1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/crankshaft/mips64/lithium-codegen-mips64.h"
6
7 #include "src/code-factory.h"
8 #include "src/code-stubs.h"
9 #include "src/crankshaft/hydrogen-osr.h"
10 #include "src/crankshaft/mips64/lithium-gap-resolver-mips64.h"
11 #include "src/ic/ic.h"
12 #include "src/ic/stub-cache.h"
13
14 namespace v8 {
15 namespace internal {
16
17
18 class SafepointGenerator final : public CallWrapper {
19 public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)20 SafepointGenerator(LCodeGen* codegen,
21 LPointerMap* pointers,
22 Safepoint::DeoptMode mode)
23 : codegen_(codegen),
24 pointers_(pointers),
25 deopt_mode_(mode) { }
~SafepointGenerator()26 virtual ~SafepointGenerator() {}
27
BeforeCall(int call_size) const28 void BeforeCall(int call_size) const override {}
29
AfterCall() const30 void AfterCall() const override {
31 codegen_->RecordSafepoint(pointers_, deopt_mode_);
32 }
33
34 private:
35 LCodeGen* codegen_;
36 LPointerMap* pointers_;
37 Safepoint::DeoptMode deopt_mode_;
38 };
39
PushSafepointRegistersScope(LCodeGen * codegen)40 LCodeGen::PushSafepointRegistersScope::PushSafepointRegistersScope(
41 LCodeGen* codegen)
42 : codegen_(codegen) {
43 DCHECK(codegen_->info()->is_calling());
44 DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple);
45 codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters;
46
47 StoreRegistersStateStub stub(codegen_->isolate());
48 codegen_->masm_->push(ra);
49 codegen_->masm_->CallStub(&stub);
50 }
51
~PushSafepointRegistersScope()52 LCodeGen::PushSafepointRegistersScope::~PushSafepointRegistersScope() {
53 DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters);
54 RestoreRegistersStateStub stub(codegen_->isolate());
55 codegen_->masm_->push(ra);
56 codegen_->masm_->CallStub(&stub);
57 codegen_->expected_safepoint_kind_ = Safepoint::kSimple;
58 }
59
60 #define __ masm()->
61
GenerateCode()62 bool LCodeGen::GenerateCode() {
63 LPhase phase("Z_Code generation", chunk());
64 DCHECK(is_unused());
65 status_ = GENERATING;
66
67 // Open a frame scope to indicate that there is a frame on the stack. The
68 // NONE indicates that the scope shouldn't actually generate code to set up
69 // the frame (that is done in GeneratePrologue).
70 FrameScope frame_scope(masm_, StackFrame::NONE);
71
72 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
73 GenerateJumpTable() && GenerateSafepointTable();
74 }
75
76
FinishCode(Handle<Code> code)77 void LCodeGen::FinishCode(Handle<Code> code) {
78 DCHECK(is_done());
79 code->set_stack_slots(GetTotalFrameSlotCount());
80 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
81 PopulateDeoptimizationData(code);
82 }
83
84
SaveCallerDoubles()85 void LCodeGen::SaveCallerDoubles() {
86 DCHECK(info()->saves_caller_doubles());
87 DCHECK(NeedsEagerFrame());
88 Comment(";;; Save clobbered callee double registers");
89 int count = 0;
90 BitVector* doubles = chunk()->allocated_double_registers();
91 BitVector::Iterator save_iterator(doubles);
92 while (!save_iterator.Done()) {
93 __ sdc1(DoubleRegister::from_code(save_iterator.Current()),
94 MemOperand(sp, count * kDoubleSize));
95 save_iterator.Advance();
96 count++;
97 }
98 }
99
100
RestoreCallerDoubles()101 void LCodeGen::RestoreCallerDoubles() {
102 DCHECK(info()->saves_caller_doubles());
103 DCHECK(NeedsEagerFrame());
104 Comment(";;; Restore clobbered callee double registers");
105 BitVector* doubles = chunk()->allocated_double_registers();
106 BitVector::Iterator save_iterator(doubles);
107 int count = 0;
108 while (!save_iterator.Done()) {
109 __ ldc1(DoubleRegister::from_code(save_iterator.Current()),
110 MemOperand(sp, count * kDoubleSize));
111 save_iterator.Advance();
112 count++;
113 }
114 }
115
116
GeneratePrologue()117 bool LCodeGen::GeneratePrologue() {
118 DCHECK(is_generating());
119
120 if (info()->IsOptimizing()) {
121 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
122
123 // a1: Callee's JS function.
