));
883 __ Pop(x2, x1, x0);
884 DCHECK(frame_is_built_);
885 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
886 __ Unreachable();
887
888 __ Bind(¬_zero);
889 __ Str(w1, MemOperand(x0));
890 __ Msr(NZCV, x2);
891 __ Pop(x2, x1, x0);
892 }
893
894 if (info()->ShouldTrapOnDeopt()) {
895 Label dont_trap;
896 __ B(&dont_trap, InvertBranchType(branch_type), reg, bit);
897 __ Debug("trap_on_deopt", __LINE__, BREAK);
898 __ Bind(&dont_trap);
899 }
900
901 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
902
903 DCHECK(info()->IsStub() || frame_is_built_);
904 // Go through jump table if we need to build frame, or restore caller doubles.
905 if (branch_type == always &&
906 frame_is_built_ && !info()->saves_caller_doubles()) {
907 DeoptComment(deopt_info);
908 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
909 } else {
910 Deoptimizer::JumpTableEntry* table_entry =
911 new (zone()) Deoptimizer::JumpTableEntry(
912 entry, deopt_info, bailout_type, !frame_is_built_);
913 // We often have several deopts to the same entry, reuse the last
914 // jump entry if this is the case.
915 if (FLAG_trace_deopt || isolate()->is_profiling() ||
916 jump_table_.is_empty() ||
917 !table_entry->IsEquivalentTo(*jump_table_.last())) {
918 jump_table_.Add(table_entry, zone());
919 }
920 __ B(&jump_table_.last()->label, branch_type, reg, bit);
921 }
922 }
923
Deoptimize(LInstruction * instr,DeoptimizeReason deopt_reason,Deoptimizer::BailoutType * override_bailout_type)924 void LCodeGen::Deoptimize(LInstruction* instr, DeoptimizeReason deopt_reason,
925 Deoptimizer::BailoutType* override_bailout_type) {
926 DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1,
927 override_bailout_type);
928 }
929
DeoptimizeIf(Condition cond,LInstruction * instr,DeoptimizeReason deopt_reason)930 void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
931 DeoptimizeReason deopt_reason) {
932 DeoptimizeBranch(instr, deopt_reason, static_cast<BranchType>(cond));
933 }
934
DeoptimizeIfZero(Register rt,LInstruction * instr,DeoptimizeReason deopt_reason)935 void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr,
936 DeoptimizeReason deopt_reason) {
937 DeoptimizeBranch(instr, deopt_reason, reg_zero, rt);
938 }
939
DeoptimizeIfNotZero(Register rt,LInstruction * instr,DeoptimizeReason deopt_reason)940 void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr,
941 DeoptimizeReason deopt_reason) {
942 DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt);
943 }
944
DeoptimizeIfNegative(Register rt,LInstruction * instr,DeoptimizeReason deopt_reason)945 void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr,
946 DeoptimizeReason deopt_reason) {
947 int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit;
948 DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason);
949 }
950
DeoptimizeIfSmi(Register rt,LInstruction * instr,DeoptimizeReason deopt_reason)951 void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr,
952 DeoptimizeReason deopt_reason) {
953 DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
954 }
955
DeoptimizeIfNotSmi(Register rt,LInstruction * instr,DeoptimizeReason deopt_reason)956 void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr,
957 DeoptimizeReason deopt_reason) {
958 DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
959 }
960
DeoptimizeIfRoot(Register rt,Heap::RootListIndex index,LInstruction * instr,DeoptimizeReason deopt_reason)961 void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index,
962 LInstruction* instr,
963 DeoptimizeReason deopt_reason) {
964 __ CompareRoot(rt, index);
965 DeoptimizeIf(eq, instr, deopt_reason);
966 }
967
DeoptimizeIfNotRoot(Register rt,Heap::RootListIndex index,LInstruction * instr,DeoptimizeReason deopt_reason)968 void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index,
969 LInstruction* instr,
970 DeoptimizeReason deopt_reason) {
971 __ CompareRoot(rt, index);
972 DeoptimizeIf(ne, instr, deopt_reason);
973 }
974
DeoptimizeIfMinusZero(DoubleRegister input,LInstruction * instr,DeoptimizeReason deopt_reason)975 void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr,
976 DeoptimizeReason deopt_reason) {
977 __ TestForMinusZero(input);
978 DeoptimizeIf(vs, instr, deopt_reason);
979 }
980
981
DeoptimizeIfNotHeapNumber(Register object,LInstruction * instr)982 void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) {
983 __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex);
984 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
985 }
986
DeoptimizeIfBitSet(Register rt,int bit,LInstruction * instr,DeoptimizeReason deopt_reason)987 void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr,
988 DeoptimizeReason deopt_reason) {
989 DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit);
990 }
991
DeoptimizeIfBitClear(Register rt,int bit,LInstruction * instr,DeoptimizeReason deopt_reason)992 void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr,
993 DeoptimizeReason deopt_reason) {
994 DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit);
995 }
996
997
EnsureSpaceForLazyDeopt(int space_needed)998 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
999 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
1000 // Ensure that we have enough space after the previous lazy-bailout
1001 // instruction for patching the code here.
1002 intptr_t current_pc = masm()->pc_offset();
1003
1004 if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
1005 ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
1006 DCHECK((padding_size % kInstructionSize) == 0);
1007 InstructionAccurateScope instruction_accurate(
1008 masm(), padding_size / kInstructionSize);
1009
1010 while (padding_size > 0) {
1011 __ nop();
1012 padding_size -= kInstructionSize;
1013 }
1014 }
1015 }
1016 last_lazy_deopt_pc_ = masm()->pc_offset();
1017 }
1018
1019
ToRegister(LOperand * op) const1020 Register LCodeGen::ToRegister(LOperand* op) const {
1021 // TODO(all): support zero register results, as ToRegister32.
1022 DCHECK((op != NULL) && op->IsRegister());
1023 return Register::from_code(op->index());
1024 }
1025
1026
ToRegister32(LOperand * op) const1027 Register LCodeGen::ToRegister32(LOperand* op) const {
1028 DCHECK(op != NULL);
1029 if (op->IsConstantOperand()) {
1030 // If this is a constant operand, the result must be the zero register.
1031 DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0);
1032 return wzr;
1033 } else {
1034 return ToRegister(op).W();
1035 }
1036 }
1037
1038
ToSmi(LConstantOperand * op) const1039 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
1040 HConstant* constant = chunk_->LookupConstant(op);
1041 return Smi::FromInt(constant->Integer32Value());
1042 }
1043
1044
ToDoubleRegister(LOperand * op) const1045 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
1046 DCHECK((op != NULL) && op->IsDoubleRegister());
1047 return DoubleRegister::from_code(op->index());
1048 }
1049
1050
ToOperand(LOperand * op)1051 Operand LCodeGen::ToOperand(LOperand* op) {
1052 DCHECK(op != NULL);
1053 if (op->IsConstantOperand()) {
1054 LConstantOperand* const_op = LConstantOperand::cast(op);
1055 HConstant* constant = chunk()->LookupConstant(const_op);
1056 Representation r = chunk_->LookupLiteralRepresentation(const_op);
1057 if (r.IsSmi()) {
1058 DCHECK(constant->HasSmiValue());
1059 return Operand(Smi::FromInt(constant->Integer32Value()));
1060 } else if (r.IsInteger32()) {
1061 DCHECK(constant->HasInteger32Value());
1062 return Operand(constant->Integer32Value());
1063 } else if (r.IsDouble()) {
1064 Abort(kToOperandUnsupportedDoubleImmediate);
1065 }
1066 DCHECK(r.IsTagged());
1067 return Operand(constant->handle(isolate()));
1068 } else if (op->IsRegister()) {
1069 return Operand(ToRegister(op));
1070 } else if (op->IsDoubleRegister()) {
1071 Abort(kToOperandIsDoubleRegisterUnimplemented);
1072 return Operand(0);
1073 }
1074 // Stack slots not implemented, use ToMemOperand instead.
1075 UNREACHABLE();
1076 return Operand(0);
1077 }
1078
1079
ToOperand32(LOperand * op)1080 Operand LCodeGen::ToOperand32(LOperand* op) {
1081 DCHECK(op != NULL);
1082 if (op->IsRegister()) {
1083 return Operand(ToRegister32(op));
1084 } else if (op->IsConstantOperand()) {
1085 LConstantOperand* const_op = LConstantOperand::cast(op);
1086 HConstant* constant = chunk()->LookupConstant(const_op);
1087 Representation r = chunk_->LookupLiteralRepresentation(const_op);
1088 if (r.IsInteger32()) {
1089 return Operand(constant->Integer32Value());
1090 } else {
1091 // Other constants not implemented.
1092 Abort(kToOperand32UnsupportedImmediate);
1093 }
1094 }
1095 // Other cases are not implemented.
1096 UNREACHABLE();
1097 return Operand(0);
1098 }
1099
1100
ArgumentsOffsetWithoutFrame(int index)1101 static int64_t ArgumentsOffsetWithoutFrame(int index) {
1102 DCHECK(index < 0);
1103 return -(index + 1) * kPointerSize;
1104 }
1105
1106
ToMemOperand(LOperand * op,StackMode stack_mode) const1107 MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const {
1108 DCHECK(op != NULL);
1109 DCHECK(!op->IsRegister());
1110 DCHECK(!op->IsDoubleRegister());
1111 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
1112 if (NeedsEagerFrame()) {
1113 int fp_offset = FrameSlotToFPOffset(op->index());
1114 // Loads and stores have a bigger reach in positive offset than negative.
1115 // We try to access using jssp (positive offset) first, then fall back to
1116 // fp (negative offset) if that fails.
1117 //
1118 // We can reference a stack slot from jssp only if we know how much we've
1119 // put on the stack. We don't know this in the following cases:
1120 // - stack_mode != kCanUseStackPointer: this is the case when deferred
1121 // code has saved the registers.
1122 // - saves_caller_doubles(): some double registers have been pushed, jssp
1123 // references the end of the double registers and not the end of the stack
1124 // slots.
1125 // In both of the cases above, we _could_ add the tracking information
1126 // required so that we can use jssp here, but in practice it isn't worth it.
1127 if ((stack_mode == kCanUseStackPointer) &&
1128 !info()->saves_caller_doubles()) {
1129 int jssp_offset_to_fp =
1130 (pushed_arguments_ + GetTotalFrameSlotCount()) * kPointerSize -
1131 StandardFrameConstants::kFixedFrameSizeAboveFp;
1132 int jssp_offset = fp_offset + jssp_offset_to_fp;
1133 if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) {
1134 return MemOperand(masm()->StackPointer(), jssp_offset);
1135 }
1136 }
1137 return MemOperand(fp, fp_offset);
1138 } else {
1139 // Retrieve parameter without eager stack-frame relative to the
1140 // stack-pointer.
1141 return MemOperand(masm()->StackPointer(),
1142 ArgumentsOffsetWithoutFrame(op->index()));
1143 }
1144 }
1145
1146
ToHandle(LConstantOperand * op) const1147 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
1148 HConstant* constant = chunk_->LookupConstant(op);
1149 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
1150 return constant->handle(isolate());
1151 }
1152
1153
1154 template <class LI>
ToShiftedRightOperand32(LOperand * right,LI * shift_info)1155 Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) {
1156 if (shift_info->shift() == NO_SHIFT) {
1157 return ToOperand32(right);
1158 } else {
1159 return Operand(
1160 ToRegister32(right),
1161 shift_info->shift(),
1162 JSShiftAmountFromLConstant(shift_info->shift_amount()));
1163 }
1164 }
1165
1166
IsSmi(LConstantOperand * op) const1167 bool LCodeGen::IsSmi(LConstantOperand* op) const {
1168 return chunk_->LookupLiteralRepresentation(op).IsSmi();
1169 }
1170
1171
IsInteger32Constant(LConstantOperand * op) const1172 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
1173 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
1174 }
1175
1176
ToInteger32(LConstantOperand * op) const1177 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
1178 HConstant* constant = chunk_->LookupConstant(op);
1179 return constant->Integer32Value();
1180 }
1181
1182
ToDouble(LConstantOperand * op) const1183 double LCodeGen::ToDouble(LConstantOperand* op) const {
1184 HConstant* constant = chunk_->LookupConstant(op);
1185 DCHECK(constant->HasDoubleValue());
1186 return constant->DoubleValue();
1187 }
1188
1189
TokenToCondition(Token::Value op,bool is_unsigned)1190 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1191 Condition cond = nv;
1192 switch (op) {
1193 case Token::EQ:
1194 case Token::EQ_STRICT:
1195 cond = eq;
1196 break;
1197 case Token::NE:
1198 case Token::NE_STRICT:
1199 cond = ne;
1200 break;
1201 case Token::LT:
1202 cond = is_unsigned ? lo : lt;
1203 break;
1204 case Token::GT:
1205 cond = is_unsigned ? hi : gt;
1206 break;
1207 case Token::LTE:
1208 cond = is_unsigned ? ls : le;
1209 break;
1210 case Token::GTE:
1211 cond = is_unsigned ? hs : ge;
1212 break;
1213 case Token::IN:
1214 case Token::INSTANCEOF:
1215 default:
1216 UNREACHABLE();
1217 }
1218 return cond;
1219 }
1220
1221
1222 template<class InstrType>
EmitBranchGeneric(InstrType instr,const BranchGenerator & branch)1223 void LCodeGen::EmitBranchGeneric(InstrType instr,
1224 const BranchGenerator& branch) {
1225 int left_block = instr->TrueDestination(chunk_);
1226 int right_block = instr->FalseDestination(chunk_);
1227
1228 int next_block = GetNextEmittedBlock();
1229
1230 if (right_block == left_block) {
1231 EmitGoto(left_block);
1232 } else if (left_block == next_block) {
1233 branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
1234 } else {
1235 branch.Emit(chunk_->GetAssemblyLabel(left_block));
1236 if (right_block != next_block) {
1237 __ B(chunk_->GetAssemblyLabel(right_block));
1238 }
1239 }
1240 }
1241
1242
1243 template<class InstrType>
EmitBranch(InstrType instr,Condition condition)1244 void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
1245 DCHECK((condition != al) && (condition != nv));
1246 BranchOnCondition branch(this, condition);
1247 EmitBranchGeneric(instr, branch);
1248 }
1249
1250
1251 template<class InstrType>
EmitCompareAndBranch(InstrType instr,Condition condition,const Register & lhs,const Operand & rhs)1252 void LCodeGen::EmitCompareAndBranch(InstrType instr,
1253 Condition condition,
1254 const Register& lhs,
1255 const Operand& rhs) {
1256 DCHECK((condition != al) && (condition != nv));
1257 CompareAndBranch branch(this, condition, lhs, rhs);
1258 EmitBranchGeneric(instr, branch);
1259 }
1260
1261
1262 template<class InstrType>
EmitTestAndBranch(InstrType instr,Condition condition,const Register & value,uint64_t mask)1263 void LCodeGen::EmitTestAndBranch(InstrType instr,
1264 Condition condition,
1265 const Register& value,
1266 uint64_t mask) {
1267 DCHECK((condition != al) && (condition != nv));
1268 TestAndBranch branch(this, condition, value, mask);
1269 EmitBranchGeneric(instr, branch);
1270 }
1271
1272
1273 template<class InstrType>
EmitBranchIfNonZeroNumber(InstrType instr,const FPRegister & value,const FPRegister & scratch)1274 void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
1275 const FPRegister& value,
1276 const FPRegister& scratch) {
1277 BranchIfNonZeroNumber branch(this, value, scratch);
1278 EmitBranchGeneric(instr, branch);
1279 }
1280
1281
1282 template<class InstrType>
EmitBranchIfHeapNumber(InstrType instr,const Register & value)1283 void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
1284 const Register& value) {
1285 BranchIfHeapNumber branch(this, value);
1286 EmitBranchGeneric(instr, branch);
1287 }
1288
1289
1290 template<class InstrType>
EmitBranchIfRoot(InstrType instr,const Register & value,Heap::RootListIndex index)1291 void LCodeGen::EmitBranchIfRoot(InstrType instr,
1292 const Register& value,
1293 Heap::RootListIndex index) {
1294 BranchIfRoot branch(this, value, index);
1295 EmitBranchGeneric(instr, branch);
1296 }
1297
1298
DoGap(LGap * gap)1299 void LCodeGen::DoGap(LGap* gap) {
1300 for (int i = LGap::FIRST_INNER_POSITION;
1301 i <= LGap::LAST_INNER_POSITION;
1302 i++) {
1303 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1304 LParallelMove* move = gap->GetParallelMove(inner_pos);
1305 if (move != NULL) {
1306 resolver_.Resolve(move);
1307 }
1308 }
1309 }
1310
1311
DoAccessArgumentsAt(LAccessArgumentsAt * instr)1312 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
1313 Register arguments = ToRegister(instr->arguments());
1314 Register result = ToRegister(instr->result());
1315
1316 // The pointer to the arguments array come from DoArgumentsElements.
1317 // It does not point directly to the arguments and there is an offest of
1318 // two words that we must take into account when accessing an argument.
1319 // Subtracting the index from length accounts for one, so we add one more.
1320
1321 if (instr->length()->IsConstantOperand() &&
1322 instr->index()->IsConstantOperand()) {
1323 int index = ToInteger32(LConstantOperand::cast(instr->index()));
1324 int length = ToInteger32(LConstantOperand::cast(instr->length()));
1325 int offset = ((length - index) + 1) * kPointerSize;
1326 __ Ldr(result, MemOperand(arguments, offset));
1327 } else if (instr->index()->IsConstantOperand()) {
1328 Register length = ToRegister32(instr->length());
1329 int index = ToInteger32(LConstantOperand::cast(instr->index()));
1330 int loc = index - 1;
1331 if (loc != 0) {
1332 __ Sub(result.W(), length, loc);
1333 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1334 } else {
1335 __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2));
1336 }
1337 } else {
1338 Register length = ToRegister32(instr->length());
1339 Operand index = ToOperand32(instr->index());
1340 __ Sub(result.W(), length, index);
1341 __ Add(result.W(), result.W(), 1);
1342 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1343 }
1344 }
1345
1346
DoAddE(LAddE * instr)1347 void LCodeGen::DoAddE(LAddE* instr) {
1348 Register result = ToRegister(instr->result());
1349 Register left = ToRegister(instr->left());
1350 Operand right = Operand(x0); // Dummy initialization.
1351 if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) {
1352 right = Operand(ToRegister(instr->right()));
1353 } else if (instr->right()->IsConstantOperand()) {
1354 right = ToInteger32(LConstantOperand::cast(instr->right()));
1355 } else {
1356 right = Operand(ToRegister32(instr->right()), SXTW);
1357 }
1358
1359 DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
1360 __ Add(result, left, right);
1361 }
1362
1363
DoAddI(LAddI * instr)1364 void LCodeGen::DoAddI(LAddI* instr) {
1365 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1366 Register result = ToRegister32(instr->result());
1367 Register left = ToRegister32(instr->left());
1368 Operand right = ToShiftedRightOperand32(instr->right(), instr);
1369
1370 if (can_overflow) {
1371 __ Adds(result, left, right);
1372 DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1373 } else {
1374 __ Add(result, left, right);
1375 }
1376 }
1377
1378
DoAddS(LAddS * instr)1379 void LCodeGen::DoAddS(LAddS* instr) {
1380 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1381 Register result = ToRegister(instr->result());
1382 Register left = ToRegister(instr->left());
1383 Operand right = ToOperand(instr->right());
1384 if (can_overflow) {
1385 __ Adds(result, left, right);
1386 DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1387 } else {
1388 __ Add(result, left, right);
1389 }
1390 }
1391
1392
DoAllocate(LAllocate * instr)1393 void LCodeGen::DoAllocate(LAllocate* instr) {
1394 class DeferredAllocate: public LDeferredCode {
1395 public:
1396 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
1397 : LDeferredCode(codegen), instr_(instr) { }
1398 virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
1399 virtual LInstruction* instr() { return instr_; }
1400 private:
1401 LAllocate* instr_;
1402 };
1403
1404 DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
1405
1406 Register result = ToRegister(instr->result());
1407 Register temp1 = ToRegister(instr->temp1());
1408 Register temp2 = ToRegister(instr->temp2());
1409
1410 // Allocate memory for the object.
1411 AllocationFlags flags = NO_ALLOCATION_FLAGS;
1412 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
1413 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
1414 }
1415
1416 if (instr->hydrogen()->IsOldSpaceAllocation()) {
1417 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1418 flags = static_cast<AllocationFlags>(flags | PRETENURE);
1419 }
1420
1421 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
1422 flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
1423 }
1424 DCHECK(!instr->hydrogen()->IsAllocationFolded());
1425
1426 if (instr->size()->IsConstantOperand()) {
1427 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1428 CHECK(size <= kMaxRegularHeapObjectSize);
1429 __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
1430 } else {
1431 Register size = ToRegister32(instr->size());
1432 __ Sxtw(size.X(), size);
1433 __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags);
1434 }
1435
1436 __ Bind(deferred->exit());
1437
1438 if (instr->hydrogen()->MustPrefillWithFiller()) {
1439 Register start = temp1;
1440 Register end = temp2;
1441 Register filler = ToRegister(instr->temp3());
1442
1443 __ Sub(start, result, kHeapObjectTag);
1444
1445 if (instr->size()->IsConstantOperand()) {
1446 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1447 __ Add(end, start, size);
1448 } else {
1449 __ Add(end, start, ToRegister(instr->size()));
1450 }
1451 __ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex);
1452 __ InitializeFieldsWithFiller(start, end, filler);
1453 } else {
1454 DCHECK(instr->temp3() == NULL);
1455 }
1456 }
1457
1458
DoDeferredAllocate(LAllocate * instr)1459 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
1460 // TODO(3095996): Get rid of this. For now, we need to make the
1461 // result register contain a valid pointer because it is already
1462 // contained in the register pointer map.