124 // cp: Callee's context.
125 // fp: Caller's frame pointer.
126 // lr: Caller's pc.
127 }
128
129 info()->set_prologue_offset(masm_->pc_offset());
130 if (NeedsEagerFrame()) {
131 if (info()->IsStub()) {
132 __ StubPrologue(StackFrame::STUB);
133 } else {
134 __ Prologue(info()->GeneratePreagedPrologue());
135 }
136 frame_is_built_ = true;
137 }
138
139 // Reserve space for the stack slots needed by the code.
140 int slots = GetStackSlotCount();
141 if (slots > 0) {
142 if (FLAG_debug_code) {
143 __ Dsubu(sp, sp, Operand(slots * kPointerSize));
144 __ Push(a0, a1);
145 __ Daddu(a0, sp, Operand(slots * kPointerSize));
146 __ li(a1, Operand(kSlotsZapValue));
147 Label loop;
148 __ bind(&loop);
149 __ Dsubu(a0, a0, Operand(kPointerSize));
150 __ sd(a1, MemOperand(a0, 2 * kPointerSize));
151 __ Branch(&loop, ne, a0, Operand(sp));
152 __ Pop(a0, a1);
153 } else {
154 __ Dsubu(sp, sp, Operand(slots * kPointerSize));
155 }
156 }
157
158 if (info()->saves_caller_doubles()) {
159 SaveCallerDoubles();
160 }
161 return !is_aborted();
162 }
163
164
DoPrologue(LPrologue * instr)165 void LCodeGen::DoPrologue(LPrologue* instr) {
166 Comment(";;; Prologue begin");
167
168 // Possibly allocate a local context.
169 if (info()->scope()->NeedsContext()) {
170 Comment(";;; Allocate local context");
171 bool need_write_barrier = true;
172 // Argument to NewContext is the function, which is in a1.
173 int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
174 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
175 if (info()->scope()->is_script_scope()) {
176 __ push(a1);
177 __ Push(info()->scope()->scope_info());
178 __ CallRuntime(Runtime::kNewScriptContext);
179 deopt_mode = Safepoint::kLazyDeopt;
180 } else {
181 if (slots <= FastNewFunctionContextStub::kMaximumSlots) {
182 FastNewFunctionContextStub stub(isolate());
183 __ li(FastNewFunctionContextDescriptor::SlotsRegister(),
184 Operand(slots));
185 __ CallStub(&stub);
186 // Result of FastNewFunctionContextStub is always in new space.
187 need_write_barrier = false;
188 } else {
189 __ push(a1);
190 __ CallRuntime(Runtime::kNewFunctionContext);
191 }
192 }
193 RecordSafepoint(deopt_mode);
194
195 // Context is returned in both v0. It replaces the context passed to us.
196 // It's saved in the stack and kept live in cp.
197 __ mov(cp, v0);
198 __ sd(v0, MemOperand(fp, StandardFrameConstants::kContextOffset));
199 // Copy any necessary parameters into the context.
200 int num_parameters = info()->scope()->num_parameters();
201 int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
202 for (int i = first_parameter; i < num_parameters; i++) {
203 Variable* var = (i == -1) ? info()->scope()->receiver()
204 : info()->scope()->parameter(i);
205 if (var->IsContextSlot()) {
206 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
207 (num_parameters - 1 - i) * kPointerSize;
208 // Load parameter from stack.