1463 __ Mov(ToRegister(instr->result()), Smi::kZero);
1464
1465 PushSafepointRegistersScope scope(this);
1466 LoadContextFromDeferred(instr->context());
1467 // We're in a SafepointRegistersScope so we can use any scratch registers.
1468 Register size = x0;
1469 if (instr->size()->IsConstantOperand()) {
1470 __ Mov(size, ToSmi(LConstantOperand::cast(instr->size())));
1471 } else {
1472 __ SmiTag(size, ToRegister32(instr->size()).X());
1473 }
1474 int flags = AllocateDoubleAlignFlag::encode(
1475 instr->hydrogen()->MustAllocateDoubleAligned());
1476 if (instr->hydrogen()->IsOldSpaceAllocation()) {
1477 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1478 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
1479 } else {
1480 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
1481 }
1482 __ Mov(x10, Smi::FromInt(flags));
1483 __ Push(size, x10);
1484
1485 CallRuntimeFromDeferred(Runtime::kAllocateInTargetSpace, 2, instr, nullptr);
1486 __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
1487
1488 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
1489 AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
1490 if (instr->hydrogen()->IsOldSpaceAllocation()) {
1491 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1492 allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
1493 }
1494 // If the allocation folding dominator allocate triggered a GC, allocation
1495 // happend in the runtime. We have to reset the top pointer to virtually
1496 // undo the allocation.
1497 ExternalReference allocation_top =
1498 AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
1499 Register top_address = x10;
1500 __ Sub(x0, x0, Operand(kHeapObjectTag));
1501 __ Mov(top_address, Operand(allocation_top));
1502 __ Str(x0, MemOperand(top_address));
1503 __ Add(x0, x0, Operand(kHeapObjectTag));
1504 }
1505 }
1506
DoFastAllocate(LFastAllocate * instr)1507 void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
1508 DCHECK(instr->hydrogen()->IsAllocationFolded());
1509 DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
1510 Register result = ToRegister(instr->result());
1511 Register scratch1 = ToRegister(instr->temp1());
1512 Register scratch2 = ToRegister(instr->temp2());
1513
1514 AllocationFlags flags = ALLOCATION_FOLDED;
1515 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
1516 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
1517 }
1518 if (instr->hydrogen()->IsOldSpaceAllocation()) {
1519 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1520 flags = static_cast<AllocationFlags>(flags | PRETENURE);
1521 }
1522 if (instr->size()->IsConstantOperand()) {
1523 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1524 CHECK(size <= kMaxRegularHeapObjectSize);
1525 __ FastAllocate(size, result, scratch1, scratch2, flags);
1526 } else {
1527 Register size = ToRegister(instr->size());
1528 __ FastAllocate(size, result, scratch1, scratch2, flags);
1529 }
1530 }
1531
1532
DoApplyArguments(LApplyArguments * instr)1533 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
1534 Register receiver = ToRegister(instr->receiver());
1535 Register function = ToRegister(instr->function());
1536 Register length = ToRegister32(instr->length());
1537
1538 Register elements = ToRegister(instr->elements());
1539 Register scratch = x5;
1540 DCHECK(receiver.Is(x0)); // Used for parameter count.
1541 DCHECK(function.Is(x1)); // Required by InvokeFunction.
1542 DCHECK(ToRegister(instr->result()).Is(x0));
1543 DCHECK(instr->IsMarkedAsCall());
1544
1545 // Copy the arguments to this function possibly from the
1546 // adaptor frame below it.
1547 const uint32_t kArgumentsLimit = 1 * KB;
1548 __ Cmp(length, kArgumentsLimit);
1549 DeoptimizeIf(hi, instr, DeoptimizeReason::kTooManyArguments);
1550
1551 // Push the receiver and use the register to keep the original
1552 // number of arguments.
1553 __ Push(receiver);
1554 Register argc = receiver;
1555 receiver = NoReg;
1556 __ Sxtw(argc, length);
1557 // The arguments are at a one pointer size offset from elements.
1558 __ Add(elements, elements, 1 * kPointerSize);
1559
1560 // Loop through the arguments pushing them onto the execution
1561 // stack.
1562 Label invoke, loop;
1563 // length is a small non-negative integer, due to the test above.
1564 __ Cbz(length, &invoke);
1565 __ Bind(&loop);
1566 __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2));
1567 __ Push(scratch);
1568 __ Subs(length, length, 1);
1569 __ B(ne, &loop);
1570
1571 __ Bind(&invoke);
1572
1573 InvokeFlag flag = CALL_FUNCTION;
1574 if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
1575 DCHECK(!info()->saves_caller_doubles());
1576 // TODO(ishell): drop current frame before pushing arguments to the stack.
1577 flag = JUMP_FUNCTION;
1578 ParameterCount actual(x0);
1579 // It is safe to use x3, x4 and x5 as scratch registers here given that
1580 // 1) we are not going to return to caller function anyway,
1581 // 2) x3 (new.target) will be initialized below.
1582 PrepareForTailCall(actual, x3, x4, x5);
1583 }
1584
1585 DCHECK(instr->HasPointerMap());
1586 LPointerMap* pointers = instr->pointer_map();
1587 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
1588 // The number of arguments is stored in argc (receiver) which is x0, as
1589 // expected by InvokeFunction.
1590 ParameterCount actual(argc);
1591 __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
1592 }
1593
1594
DoArgumentsElements(LArgumentsElements * instr)1595 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
1596 Register result = ToRegister(instr->result());
1597
1598 if (instr->hydrogen()->from_inlined()) {
1599 // When we are inside an inlined function, the arguments are the last things
1600 // that have been pushed on the stack. Therefore the arguments array can be
1601 // accessed directly from jssp.
1602 // However in the normal case, it is accessed via fp but there are two words
1603 // on the stack between fp and the arguments (the saved lr and fp) and the
1604 // LAccessArgumentsAt implementation take that into account.
1605 // In the inlined case we need to subtract the size of 2 words to jssp to
1606 // get a pointer which will work well with LAccessArgumentsAt.
1607 DCHECK(masm()->StackPointer().Is(jssp));
1608 __ Sub(result, jssp, 2 * kPointerSize);
1609 } else if (instr->hydrogen()->arguments_adaptor()) {
1610 DCHECK(instr->temp() != NULL);
1611 Register previous_fp = ToRegister(instr->temp());
1612
1613 __ Ldr(previous_fp,
1614 MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1615 __ Ldr(result, MemOperand(previous_fp,
1616 CommonFrameConstants::kContextOrFrameTypeOffset));
1617 __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1618 __ Csel(result, fp, previous_fp, ne);
1619 } else {
1620 __ Mov(result, fp);
1621 }
1622 }
1623
1624
DoArgumentsLength(LArgumentsLength * instr)1625 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
1626 Register elements = ToRegister(instr->elements());
1627 Register result = ToRegister32(instr->result());
1628 Label done;
1629
1630 // If no arguments adaptor frame the number of arguments is fixed.
1631 __ Cmp(fp, elements);
1632 __ Mov(result, scope()->num_parameters());
1633 __ B(eq, &done);
1634
1635 // Arguments adaptor frame present. Get argument length from there.
1636 __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1637 __ Ldr(result,
1638 UntagSmiMemOperand(result.X(),
1639 ArgumentsAdaptorFrameConstants::kLengthOffset));
1640
1641 // Argument length is in result register.
1642 __ Bind(&done);
1643 }
1644
1645
DoArithmeticD(LArithmeticD * instr)1646 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1647 DoubleRegister left = ToDoubleRegister(instr->left());
1648 DoubleRegister right = ToDoubleRegister(instr->right());
1649 DoubleRegister result = ToDoubleRegister(instr->result());
1650
1651 switch (instr->op()) {
1652 case Token::ADD: __ Fadd(result, left, right); break;
1653 case Token::SUB: __ Fsub(result, left, right); break;
1654 case Token::MUL: __ Fmul(result, left, right); break;
1655 case Token::DIV: __ Fdiv(result, left, right); break;
1656 case Token::MOD: {
1657 // The ECMA-262 remainder operator is the remainder from a truncating
1658 // (round-towards-zero) division. Note that this differs from IEEE-754.
1659 //
1660 // TODO(jbramley): See if it's possible to do this inline, rather than by
1661 // calling a helper function. With frintz (to produce the intermediate
1662 // quotient) and fmsub (to calculate the remainder without loss of
1663 // precision), it should be possible. However, we would need support for
1664 // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't
1665 // support that yet.
1666 DCHECK(left.Is(d0));
1667 DCHECK(right.Is(d1));
1668 __ CallCFunction(
1669 ExternalReference::mod_two_doubles_operation(isolate()),
1670 0, 2);
1671 DCHECK(result.Is(d0));
1672 break;
1673 }
1674 default:
1675 UNREACHABLE();
1676 break;
1677 }
1678 }
1679
1680
DoArithmeticT(LArithmeticT * instr)1681 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1682 DCHECK(ToRegister(instr->context()).is(cp));
1683 DCHECK(ToRegister(instr->left()).is(x1));
1684 DCHECK(ToRegister(instr->right()).is(x0));
1685 DCHECK(ToRegister(instr->result()).is(x0));
1686
1687 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
1688 CallCode(code, RelocInfo::CODE_TARGET, instr);
1689 }
1690
1691
DoBitI(LBitI * instr)1692 void LCodeGen::DoBitI(LBitI* instr) {
1693 Register result = ToRegister32(instr->result());
1694 Register left = ToRegister32(instr->left());
1695 Operand right = ToShiftedRightOperand32(instr->right(), instr);
1696
1697 switch (instr->op()) {
1698 case Token::BIT_AND: __ And(result, left, right); break;
1699 case Token::BIT_OR: __ Orr(result, left, right); break;
1700 case Token::BIT_XOR: __ Eor(result, left, right); break;
1701 default:
1702 UNREACHABLE();
1703 break;
1704 }
1705 }
1706
1707
DoBitS(LBitS * instr)1708 void LCodeGen::DoBitS(LBitS* instr) {
1709 Register result = ToRegister(instr->result());
1710 Register left = ToRegister(instr->left());
1711 Operand right = ToOperand(instr->right());
1712
1713 switch (instr->op()) {
1714 case Token::BIT_AND: __ And(result, left, right); break;
1715 case Token::BIT_OR: __ Orr(result, left, right); break;
1716 case Token::BIT_XOR: __ Eor(result, left, right); break;
1717 default:
1718 UNREACHABLE();
1719 break;
1720 }
1721 }
1722
1723
DoBoundsCheck(LBoundsCheck * instr)1724 void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
1725 Condition cond = instr->hydrogen()->allow_equality() ? hi : hs;
1726 DCHECK(instr->hydrogen()->index()->representation().IsInteger32());
1727 DCHECK(instr->hydrogen()->length()->representation().IsInteger32());
1728 if (instr->index()->IsConstantOperand()) {
1729 Operand index = ToOperand32(instr->index());
1730 Register length = ToRegister32(instr->length());
1731 __ Cmp(length, index);
1732 cond = CommuteCondition(cond);
1733 } else {
1734 Register index = ToRegister32(instr->index());
1735 Operand length = ToOperand32(instr->length());
1736 __ Cmp(index, length);
1737 }
1738 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
1739 __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed);
1740 } else {
1741 DeoptimizeIf(cond, instr, DeoptimizeReason::kOutOfBounds);
1742 }
1743 }
1744
1745
DoBranch(LBranch * instr)1746 void LCodeGen::DoBranch(LBranch* instr) {
1747 Representation r = instr->hydrogen()->value()->representation();
1748 Label* true_label = instr->TrueLabel(chunk_);
1749 Label* false_label = instr->FalseLabel(chunk_);
1750
1751 if (r.IsInteger32()) {
1752 DCHECK(!info()->IsStub());
1753 EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
1754 } else if (r.IsSmi()) {
1755 DCHECK(!info()->IsStub());
1756 STATIC_ASSERT(kSmiTag == 0);
1757 EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
1758 } else if (r.IsDouble()) {
1759 DoubleRegister value = ToDoubleRegister(instr->value());
1760 // Test the double value. Zero and NaN are false.
1761 EmitBranchIfNonZeroNumber(instr, value, double_scratch());
1762 } else {
1763 DCHECK(r.IsTagged());
1764 Register value = ToRegister(instr->value());
1765 HType type = instr->hydrogen()->value()->type();
1766
1767 if (type.IsBoolean()) {
1768 DCHECK(!info()->IsStub());
1769 __ CompareRoot(value, Heap::kTrueValueRootIndex);
1770 EmitBranch(instr, eq);
1771 } else if (type.IsSmi()) {
1772 DCHECK(!info()->IsStub());
1773 EmitCompareAndBranch(instr, ne, value, Smi::kZero);
1774 } else if (type.IsJSArray()) {
1775 DCHECK(!info()->IsStub());
1776 EmitGoto(instr->TrueDestination(chunk()));
1777 } else if (type.IsHeapNumber()) {
1778 DCHECK(!info()->IsStub());
1779 __ Ldr(double_scratch(), FieldMemOperand(value,
1780 HeapNumber::kValueOffset));
1781 // Test the double value. Zero and NaN are false.
1782 EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
1783 } else if (type.IsString()) {
1784 DCHECK(!info()->IsStub());
1785 Register temp = ToRegister(instr->temp1());
1786 __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
1787 EmitCompareAndBranch(instr, ne, temp, 0);
1788 } else {
1789 ToBooleanHints expected = instr->hydrogen()->expected_input_types();
1790 // Avoid deopts in the case where we've never executed this path before.
1791 if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
1792
1793 if (expected & ToBooleanHint::kUndefined) {
1794 // undefined -> false.
1795 __ JumpIfRoot(
1796 value, Heap::kUndefinedValueRootIndex, false_label);
1797 }
1798
1799 if (expected & ToBooleanHint::kBoolean) {
1800 // Boolean -> its value.
1801 __ JumpIfRoot(
1802 value, Heap::kTrueValueRootIndex, true_label);
1803 __ JumpIfRoot(
1804 value, Heap::kFalseValueRootIndex, false_label);
1805 }
1806
1807 if (expected & ToBooleanHint::kNull) {
1808 // 'null' -> false.
1809 __ JumpIfRoot(
1810 value, Heap::kNullValueRootIndex, false_label);
1811 }
1812
1813 if (expected & ToBooleanHint::kSmallInteger) {
1814 // Smis: 0 -> false, all other -> true.
1815 DCHECK(Smi::kZero == 0);
1816 __ Cbz(value, false_label);
1817 __ JumpIfSmi(value, true_label);
1818 } else if (expected & ToBooleanHint::kNeedsMap) {
1819 // If we need a map later and have a smi, deopt.
1820 DeoptimizeIfSmi(value, instr, DeoptimizeReason::kSmi);
1821 }
1822
1823 Register map = NoReg;
1824 Register scratch = NoReg;
1825
1826 if (expected & ToBooleanHint::kNeedsMap) {
1827 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
1828 map = ToRegister(instr->temp1());
1829 scratch = ToRegister(instr->temp2());
1830
1831 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
1832
1833 if (expected & ToBooleanHint::kCanBeUndetectable) {
1834 // Undetectable -> false.
1835 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
1836 __ TestAndBranchIfAnySet(
1837 scratch, 1 << Map::kIsUndetectable, false_label);
1838 }
1839 }
1840
1841 if (expected & ToBooleanHint::kReceiver) {
1842 // spec object -> true.
1843 __ CompareInstanceType(map, scratch, FIRST_JS_RECEIVER_TYPE);
1844 __ B(ge, true_label);
1845 }
1846
1847 if (expected & ToBooleanHint::kString) {
1848 // String value -> false iff empty.
1849 Label not_string;
1850 __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
1851 __ B(ge, ¬_string);
1852 __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
1853 __ Cbz(scratch, false_label);
1854 __ B(true_label);
1855 __ Bind(¬_string);
1856 }
1857
1858 if (expected & ToBooleanHint::kSymbol) {
1859 // Symbol value -> true.
1860 __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
1861 __ B(eq, true_label);
1862 }
1863
1864 if (expected & ToBooleanHint::kSimdValue) {
1865 // SIMD value -> true.
1866 __ CompareInstanceType(map, scratch, SIMD128_VALUE_TYPE);
1867 __ B(eq, true_label);
1868 }
1869
1870 if (expected & ToBooleanHint::kHeapNumber) {
1871 Label not_heap_number;
1872 __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, ¬_heap_number);
1873
1874 __ Ldr(double_scratch(),
1875 FieldMemOperand(value, HeapNumber::kValueOffset));
1876 __ Fcmp(double_scratch(), 0.0);
1877 // If we got a NaN (overflow bit is set), jump to the false branch.
1878 __ B(vs, false_label);
1879 __ B(eq, false_label);
1880 __ B(true_label);
1881 __ Bind(¬_heap_number);
1882 }
1883
1884 if (expected != ToBooleanHint::kAny) {
1885 // We've seen something for the first time -> deopt.
1886 // This can only happen if we are not generic already.
1887 Deoptimize(instr, DeoptimizeReason::kUnexpectedObject);
1888 }
1889 }
1890 }
1891 }
1892
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,bool is_tail_call,LInstruction * instr)1893 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
1894 int formal_parameter_count, int arity,
1895 bool is_tail_call, LInstruction* instr) {
1896 bool dont_adapt_arguments =
1897 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1898 bool can_invoke_directly =
1899 dont_adapt_arguments || formal_parameter_count == arity;
1900
1901 // The function interface relies on the following register assignments.
1902 Register function_reg = x1;
1903 Register arity_reg = x0;
1904
1905 LPointerMap* pointers = instr->pointer_map();
1906
1907 if (FLAG_debug_code) {
1908 Label is_not_smi;
1909 // Try to confirm that function_reg (x1) is a tagged pointer.
1910 __ JumpIfNotSmi(function_reg, &is_not_smi);
1911 __ Abort(kExpectedFunctionObject);
1912 __ Bind(&is_not_smi);
1913 }
1914
1915 if (can_invoke_directly) {
1916 // Change context.
1917 __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
1918
1919 // Always initialize new target and number of actual arguments.
1920 __ LoadRoot(x3, Heap::kUndefinedValueRootIndex);
1921 __ Mov(arity_reg, arity);
1922
1923 bool is_self_call = function.is_identical_to(info()->closure());
1924
1925 // Invoke function.
1926 if (is_self_call) {
1927 Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
1928 if (is_tail_call) {
1929 __ Jump(self, RelocInfo::CODE_TARGET);
1930 } else {
1931 __ Call(self, RelocInfo::CODE_TARGET);
1932 }
1933 } else {
1934 __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
1935 if (is_tail_call) {
1936 __ Jump(x10);
1937 } else {
1938 __ Call(x10);
1939 }
1940 }
1941
1942 if (!is_tail_call) {
1943 // Set up deoptimization.
1944 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
1945 }
1946 } else {
1947 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
1948 ParameterCount actual(arity);
1949 ParameterCount expected(formal_parameter_count);
1950 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
1951 __ InvokeFunction(function_reg, expected, actual, flag, generator);
1952 }
1953 }
1954
DoCallWithDescriptor(LCallWithDescriptor * instr)1955 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
1956 DCHECK(instr->IsMarkedAsCall());
1957 DCHECK(ToRegister(instr->result()).Is(x0));
1958
1959 if (instr->hydrogen()->IsTailCall()) {
1960 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
1961
1962 if (instr->target()->IsConstantOperand()) {
1963 LConstantOperand* target = LConstantOperand::cast(instr->target());
1964 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
1965 // TODO(all): on ARM we use a call descriptor to specify a storage mode
1966 // but on ARM64 we only have one storage mode so it isn't necessary. Check
1967 // this understanding is correct.
1968 __ Jump(code, RelocInfo::CODE_TARGET);
1969 } else {
1970 DCHECK(instr->target()->IsRegister());
1971 Register target = ToRegister(instr->target());
1972 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
1973 __ Br(target);
1974 }
1975 } else {
1976 LPointerMap* pointers = instr->pointer_map();
1977 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
1978
1979 if (instr->target()->IsConstantOperand()) {
1980 LConstantOperand* target = LConstantOperand::cast(instr->target());
1981 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
1982 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
1983 // TODO(all): on ARM we use a call descriptor to specify a storage mode
1984 // but on ARM64 we only have one storage mode so it isn't necessary. Check
1985 // this understanding is correct.
1986 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
1987 } else {
1988 DCHECK(instr->target()->IsRegister());
1989 Register target = ToRegister(instr->target());
1990 generator.BeforeCall(__ CallSize(target));
1991 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
1992 __ Call(target);
1993 }
1994 generator.AfterCall();
1995 }
1996
1997 HCallWithDescriptor* hinstr = instr->hydrogen();
1998 RecordPushedArgumentsDelta(hinstr->argument_delta());
1999
2000 // HCallWithDescriptor instruction is translated to zero or more
2001 // LPushArguments (they handle parameters passed on the stack) followed by
2002 // a LCallWithDescriptor. Each LPushArguments instruction generated records
2003 // the number of arguments pushed thus we need to offset them here.
2004 // The |argument_delta()| used above "knows" only about JS parameters while
2005 // we are dealing here with particular calling convention details.
2006 RecordPushedArgumentsDelta(-hinstr->descriptor().GetStackParameterCount());
2007 }
2008
2009
DoCallRuntime(LCallRuntime * instr)2010 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
2011 CallRuntime(instr->function(), instr->arity(), instr);
2012 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
2013 }
2014
2015
DoUnknownOSRValue(LUnknownOSRValue * instr)2016 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
2017 GenerateOsrPrologue();
2018 }
2019
2020
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)2021 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
2022 Register temp = ToRegister(instr->temp());
2023 {
2024 PushSafepointRegistersScope scope(this);
2025 __ Push(object);
2026 __ Mov(cp, 0);
2027 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
2028 RecordSafepointWithRegisters(
2029 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
2030 __ StoreToSafepointRegisterSlot(x0, temp);
2031 }
2032 DeoptimizeIfSmi(temp, instr, DeoptimizeReason::kInstanceMigrationFailed);
2033 }
2034
2035
DoCheckMaps(LCheckMaps * instr)2036 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
2037 class DeferredCheckMaps: public LDeferredCode {
2038 public:
2039 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
2040 : LDeferredCode(codegen), instr_(instr), object_(object) {
2041 SetExit(check_maps());
2042 }
2043 virtual void Generate() {
2044 codegen()->DoDeferredInstanceMigration(instr_, object_);
2045 }
2046 Label* check_maps() { return &check_maps_; }
2047 virtual LInstruction* instr() { return instr_; }
2048 private:
2049 LCheckMaps* instr_;
2050 Label check_maps_;
2051 Register object_;
2052 };
2053
2054 if (instr->hydrogen()->IsStabilityCheck()) {
2055 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2056 for (int i = 0; i < maps->size(); ++i) {
2057 AddStabilityDependency(maps->at(i).handle());
2058 }
2059 return;
2060 }
2061
2062 Register object = ToRegister(instr->value());
2063 Register map_reg = ToRegister(instr->temp());
2064
2065 __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
2066
2067 DeferredCheckMaps* deferred = NULL;
2068 if (instr->hydrogen()->HasMigrationTarget()) {
2069 deferred = new(zone()) DeferredCheckMaps(this, instr, object);
2070 __ Bind(deferred->check_maps());
2071 }
2072
2073 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2074 Label success;
2075 for (int i = 0; i < maps->size() - 1; i++) {
2076 Handle<Map> map = maps->at(i).handle();
2077 __ CompareMap(map_reg, map);
2078 __ B(eq, &success);
2079 }
2080 Handle<Map> map = maps->at(maps->size() - 1).handle();
2081 __ CompareMap(map_reg, map);
2082
2083 // We didn't match a map.
2084 if (instr->hydrogen()->HasMigrationTarget()) {
2085 __ B(ne, deferred->entry());
2086 } else {
2087 DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap);
2088 }
2089
2090 __ Bind(&success);
2091 }
2092
2093
DoCheckNonSmi(LCheckNonSmi * instr)2094 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
2095 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2096 DeoptimizeIfSmi(ToRegister(instr->value()), instr, DeoptimizeReason::kSmi);
2097 }
2098 }
2099
2100
DoCheckSmi(LCheckSmi * instr)2101 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
2102 Register value = ToRegister(instr->value());
2103 DCHECK(!instr->result() || ToRegister(instr->result()).Is(value));
2104 DeoptimizeIfNotSmi(value, instr, DeoptimizeReason::kNotASmi);
2105 }
2106
2107
DoCheckArrayBufferNotNeutered(LCheckArrayBufferNotNeutered * instr)2108 void LCodeGen::DoCheckArrayBufferNotNeutered(
2109 LCheckArrayBufferNotNeutered* instr) {
2110 UseScratchRegisterScope temps(masm());
2111 Register view = ToRegister(instr->view());
2112 Register scratch = temps.AcquireX();
2113
2114 __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
2115 __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
2116 __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
2117 DeoptimizeIf(ne, instr, DeoptimizeReason::kOutOfBounds);
2118 }
2119
2120
DoCheckInstanceType(LCheckInstanceType * instr)2121 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
2122 Register input = ToRegister(instr->value());
2123 Register scratch = ToRegister(instr->temp());
2124
2125 __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
2126 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
2127
2128 if (instr->hydrogen()->is_interval_check()) {
2129 InstanceType first, last;
2130 instr->hydrogen()->GetCheckInterval(&first, &last);
2131
2132 __ Cmp(scratch, first);
2133 if (first == last) {
2134 // If there is only one type in the interval check for equality.
2135 DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType);
2136 } else if (last == LAST_TYPE) {
2137 // We don't need to compare with the higher bound of the interval.
2138 DeoptimizeIf(lo, instr, DeoptimizeReason::kWrongInstanceType);
2139 } else {
2140 // If we are below the lower bound, set the C flag and clear the Z flag
2141 // to force a deopt.
2142 __ Ccmp(scratch, last, CFlag, hs);
2143 DeoptimizeIf(hi, instr, DeoptimizeReason::kWrongInstanceType);
2144 }
2145 } else {
2146 uint8_t mask;
2147 uint8_t tag;
2148 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
2149
2150 if (base::bits::IsPowerOfTwo32(mask)) {
2151 DCHECK((tag == 0) || (tag == mask));
2152 if (tag == 0) {
2153 DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr,
2154 DeoptimizeReason::kWrongInstanceType);
2155 } else {
2156 DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr,
2157 DeoptimizeReason::kWrongInstanceType);
2158 }
2159 } else {
2160 if (tag == 0) {
2161 __ Tst(scratch, mask);
2162 } else {
2163 __ And(scratch, scratch, mask);
2164 __ Cmp(scratch, tag);
2165 }
2166 DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType);
2167 }
2168 }
2169 }
2170
2171
DoClampDToUint8(LClampDToUint8 * instr)2172 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
2173 DoubleRegister input = ToDoubleRegister(instr->unclamped());
2174 Register result = ToRegister32(instr->result());
2175 __ ClampDoubleToUint8(result, input, double_scratch());
2176 }
2177
2178
DoClampIToUint8(LClampIToUint8 * instr)2179 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
2180 Register input = ToRegister32(instr->unclamped());
2181 Register result = ToRegister32(instr->result());
2182 __ ClampInt32ToUint8(result, input);
2183 }
2184
2185
DoClampTToUint8(LClampTToUint8 * instr)2186 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
2187 Register input = ToRegister(instr->unclamped());
2188 Register result = ToRegister32(instr->result());
2189 Label done;
2190
2191 // Both smi and heap number cases are handled.
2192 Label is_not_smi;
2193 __ JumpIfNotSmi(input, &is_not_smi);
2194 __ SmiUntag(result.X(), input);
2195 __ ClampInt32ToUint8(result);
2196 __ B(&done);
2197
2198 __ Bind(&is_not_smi);
2199
2200 // Check for heap number.
2201 Label is_heap_number;
2202 __ JumpIfHeapNumber(input, &is_heap_number);
2203
2204 // Check for undefined. Undefined is coverted to zero for clamping conversion.
2205 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
2206 DeoptimizeReason::kNotAHeapNumberUndefined);
2207 __ Mov(result, 0);
2208 __ B(&done);
2209
2210 // Heap number case.
2211 __ Bind(&is_heap_number);
2212 DoubleRegister dbl_scratch = double_scratch();
2213 DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1());
2214 __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
2215 __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
2216
2217 __ Bind(&done);
2218 }
2219
2220
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2221 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2222 Handle<String> class_name = instr->hydrogen()->class_name();
2223 Label* true_label = instr->TrueLabel(chunk_);
2224 Label* false_label = instr->FalseLabel(chunk_);
2225 Register input = ToRegister(instr->value());
2226 Register scratch1 = ToRegister(instr->temp1());
2227 Register scratch2 = ToRegister(instr->temp2());
2228
2229 __ JumpIfSmi(input, false_label);
2230
2231 Register map = scratch2;
2232 __ CompareObjectType(input, map, scratch1, FIRST_FUNCTION_TYPE);
2233 STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2234 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2235 __ B(hs, true_label);
2236 } else {
2237 __ B(hs, false_label);
2238 }
2239
2240 // Check if the constructor in the map is a function.
2241 {
2242 UseScratchRegisterScope temps(masm());
2243 Register instance_type = temps.AcquireX();
2244 __ GetMapConstructor(scratch1, map, scratch2, instance_type);
2245 __ Cmp(instance_type, JS_FUNCTION_TYPE);
2246 }
2247 // Objects with a non-function constructor have class 'Object'.
2248 if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2249 __ B(ne, true_label);
2250 } else {
2251 __ B(ne, false_label);
2252 }
2253
2254 // The constructor function is in scratch1. Get its instance class name.
2255 __ Ldr(scratch1,
2256 FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
2257 __ Ldr(scratch1,
2258 FieldMemOperand(scratch1,
2259 SharedFunctionInfo::kInstanceClassNameOffset));
2260
2261 // The class name we are testing against is internalized since it's a literal.
2262 // The name in the constructor is internalized because of the way the context
2263 // is booted. This routine isn't expected to work for random API-created
2264 // classes and it doesn't have to because you can't access it with natives
2265 // syntax. Since both sides are internalized it is sufficient to use an
2266 // identity comparison.
2267 EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
2268 }
2269
2270
DoCmpHoleAndBranchD(LCmpHoleAndBranchD * instr)2271 void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
2272 DCHECK(instr->hydrogen()->representation().IsDouble());
2273 FPRegister object = ToDoubleRegister(instr->object());
2274 Register temp = ToRegister(instr->temp());
2275
2276 // If we don't have a NaN, we don't have the hole, so branch now to avoid the
2277 // (relatively expensive) hole-NaN check.
2278 __ Fcmp(object, object);
2279 __ B(vc, instr->FalseLabel(chunk_));
2280
2281 // We have a NaN, but is it the hole?
2282 __ Fmov(temp, object);
2283 EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
2284 }
2285
2286
DoCmpHoleAndBranchT(LCmpHoleAndBranchT * instr)2287 void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
2288 DCHECK(instr->hydrogen()->representation().IsTagged());
2289 Register object = ToRegister(instr->object());
2290
2291 EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
2292 }
2293
2294
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2295 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2296 Register value = ToRegister(instr->value());
2297 Register map = ToRegister(instr->temp());
2298
2299 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
2300 EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
2301 }
2302
2303
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2304 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2305 LOperand* left = instr->left();
2306 LOperand* right = instr->right();
2307 bool is_unsigned =
2308 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2309 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2310 Condition cond = TokenToCondition(instr->op(), is_unsigned);
2311
2312 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2313 // We can statically evaluate the comparison.
2314 double left_val = ToDouble(LConstantOperand::cast(left));
2315 double right_val = ToDouble(LConstantOperand::cast(right));
2316 int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2317 ? instr->TrueDestination(chunk_)
2318 : instr->FalseDestination(chunk_);
2319 EmitGoto(next_block);
2320 } else {
2321 if (instr->is_double()) {
2322 __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
2323
2324 // If a NaN is involved, i.e. the result is unordered (V set),
2325 // jump to false block label.
2326 __ B(vs, instr->FalseLabel(chunk_));
2327 EmitBranch(instr, cond);
2328 } else {
2329 if (instr->hydrogen_value()->representation().IsInteger32()) {
2330 if (right->IsConstantOperand()) {
2331 EmitCompareAndBranch(instr, cond, ToRegister32(left),
2332 ToOperand32(right));
2333 } else {
2334 // Commute the operands and the condition.
2335 EmitCompareAndBranch(instr, CommuteCondition(cond),
2336 ToRegister32(right), ToOperand32(left));
2337 }
2338 } else {
2339 DCHECK(instr->hydrogen_value()->representation().IsSmi());
2340 if (right->IsConstantOperand()) {
2341 int32_t value = ToInteger32(LConstantOperand::cast(right));
2342 EmitCompareAndBranch(instr,
2343 cond,
2344 ToRegister(left),
2345 Operand(Smi::FromInt(value)));
2346 } else if (left->IsConstantOperand()) {
2347 // Commute the operands and the condition.
2348 int32_t value = ToInteger32(LConstantOperand::cast(left));
2349 EmitCompareAndBranch(instr,
2350 CommuteCondition(cond),
2351 ToRegister(right),
2352 Operand(Smi::FromInt(value)));
2353 } else {
2354 EmitCompareAndBranch(instr,
2355 cond,
2356 ToRegister(left),
2357 ToRegister(right));
2358 }
2359 }
2360 }
2361 }
2362 }
2363
2364
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2365 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2366 Register left = ToRegister(instr->left());
2367 Register right = ToRegister(instr->right());
2368 EmitCompareAndBranch(instr, eq, left, right);
2369 }
2370
2371
DoCmpT(LCmpT * instr)2372 void LCodeGen::DoCmpT(LCmpT* instr) {
2373 DCHECK(ToRegister(instr->context()).is(cp));
2374 Token::Value op = instr->op();
2375 Condition cond = TokenToCondition(op, false);
2376
2377 DCHECK(ToRegister(instr->left()).Is(x1));
2378 DCHECK(ToRegister(instr->right()).Is(x0));
2379 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2380 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2381 // Signal that we don't inline smi code before this stub.
2382 InlineSmiCheckInfo::EmitNotInlined(masm());
2383
2384 // Return true or false depending on CompareIC result.
2385 // This instruction is marked as call. We can clobber any register.
2386 DCHECK(instr->IsMarkedAsCall());
2387 __ LoadTrueFalseRoots(x1, x2);
2388 __ Cmp(x0, 0);
2389 __ Csel(ToRegister(instr->result()), x1, x2, cond);
2390 }
2391
2392
DoConstantD(LConstantD * instr)2393 void LCodeGen::DoConstantD(LConstantD* instr) {
2394 DCHECK(instr->result()->IsDoubleRegister());
2395 DoubleRegister result = ToDoubleRegister(instr->result());
2396 if (instr->value() == 0) {
2397 if (copysign(1.0, instr->value()) == 1.0) {
2398 __ Fmov(result, fp_zero);
2399 } else {
2400 __ Fneg(result, fp_zero);
2401 }
2402 } else {
2403 __ Fmov(result, instr->value());
2404 }
2405 }
2406
2407
DoConstantE(LConstantE * instr)2408 void LCodeGen::DoConstantE(LConstantE* instr) {
2409 __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2410 }
2411
2412
DoConstantI(LConstantI * instr)2413 void LCodeGen::DoConstantI(LConstantI* instr) {
2414 DCHECK(is_int32(instr->value()));
2415 // Cast the value here to ensure that the value isn't sign extended by the
2416 // implicit Operand constructor.
2417 __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value()));
2418 }
2419
2420
DoConstantS(LConstantS * instr)2421 void LCodeGen::DoConstantS(LConstantS* instr) {
2422 __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2423 }
2424
2425
DoConstantT(LConstantT * instr)2426 void LCodeGen::DoConstantT(LConstantT* instr) {
2427 Handle<Object> object = instr->value(isolate());
2428 AllowDeferredHandleDereference smi_check;
2429 __ LoadObject(ToRegister(instr->result()), object);
2430 }
2431
2432
DoContext(LContext * instr)2433 void LCodeGen::DoContext(LContext* instr) {
2434 // If there is a non-return use, the context must be moved to a register.
2435 Register result = ToRegister(instr->result());
2436 if (info()->IsOptimizing()) {
2437 __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
2438 } else {
2439 // If there is no frame, the context must be in cp.
2440 DCHECK(result.is(cp));
2441 }
2442 }
2443
2444
DoCheckValue(LCheckValue * instr)2445 void LCodeGen::DoCheckValue(LCheckValue* instr) {
2446 Register reg = ToRegister(instr->value());
2447 Handle<HeapObject> object = instr->hydrogen()->object().handle();
2448 AllowDeferredHandleDereference smi_check;
2449 if (isolate()->heap()->InNewSpace(*object)) {
2450 UseScratchRegisterScope temps(masm());
2451 Register temp = temps.AcquireX();
2452 Handle<Cell> cell = isolate()->factory()->NewCell(object);
2453 __ Mov(temp, Operand(cell));
2454 __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
2455 __ Cmp(reg, temp);
2456 } else {
2457 __ Cmp(reg, Operand(object));
2458 }
2459 DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch);
2460 }
2461
2462
DoLazyBailout(LLazyBailout * instr)2463 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
2464 last_lazy_deopt_pc_ = masm()->pc_offset();
2465 DCHECK(instr->HasEnvironment());
2466 LEnvironment* env = instr->environment();
2467 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
2468 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2469 }
2470
2471
DoDeoptimize(LDeoptimize * instr)2472 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
2473 Deoptimizer::BailoutType type = instr->hydrogen()->type();
2474 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
2475 // needed return address), even though the implementation of LAZY and EAGER is
2476 // now identical. When LAZY is eventually completely folded into EAGER, remove
2477 // the special case below.
2478 if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
2479 type = Deoptimizer::LAZY;
2480 }
2481
2482 Deoptimize(instr, instr->hydrogen()->reason(), &type);
2483 }
2484
2485
DoDivByPowerOf2I(LDivByPowerOf2I * instr)2486 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
2487 Register dividend = ToRegister32(instr->dividend());
2488 int32_t divisor = instr->divisor();
2489 Register result = ToRegister32(instr->result());
2490 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
2491 DCHECK(!result.is(dividend));
2492
2493 // Check for (0 / -x) that will produce negative zero.
2494 HDiv* hdiv = instr->hydrogen();
2495 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2496 DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kDivisionByZero);
2497 }
2498 // Check for (kMinInt / -1).
2499 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
2500 // Test dividend for kMinInt by subtracting one (cmp) and checking for
2501 // overflow.
2502 __ Cmp(dividend, 1);
2503 DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
2504 }
2505 // Deoptimize if remainder will not be 0.
2506 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
2507 divisor != 1 && divisor != -1) {
2508 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
2509 __ Tst(dividend, mask);
2510 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision);
2511 }
2512
2513 if (divisor == -1) { // Nice shortcut, not needed for correctness.
2514 __ Neg(result, dividend);
2515 return;
2516 }
2517 int32_t shift = WhichPowerOf2Abs(divisor);
2518 if (shift == 0) {
2519 __ Mov(result, dividend);
2520 } else if (shift == 1) {
2521 __ Add(result, dividend, Operand(dividend, LSR, 31));
2522 } else {
2523 __ Mov(result, Operand(dividend, ASR, 31));
2524 __ Add(result, dividend, Operand(result, LSR, 32 - shift));
2525 }
2526 if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
2527 if (divisor < 0) __ Neg(result, result);
2528 }
2529
2530
DoDivByConstI(LDivByConstI * instr)2531 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
2532 Register dividend = ToRegister32(instr->dividend());
2533 int32_t divisor = instr->divisor();
2534 Register result = ToRegister32(instr->result());
2535 DCHECK(!AreAliased(dividend, result));
2536
2537 if (divisor == 0) {
2538 Deoptimize(instr, DeoptimizeReason::kDivisionByZero);
2539 return;
2540 }
2541
2542 // Check for (0 / -x) that will produce negative zero.
2543 HDiv* hdiv = instr->hydrogen();
2544 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2545 DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kMinusZero);
2546 }
2547
2548 __ TruncatingDiv(result, dividend, Abs(divisor));
2549 if (divisor < 0) __ Neg(result, result);
2550
2551 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
2552 Register temp = ToRegister32(instr->temp());
2553 DCHECK(!AreAliased(dividend, result, temp));
2554 __ Sxtw(dividend.X(), dividend);
2555 __ Mov(temp, divisor);
2556 __ Smsubl(temp.X(), result, temp, dividend.X());
2557 DeoptimizeIfNotZero(temp, instr, DeoptimizeReason::kLostPrecision);
2558 }
2559 }
2560
2561
2562 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)2563 void LCodeGen::DoDivI(LDivI* instr) {
2564 HBinaryOperation* hdiv = instr->hydrogen();
2565 Register dividend = ToRegister32(instr->dividend());
2566 Register divisor = ToRegister32(instr->divisor());
2567 Register result = ToRegister32(instr->result());
2568
2569 // Issue the division first, and then check for any deopt cases whilst the
2570 // result is computed.
2571 __ Sdiv(result, dividend, divisor);
2572
2573 if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
2574 DCHECK(!instr->temp());
2575 return;
2576 }
2577
2578 // Check for x / 0.
2579 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
2580 DeoptimizeIfZero(divisor, instr, DeoptimizeReason::kDivisionByZero);
2581 }
2582
2583 // Check for (0 / -x) as that will produce negative zero.
2584 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
2585 __ Cmp(divisor, 0);
2586
2587 // If the divisor < 0 (mi), compare the dividend, and deopt if it is
2588 // zero, ie. zero dividend with negative divisor deopts.
2589 // If the divisor >= 0 (pl, the opposite of mi) set the flags to
2590 // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
2591 __ Ccmp(dividend, 0, NoFlag, mi);
2592 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
2593 }
2594
2595 // Check for (kMinInt / -1).
2596 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
2597 // Test dividend for kMinInt by subtracting one (cmp) and checking for
2598 // overflow.
2599 __ Cmp(dividend, 1);
2600 // If overflow is set, ie. dividend = kMinInt, compare the divisor with
2601 // -1. If overflow is clear, set the flags for condition ne, as the
2602 // dividend isn't -1, and thus we shouldn't deopt.