209 __ ld(a0, MemOperand(fp, parameter_offset));
210 // Store it in the context.
211 MemOperand target = ContextMemOperand(cp, var->index());
212 __ sd(a0, target);
213 // Update the write barrier. This clobbers a3 and a0.
214 if (need_write_barrier) {
215 __ RecordWriteContextSlot(
216 cp, target.offset(), a0, a3, GetRAState(), kSaveFPRegs);
217 } else if (FLAG_debug_code) {
218 Label done;
219 __ JumpIfInNewSpace(cp, a0, &done);
220 __ Abort(kExpectedNewSpaceObject);
221 __ bind(&done);
222 }
223 }
224 }
225 Comment(";;; End allocate local context");
226 }
227
228 Comment(";;; Prologue end");
229 }
230
231
GenerateOsrPrologue()232 void LCodeGen::GenerateOsrPrologue() {
233 // Generate the OSR entry prologue at the first unknown OSR value, or if there
234 // are none, at the OSR entrypoint instruction.
235 if (osr_pc_offset_ >= 0) return;
236
237 osr_pc_offset_ = masm()->pc_offset();
238
239 // Adjust the frame size, subsuming the unoptimized frame into the
240 // optimized frame.
241 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
242 DCHECK(slots >= 0);
243 __ Dsubu(sp, sp, Operand(slots * kPointerSize));
244 }
245
246
GenerateBodyInstructionPre(LInstruction * instr)247 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
248 if (instr->IsCall()) {
249 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
250 }
251 if (!instr->IsLazyBailout() && !instr->IsGap()) {
252 safepoints_.BumpLastLazySafepointIndex();
253 }
254 }
255
256
GenerateDeferredCode()257 bool LCodeGen::GenerateDeferredCode() {
258 DCHECK(is_generating());
259 if (deferred_.length() > 0) {
260 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
261 LDeferredCode* code = deferred_[i];
262
263 HValue* value =
264 instructions_->at(code->instruction_index())->hydrogen_value();
265 RecordAndWritePosition(value->position());
266
267 Comment(";;; <@%d,#%d> "
268 "-------------------- Deferred %s --------------------",
269 code->instruction_index(),
270 code->instr()->hydrogen_value()->id(),
271 code->instr()->Mnemonic());
272 __ bind(code->entry());
273 if (NeedsDeferredFrame()) {
274 Comment(";;; Build frame");
275 DCHECK(!frame_is_built_);
276 DCHECK(info()->IsStub());
277 frame_is_built_ = true;
278 __ li(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
279 __ PushCommonFrame(scratch0());
280 Comment(";;; Deferred code");
281 }
282 code->Generate();
283 if (NeedsDeferredFrame()) {
284 Comment(";;; Destroy frame");
285 DCHECK(frame_is_built_);
286 __ PopCommonFrame(scratch0());
287 frame_is_built_ = false;
288 }
289 __ jmp(code->exit());
290 }
291 }
292 // Deferred code is the last part of the instruction sequence. Mark
293 // the generated code as done unless we bailed out.
294 if (!is_aborted()) status_ = DONE;
295 return !is_aborted();
296 }
297
298
GenerateJumpTable()299 bool LCodeGen::GenerateJumpTable() {
300 if (jump_table_.length() > 0) {
301 Comment(";;; -------------------- Jump table --------------------");
302 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
303 Label table_start, call_deopt_entry;
304
305 __ bind(&table_start);
306 Label needs_frame;
307 Address base = jump_table_[0]->address;
308 for (int i = 0; i < jump_table_.length(); i++) {
309 Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
310 __ bind(&table_entry->label);
311 Address entry = table_entry->address;
312 DeoptComment(table_entry->deopt_info);
313
314 // Second-level deopt table entries are contiguous and small, so instead
315 // of loading the full, absolute address of each one, load the base
316 // address and add an immediate offset.