2603 __ Ccmp(divisor, -1, NoFlag, vs);
2604 DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
2605 }
2606
2607 // Compute remainder and deopt if it's not zero.
2608 Register remainder = ToRegister32(instr->temp());
2609 __ Msub(remainder, result, divisor, dividend);
2610 DeoptimizeIfNotZero(remainder, instr, DeoptimizeReason::kLostPrecision);
2611 }
2612
2613
DoDoubleToIntOrSmi(LDoubleToIntOrSmi * instr)2614 void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
2615 DoubleRegister input = ToDoubleRegister(instr->value());
2616 Register result = ToRegister32(instr->result());
2617
2618 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2619 DeoptimizeIfMinusZero(input, instr, DeoptimizeReason::kMinusZero);
2620 }
2621
2622 __ TryRepresentDoubleAsInt32(result, input, double_scratch());
2623 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
2624
2625 if (instr->tag_result()) {
2626 __ SmiTag(result.X());
2627 }
2628 }
2629
2630
DoDrop(LDrop * instr)2631 void LCodeGen::DoDrop(LDrop* instr) {
2632 __ Drop(instr->count());
2633
2634 RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta());
2635 }
2636
2637
DoDummy(LDummy * instr)2638 void LCodeGen::DoDummy(LDummy* instr) {
2639 // Nothing to see here, move on!
2640 }
2641
2642
DoDummyUse(LDummyUse * instr)2643 void LCodeGen::DoDummyUse(LDummyUse* instr) {
2644 // Nothing to see here, move on!
2645 }
2646
2647
DoForInCacheArray(LForInCacheArray * instr)2648 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
2649 Register map = ToRegister(instr->map());
2650 Register result = ToRegister(instr->result());
2651 Label load_cache, done;
2652
2653 __ EnumLengthUntagged(result, map);
2654 __ Cbnz(result, &load_cache);
2655
2656 __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
2657 __ B(&done);
2658
2659 __ Bind(&load_cache);
2660 __ LoadInstanceDescriptors(map, result);
2661 __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
2662 __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
2663 DeoptimizeIfZero(result, instr, DeoptimizeReason::kNoCache);
2664
2665 __ Bind(&done);
2666 }
2667
2668
DoForInPrepareMap(LForInPrepareMap * instr)2669 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
2670 Register object = ToRegister(instr->object());
2671
2672 DCHECK(instr->IsMarkedAsCall());
2673 DCHECK(object.Is(x0));
2674
2675 Label use_cache, call_runtime;
2676 __ CheckEnumCache(object, x5, x1, x2, x3, x4, &call_runtime);
2677
2678 __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
2679 __ B(&use_cache);
2680
2681 // Get the set of properties to enumerate.
2682 __ Bind(&call_runtime);
2683 __ Push(object);
2684 CallRuntime(Runtime::kForInEnumerate, instr);
2685 __ Bind(&use_cache);
2686 }
2687
EmitGoto(int block)2688 void LCodeGen::EmitGoto(int block) {
2689 // Do not emit jump if we are emitting a goto to the next block.
2690 if (!IsNextEmittedBlock(block)) {
2691 __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
2692 }
2693 }
2694
DoGoto(LGoto * instr)2695 void LCodeGen::DoGoto(LGoto* instr) {
2696 EmitGoto(instr->block_id());
2697 }
2698
2699 // HHasInstanceTypeAndBranch instruction is built with an interval of type
2700 // to test but is only used in very restricted ways. The only possible kinds
2701 // of intervals are:
2702 // - [ FIRST_TYPE, instr->to() ]
2703 // - [ instr->form(), LAST_TYPE ]
2704 // - instr->from() == instr->to()
2705 //
2706 // These kinds of intervals can be check with only one compare instruction
2707 // providing the correct value and test condition are used.
2708 //
2709 // TestType() will return the value to use in the compare instruction and
2710 // BranchCondition() will return the condition to use depending on the kind
2711 // of interval actually specified in the instruction.
TestType(HHasInstanceTypeAndBranch * instr)2712 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2713 InstanceType from = instr->from();
2714 InstanceType to = instr->to();
2715 if (from == FIRST_TYPE) return to;
2716 DCHECK((from == to) || (to == LAST_TYPE));
2717 return from;
2718 }
2719
2720
2721 // See comment above TestType function for what this function does.
BranchCondition(HHasInstanceTypeAndBranch * instr)2722 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2723 InstanceType from = instr->from();
2724 InstanceType to = instr->to();
2725 if (from == to) return eq;
2726 if (to == LAST_TYPE) return hs;
2727 if (from == FIRST_TYPE) return ls;
2728 UNREACHABLE();
2729 return eq;
2730 }
2731
2732
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)2733 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2734 Register input = ToRegister(instr->value());
2735 Register scratch = ToRegister(instr->temp());
2736
2737 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2738 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2739 }
2740 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2741 EmitBranch(instr, BranchCondition(instr->hydrogen()));
2742 }
2743
2744
DoInnerAllocatedObject(LInnerAllocatedObject * instr)2745 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
2746 Register result = ToRegister(instr->result());
2747 Register base = ToRegister(instr->base_object());
2748 if (instr->offset()->IsConstantOperand()) {
2749 __ Add(result, base, ToOperand32(instr->offset()));
2750 } else {
2751 __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW));
2752 }
2753 }
2754
2755
DoHasInPrototypeChainAndBranch(LHasInPrototypeChainAndBranch * instr)2756 void LCodeGen::DoHasInPrototypeChainAndBranch(
2757 LHasInPrototypeChainAndBranch* instr) {
2758 Register const object = ToRegister(instr->object());
2759 Register const object_map = ToRegister(instr->scratch1());
2760 Register const object_instance_type = ToRegister(instr->scratch2());
2761 Register const object_prototype = object_map;
2762 Register const prototype = ToRegister(instr->prototype());
2763
2764 // The {object} must be a spec object. It's sufficient to know that {object}
2765 // is not a smi, since all other non-spec objects have {null} prototypes and
2766 // will be ruled out below.
2767 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2768 __ JumpIfSmi(object, instr->FalseLabel(chunk_));
2769 }
2770
2771 // Loop through the {object}s prototype chain looking for the {prototype}.
2772 __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2773 Label loop;
2774 __ Bind(&loop);
2775
2776 // Deoptimize if the object needs to be access checked.
2777 __ Ldrb(object_instance_type,
2778 FieldMemOperand(object_map, Map::kBitFieldOffset));
2779 __ Tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded));
2780 DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck);
2781 // Deoptimize for proxies.
2782 __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
2783 DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy);
2784
2785 __ Ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
2786 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2787 __ B(eq, instr->FalseLabel(chunk_));
2788 __ Cmp(object_prototype, prototype);
2789 __ B(eq, instr->TrueLabel(chunk_));
2790 __ Ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
2791 __ B(&loop);
2792 }
2793
2794
DoInstructionGap(LInstructionGap * instr)2795 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
2796 DoGap(instr);
2797 }
2798
2799
DoInteger32ToDouble(LInteger32ToDouble * instr)2800 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
2801 Register value = ToRegister32(instr->value());
2802 DoubleRegister result = ToDoubleRegister(instr->result());
2803 __ Scvtf(result, value);
2804 }
2805
PrepareForTailCall(const ParameterCount & actual,Register scratch1,Register scratch2,Register scratch3)2806 void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
2807 Register scratch1, Register scratch2,
2808 Register scratch3) {
2809 #if DEBUG
2810 if (actual.is_reg()) {
2811 DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
2812 } else {
2813 DCHECK(!AreAliased(scratch1, scratch2, scratch3));
2814 }
2815 #endif
2816 if (FLAG_code_comments) {
2817 if (actual.is_reg()) {
2818 Comment(";;; PrepareForTailCall, actual: %s {",
2819 RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
2820 actual.reg().code()));
2821 } else {
2822 Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
2823 }
2824 }
2825
2826 // Check if next frame is an arguments adaptor frame.
2827 Register caller_args_count_reg = scratch1;
2828 Label no_arguments_adaptor, formal_parameter_count_loaded;
2829 __ Ldr(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2830 __ Ldr(scratch3,
2831 MemOperand(scratch2, StandardFrameConstants::kContextOffset));
2832 __ Cmp(scratch3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2833 __ B(ne, &no_arguments_adaptor);
2834
2835 // Drop current frame and load arguments count from arguments adaptor frame.
2836 __ mov(fp, scratch2);
2837 __ Ldr(caller_args_count_reg,
2838 MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
2839 __ SmiUntag(caller_args_count_reg);
2840 __ B(&formal_parameter_count_loaded);
2841
2842 __ bind(&no_arguments_adaptor);
2843 // Load caller's formal parameter count
2844 __ Mov(caller_args_count_reg,
2845 Immediate(info()->literal()->parameter_count()));
2846
2847 __ bind(&formal_parameter_count_loaded);
2848 __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
2849
2850 Comment(";;; }");
2851 }
2852
DoInvokeFunction(LInvokeFunction * instr)2853 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
2854 HInvokeFunction* hinstr = instr->hydrogen();
2855 DCHECK(ToRegister(instr->context()).is(cp));
2856 // The function is required to be in x1.
2857 DCHECK(ToRegister(instr->function()).is(x1));
2858 DCHECK(instr->HasPointerMap());
2859
2860 bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
2861
2862 if (is_tail_call) {
2863 DCHECK(!info()->saves_caller_doubles());
2864 ParameterCount actual(instr->arity());
2865 // It is safe to use x3, x4 and x5 as scratch registers here given that
2866 // 1) we are not going to return to caller function anyway,
2867 // 2) x3 (new.target) will be initialized below.
2868 PrepareForTailCall(actual, x3, x4, x5);
2869 }
2870
2871 Handle<JSFunction> known_function = hinstr->known_function();
2872 if (known_function.is_null()) {
2873 LPointerMap* pointers = instr->pointer_map();
2874 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2875 ParameterCount actual(instr->arity());
2876 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
2877 __ InvokeFunction(x1, no_reg, actual, flag, generator);
2878 } else {
2879 CallKnownFunction(known_function, hinstr->formal_parameter_count(),
2880 instr->arity(), is_tail_call, instr);
2881 }
2882 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
2883 }
2884
2885
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)2886 Condition LCodeGen::EmitIsString(Register input,
2887 Register temp1,
2888 Label* is_not_string,
2889 SmiCheck check_needed = INLINE_SMI_CHECK) {
2890 if (check_needed == INLINE_SMI_CHECK) {
2891 __ JumpIfSmi(input, is_not_string);
2892 }
2893 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
2894
2895 return lt;
2896 }
2897
2898
DoIsStringAndBranch(LIsStringAndBranch * instr)2899 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2900 Register val = ToRegister(instr->value());
2901 Register scratch = ToRegister(instr->temp());
2902
2903 SmiCheck check_needed =
2904 instr->hydrogen()->value()->type().IsHeapObject()
2905 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2906 Condition true_cond =
2907 EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
2908
2909 EmitBranch(instr, true_cond);
2910 }
2911
2912
DoIsSmiAndBranch(LIsSmiAndBranch * instr)2913 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2914 Register value = ToRegister(instr->value());
2915 STATIC_ASSERT(kSmiTag == 0);
2916 EmitTestAndBranch(instr, eq, value, kSmiTagMask);
2917 }
2918
2919
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)2920 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2921 Register input = ToRegister(instr->value());
2922 Register temp = ToRegister(instr->temp());
2923
2924 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2925 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2926 }
2927 __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2928 __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2929
2930 EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
2931 }
2932
2933
LabelType(LLabel * label)2934 static const char* LabelType(LLabel* label) {
2935 if (label->is_loop_header()) return " (loop header)";
2936 if (label->is_osr_entry()) return " (OSR entry)";
2937 return "";
2938 }
2939
2940
DoLabel(LLabel * label)2941 void LCodeGen::DoLabel(LLabel* label) {
2942 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
2943 current_instruction_,
2944 label->hydrogen_value()->id(),
2945 label->block_id(),
2946 LabelType(label));
2947
2948 // Inherit pushed_arguments_ from the predecessor's argument count.
2949 if (label->block()->HasPredecessor()) {
2950 pushed_arguments_ = label->block()->predecessors()->at(0)->argument_count();
2951 #ifdef DEBUG
2952 for (auto p : *label->block()->predecessors()) {
2953 DCHECK_EQ(p->argument_count(), pushed_arguments_);
2954 }
2955 #endif
2956 }
2957
2958 __ Bind(label->label());
2959 current_block_ = label->block_id();
2960 DoGap(label);
2961 }
2962
2963
DoLoadContextSlot(LLoadContextSlot * instr)2964 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2965 Register context = ToRegister(instr->context());
2966 Register result = ToRegister(instr->result());
2967 __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
2968 if (instr->hydrogen()->RequiresHoleCheck()) {
2969 if (instr->hydrogen()->DeoptimizesOnHole()) {
2970 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
2971 DeoptimizeReason::kHole);
2972 } else {
2973 Label not_the_hole;
2974 __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, ¬_the_hole);
2975 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2976 __ Bind(¬_the_hole);
2977 }
2978 }
2979 }
2980
2981
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)2982 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2983 Register function = ToRegister(instr->function());
2984 Register result = ToRegister(instr->result());
2985 Register temp = ToRegister(instr->temp());
2986
2987 // Get the prototype or initial map from the function.
2988 __ Ldr(result, FieldMemOperand(function,
2989 JSFunction::kPrototypeOrInitialMapOffset));
2990
2991 // Check that the function has a prototype or an initial map.
2992 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
2993 DeoptimizeReason::kHole);
2994
2995 // If the function does not have an initial map, we're done.
2996 Label done;
2997 __ CompareObjectType(result, temp, temp, MAP_TYPE);
2998 __ B(ne, &done);
2999
3000 // Get the prototype from the initial map.
3001 __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3002
3003 // All done.
3004 __ Bind(&done);
3005 }
3006
3007
PrepareKeyedExternalArrayOperand(Register key,Register base,Register scratch,bool key_is_smi,bool key_is_constant,int constant_key,ElementsKind elements_kind,int base_offset)3008 MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
3009 Register key,
3010 Register base,
3011 Register scratch,
3012 bool key_is_smi,
3013 bool key_is_constant,
3014 int constant_key,
3015 ElementsKind elements_kind,
3016 int base_offset) {
3017 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3018
3019 if (key_is_constant) {
3020 int key_offset = constant_key << element_size_shift;
3021 return MemOperand(base, key_offset + base_offset);
3022 }
3023
3024 if (key_is_smi) {
3025 __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
3026 return MemOperand(scratch, base_offset);
3027 }
3028
3029 if (base_offset == 0) {
3030 return MemOperand(base, key, SXTW, element_size_shift);
3031 }
3032
3033 DCHECK(!AreAliased(scratch, key));
3034 __ Add(scratch, base, base_offset);
3035 return MemOperand(scratch, key, SXTW, element_size_shift);
3036 }
3037
3038
DoLoadKeyedExternal(LLoadKeyedExternal * instr)3039 void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
3040 Register ext_ptr = ToRegister(instr->elements());
3041 Register scratch;
3042 ElementsKind elements_kind = instr->elements_kind();
3043
3044 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3045 bool key_is_constant = instr->key()->IsConstantOperand();
3046 Register key = no_reg;
3047 int constant_key = 0;
3048 if (key_is_constant) {
3049 DCHECK(instr->temp() == NULL);
3050 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3051 if (constant_key & 0xf0000000) {
3052 Abort(kArrayIndexConstantValueTooBig);
3053 }
3054 } else {
3055 scratch = ToRegister(instr->temp());
3056 key = ToRegister(instr->key());
3057 }
3058
3059 MemOperand mem_op =
3060 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
3061 key_is_constant, constant_key,
3062 elements_kind,
3063 instr->base_offset());
3064
3065 if (elements_kind == FLOAT32_ELEMENTS) {
3066 DoubleRegister result = ToDoubleRegister(instr->result());
3067 __ Ldr(result.S(), mem_op);
3068 __ Fcvt(result, result.S());
3069 } else if (elements_kind == FLOAT64_ELEMENTS) {
3070 DoubleRegister result = ToDoubleRegister(instr->result());
3071 __ Ldr(result, mem_op);
3072 } else {
3073 Register result = ToRegister(instr->result());
3074
3075 switch (elements_kind) {
3076 case INT8_ELEMENTS:
3077 __ Ldrsb(result, mem_op);
3078 break;
3079 case UINT8_ELEMENTS:
3080 case UINT8_CLAMPED_ELEMENTS:
3081 __ Ldrb(result, mem_op);
3082 break;
3083 case INT16_ELEMENTS:
3084 __ Ldrsh(result, mem_op);
3085 break;
3086 case UINT16_ELEMENTS:
3087 __ Ldrh(result, mem_op);
3088 break;
3089 case INT32_ELEMENTS:
3090 __ Ldrsw(result, mem_op);
3091 break;
3092 case UINT32_ELEMENTS:
3093 __ Ldr(result.W(), mem_op);
3094 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3095 // Deopt if value > 0x80000000.
3096 __ Tst(result, 0xFFFFFFFF80000000);
3097 DeoptimizeIf(ne, instr, DeoptimizeReason::kNegativeValue);
3098 }
3099 break;
3100 case FLOAT32_ELEMENTS:
3101 case FLOAT64_ELEMENTS:
3102 case FAST_HOLEY_DOUBLE_ELEMENTS:
3103 case FAST_HOLEY_ELEMENTS:
3104 case FAST_HOLEY_SMI_ELEMENTS:
3105 case FAST_DOUBLE_ELEMENTS:
3106 case FAST_ELEMENTS:
3107 case FAST_SMI_ELEMENTS:
3108 case DICTIONARY_ELEMENTS:
3109 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3110 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
3111 case FAST_STRING_WRAPPER_ELEMENTS:
3112 case SLOW_STRING_WRAPPER_ELEMENTS:
3113 case NO_ELEMENTS:
3114 UNREACHABLE();
3115 break;
3116 }
3117 }
3118 }
3119
3120
PrepareKeyedArrayOperand(Register base,Register elements,Register key,bool key_is_tagged,ElementsKind elements_kind,Representation representation,int base_offset)3121 MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base,
3122 Register elements,
3123 Register key,
3124 bool key_is_tagged,
3125 ElementsKind elements_kind,
3126 Representation representation,
3127 int base_offset) {
3128 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3129 STATIC_ASSERT(kSmiTag == 0);
3130 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3131
3132 // Even though the HLoad/StoreKeyed instructions force the input
3133 // representation for the key to be an integer, the input gets replaced during
3134 // bounds check elimination with the index argument to the bounds check, which
3135 // can be tagged, so that case must be handled here, too.
3136 if (key_is_tagged) {
3137 __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
3138 if (representation.IsInteger32()) {
3139 DCHECK(elements_kind == FAST_SMI_ELEMENTS);
3140 // Read or write only the smi payload in the case of fast smi arrays.
3141 return UntagSmiMemOperand(base, base_offset);
3142 } else {
3143 return MemOperand(base, base_offset);
3144 }
3145 } else {
3146 // Sign extend key because it could be a 32-bit negative value or contain
3147 // garbage in the top 32-bits. The address computation happens in 64-bit.
3148 DCHECK((element_size_shift >= 0) && (element_size_shift <= 4));
3149 if (representation.IsInteger32()) {
3150 DCHECK(elements_kind == FAST_SMI_ELEMENTS);
3151 // Read or write only the smi payload in the case of fast smi arrays.
3152 __ Add(base, elements, Operand(key, SXTW, element_size_shift));
3153 return UntagSmiMemOperand(base, base_offset);
3154 } else {
3155 __ Add(base, elements, base_offset);
3156 return MemOperand(base, key, SXTW, element_size_shift);
3157 }
3158 }
3159 }
3160
3161
DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble * instr)3162 void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
3163 Register elements = ToRegister(instr->elements());
3164 DoubleRegister result = ToDoubleRegister(instr->result());
3165 MemOperand mem_op;
3166
3167 if (instr->key()->IsConstantOperand()) {
3168 DCHECK(instr->hydrogen()->RequiresHoleCheck() ||
3169 (instr->temp() == NULL));
3170
3171 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3172 if (constant_key & 0xf0000000) {
3173 Abort(kArrayIndexConstantValueTooBig);
3174 }
3175 int offset = instr->base_offset() + constant_key * kDoubleSize;
3176 mem_op = MemOperand(elements, offset);
3177 } else {
3178 Register load_base = ToRegister(instr->temp());
3179 Register key = ToRegister(instr->key());
3180 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3181 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3182 instr->hydrogen()->elements_kind(),
3183 instr->hydrogen()->representation(),
3184 instr->base_offset());
3185 }
3186
3187 __ Ldr(result, mem_op);
3188
3189 if (instr->hydrogen()->RequiresHoleCheck()) {
3190 Register scratch = ToRegister(instr->temp());
3191 __ Fmov(scratch, result);
3192 __ Eor(scratch, scratch, kHoleNanInt64);
3193 DeoptimizeIfZero(scratch, instr, DeoptimizeReason::kHole);
3194 }
3195 }
3196
3197
DoLoadKeyedFixed(LLoadKeyedFixed * instr)3198 void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
3199 Register elements = ToRegister(instr->elements());
3200 Register result = ToRegister(instr->result());
3201 MemOperand mem_op;
3202
3203 Representation representation = instr->hydrogen()->representation();
3204 if (instr->key()->IsConstantOperand()) {
3205 DCHECK(instr->temp() == NULL);
3206 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3207 int offset = instr->base_offset() +
3208 ToInteger32(const_operand) * kPointerSize;
3209 if (representation.IsInteger32()) {
3210 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
3211 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3212 STATIC_ASSERT(kSmiTag == 0);
3213 mem_op = UntagSmiMemOperand(elements, offset);
3214 } else {
3215 mem_op = MemOperand(elements, offset);
3216 }
3217 } else {
3218 Register load_base = ToRegister(instr->temp());
3219 Register key = ToRegister(instr->key());
3220 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3221
3222 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3223 instr->hydrogen()->elements_kind(),
3224 representation, instr->base_offset());
3225 }
3226
3227 __ Load(result, mem_op, representation);
3228
3229 if (instr->hydrogen()->RequiresHoleCheck()) {
3230 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
3231 DeoptimizeIfNotSmi(result, instr, DeoptimizeReason::kNotASmi);
3232 } else {
3233 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
3234 DeoptimizeReason::kHole);
3235 }
3236 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
3237 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
3238 Label done;
3239 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
3240 __ B(ne, &done);
3241 if (info()->IsStub()) {
3242 // A stub can safely convert the hole to undefined only if the array
3243 // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise
3244 // it needs to bail out.
3245 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
3246 __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
3247 __ Cmp(result, Operand(Smi::FromInt(Isolate::kProtectorValid)));
3248 DeoptimizeIf(ne, instr, DeoptimizeReason::kHole);
3249 }
3250 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3251 __ Bind(&done);
3252 }
3253 }
3254
3255
DoLoadNamedField(LLoadNamedField * instr)3256 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
3257 HObjectAccess access = instr->hydrogen()->access();
3258 int offset = access.offset();
3259 Register object = ToRegister(instr->object());
3260
3261 if (access.IsExternalMemory()) {
3262 Register result = ToRegister(instr->result());
3263 __ Load(result, MemOperand(object, offset), access.representation());
3264 return;
3265 }
3266
3267 if (instr->hydrogen()->representation().IsDouble()) {
3268 DCHECK(access.IsInobject());
3269 FPRegister result = ToDoubleRegister(instr->result());
3270 __ Ldr(result, FieldMemOperand(object, offset));
3271 return;
3272 }
3273
3274 Register result = ToRegister(instr->result());
3275 Register source;
3276 if (access.IsInobject()) {
3277 source = object;
3278 } else {
3279 // Load the properties array, using result as a scratch register.
3280 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
3281 source = result;
3282 }
3283
3284 if (access.representation().IsSmi() &&
3285 instr->hydrogen()->representation().IsInteger32()) {
3286 // Read int value directly from upper half of the smi.
3287 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3288 STATIC_ASSERT(kSmiTag == 0);
3289 __ Load(result, UntagSmiFieldMemOperand(source, offset),
3290 Representation::Integer32());
3291 } else {
3292 __ Load(result, FieldMemOperand(source, offset), access.representation());
3293 }
3294 }
3295
3296
DoLoadRoot(LLoadRoot * instr)3297 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3298 Register result = ToRegister(instr->result());
3299 __ LoadRoot(result, instr->index());
3300 }
3301
3302
DoMathAbs(LMathAbs * instr)3303 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3304 Representation r = instr->hydrogen()->value()->representation();
3305 if (r.IsDouble()) {
3306 DoubleRegister input = ToDoubleRegister(instr->value());
3307 DoubleRegister result = ToDoubleRegister(instr->result());
3308 __ Fabs(result, input);
3309 } else if (r.IsSmi() || r.IsInteger32()) {
3310 Register input = r.IsSmi() ? ToRegister(instr->value())
3311 : ToRegister32(instr->value());
3312 Register result = r.IsSmi() ? ToRegister(instr->result())
3313 : ToRegister32(instr->result());
3314 __ Abs(result, input);
3315 DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
3316 }
3317 }
3318
3319
DoDeferredMathAbsTagged(LMathAbsTagged * instr,Label * exit,Label * allocation_entry)3320 void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
3321 Label* exit,
3322 Label* allocation_entry) {
3323 // Handle the tricky cases of MathAbsTagged:
3324 // - HeapNumber inputs.
3325 // - Negative inputs produce a positive result, so a new HeapNumber is
3326 // allocated to hold it.
3327 // - Positive inputs are returned as-is, since there is no need to allocate
3328 // a new HeapNumber for the result.
3329 // - The (smi) input -0x80000000, produces +0x80000000, which does not fit
3330 // a smi. In this case, the inline code sets the result and jumps directly
3331 // to the allocation_entry label.
3332 DCHECK(instr->context() != NULL);
3333 DCHECK(ToRegister(instr->context()).is(cp));
3334 Register input = ToRegister(instr->value());
3335 Register temp1 = ToRegister(instr->temp1());
3336 Register temp2 = ToRegister(instr->temp2());
3337 Register result_bits = ToRegister(instr->temp3());
3338 Register result = ToRegister(instr->result());
3339
3340 Label runtime_allocation;
3341
3342 // Deoptimize if the input is not a HeapNumber.
3343 DeoptimizeIfNotHeapNumber(input, instr);
3344
3345 // If the argument is positive, we can return it as-is, without any need to
3346 // allocate a new HeapNumber for the result. We have to do this in integer
3347 // registers (rather than with fabs) because we need to be able to distinguish
3348 // the two zeroes.
3349 __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
3350 __ Mov(result, input);
3351 __ Tbz(result_bits, kXSignBit, exit);
3352
3353 // Calculate abs(input) by clearing the sign bit.
3354 __ Bic(result_bits, result_bits, kXSignMask);
3355
3356 // Allocate a new HeapNumber to hold the result.
3357 // result_bits The bit representation of the (double) result.
3358 __ Bind(allocation_entry);
3359 __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
3360 // The inline (non-deferred) code will store result_bits into result.
3361 __ B(exit);
3362
3363 __ Bind(&runtime_allocation);
3364 if (FLAG_debug_code) {
3365 // Because result is in the pointer map, we need to make sure it has a valid
3366 // tagged value before we call the runtime. We speculatively set it to the
3367 // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
3368 // be valid.
3369 Label result_ok;
3370 Register input = ToRegister(instr->value());
3371 __ JumpIfSmi(result, &result_ok);
3372 __ Cmp(input, result);
3373 __ Assert(eq, kUnexpectedValue);
3374 __ Bind(&result_ok);
3375 }
3376
3377 { PushSafepointRegistersScope scope(this);
3378 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3379 instr->context());
3380 __ StoreToSafepointRegisterSlot(x0, result);
3381 }
3382 // The inline (non-deferred) code will store result_bits into result.
3383 }
3384
3385
DoMathAbsTagged(LMathAbsTagged * instr)3386 void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
3387 // Class for deferred case.
3388 class DeferredMathAbsTagged: public LDeferredCode {
3389 public:
3390 DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
3391 : LDeferredCode(codegen), instr_(instr) { }
3392 virtual void Generate() {
3393 codegen()->DoDeferredMathAbsTagged(instr_, exit(),
3394 allocation_entry());
3395 }
3396 virtual LInstruction* instr() { return instr_; }
3397 Label* allocation_entry() { return &allocation; }
3398 private:
3399 LMathAbsTagged* instr_;
3400 Label allocation;
3401 };
3402
3403 // TODO(jbramley): The early-exit mechanism would skip the new frame handling
3404 // in GenerateDeferredCode. Tidy this up.
3405 DCHECK(!NeedsDeferredFrame());
3406
3407 DeferredMathAbsTagged* deferred =
3408 new(zone()) DeferredMathAbsTagged(this, instr);
3409
3410 DCHECK(instr->hydrogen()->value()->representation().IsTagged() ||
3411 instr->hydrogen()->value()->representation().IsSmi());
3412 Register input = ToRegister(instr->value());
3413 Register result_bits = ToRegister(instr->temp3());
3414 Register result = ToRegister(instr->result());
3415 Label done;
3416
3417 // Handle smis inline.
3418 // We can treat smis as 64-bit integers, since the (low-order) tag bits will
3419 // never get set by the negation. This is therefore the same as the Integer32
3420 // case in DoMathAbs, except that it operates on 64-bit values.
3421 STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
3422
3423 __ JumpIfNotSmi(input, deferred->entry());
3424
3425 __ Abs(result, input, NULL, &done);
3426
3427 // The result is the magnitude (abs) of the smallest value a smi can
3428 // represent, encoded as a double.
3429 __ Mov(result_bits, double_to_rawbits(0x80000000));
3430 __ B(deferred->allocation_entry());
3431
3432 __ Bind(deferred->exit());
3433 __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
3434
3435 __ Bind(&done);
3436 }
3437
DoMathCos(LMathCos * instr)3438 void LCodeGen::DoMathCos(LMathCos* instr) {
3439 DCHECK(instr->IsMarkedAsCall());
3440 DCHECK(ToDoubleRegister(instr->value()).is(d0));
3441 __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1);
3442 DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3443 }
3444
DoMathSin(LMathSin * instr)3445 void LCodeGen::DoMathSin(LMathSin* instr) {
3446 DCHECK(instr->IsMarkedAsCall());
3447 DCHECK(ToDoubleRegister(instr->value()).is(d0));
3448 __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1);
3449 DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3450 }
3451
DoMathExp(LMathExp * instr)3452 void LCodeGen::DoMathExp(LMathExp* instr) {
3453 DCHECK(instr->IsMarkedAsCall());
3454 DCHECK(ToDoubleRegister(instr->value()).is(d0));
3455 __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1);
3456 DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3457 }
3458
3459
DoMathFloorD(LMathFloorD * instr)3460 void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
3461 DoubleRegister input = ToDoubleRegister(instr->value());
3462 DoubleRegister result = ToDoubleRegister(instr->result());
3463
3464 __ Frintm(result, input);
3465 }
3466
3467
DoMathFloorI(LMathFloorI * instr)3468 void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
3469 DoubleRegister input = ToDoubleRegister(instr->value());
3470 Register result = ToRegister(instr->result());
3471
3472 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3473 DeoptimizeIfMinusZero(input, instr, DeoptimizeReason::kMinusZero);
3474 }
3475
3476 __ Fcvtms(result, input);
3477
3478 // Check that the result fits into a 32-bit integer.
3479 // - The result did not overflow.
3480 __ Cmp(result, Operand(result, SXTW));
3481 // - The input was not NaN.
3482 __ Fccmp(input, input, NoFlag, eq);
3483 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
3484 }
3485
3486
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)3487 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
3488 Register dividend = ToRegister32(instr->dividend());
3489 Register result = ToRegister32(instr->result());
3490 int32_t divisor = instr->divisor();
3491
3492 // If the divisor is 1, return the dividend.
3493 if (divisor == 1) {
3494 __ Mov(result, dividend, kDiscardForSameWReg);
3495 return;
3496 }
3497
3498 // If the divisor is positive, things are easy: There can be no deopts and we
3499 // can simply do an arithmetic right shift.
3500 int32_t shift = WhichPowerOf2Abs(divisor);
3501 if (divisor > 1) {
3502 __ Mov(result, Operand(dividend, ASR, shift));
3503 return;
3504 }
3505
3506 // If the divisor is negative, we have to negate and handle edge cases.
3507 __ Negs(result, dividend);
3508 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3509 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
3510 }
3511
3512 // Dividing by -1 is basically negation, unless we overflow.
3513 if (divisor == -1) {
3514 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3515 DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
3516 }
3517 return;
3518 }
3519
3520 // If the negation could not overflow, simply shifting is OK.
3521 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3522 __ Mov(result, Operand(dividend, ASR, shift));
3523 return;
3524 }
3525
3526 __ Asr(result, result, shift);
3527 __ Csel(result, result, kMinInt / divisor, vc);
3528 }
3529
3530
DoFlooringDivByConstI(LFlooringDivByConstI * instr)3531 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
3532 Register dividend = ToRegister32(instr->dividend());
3533 int32_t divisor = instr->divisor();
3534 Register result = ToRegister32(instr->result());
3535 DCHECK(!AreAliased(dividend, result));
3536
3537 if (divisor == 0) {
3538 Deoptimize(instr, DeoptimizeReason::kDivisionByZero);
3539 return;
3540 }
3541
3542 // Check for (0 / -x) that will produce negative zero.
3543 HMathFloorOfDiv* hdiv = instr->hydrogen();
3544 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
3545 DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kMinusZero);
3546 }
3547
3548 // Easy case: We need no dynamic check for the dividend and the flooring
3549 // division is the same as the truncating division.
3550 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
3551 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
3552 __ TruncatingDiv(result, dividend, Abs(divisor));
3553 if (divisor < 0) __ Neg(result, result);
3554 return;
3555 }
3556
3557 // In the general case we may need to adjust before and after the truncating
3558 // division to get a flooring division.
3559 Register temp = ToRegister32(instr->temp());
3560 DCHECK(!AreAliased(temp, dividend, result));
3561 Label needs_adjustment, done;
3562 __ Cmp(dividend, 0);
3563 __ B(divisor > 0 ? lt : gt, &needs_adjustment);
3564 __ TruncatingDiv(result, dividend, Abs(divisor));
3565 if (divisor < 0) __ Neg(result, result);
3566 __ B(&done);
3567 __ Bind(&needs_adjustment);
3568 __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
3569 __ TruncatingDiv(result, temp, Abs(divisor));
3570 if (divisor < 0) __ Neg(result, result);
3571 __ Sub(result, result, Operand(1));
3572 __ Bind(&done);
3573 }
3574
3575
3576 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)3577 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
3578 Register dividend = ToRegister32(instr->dividend());
3579 Register divisor = ToRegister32(instr->divisor());
3580 Register remainder = ToRegister32(instr->temp());
3581 Register result = ToRegister32(instr->result());
3582
3583 // This can't cause an exception on ARM, so we can speculatively
3584 // execute it already now.
3585 __ Sdiv(result, dividend, divisor);
3586
3587 // Check for x / 0.
3588 DeoptimizeIfZero(divisor, instr, DeoptimizeReason::kDivisionByZero);
3589
3590 // Check for (kMinInt / -1).
3591 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
3592 // The V flag will be set iff dividend == kMinInt.
3593 __ Cmp(dividend, 1);
3594 __ Ccmp(divisor, -1, NoFlag, vs);
3595 DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
3596 }
3597
3598 // Check for (0 / -x) that will produce negative zero.
3599 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3600 __ Cmp(divisor, 0);
3601 __ Ccmp(dividend, 0, ZFlag, mi);
3602 // "divisor" can't be null because the code would have already been
3603 // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
3604 // In this case we need to deoptimize to produce a -0.
3605 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
3606 }
3607
3608 Label done;
3609 // If both operands have the same sign then we are done.
3610 __ Eor(remainder, dividend, divisor);
3611 __ Tbz(remainder, kWSignBit, &done);
3612
3613 // Check if the result needs to be corrected.
3614 __ Msub(remainder, result, divisor, dividend);
3615 __ Cbz(remainder, &done);
3616 __ Sub(result, result, 1);
3617
3618 __ Bind(&done);
3619 }
3620
3621
DoMathLog(LMathLog * instr)3622 void LCodeGen::DoMathLog(LMathLog* instr) {
3623 DCHECK(instr->IsMarkedAsCall());
3624 DCHECK(ToDoubleRegister(instr->value()).is(d0));
3625 __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1);
3626 DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3627 }
3628
3629
DoMathClz32(LMathClz32 * instr)3630 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3631 Register input = ToRegister32(instr->value());
3632 Register result = ToRegister32(instr->result());
3633 __ Clz(result, input);
3634 }
3635
3636
DoMathPowHalf(LMathPowHalf * instr)3637 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3638 DoubleRegister input = ToDoubleRegister(instr->value());
3639 DoubleRegister result = ToDoubleRegister(instr->result());
3640 Label done;
3641
3642 // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
3643 // Math.pow(-Infinity, 0.5) == +Infinity
3644 // Math.pow(-0.0, 0.5) == +0.0
3645
3646 // Catch -infinity inputs first.
3647 // TODO(jbramley): A constant infinity register would be helpful here.
3648 __ Fmov(double_scratch(), kFP64NegativeInfinity);
3649 __ Fcmp(double_scratch(), input);
3650 __ Fabs(result, input);
3651 __ B(&done, eq);
3652
3653 // Add +0.0 to convert -0.0 to +0.0.
3654 __ Fadd(double_scratch(), input, fp_zero);
3655 __ Fsqrt(result, double_scratch());
3656
3657 __ Bind(&done);
3658 }
3659
3660
DoPower(LPower * instr)3661 void LCodeGen::DoPower(LPower* instr) {
3662 Representation exponent_type = instr->hydrogen()->right()->representation();
3663 // Having marked this as a call, we can use any registers.
3664 // Just make sure that the input/output registers are the expected ones.
3665 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3666 Register integer_exponent = MathPowIntegerDescriptor::exponent();
3667 DCHECK(!instr->right()->IsDoubleRegister() ||
3668 ToDoubleRegister(instr->right()).is(d1));
3669 DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
3670 ToRegister(instr->right()).is(tagged_exponent));
3671 DCHECK(!exponent_type.IsInteger32() ||
3672 ToRegister(instr->right()).is(integer_exponent));
3673 DCHECK(ToDoubleRegister(instr->left()).is(d0));
3674 DCHECK(ToDoubleRegister(instr->result()).is(d0));
3675
3676 if (exponent_type.IsSmi()) {
3677 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3678 __ CallStub(&stub);
3679 } else if (exponent_type.IsTagged()) {
3680 Label no_deopt;
3681 __ JumpIfSmi(tagged_exponent, &no_deopt);
3682 DeoptimizeIfNotHeapNumber(tagged_exponent, instr);
3683 __ Bind(&no_deopt);
3684 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3685 __ CallStub(&stub);
3686 } else if (exponent_type.IsInteger32()) {
3687 // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub
3688 // supports large integer exponents.
3689 __ Sxtw(integer_exponent, integer_exponent);
3690 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3691 __ CallStub(&stub);
3692 } else {
3693 DCHECK(exponent_type.IsDouble());
3694 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3695 __ CallStub(&stub);
3696 }
3697 }
3698
3699
DoMathRoundD(LMathRoundD * instr)3700 void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
3701 DoubleRegister input = ToDoubleRegister(instr->value());
3702 DoubleRegister result = ToDoubleRegister(instr->result());
3703 DoubleRegister scratch_d = double_scratch();
3704
3705 DCHECK(!AreAliased(input, result, scratch_d));
3706
3707 Label done;
3708
3709 __ Frinta(result, input);
3710 __ Fcmp(input, 0.0);
3711 __ Fccmp(result, input, ZFlag, lt);
3712 // The result is correct if the input was in [-0, +infinity], or was a
3713 // negative integral value.
3714 __ B(eq, &done);
3715
3716 // Here the input is negative, non integral, with an exponent lower than 52.
3717 // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff)
3718 // case. So we can safely add 0.5.
3719 __ Fmov(scratch_d, 0.5);
3720 __ Fadd(result, input, scratch_d);
3721 __ Frintm(result, result);
3722 // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative.
3723 __ Fabs(result, result);
3724 __ Fneg(result, result);
3725
3726 __ Bind(&done);
3727 }
3728
3729
DoMathRoundI(LMathRoundI * instr)3730 void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
3731 DoubleRegister input = ToDoubleRegister(instr->value());
3732 DoubleRegister temp = ToDoubleRegister(instr->temp1());
3733 DoubleRegister dot_five = double_scratch();
3734 Register result = ToRegister(instr->result());
3735 Label done;
3736
3737 // Math.round() rounds to the nearest integer, with ties going towards
3738 // +infinity. This does not match any IEEE-754 rounding mode.
3739 // - Infinities and NaNs are propagated unchanged, but cause deopts because
3740 // they can't be represented as integers.
3741 // - The sign of the result is the same as the sign of the input. This means
3742 // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
3743 // result of -0.0.
3744
3745 // Add 0.5 and round towards -infinity.
3746 __ Fmov(dot_five, 0.5);
3747 __ Fadd(temp, input, dot_five);
3748 __ Fcvtms(result, temp);
3749
3750 // The result is correct if:
3751 // result is not 0, as the input could be NaN or [-0.5, -0.0].
3752 // result is not 1, as 0.499...94 will wrongly map to 1.
3753 // result fits in 32 bits.
3754 __ Cmp(result, Operand(result.W(), SXTW));
3755 __ Ccmp(result, 1, ZFlag, eq);
3756 __ B(hi, &done);
3757
3758 // At this point, we have to handle possible inputs of NaN or numbers in the
3759 // range [-0.5, 1.5[, or numbers larger than 32 bits.
3760
3761 // Deoptimize if the result > 1, as it must be larger than 32 bits.
3762 __ Cmp(result, 1);
3763 DeoptimizeIf(hi, instr, DeoptimizeReason::kOverflow);
3764
3765 // Deoptimize for negative inputs, which at this point are only numbers in
3766 // the range [-0.5, -0.0]
3767 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3768 __ Fmov(result, input);
3769 DeoptimizeIfNegative(result, instr, DeoptimizeReason::kMinusZero);
3770 }
3771
3772 // Deoptimize if the input was NaN.
3773 __ Fcmp(input, dot_five);
3774 DeoptimizeIf(vs, instr, DeoptimizeReason::kNaN);
3775
3776 // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[
3777 // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1,
3778 // else 0; we avoid dealing with 0.499...94 directly.