317 if (is_int16(entry - base)) {
318 if (table_entry->needs_frame) {
319 DCHECK(!info()->saves_caller_doubles());
320 Comment(";;; call deopt with frame");
321 __ PushCommonFrame();
322 __ BranchAndLink(&needs_frame, USE_DELAY_SLOT);
323 __ li(t9, Operand(entry - base));
324 } else {
325 __ BranchAndLink(&call_deopt_entry, USE_DELAY_SLOT);
326 __ li(t9, Operand(entry - base));
327 }
328
329 } else {
330 __ li(t9, Operand(entry - base));
331 if (table_entry->needs_frame) {
332 DCHECK(!info()->saves_caller_doubles());
333 Comment(";;; call deopt with frame");
334 __ PushCommonFrame();
335 __ BranchAndLink(&needs_frame);
336 } else {
337 __ BranchAndLink(&call_deopt_entry);
338 }
339 }
340 }
341 if (needs_frame.is_linked()) {
342 __ bind(&needs_frame);
343 // This variant of deopt can only be used with stubs. Since we don't
344 // have a function pointer to install in the stack frame that we're
345 // building, install a special marker there instead.
346 __ li(at, Operand(Smi::FromInt(StackFrame::STUB)));
347 __ push(at);
348 DCHECK(info()->IsStub());
349 }
350
351 Comment(";;; call deopt");
352 __ bind(&call_deopt_entry);
353
354 if (info()->saves_caller_doubles()) {
355 DCHECK(info()->IsStub());
356 RestoreCallerDoubles();
357 }
358
359 __ li(at,
360 Operand(reinterpret_cast<int64_t>(base), RelocInfo::RUNTIME_ENTRY));
361 __ Daddu(t9, t9, Operand(at));
362 __ Jump(t9);
363 }
364 // The deoptimization jump table is the last part of the instruction
365 // sequence. Mark the generated code as done unless we bailed out.
366 if (!is_aborted()) status_ = DONE;
367 return !is_aborted();
368 }
369
370
GenerateSafepointTable()371 bool LCodeGen::GenerateSafepointTable() {
372 DCHECK(is_done());
373 safepoints_.Emit(masm(), GetTotalFrameSlotCount());
374 return !is_aborted();
375 }
376
377
ToRegister(int index) const378 Register LCodeGen::ToRegister(int index) const {
379 return Register::from_code(index);
380 }
381
382
ToDoubleRegister(int index) const383 DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
384 return DoubleRegister::from_code(index);
385 }
386
387
ToRegister(LOperand * op) const388 Register LCodeGen::ToRegister(LOperand* op) const {
389 DCHECK(op->IsRegister());
390 return ToRegister(op->index());
391 }
392
393
EmitLoadRegister(LOperand * op,Register scratch)394 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
395 if (op->IsRegister()) {
396 return ToRegister(op->index());
397 } else if (op->IsConstantOperand()) {
398 LConstantOperand* const_op = LConstantOperand::cast(op);
399 HConstant* constant = chunk_->LookupConstant(const_op);
400 Handle<Object> literal = constant->handle(isolate());
401 Representation r = chunk_->LookupLiteralRepresentation(const_op);
402 if (r.IsInteger32()) {
403 AllowDeferredHandleDereference get_number;
404 DCHECK(literal->IsNumber());
405 __ li(scratch, Operand(static_cast<int32_t>(literal->Number())));
406 } else if (r.IsSmi()) {
407 DCHECK(constant->HasSmiValue());
408 __ li(scratch, Operand(Smi::FromInt(constant->Integer32Value())));
409 } else if (r.IsDouble()) {
410 Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
411 } else {
412 DCHECK(r.IsSmiOrTagged());
413 __ li(scratch, literal);
414 }
415 return scratch;
416 } else if (op->IsStackSlot()) {
417 __ ld(scratch, ToMemOperand(op));
418 return scratch;
419 }
420 UNREACHABLE();
421 return scratch;
422 }