3779 __ Cset(result, ge);
3780 __ Bind(&done);
3781 }
3782
3783
DoMathFround(LMathFround * instr)3784 void LCodeGen::DoMathFround(LMathFround* instr) {
3785 DoubleRegister input = ToDoubleRegister(instr->value());
3786 DoubleRegister result = ToDoubleRegister(instr->result());
3787 __ Fcvt(result.S(), input);
3788 __ Fcvt(result, result.S());
3789 }
3790
3791
DoMathSqrt(LMathSqrt * instr)3792 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3793 DoubleRegister input = ToDoubleRegister(instr->value());
3794 DoubleRegister result = ToDoubleRegister(instr->result());
3795 __ Fsqrt(result, input);
3796 }
3797
3798
DoMathMinMax(LMathMinMax * instr)3799 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
3800 HMathMinMax::Operation op = instr->hydrogen()->operation();
3801 if (instr->hydrogen()->representation().IsInteger32()) {
3802 Register result = ToRegister32(instr->result());
3803 Register left = ToRegister32(instr->left());
3804 Operand right = ToOperand32(instr->right());
3805
3806 __ Cmp(left, right);
3807 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
3808 } else if (instr->hydrogen()->representation().IsSmi()) {
3809 Register result = ToRegister(instr->result());
3810 Register left = ToRegister(instr->left());
3811 Operand right = ToOperand(instr->right());
3812
3813 __ Cmp(left, right);
3814 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
3815 } else {
3816 DCHECK(instr->hydrogen()->representation().IsDouble());
3817 DoubleRegister result = ToDoubleRegister(instr->result());
3818 DoubleRegister left = ToDoubleRegister(instr->left());
3819 DoubleRegister right = ToDoubleRegister(instr->right());
3820
3821 if (op == HMathMinMax::kMathMax) {
3822 __ Fmax(result, left, right);
3823 } else {
3824 DCHECK(op == HMathMinMax::kMathMin);
3825 __ Fmin(result, left, right);
3826 }
3827 }
3828 }
3829
3830
DoModByPowerOf2I(LModByPowerOf2I * instr)3831 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
3832 Register dividend = ToRegister32(instr->dividend());
3833 int32_t divisor = instr->divisor();
3834 DCHECK(dividend.is(ToRegister32(instr->result())));
3835
3836 // Theoretically, a variation of the branch-free code for integer division by
3837 // a power of 2 (calculating the remainder via an additional multiplication
3838 // (which gets simplified to an 'and') and subtraction) should be faster, and
3839 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
3840 // indicate that positive dividends are heavily favored, so the branching
3841 // version performs better.
3842 HMod* hmod = instr->hydrogen();
3843 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
3844 Label dividend_is_not_negative, done;
3845 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
3846 __ Tbz(dividend, kWSignBit, ÷nd_is_not_negative);
3847 // Note that this is correct even for kMinInt operands.
3848 __ Neg(dividend, dividend);
3849 __ And(dividend, dividend, mask);
3850 __ Negs(dividend, dividend);
3851 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
3852 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
3853 }
3854 __ B(&done);
3855 }
3856
3857 __ bind(÷nd_is_not_negative);
3858 __ And(dividend, dividend, mask);
3859 __ bind(&done);
3860 }
3861
3862
DoModByConstI(LModByConstI * instr)3863 void LCodeGen::DoModByConstI(LModByConstI* instr) {
3864 Register dividend = ToRegister32(instr->dividend());
3865 int32_t divisor = instr->divisor();
3866 Register result = ToRegister32(instr->result());
3867 Register temp = ToRegister32(instr->temp());
3868 DCHECK(!AreAliased(dividend, result, temp));
3869
3870 if (divisor == 0) {
3871 Deoptimize(instr, DeoptimizeReason::kDivisionByZero);
3872 return;
3873 }
3874
3875 __ TruncatingDiv(result, dividend, Abs(divisor));
3876 __ Sxtw(dividend.X(), dividend);
3877 __ Mov(temp, Abs(divisor));
3878 __ Smsubl(result.X(), result, temp, dividend.X());
3879
3880 // Check for negative zero.
3881 HMod* hmod = instr->hydrogen();
3882 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
3883 Label remainder_not_zero;
3884 __ Cbnz(result, &remainder_not_zero);
3885 DeoptimizeIfNegative(dividend, instr, DeoptimizeReason::kMinusZero);
3886 __ bind(&remainder_not_zero);
3887 }
3888 }
3889
3890
DoModI(LModI * instr)3891 void LCodeGen::DoModI(LModI* instr) {
3892 Register dividend = ToRegister32(instr->left());
3893 Register divisor = ToRegister32(instr->right());
3894 Register result = ToRegister32(instr->result());
3895
3896 Label done;
3897 // modulo = dividend - quotient * divisor
3898 __ Sdiv(result, dividend, divisor);
3899 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
3900 DeoptimizeIfZero(divisor, instr, DeoptimizeReason::kDivisionByZero);
3901 }
3902 __ Msub(result, result, divisor, dividend);
3903 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3904 __ Cbnz(result, &done);
3905 DeoptimizeIfNegative(dividend, instr, DeoptimizeReason::kMinusZero);
3906 }
3907 __ Bind(&done);
3908 }
3909
3910
DoMulConstIS(LMulConstIS * instr)3911 void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
3912 DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32());
3913 bool is_smi = instr->hydrogen()->representation().IsSmi();
3914 Register result =
3915 is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
3916 Register left =
3917 is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left());
3918 int32_t right = ToInteger32(instr->right());
3919 DCHECK((right > -kMaxInt) && (right < kMaxInt));
3920
3921 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
3922 bool bailout_on_minus_zero =
3923 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
3924
3925 if (bailout_on_minus_zero) {
3926 if (right < 0) {
3927 // The result is -0 if right is negative and left is zero.
3928 DeoptimizeIfZero(left, instr, DeoptimizeReason::kMinusZero);
3929 } else if (right == 0) {
3930 // The result is -0 if the right is zero and the left is negative.
3931 DeoptimizeIfNegative(left, instr, DeoptimizeReason::kMinusZero);
3932 }
3933 }
3934
3935 switch (right) {
3936 // Cases which can detect overflow.
3937 case -1:
3938 if (can_overflow) {
3939 // Only 0x80000000 can overflow here.
3940 __ Negs(result, left);
3941 DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
3942 } else {
3943 __ Neg(result, left);
3944 }
3945 break;
3946 case 0:
3947 // This case can never overflow.
3948 __ Mov(result, 0);
3949 break;
3950 case 1:
3951 // This case can never overflow.
3952 __ Mov(result, left, kDiscardForSameWReg);
3953 break;
3954 case 2:
3955 if (can_overflow) {
3956 __ Adds(result, left, left);
3957 DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
3958 } else {
3959 __ Add(result, left, left);
3960 }
3961 break;
3962
3963 default:
3964 // Multiplication by constant powers of two (and some related values)
3965 // can be done efficiently with shifted operands.
3966 int32_t right_abs = Abs(right);
3967
3968 if (base::bits::IsPowerOfTwo32(right_abs)) {
3969 int right_log2 = WhichPowerOf2(right_abs);
3970
3971 if (can_overflow) {
3972 Register scratch = result;
3973 DCHECK(!AreAliased(scratch, left));
3974 __ Cls(scratch, left);
3975 __ Cmp(scratch, right_log2);
3976 DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow);
3977 }
3978
3979 if (right >= 0) {
3980 // result = left << log2(right)
3981 __ Lsl(result, left, right_log2);
3982 } else {
3983 // result = -left << log2(-right)
3984 if (can_overflow) {
3985 __ Negs(result, Operand(left, LSL, right_log2));
3986 DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
3987 } else {
3988 __ Neg(result, Operand(left, LSL, right_log2));
3989 }
3990 }
3991 return;
3992 }
3993
3994
3995 // For the following cases, we could perform a conservative overflow check
3996 // with CLS as above. However the few cycles saved are likely not worth
3997 // the risk of deoptimizing more often than required.
3998 DCHECK(!can_overflow);
3999
4000 if (right >= 0) {
4001 if (base::bits::IsPowerOfTwo32(right - 1)) {
4002 // result = left + left << log2(right - 1)
4003 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
4004 } else if (base::bits::IsPowerOfTwo32(right + 1)) {
4005 // result = -left + left << log2(right + 1)
4006 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
4007 __ Neg(result, result);
4008 } else {
4009 UNREACHABLE();
4010 }
4011 } else {
4012 if (base::bits::IsPowerOfTwo32(-right + 1)) {
4013 // result = left - left << log2(-right + 1)
4014 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
4015 } else if (base::bits::IsPowerOfTwo32(-right - 1)) {
4016 // result = -left - left << log2(-right - 1)
4017 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
4018 __ Neg(result, result);
4019 } else {
4020 UNREACHABLE();
4021 }
4022 }
4023 }
4024 }
4025
4026
DoMulI(LMulI * instr)4027 void LCodeGen::DoMulI(LMulI* instr) {
4028 Register result = ToRegister32(instr->result());
4029 Register left = ToRegister32(instr->left());
4030 Register right = ToRegister32(instr->right());
4031
4032 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4033 bool bailout_on_minus_zero =
4034 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4035
4036 if (bailout_on_minus_zero && !left.Is(right)) {
4037 // If one operand is zero and the other is negative, the result is -0.
4038 // - Set Z (eq) if either left or right, or both, are 0.
4039 __ Cmp(left, 0);
4040 __ Ccmp(right, 0, ZFlag, ne);
4041 // - If so (eq), set N (mi) if left + right is negative.
4042 // - Otherwise, clear N.
4043 __ Ccmn(left, right, NoFlag, eq);
4044 DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero);
4045 }
4046
4047 if (can_overflow) {
4048 __ Smull(result.X(), left, right);
4049 __ Cmp(result.X(), Operand(result, SXTW));
4050 DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
4051 } else {
4052 __ Mul(result, left, right);
4053 }
4054 }
4055
4056
DoMulS(LMulS * instr)4057 void LCodeGen::DoMulS(LMulS* instr) {
4058 Register result = ToRegister(instr->result());
4059 Register left = ToRegister(instr->left());
4060 Register right = ToRegister(instr->right());
4061
4062 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4063 bool bailout_on_minus_zero =
4064 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4065
4066 if (bailout_on_minus_zero && !left.Is(right)) {
4067 // If one operand is zero and the other is negative, the result is -0.
4068 // - Set Z (eq) if either left or right, or both, are 0.
4069 __ Cmp(left, 0);
4070 __ Ccmp(right, 0, ZFlag, ne);
4071 // - If so (eq), set N (mi) if left + right is negative.
4072 // - Otherwise, clear N.
4073 __ Ccmn(left, right, NoFlag, eq);
4074 DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero);
4075 }
4076
4077 STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
4078 if (can_overflow) {
4079 __ Smulh(result, left, right);
4080 __ Cmp(result, Operand(result.W(), SXTW));
4081 __ SmiTag(result);
4082 DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
4083 } else {
4084 if (AreAliased(result, left, right)) {
4085 // All three registers are the same: half untag the input and then
4086 // multiply, giving a tagged result.
4087 STATIC_ASSERT((kSmiShift % 2) == 0);
4088 __ Asr(result, left, kSmiShift / 2);
4089 __ Mul(result, result, result);
4090 } else if (result.Is(left) && !left.Is(right)) {
4091 // Registers result and left alias, right is distinct: untag left into
4092 // result, and then multiply by right, giving a tagged result.
4093 __ SmiUntag(result, left);
4094 __ Mul(result, result, right);
4095 } else {
4096 DCHECK(!left.Is(result));
4097 // Registers result and right alias, left is distinct, or all registers
4098 // are distinct: untag right into result, and then multiply by left,
4099 // giving a tagged result.
4100 __ SmiUntag(result, right);
4101 __ Mul(result, left, result);
4102 }
4103 }
4104 }
4105
4106
DoDeferredNumberTagD(LNumberTagD * instr)4107 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4108 // TODO(3095996): Get rid of this. For now, we need to make the
4109 // result register contain a valid pointer because it is already
4110 // contained in the register pointer map.
4111 Register result = ToRegister(instr->result());
4112 __ Mov(result, 0);
4113
4114 PushSafepointRegistersScope scope(this);
4115 // Reset the context register.
4116 if (!result.is(cp)) {
4117 __ Mov(cp, 0);
4118 }
4119 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4120 RecordSafepointWithRegisters(
4121 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4122 __ StoreToSafepointRegisterSlot(x0, result);
4123 }
4124
4125
DoNumberTagD(LNumberTagD * instr)4126 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4127 class DeferredNumberTagD: public LDeferredCode {
4128 public:
4129 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4130 : LDeferredCode(codegen), instr_(instr) { }
4131 virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
4132 virtual LInstruction* instr() { return instr_; }
4133 private:
4134 LNumberTagD* instr_;
4135 };
4136
4137 DoubleRegister input = ToDoubleRegister(instr->value());
4138 Register result = ToRegister(instr->result());
4139 Register temp1 = ToRegister(instr->temp1());
4140 Register temp2 = ToRegister(instr->temp2());
4141
4142 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4143 if (FLAG_inline_new) {
4144 __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
4145 } else {
4146 __ B(deferred->entry());
4147 }
4148
4149 __ Bind(deferred->exit());
4150 __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
4151 }
4152
4153
DoDeferredNumberTagU(LInstruction * instr,LOperand * value,LOperand * temp1,LOperand * temp2)4154 void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
4155 LOperand* value,
4156 LOperand* temp1,
4157 LOperand* temp2) {
4158 Label slow, convert_and_store;
4159 Register src = ToRegister32(value);
4160 Register dst = ToRegister(instr->result());
4161 Register scratch1 = ToRegister(temp1);
4162
4163 if (FLAG_inline_new) {
4164 Register scratch2 = ToRegister(temp2);
4165 __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
4166 __ B(&convert_and_store);
4167 }
4168
4169 // Slow case: call the runtime system to do the number allocation.
4170 __ Bind(&slow);
4171 // TODO(3095996): Put a valid pointer value in the stack slot where the result
4172 // register is stored, as this register is in the pointer map, but contains an
4173 // integer value.
4174 __ Mov(dst, 0);
4175 {
4176 // Preserve the value of all registers.
4177 PushSafepointRegistersScope scope(this);
4178 // Reset the context register.
4179 if (!dst.is(cp)) {
4180 __ Mov(cp, 0);
4181 }
4182 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4183 RecordSafepointWithRegisters(
4184 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4185 __ StoreToSafepointRegisterSlot(x0, dst);
4186 }
4187
4188 // Convert number to floating point and store in the newly allocated heap
4189 // number.
4190 __ Bind(&convert_and_store);
4191 DoubleRegister dbl_scratch = double_scratch();
4192 __ Ucvtf(dbl_scratch, src);
4193 __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4194 }
4195
4196
DoNumberTagU(LNumberTagU * instr)4197 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4198 class DeferredNumberTagU: public LDeferredCode {
4199 public:
4200 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4201 : LDeferredCode(codegen), instr_(instr) { }
4202 virtual void Generate() {
4203 codegen()->DoDeferredNumberTagU(instr_,
4204 instr_->value(),
4205 instr_->temp1(),
4206 instr_->temp2());
4207 }
4208 virtual LInstruction* instr() { return instr_; }
4209 private:
4210 LNumberTagU* instr_;
4211 };
4212
4213 Register value = ToRegister32(instr->value());
4214 Register result = ToRegister(instr->result());
4215
4216 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4217 __ Cmp(value, Smi::kMaxValue);
4218 __ B(hi, deferred->entry());
4219 __ SmiTag(result, value.X());
4220 __ Bind(deferred->exit());
4221 }
4222
4223
DoNumberUntagD(LNumberUntagD * instr)4224 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4225 Register input = ToRegister(instr->value());
4226 Register scratch = ToRegister(instr->temp());
4227 DoubleRegister result = ToDoubleRegister(instr->result());
4228 bool can_convert_undefined_to_nan = instr->truncating();
4229
4230 Label done, load_smi;
4231
4232 // Work out what untag mode we're working with.
4233 HValue* value = instr->hydrogen()->value();
4234 NumberUntagDMode mode = value->representation().IsSmi()
4235 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4236
4237 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4238 __ JumpIfSmi(input, &load_smi);
4239
4240 Label convert_undefined;
4241
4242 // Heap number map check.
4243 if (can_convert_undefined_to_nan) {
4244 __ JumpIfNotHeapNumber(input, &convert_undefined);
4245 } else {
4246 DeoptimizeIfNotHeapNumber(input, instr);
4247 }
4248
4249 // Load heap number.
4250 __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
4251 if (instr->hydrogen()->deoptimize_on_minus_zero()) {
4252 DeoptimizeIfMinusZero(result, instr, DeoptimizeReason::kMinusZero);
4253 }
4254 __ B(&done);
4255
4256 if (can_convert_undefined_to_nan) {
4257 __ Bind(&convert_undefined);
4258 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
4259 DeoptimizeReason::kNotAHeapNumberUndefined);
4260
4261 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4262 __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4263 __ B(&done);
4264 }
4265
4266 } else {
4267 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4268 // Fall through to load_smi.
4269 }
4270
4271 // Smi to double register conversion.
4272 __ Bind(&load_smi);
4273 __ SmiUntagToDouble(result, input);
4274
4275 __ Bind(&done);
4276 }
4277
4278
DoOsrEntry(LOsrEntry * instr)4279 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
4280 // This is a pseudo-instruction that ensures that the environment here is
4281 // properly registered for deoptimization and records the assembler's PC
4282 // offset.
4283 LEnvironment* environment = instr->environment();
4284
4285 // If the environment were already registered, we would have no way of
4286 // backpatching it with the spill slot operands.
4287 DCHECK(!environment->HasBeenRegistered());
4288 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
4289
4290 GenerateOsrPrologue();
4291 }
4292
4293
DoParameter(LParameter * instr)4294 void LCodeGen::DoParameter(LParameter* instr) {
4295 // Nothing to do.
4296 }
4297
4298
DoPreparePushArguments(LPreparePushArguments * instr)4299 void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) {
4300 __ PushPreamble(instr->argc(), kPointerSize);
4301 }
4302
4303
DoPushArguments(LPushArguments * instr)4304 void LCodeGen::DoPushArguments(LPushArguments* instr) {
4305 MacroAssembler::PushPopQueue args(masm());
4306
4307 for (int i = 0; i < instr->ArgumentCount(); ++i) {
4308 LOperand* arg = instr->argument(i);
4309 if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) {
4310 Abort(kDoPushArgumentNotImplementedForDoubleType);
4311 return;
4312 }
4313 args.Queue(ToRegister(arg));
4314 }
4315
4316 // The preamble was done by LPreparePushArguments.
4317 args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE);
4318
4319 RecordPushedArgumentsDelta(instr->ArgumentCount());
4320 }
4321
4322
DoReturn(LReturn * instr)4323 void LCodeGen::DoReturn(LReturn* instr) {
4324 if (FLAG_trace && info()->IsOptimizing()) {
4325 // Push the return value on the stack as the parameter.
4326 // Runtime::TraceExit returns its parameter in x0. We're leaving the code
4327 // managed by the register allocator and tearing down the frame, it's
4328 // safe to write to the context register.
4329 __ Push(x0);
4330 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4331 __ CallRuntime(Runtime::kTraceExit);
4332 }
4333
4334 if (info()->saves_caller_doubles()) {
4335 RestoreCallerDoubles();
4336 }
4337
4338 if (NeedsEagerFrame()) {
4339 Register stack_pointer = masm()->StackPointer();
4340 __ Mov(stack_pointer, fp);
4341 __ Pop(fp, lr);
4342 }
4343
4344 if (instr->has_constant_parameter_count()) {
4345 int parameter_count = ToInteger32(instr->constant_parameter_count());
4346 __ Drop(parameter_count + 1);
4347 } else {
4348 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
4349 Register parameter_count = ToRegister(instr->parameter_count());
4350 __ DropBySMI(parameter_count);
4351 }
4352 __ Ret();
4353 }
4354
4355
BuildSeqStringOperand(Register string,Register temp,LOperand * index,String::Encoding encoding)4356 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
4357 Register temp,
4358 LOperand* index,
4359 String::Encoding encoding) {
4360 if (index->IsConstantOperand()) {
4361 int offset = ToInteger32(LConstantOperand::cast(index));
4362 if (encoding == String::TWO_BYTE_ENCODING) {
4363 offset *= kUC16Size;
4364 }
4365 STATIC_ASSERT(kCharSize == 1);
4366 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
4367 }
4368
4369 __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag);
4370 if (encoding == String::ONE_BYTE_ENCODING) {
4371 return MemOperand(temp, ToRegister32(index), SXTW);
4372 } else {
4373 STATIC_ASSERT(kUC16Size == 2);
4374 return MemOperand(temp, ToRegister32(index), SXTW, 1);
4375 }
4376 }
4377
4378
DoSeqStringGetChar(LSeqStringGetChar * instr)4379 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
4380 String::Encoding encoding = instr->hydrogen()->encoding();
4381 Register string = ToRegister(instr->string());
4382 Register result = ToRegister(instr->result());
4383 Register temp = ToRegister(instr->temp());
4384
4385 if (FLAG_debug_code) {
4386 // Even though this lithium instruction comes with a temp register, we
4387 // can't use it here because we want to use "AtStart" constraints on the
4388 // inputs and the debug code here needs a scratch register.
4389 UseScratchRegisterScope temps(masm());
4390 Register dbg_temp = temps.AcquireX();
4391
4392 __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset));
4393 __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset));
4394
4395 __ And(dbg_temp, dbg_temp,
4396 Operand(kStringRepresentationMask | kStringEncodingMask));
4397 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4398 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4399 __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING
4400 ? one_byte_seq_type : two_byte_seq_type));
4401 __ Check(eq, kUnexpectedStringType);
4402 }
4403
4404 MemOperand operand =
4405 BuildSeqStringOperand(string, temp, instr->index(), encoding);
4406 if (encoding == String::ONE_BYTE_ENCODING) {
4407 __ Ldrb(result, operand);
4408 } else {
4409 __ Ldrh(result, operand);
4410 }
4411 }
4412
4413
DoSeqStringSetChar(LSeqStringSetChar * instr)4414 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
4415 String::Encoding encoding = instr->hydrogen()->encoding();
4416 Register string = ToRegister(instr->string());
4417 Register value = ToRegister(instr->value());
4418 Register temp = ToRegister(instr->temp());
4419
4420 if (FLAG_debug_code) {
4421 DCHECK(ToRegister(instr->context()).is(cp));
4422 Register index = ToRegister(instr->index());
4423 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4424 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4425 int encoding_mask =
4426 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
4427 ? one_byte_seq_type : two_byte_seq_type;
4428 __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
4429 encoding_mask);
4430 }
4431 MemOperand operand =
4432 BuildSeqStringOperand(string, temp, instr->index(), encoding);
4433 if (encoding == String::ONE_BYTE_ENCODING) {
4434 __ Strb(value, operand);
4435 } else {
4436 __ Strh(value, operand);
4437 }
4438 }
4439
4440
DoSmiTag(LSmiTag * instr)4441 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4442 HChange* hchange = instr->hydrogen();
4443 Register input = ToRegister(instr->value());
4444 Register output = ToRegister(instr->result());
4445 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4446 hchange->value()->CheckFlag(HValue::kUint32)) {
4447 DeoptimizeIfNegative(input.W(), instr, DeoptimizeReason::kOverflow);
4448 }
4449 __ SmiTag(output, input);
4450 }
4451
4452
DoSmiUntag(LSmiUntag * instr)4453 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4454 Register input = ToRegister(instr->value());
4455 Register result = ToRegister(instr->result());
4456 Label done, untag;
4457
4458 if (instr->needs_check()) {
4459 DeoptimizeIfNotSmi(input, instr, DeoptimizeReason::kNotASmi);
4460 }
4461
4462 __ Bind(&untag);
4463 __ SmiUntag(result, input);
4464 __ Bind(&done);
4465 }
4466
4467
DoShiftI(LShiftI * instr)4468 void LCodeGen::DoShiftI(LShiftI* instr) {
4469 LOperand* right_op = instr->right();
4470 Register left = ToRegister32(instr->left());
4471 Register result = ToRegister32(instr->result());
4472
4473 if (right_op->IsRegister()) {
4474 Register right = ToRegister32(instr->right());
4475 switch (instr->op()) {
4476 case Token::ROR: __ Ror(result, left, right); break;
4477 case Token::SAR: __ Asr(result, left, right); break;
4478 case Token::SHL: __ Lsl(result, left, right); break;
4479 case Token::SHR:
4480 __ Lsr(result, left, right);
4481 if (instr->can_deopt()) {
4482 // If `left >>> right` >= 0x80000000, the result is not representable
4483 // in a signed 32-bit smi.
4484 DeoptimizeIfNegative(result, instr, DeoptimizeReason::kNegativeValue);
4485 }
4486 break;
4487 default: UNREACHABLE();
4488 }
4489 } else {
4490 DCHECK(right_op->IsConstantOperand());
4491 int shift_count = JSShiftAmountFromLConstant(right_op);
4492 if (shift_count == 0) {
4493 if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4494 DeoptimizeIfNegative(left, instr, DeoptimizeReason::kNegativeValue);
4495 }
4496 __ Mov(result, left, kDiscardForSameWReg);
4497 } else {
4498 switch (instr->op()) {
4499 case Token::ROR: __ Ror(result, left, shift_count); break;
4500 case Token::SAR: __ Asr(result, left, shift_count); break;
4501 case Token::SHL: __ Lsl(result, left, shift_count); break;
4502 case Token::SHR: __ Lsr(result, left, shift_count); break;
4503 default: UNREACHABLE();
4504 }
4505 }
4506 }
4507 }
4508
4509
DoShiftS(LShiftS * instr)4510 void LCodeGen::DoShiftS(LShiftS* instr) {
4511 LOperand* right_op = instr->right();
4512 Register left = ToRegister(instr->left());
4513 Register result = ToRegister(instr->result());
4514
4515 if (right_op->IsRegister()) {
4516 Register right = ToRegister(instr->right());
4517
4518 // JavaScript shifts only look at the bottom 5 bits of the 'right' operand.
4519 // Since we're handling smis in X registers, we have to extract these bits
4520 // explicitly.
4521 __ Ubfx(result, right, kSmiShift, 5);
4522
4523 switch (instr->op()) {
4524 case Token::ROR: {
4525 // This is the only case that needs a scratch register. To keep things
4526 // simple for the other cases, borrow a MacroAssembler scratch register.
4527 UseScratchRegisterScope temps(masm());
4528 Register temp = temps.AcquireW();
4529 __ SmiUntag(temp, left);
4530 __ Ror(result.W(), temp.W(), result.W());
4531 __ SmiTag(result);
4532 break;
4533 }
4534 case Token::SAR:
4535 __ Asr(result, left, result);
4536 __ Bic(result, result, kSmiShiftMask);
4537 break;
4538 case Token::SHL:
4539 __ Lsl(result, left, result);
4540 break;
4541 case Token::SHR:
4542 __ Lsr(result, left, result);
4543 __ Bic(result, result, kSmiShiftMask);
4544 if (instr->can_deopt()) {
4545 // If `left >>> right` >= 0x80000000, the result is not representable
4546 // in a signed 32-bit smi.
4547 DeoptimizeIfNegative(result, instr, DeoptimizeReason::kNegativeValue);
4548 }
4549 break;
4550 default: UNREACHABLE();
4551 }
4552 } else {
4553 DCHECK(right_op->IsConstantOperand());
4554 int shift_count = JSShiftAmountFromLConstant(right_op);
4555 if (shift_count == 0) {
4556 if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4557 DeoptimizeIfNegative(left, instr, DeoptimizeReason::kNegativeValue);
4558 }
4559 __ Mov(result, left);
4560 } else {
4561 switch (instr->op()) {
4562 case Token::ROR:
4563 __ SmiUntag(result, left);
4564 __ Ror(result.W(), result.W(), shift_count);
4565 __ SmiTag(result);
4566 break;
4567 case Token::SAR:
4568 __ Asr(result, left, shift_count);
4569 __ Bic(result, result, kSmiShiftMask);
4570 break;
4571 case Token::SHL:
4572 __ Lsl(result, left, shift_count);
4573 break;
4574 case Token::SHR:
4575 __ Lsr(result, left, shift_count);
4576 __ Bic(result, result, kSmiShiftMask);
4577 break;
4578 default: UNREACHABLE();
4579 }
4580 }
4581 }
4582 }
4583
4584
DoDebugBreak(LDebugBreak * instr)4585 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
4586 __ Debug("LDebugBreak", 0, BREAK);
4587 }
4588
4589
DoDeclareGlobals(LDeclareGlobals * instr)4590 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
4591 DCHECK(ToRegister(instr->context()).is(cp));
4592 Register scratch1 = x5;
4593 Register scratch2 = x6;
4594 DCHECK(instr->IsMarkedAsCall());
4595
4596 // TODO(all): if Mov could handle object in new space then it could be used
4597 // here.
4598 __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
4599 __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags()));
4600 __ Push(scratch1, scratch2);
4601 __ LoadHeapObject(scratch1, instr->hydrogen()->feedback_vector());
4602 __ Push(scratch1);
4603 CallRuntime(Runtime::kDeclareGlobals, instr);
4604 }
4605
4606
DoDeferredStackCheck(LStackCheck * instr)4607 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
4608 PushSafepointRegistersScope scope(this);
4609 LoadContextFromDeferred(instr->context());
4610 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
4611 RecordSafepointWithLazyDeopt(
4612 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4613 DCHECK(instr->HasEnvironment());
4614 LEnvironment* env = instr->environment();
4615 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4616 }
4617
4618
DoStackCheck(LStackCheck * instr)4619 void LCodeGen::DoStackCheck(LStackCheck* instr) {
4620 class DeferredStackCheck: public LDeferredCode {
4621 public:
4622 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
4623 : LDeferredCode(codegen), instr_(instr) { }
4624 virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
4625 virtual LInstruction* instr() { return instr_; }
4626 private:
4627 LStackCheck* instr_;
4628 };
4629
4630 DCHECK(instr->HasEnvironment());
4631 LEnvironment* env = instr->environment();
4632 // There is no LLazyBailout instruction for stack-checks. We have to
4633 // prepare for lazy deoptimization explicitly here.
4634 if (instr->hydrogen()->is_function_entry()) {
4635 // Perform stack overflow check.
4636 Label done;
4637 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
4638 __ B(hs, &done);
4639
4640 PredictableCodeSizeScope predictable(masm_,
4641 Assembler::kCallSizeWithRelocation);
4642 DCHECK(instr->context()->IsRegister());
4643 DCHECK(ToRegister(instr->context()).is(cp));
4644 CallCode(isolate()->builtins()->StackCheck(),
4645 RelocInfo::CODE_TARGET,
4646 instr);
4647 __ Bind(&done);
4648 } else {
4649 DCHECK(instr->hydrogen()->is_backwards_branch());
4650 // Perform stack overflow check if this goto needs it before jumping.
4651 DeferredStackCheck* deferred_stack_check =
4652 new(zone()) DeferredStackCheck(this, instr);
4653 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
4654 __ B(lo, deferred_stack_check->entry());
4655
4656 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
4657 __ Bind(instr->done_label());
4658 deferred_stack_check->SetExit(instr->done_label());
4659 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4660 // Don't record a deoptimization index for the safepoint here.
4661 // This will be done explicitly when emitting call and the safepoint in
4662 // the deferred code.
4663 }
4664 }
4665
4666
DoStoreCodeEntry(LStoreCodeEntry * instr)4667 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
4668 Register function = ToRegister(instr->function());
4669 Register code_object = ToRegister(instr->code_object());
4670 Register temp = ToRegister(instr->temp());
4671 __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
4672 __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
4673 }
4674
4675
DoStoreContextSlot(LStoreContextSlot * instr)4676 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
4677 Register context = ToRegister(instr->context());
4678 Register value = ToRegister(instr->value());
4679 Register scratch = ToRegister(instr->temp());
4680 MemOperand target = ContextMemOperand(context, instr->slot_index());
4681
4682 Label skip_assignment;
4683
4684 if (instr->hydrogen()->RequiresHoleCheck()) {
4685 __ Ldr(scratch, target);
4686 if (instr->hydrogen()->DeoptimizesOnHole()) {
4687 DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr,
4688 DeoptimizeReason::kHole);
4689 } else {
4690 __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
4691 }
4692 }
4693
4694 __ Str(value, target);
4695 if (instr->hydrogen()->NeedsWriteBarrier()) {
4696 SmiCheck check_needed =
4697 instr->hydrogen()->value()->type().IsHeapObject()
4698 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4699 __ RecordWriteContextSlot(context, static_cast<int>(target.offset()), value,
4700 scratch, GetLinkRegisterState(), kSaveFPRegs,
4701 EMIT_REMEMBERED_SET, check_needed);
4702 }
4703 __ Bind(&skip_assignment);
4704 }
4705
4706
DoStoreKeyedExternal(LStoreKeyedExternal * instr)4707 void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
4708 Register ext_ptr = ToRegister(instr->elements());
4709 Register key = no_reg;
4710 Register scratch;
4711 ElementsKind elements_kind = instr->elements_kind();
4712
4713 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
4714 bool key_is_constant = instr->key()->IsConstantOperand();
4715 int constant_key = 0;
4716 if (key_is_constant) {
4717 DCHECK(instr->temp() == NULL);
4718 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4719 if (constant_key & 0xf0000000) {
4720 Abort(kArrayIndexConstantValueTooBig);
4721 }
4722 } else {
4723 key = ToRegister(instr->key());
4724 scratch = ToRegister(instr->temp());
4725 }
4726
4727 MemOperand dst =
4728 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
4729 key_is_constant, constant_key,
4730 elements_kind,
4731 instr->base_offset());
4732
4733 if (elements_kind == FLOAT32_ELEMENTS) {
4734 DoubleRegister value = ToDoubleRegister(instr->value());
4735 DoubleRegister dbl_scratch = double_scratch();
4736 __ Fcvt(dbl_scratch.S(), value);
4737 __ Str(dbl_scratch.S(), dst);
4738 } else if (elements_kind == FLOAT64_ELEMENTS) {
4739 DoubleRegister value = ToDoubleRegister(instr->value());
4740 __ Str(value, dst);
4741 } else {
4742 Register value = ToRegister(instr->value());
4743
4744 switch (elements_kind) {
4745 case UINT8_ELEMENTS:
4746 case UINT8_CLAMPED_ELEMENTS:
4747 case INT8_ELEMENTS:
4748 __ Strb(value, dst);
4749 break;
4750 case INT16_ELEMENTS:
4751 case UINT16_ELEMENTS:
4752 __ Strh(value, dst);
4753 break;
4754 case INT32_ELEMENTS:
4755 case UINT32_ELEMENTS:
4756 __ Str(value.W(), dst);
4757 break;
4758 case FLOAT32_ELEMENTS:
4759 case FLOAT64_ELEMENTS:
4760 case FAST_DOUBLE_ELEMENTS:
4761 case FAST_ELEMENTS:
4762 case FAST_SMI_ELEMENTS:
4763 case FAST_HOLEY_DOUBLE_ELEMENTS:
4764 case FAST_HOLEY_ELEMENTS:
4765 case FAST_HOLEY_SMI_ELEMENTS:
4766 case DICTIONARY_ELEMENTS:
4767 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
4768 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
4769 case FAST_STRING_WRAPPER_ELEMENTS:
4770 case SLOW_STRING_WRAPPER_ELEMENTS:
4771 case NO_ELEMENTS:
4772 UNREACHABLE();
4773 break;
4774 }
4775 }
4776 }
4777
4778
DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble * instr)4779 void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
4780 Register elements = ToRegister(instr->elements());
4781 DoubleRegister value = ToDoubleRegister(instr->value());
4782 MemOperand mem_op;
4783
4784 if (instr->key()->IsConstantOperand()) {
4785 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4786 if (constant_key & 0xf0000000) {
4787 Abort(kArrayIndexConstantValueTooBig);
4788 }
4789 int offset = instr->base_offset() + constant_key * kDoubleSize;
4790 mem_op = MemOperand(elements, offset);
4791 } else {
4792 Register store_base = ToRegister(instr->temp());
4793 Register key = ToRegister(instr->key());
4794 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
4795 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
4796 instr->hydrogen()->elements_kind(),
4797 instr->hydrogen()->representation(),
4798 instr->base_offset());
4799 }
4800
4801 if (instr->NeedsCanonicalization()) {
4802 __ CanonicalizeNaN(double_scratch(), value);
4803 __ Str(double_scratch(), mem_op);
4804 } else {
4805 __ Str(value, mem_op);
4806 }
4807 }
4808
4809
DoStoreKeyedFixed(LStoreKeyedFixed * instr)4810 void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
4811 Register value = ToRegister(instr->value());
4812 Register elements = ToRegister(instr->elements());
4813 Register scratch = no_reg;
4814 Register store_base = no_reg;
4815 Register key = no_reg;
4816 MemOperand mem_op;
4817
4818 if (!instr->key()->IsConstantOperand() ||
4819 instr->hydrogen()->NeedsWriteBarrier()) {
4820 scratch = ToRegister(instr->temp());
4821 }
4822
4823 Representation representation = instr->hydrogen()->value()->representation();
4824 if (instr->key()->IsConstantOperand()) {
4825 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
4826 int offset = instr->base_offset() +
4827 ToInteger32(const_operand) * kPointerSize;
4828 store_base = elements;
4829 if (representation.IsInteger32()) {
4830 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4831 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
4832 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
4833 STATIC_ASSERT(kSmiTag == 0);
4834 mem_op = UntagSmiMemOperand(store_base, offset);
4835 } else {
4836 mem_op = MemOperand(store_base, offset);
4837 }
4838 } else {
4839 store_base = scratch;
4840 key = ToRegister(instr->key());
4841 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
4842
4843 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
4844 instr->hydrogen()->elements_kind(),
4845 representation, instr->base_offset());
4846 }
4847
4848 __ Store(value, mem_op, representation);
4849
4850 if (instr->hydrogen()->NeedsWriteBarrier()) {
4851 DCHECK(representation.IsTagged());
4852 // This assignment may cause element_addr to alias store_base.
4853 Register element_addr = scratch;
4854 SmiCheck check_needed =
4855 instr->hydrogen()->value()->type().IsHeapObject()
4856 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4857 // Compute address of modified element and store it into key register.
4858 __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand());
4859 __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(),
4860 kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed,
4861 instr->hydrogen()->PointersToHereCheckForValue());
4862 }
4863 }
4864
4865
DoMaybeGrowElements(LMaybeGrowElements * instr)4866 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4867 class DeferredMaybeGrowElements final : public LDeferredCode {
4868 public:
4869 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4870 : LDeferredCode(codegen), instr_(instr) {}
4871 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4872 LInstruction* instr() override { return instr_; }
4873
4874 private:
4875 LMaybeGrowElements* instr_;
4876 };
4877
4878 Register result = x0;
4879 DeferredMaybeGrowElements* deferred =
4880 new (zone()) DeferredMaybeGrowElements(this, instr);
4881 LOperand* key = instr->key();
4882 LOperand* current_capacity = instr->current_capacity();
4883
4884 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
4885 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
4886 DCHECK(key->IsConstantOperand() || key->IsRegister());
4887 DCHECK(current_capacity->IsConstantOperand() ||
4888 current_capacity->IsRegister());
4889
4890 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
4891 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4892 int32_t constant_capacity =
4893 ToInteger32(LConstantOperand::cast(current_capacity));
4894 if (constant_key >= constant_capacity) {
4895 // Deferred case.
4896 __ B(deferred->entry());
4897 }
4898 } else if (key->IsConstantOperand()) {
4899 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4900 __ Cmp(ToRegister(current_capacity), Operand(constant_key));
4901 __ B(le, deferred->entry());
4902 } else if (current_capacity->IsConstantOperand()) {
4903 int32_t constant_capacity =
4904 ToInteger32(LConstantOperand::cast(current_capacity));
4905 __ Cmp(ToRegister(key), Operand(constant_capacity));
4906 __ B(ge, deferred->entry());
4907 } else {
4908 __ Cmp(ToRegister(key), ToRegister(current_capacity));
4909 __ B(ge, deferred->entry());
4910 }
4911
4912 __ Mov(result, ToRegister(instr->elements()));
4913
4914 __ Bind(deferred->exit());
4915 }
4916
4917
DoDeferredMaybeGrowElements(LMaybeGrowElements * instr)4918 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4919 // TODO(3095996): Get rid of this. For now, we need to make the
4920 // result register contain a valid pointer because it is already
4921 // contained in the register pointer map.
4922 Register result = x0;
4923 __ Mov(result, 0);
4924
4925 // We have to call a stub.
4926 {
4927 PushSafepointRegistersScope scope(this);
4928 __ Move(result, ToRegister(instr->object()));
4929
4930 LOperand* key = instr->key();
4931 if (key->IsConstantOperand()) {
4932 __ Mov(x3, Operand(ToSmi(LConstantOperand::cast(key))));
4933 } else {
4934 __ Mov(x3, ToRegister(key));
4935 __ SmiTag(x3);
4936 }
4937
4938 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind());
4939 __ CallStub(&stub);
4940 RecordSafepointWithLazyDeopt(
4941 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4942 __ StoreToSafepointRegisterSlot(result, result);
4943 }
4944
4945 // Deopt on smi, which means the elements array changed to dictionary mode.
4946 DeoptimizeIfSmi(result, instr, DeoptimizeReason::kSmi);
4947 }
4948
4949
DoStoreNamedField(LStoreNamedField * instr)4950 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
4951 Representation representation = instr->representation();
4952
4953 Register object = ToRegister(instr->object());
4954 HObjectAccess access = instr->hydrogen()->access();
4955 int offset = access.offset();
4956
4957 if (access.IsExternalMemory()) {
4958 DCHECK(!instr->hydrogen()->has_transition());
4959 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4960 Register value = ToRegister(instr->value());
4961 __ Store(value, MemOperand(object, offset), representation);
4962 return;
4963 }
4964
4965 __ AssertNotSmi(object);
4966
4967 if (!FLAG_unbox_double_fields && representation.IsDouble()) {
4968 DCHECK(access.IsInobject());
4969 DCHECK(!instr->hydrogen()->has_transition());
4970 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4971 FPRegister value = ToDoubleRegister(instr->value());
4972 __ Str(value, FieldMemOperand(object, offset));
4973 return;
4974 }
4975
4976 DCHECK(!representation.IsSmi() ||
4977 !instr->value()->IsConstantOperand() ||
4978 IsInteger32Constant(LConstantOperand::cast(instr->value())));
4979
4980 if (instr->hydrogen()->has_transition()) {
4981 Handle<Map> transition = instr->hydrogen()->transition_map();
4982 AddDeprecationDependency(transition);
4983 // Store the new map value.
4984 Register new_map_value = ToRegister(instr->temp0());
4985 __ Mov(new_map_value, Operand(transition));
4986 __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
4987 if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
4988 // Update the write barrier for the map field.
4989 __ RecordWriteForMap(object,
4990 new_map_value,
4991 ToRegister(instr->temp1()),
4992 GetLinkRegisterState(),
4993 kSaveFPRegs);
4994 }
4995 }
4996
4997 // Do the store.
4998 Register destination;
4999 if (access.IsInobject()) {
5000 destination = object;
5001 } else {
5002 Register temp0 = ToRegister(instr->temp0());
5003 __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
5004 destination = temp0;
5005 }
5006
5007 if (FLAG_unbox_double_fields && representation.IsDouble()) {
5008 DCHECK(access.IsInobject());
5009 FPRegister value = ToDoubleRegister(instr->value());
5010 __ Str(value, FieldMemOperand(object, offset));
5011 } else if (representation.IsSmi() &&
5012 instr->hydrogen()->value()->representation().IsInteger32()) {
5013 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
5014 #ifdef DEBUG
5015 Register temp0 = ToRegister(instr->temp0());
5016 __ Ldr(temp0, FieldMemOperand(destination, offset));
5017 __ AssertSmi(temp0);
5018 // If destination aliased temp0, restore it to the address calculated
5019 // earlier.
5020 if (destination.Is(temp0)) {
5021 DCHECK(!access.IsInobject());
5022 __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
5023 }
5024 #endif
5025 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
5026 STATIC_ASSERT(kSmiTag == 0);
5027 Register value = ToRegister(instr->value());
5028 __ Store(value, UntagSmiFieldMemOperand(destination, offset),
5029 Representation::Integer32());
5030 } else {
5031 Register value = ToRegister(instr->value());
5032 __ Store(value, FieldMemOperand(destination, offset), representation);
5033 }
5034 if (instr->hydrogen()->NeedsWriteBarrier()) {
5035 Register value = ToRegister(instr->value());
5036 __ RecordWriteField(destination,
5037 offset,
5038 value, // Clobbered.
5039 ToRegister(instr->temp1()), // Clobbered.
5040 GetLinkRegisterState(),
5041 kSaveFPRegs,
5042 EMIT_REMEMBERED_SET,
5043 instr->hydrogen()->SmiCheckForWriteBarrier(),
5044 instr->hydrogen()->PointersToHereCheckForValue());
5045 }
5046 }
5047
5048
DoStringAdd(LStringAdd * instr)5049 void LCodeGen::DoStringAdd(LStringAdd* instr) {
5050 DCHECK(ToRegister(instr->context()).is(cp));
5051 DCHECK(ToRegister(instr->left()).Is(x1));
5052 DCHECK(ToRegister(instr->right()).Is(x0));
5053 StringAddStub stub(isolate(),
5054 instr->hydrogen()->flags(),
5055 instr->hydrogen()->pretenure_flag());
5056 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5057 }
5058
5059
DoStringCharCodeAt(LStringCharCodeAt * instr)5060 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
5061 class DeferredStringCharCodeAt: public LDeferredCode {
5062 public:
5063 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
5064 : LDeferredCode(codegen), instr_(instr) { }
5065 virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
5066 virtual LInstruction* instr() { return instr_; }
5067 private:
5068 LStringCharCodeAt* instr_;
5069 };
5070
5071 DeferredStringCharCodeAt* deferred =
5072 new(zone()) DeferredStringCharCodeAt(this, instr);
5073
5074 StringCharLoadGenerator::Generate(masm(),
5075 ToRegister(instr->string()),
5076 ToRegister32(instr->index()),
5077 ToRegister(instr->result()),
5078 deferred->entry());
5079 __ Bind(deferred->exit());
5080 }
5081
5082
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)5083 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
5084 Register string = ToRegister(instr->string());
5085 Register result = ToRegister(instr->result());
5086
5087 // TODO(3095996): Get rid of this. For now, we need to make the
5088 // result register contain a valid pointer because it is already
5089 // contained in the register pointer map.
5090 __ Mov(result, 0);
5091
5092 PushSafepointRegistersScope scope(this);
5093 __ Push(string);
5094 // Push the index as a smi. This is safe because of the checks in
5095 // DoStringCharCodeAt above.
5096 Register index = ToRegister(instr->index());
5097 __ SmiTagAndPush(index);
5098
5099 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
5100 instr->context());
5101 __ AssertSmi(x0);
5102 __ SmiUntag(x0);
5103 __ StoreToSafepointRegisterSlot(x0, result);
5104 }
5105
5106
DoStringCharFromCode(LStringCharFromCode * instr)5107 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
5108 class DeferredStringCharFromCode: public LDeferredCode {
5109 public:
5110 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
5111 : LDeferredCode(codegen), instr_(instr) { }
5112 virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
5113 virtual LInstruction* instr() { return instr_; }
5114 private:
5115 LStringCharFromCode* instr_;
5116 };
5117
5118 DeferredStringCharFromCode* deferred =
5119 new(zone()) DeferredStringCharFromCode(this, instr);
5120
5121 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
5122 Register char_code = ToRegister32(instr->char_code());
5123 Register result = ToRegister(instr->result());
5124
5125 __ Cmp(char_code, String::kMaxOneByteCharCode);
5126 __ B(hi, deferred->entry());
5127 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
5128 __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag);
5129 __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2));
5130 __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
5131 __ B(eq, deferred->entry());
5132 __ Bind(deferred->exit());
5133 }
5134
5135
DoDeferredStringCharFromCode(LStringCharFromCode * instr)5136 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
5137 Register char_code = ToRegister(instr->char_code());
5138 Register result = ToRegister(instr->result());
5139
5140 // TODO(3095996): Get rid of this. For now, we need to make the
5141 // result register contain a valid pointer because it is already
5142 // contained in the register pointer map.
5143 __ Mov(result, 0);
5144
5145 PushSafepointRegistersScope scope(this);
5146 __ SmiTagAndPush(char_code);
5147 CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
5148 instr->context());
5149 __ StoreToSafepointRegisterSlot(x0, result);
5150 }
5151
5152
DoStringCompareAndBranch(LStringCompareAndBranch * instr)5153 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
5154 DCHECK(ToRegister(instr->context()).is(cp));
5155 DCHECK(ToRegister(instr->left()).is(x1));
5156 DCHECK(ToRegister(instr->right()).is(x0));
5157
5158 Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
5159 CallCode(code, RelocInfo::CODE_TARGET, instr);
5160 __ CompareRoot(x0, Heap::kTrueValueRootIndex);
5161 EmitBranch(instr, eq);
5162 }
5163
5164
DoSubI(LSubI * instr)5165 void LCodeGen::DoSubI(LSubI* instr) {
5166 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5167 Register result = ToRegister32(instr->result());
5168 Register left = ToRegister32(instr->left());
5169 Operand right = ToShiftedRightOperand32(instr->right(), instr);
5170
5171 if (can_overflow) {
5172 __ Subs(result, left, right);
5173 DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
5174 } else {
5175 __ Sub(result, left, right);
5176 }
5177 }
5178
5179
DoSubS(LSubS * instr)5180 void LCodeGen::DoSubS(LSubS* instr) {
5181 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5182 Register result = ToRegister(instr->result());
5183 Register left = ToRegister(instr->left());
5184 Operand right = ToOperand(instr->right());
5185 if (can_overflow) {
5186 __ Subs(result, left, right);
5187 DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
5188 } else {
5189 __ Sub(result, left, right);
5190 }
5191 }
5192
5193
DoDeferredTaggedToI(LTaggedToI * instr,LOperand * value,LOperand * temp1,LOperand * temp2)5194 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
5195 LOperand* value,
5196 LOperand* temp1,
5197 LOperand* temp2) {
5198 Register input = ToRegister(value);
5199 Register scratch1 = ToRegister(temp1);
5200 DoubleRegister dbl_scratch1 = double_scratch();
5201
5202 Label done;
5203
5204 if (instr->truncating()) {
5205 UseScratchRegisterScope temps(masm());
5206 Register output = ToRegister(instr->result());
5207 Register input_map = temps.AcquireX();
5208 Register input_instance_type = input_map;
5209 Label truncate;
5210 __ CompareObjectType(input, input_map, input_instance_type,
5211 HEAP_NUMBER_TYPE);
5212 __ B(eq, &truncate);
5213 __ Cmp(input_instance_type, ODDBALL_TYPE);
5214 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotANumberOrOddball);
5215 __ Bind(&truncate);
5216 __ TruncateHeapNumberToI(output, input);
5217 } else {
5218 Register output = ToRegister32(instr->result());
5219 DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
5220
5221 DeoptimizeIfNotHeapNumber(input, instr);
5222
5223 // A heap number: load value and convert to int32 using non-truncating
5224 // function. If the result is out of range, branch to deoptimize.
5225 __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
5226 __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2);
5227 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
5228
5229 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5230 __ Cmp(output, 0);
5231 __ B(ne, &done);
5232 __ Fmov(scratch1, dbl_scratch1);
5233 DeoptimizeIfNegative(scratch1, instr, DeoptimizeReason::kMinusZero);
5234 }
5235 }
5236 __ Bind(&done);
5237 }
5238
5239
DoTaggedToI(LTaggedToI * instr)5240 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
5241 class DeferredTaggedToI: public LDeferredCode {
5242 public:
5243 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
5244 : LDeferredCode(codegen), instr_(instr) { }
5245 virtual void Generate() {
5246 codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
5247 instr_->temp2());
5248 }
5249
5250 virtual LInstruction* instr() { return instr_; }
5251 private:
5252 LTaggedToI* instr_;
5253 };
5254
5255 Register input = ToRegister(instr->value());
5256 Register output = ToRegister(instr->result());
5257
5258 if (instr->hydrogen()->value()->representation().IsSmi()) {
5259 __ SmiUntag(output, input);
5260 } else {
5261 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
5262
5263 __ JumpIfNotSmi(input, deferred->entry());
5264 __ SmiUntag(output, input);
5265 __ Bind(deferred->exit());
5266 }
5267 }
5268
5269
DoThisFunction(LThisFunction * instr)5270 void LCodeGen::DoThisFunction(LThisFunction* instr) {
5271 Register result = ToRegister(instr->result());
5272 __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
5273 }
5274
5275
DoTransitionElementsKind(LTransitionElementsKind * instr)5276 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
5277 Register object = ToRegister(instr->object());
5278
5279 Handle<Map> from_map = instr->original_map();
5280 Handle<Map> to_map = instr->transitioned_map();
5281 ElementsKind from_kind = instr->from_kind();
5282 ElementsKind to_kind = instr->to_kind();
5283
5284 Label not_applicable;
5285
5286 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
5287 Register temp1 = ToRegister(instr->temp1());
5288 Register new_map = ToRegister(instr->temp2());
5289 __ CheckMap(object, temp1, from_map, ¬_applicable, DONT_DO_SMI_CHECK);
5290 __ Mov(new_map, Operand(to_map));
5291 __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
5292 // Write barrier.
5293 __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(),
5294 kDontSaveFPRegs);
5295 } else {
5296 {
5297 UseScratchRegisterScope temps(masm());
5298 // Use the temp register only in a restricted scope - the codegen checks
5299 // that we do not use any register across a call.
5300 __ CheckMap(object, temps.AcquireX(), from_map, ¬_applicable,
5301 DONT_DO_SMI_CHECK);
5302 }
5303 DCHECK(object.is(x0));
5304 DCHECK(ToRegister(instr->context()).is(cp));
5305 PushSafepointRegistersScope scope(this);
5306 __ Mov(x1, Operand(to_map));
5307 TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
5308 __ CallStub(&stub);
5309 RecordSafepointWithRegisters(
5310 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
5311 }
5312 __ Bind(¬_applicable);
5313 }
5314
5315
DoTrapAllocationMemento(LTrapAllocationMemento * instr)5316 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
5317 Register object = ToRegister(instr->object());
5318 Register temp1 = ToRegister(instr->temp1());
5319 Register temp2 = ToRegister(instr->temp2());
5320
5321 Label no_memento_found;
5322 __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
5323 DeoptimizeIf(eq, instr, DeoptimizeReason::kMementoFound);
5324 __ Bind(&no_memento_found);
5325 }
5326
5327
DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi * instr)5328 void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
5329 DoubleRegister input = ToDoubleRegister(instr->value());
5330 Register result = ToRegister(instr->result());
5331 __ TruncateDoubleToI(result, input);
5332 if (instr->tag_result()) {
5333 __ SmiTag(result, result);
5334 }
5335 }
5336
5337
DoTypeof(LTypeof * instr)5338 void LCodeGen::DoTypeof(LTypeof* instr) {
5339 DCHECK(ToRegister(instr->value()).is(x3));
5340 DCHECK(ToRegister(instr->result()).is(x0));
5341 Label end, do_call;
5342 Register value_register = ToRegister(instr->value());
5343 __ JumpIfNotSmi(value_register, &do_call);
5344 __ Mov(x0, Immediate(isolate()->factory()->number_string()));
5345 __ B(&end);
5346 __ Bind(&do_call);
5347 Callable callable = CodeFactory::Typeof(isolate());
5348 CallCode(callable.code(), RelocInfo::CODE_TARGET, instr);
5349 __ Bind(&end);
5350 }
5351
5352
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5353 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5354 Handle<String> type_name = instr->type_literal();
5355 Label* true_label = instr->TrueLabel(chunk_);
5356 Label* false_label = instr->FalseLabel(chunk_);
5357 Register value = ToRegister(instr->value());
5358
5359 Factory* factory = isolate()->factory();
5360 if (String::Equals(type_name, factory->number_string())) {
5361 __ JumpIfSmi(value, true_label);
5362
5363 int true_block = instr->TrueDestination(chunk_);
5364 int false_block = instr->FalseDestination(chunk_);
5365 int next_block = GetNextEmittedBlock();
5366
5367 if (true_block == false_block) {
5368 EmitGoto(true_block);
5369 } else if (true_block == next_block) {
5370 __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block));
5371 } else {
5372 __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block));
5373 if (false_block != next_block) {
5374 __ B(chunk_->GetAssemblyLabel(false_block));
5375 }
5376 }
5377
5378 } else if (String::Equals(type_name, factory->string_string())) {
5379 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5380 Register map = ToRegister(instr->temp1());
5381 Register scratch = ToRegister(instr->temp2());
5382
5383 __ JumpIfSmi(value, false_label);
5384 __ CompareObjectType(value, map, scratch, FIRST_NONSTRING_TYPE);
5385 EmitBranch(instr, lt);
5386
5387 } else if (String::Equals(type_name, factory->symbol_string())) {
5388 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5389 Register map = ToRegister(instr->temp1());
5390 Register scratch = ToRegister(instr->temp2());
5391
5392 __ JumpIfSmi(value, false_label);
5393 __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
5394 EmitBranch(instr, eq);
5395
5396 } else if (String::Equals(type_name, factory->boolean_string())) {
5397 __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
5398 __ CompareRoot(value, Heap::kFalseValueRootIndex);
5399 EmitBranch(instr, eq);
5400
5401 } else if (String::Equals(type_name, factory->undefined_string())) {
5402 DCHECK(instr->temp1() != NULL);
5403 Register scratch = ToRegister(instr->temp1());
5404
5405 __ JumpIfRoot(value, Heap::kNullValueRootIndex, false_label);
5406 __ JumpIfSmi(value, false_label);
5407 // Check for undetectable objects and jump to the true branch in this case.
5408 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5409 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5410 EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
5411
5412 } else if (String::Equals(type_name, factory->function_string())) {
5413 DCHECK(instr->temp1() != NULL);
5414 Register scratch = ToRegister(instr->temp1());
5415
5416 __ JumpIfSmi(value, false_label);
5417 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5418 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5419 __ And(scratch, scratch,
5420 (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
5421 EmitCompareAndBranch(instr, eq, scratch, 1 << Map::kIsCallable);
5422
5423 } else if (String::Equals(type_name, factory->object_string())) {
5424 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5425 Register map = ToRegister(instr->temp1());
5426 Register scratch = ToRegister(instr->temp2());
5427
5428 __ JumpIfSmi(value, false_label);
5429 __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
5430 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5431 __ JumpIfObjectType(value, map, scratch, FIRST_JS_RECEIVER_TYPE,
5432 false_label, lt);
5433 // Check for callable or undetectable objects => false.
5434 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
5435 EmitTestAndBranch(instr, eq, scratch,
5436 (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
5437
5438 // clang-format off
5439 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5440 } else if (String::Equals(type_name, factory->type##_string())) { \
5441 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); \
5442 Register map = ToRegister(instr->temp1()); \
5443 \
5444 __ JumpIfSmi(value, false_label); \
5445 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); \
5446 __ CompareRoot(map, Heap::k##Type##MapRootIndex); \
5447 EmitBranch(instr, eq);
5448 SIMD128_TYPES(SIMD128_TYPE)
5449 #undef SIMD128_TYPE
5450 // clang-format on
5451
5452 } else {
5453 __ B(false_label);
5454 }
5455 }
5456
5457
DoUint32ToDouble(LUint32ToDouble * instr)5458 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
5459 __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
5460 }
5461
5462
DoCheckMapValue(LCheckMapValue * instr)5463 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5464 Register object = ToRegister(instr->value());
5465 Register map = ToRegister(instr->map());
5466 Register temp = ToRegister(instr->temp());
5467 __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
5468 __ Cmp(map, temp);
5469 DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap);
5470 }
5471
5472
DoWrapReceiver(LWrapReceiver * instr)5473 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
5474 Register receiver = ToRegister(instr->receiver());
5475 Register function = ToRegister(instr->function());
5476 Register result = ToRegister(instr->result());
5477
5478 // If the receiver is null or undefined, we have to pass the global object as
5479 // a receiver to normal functions. Values have to be passed unchanged to
5480 // builtins and strict-mode functions.
5481 Label global_object, done, copy_receiver;
5482
5483 if (!instr->hydrogen()->known_function()) {
5484 __ Ldr(result, FieldMemOperand(function,
5485 JSFunction::kSharedFunctionInfoOffset));
5486
5487 // CompilerHints is an int32 field. See objects.h.
5488 __ Ldr(result.W(),
5489 FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
5490
5491 // Do not transform the receiver to object for strict mode functions.
5492 __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, ©_receiver);
5493
5494 // Do not transform the receiver to object for builtins.
5495 __ Tbnz(result, SharedFunctionInfo::kNative, ©_receiver);
5496 }
5497
5498 // Normal function. Replace undefined or null with global receiver.
5499 __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
5500 __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
5501
5502 // Deoptimize if the receiver is not a JS object.
5503 DeoptimizeIfSmi(receiver, instr, DeoptimizeReason::kSmi);
5504 __ CompareObjectType(receiver, result, result, FIRST_JS_RECEIVER_TYPE);
5505 __ B(ge, ©_receiver);
5506 Deoptimize(instr, DeoptimizeReason::kNotAJavaScriptObject);
5507
5508 __ Bind(&global_object);
5509 __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
5510 __ Ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
5511 __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
5512 __ B(&done);
5513
5514 __ Bind(©_receiver);
5515 __ Mov(result, receiver);
5516 __ Bind(&done);
5517 }
5518
5519
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register result,Register object,Register index)5520 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5521 Register result,
5522 Register object,
5523 Register index) {
5524 PushSafepointRegistersScope scope(this);
5525 __ Push(object);
5526 __ Push(index);
5527 __ Mov(cp, 0);
5528 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5529 RecordSafepointWithRegisters(
5530 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5531 __ StoreToSafepointRegisterSlot(x0, result);
5532 }
5533
5534
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5535 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5536 class DeferredLoadMutableDouble final : public LDeferredCode {
5537 public:
5538 DeferredLoadMutableDouble(LCodeGen* codegen,
5539 LLoadFieldByIndex* instr,
5540 Register result,
5541 Register object,
5542 Register index)
5543 : LDeferredCode(codegen),
5544 instr_(instr),
5545 result_(result),
5546 object_(object),
5547 index_(index) {
5548 }
5549 void Generate() override {
5550 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5551 }
5552 LInstruction* instr() override { return instr_; }
5553
5554 private:
5555 LLoadFieldByIndex* instr_;
5556 Register result_;
5557 Register object_;
5558 Register index_;
5559 };
5560 Register object = ToRegister(instr->object());
5561 Register index = ToRegister(instr->index());
5562 Register result = ToRegister(instr->result());
5563
5564 __ AssertSmi(index);
5565
5566 DeferredLoadMutableDouble* deferred;
5567 deferred = new(zone()) DeferredLoadMutableDouble(
5568 this, instr, result, object, index);
5569
5570 Label out_of_object, done;
5571
5572 __ TestAndBranchIfAnySet(
5573 index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry());
5574 __ Mov(index, Operand(index, ASR, 1));
5575
5576 __ Cmp(index, Smi::kZero);
5577 __ B(lt, &out_of_object);
5578
5579 STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
5580 __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
5581 __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
5582
5583 __ B(&done);
5584
5585 __ Bind(&out_of_object);
5586 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5587 // Index is equal to negated out of object property index plus 1.
5588 __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
5589 __ Ldr(result, FieldMemOperand(result,
5590 FixedArray::kHeaderSize - kPointerSize));
5591 __ Bind(deferred->exit());
5592 __ Bind(&done);
5593 }
5594
5595 } // namespace internal
5596 } // namespace v8
5597