423
424
ToDoubleRegister(LOperand * op) const425 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
426 DCHECK(op->IsDoubleRegister());
427 return ToDoubleRegister(op->index());
428 }
429
430
EmitLoadDoubleRegister(LOperand * op,FloatRegister flt_scratch,DoubleRegister dbl_scratch)431 DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
432 FloatRegister flt_scratch,
433 DoubleRegister dbl_scratch) {
434 if (op->IsDoubleRegister()) {
435 return ToDoubleRegister(op->index());
436 } else if (op->IsConstantOperand()) {
437 LConstantOperand* const_op = LConstantOperand::cast(op);
438 HConstant* constant = chunk_->LookupConstant(const_op);
439 Handle<Object> literal = constant->handle(isolate());
440 Representation r = chunk_->LookupLiteralRepresentation(const_op);
441 if (r.IsInteger32()) {
442 DCHECK(literal->IsNumber());
443 __ li(at, Operand(static_cast<int32_t>(literal->Number())));
444 __ mtc1(at, flt_scratch);
445 __ cvt_d_w(dbl_scratch, flt_scratch);
446 return dbl_scratch;
447 } else if (r.IsDouble()) {
448 Abort(kUnsupportedDoubleImmediate);
449 } else if (r.IsTagged()) {
450 Abort(kUnsupportedTaggedImmediate);
451 }
452 } else if (op->IsStackSlot()) {
453 MemOperand mem_op = ToMemOperand(op);
454 __ ldc1(dbl_scratch, mem_op);
455 return dbl_scratch;
456 }
457 UNREACHABLE();
458 return dbl_scratch;
459 }
460
461
ToHandle(LConstantOperand * op) const462 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
463 HConstant* constant = chunk_->LookupConstant(op);
464 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
465 return constant->handle(isolate());
466 }
467
468
IsInteger32(LConstantOperand * op) const469 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
470 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
471 }
472
473
IsSmi(LConstantOperand * op) const474 bool LCodeGen::IsSmi(LConstantOperand* op) const {
475 return chunk_->LookupLiteralRepresentation(op).IsSmi();
476 }
477
478
ToInteger32(LConstantOperand * op) const479 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
480 // return ToRepresentation(op, Representation::Integer32());
481 HConstant* constant = chunk_->LookupConstant(op);
482 return constant->Integer32Value();
483 }
484
485
ToRepresentation_donotuse(LConstantOperand * op,const Representation & r) const486 int64_t LCodeGen::ToRepresentation_donotuse(LConstantOperand* op,
487 const Representation& r) const {
488 HConstant* constant = chunk_->LookupConstant(op);
489 int32_t value = constant->Integer32Value();
490 if (r.IsInteger32()) return value;
491 DCHECK(r.IsSmiOrTagged());
492 return reinterpret_cast<int64_t>(Smi::FromInt(value));
493 }
494
495
ToSmi(LConstantOperand * op) const496 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
497 HConstant* constant = chunk_->LookupConstant(op);
498 return Smi::FromInt(constant->Integer32Value());
499 }
500
501
ToDouble(LConstantOperand * op) const502 double LCodeGen::ToDouble(LConstantOperand* op) const {
503 HConstant* constant = chunk_->LookupConstant(op);
504 DCHECK(constant->HasDoubleValue());
505 return constant->DoubleValue();
506 }
507
508
ToOperand(LOperand * op)509 Operand LCodeGen::ToOperand(LOperand* op) {
510 if (op->IsConstantOperand()) {
511 LConstantOperand* const_op = LConstantOperand::cast(op);
512 HConstant* constant = chunk()->LookupConstant(const_op);
513 Representation r = chunk_->LookupLiteralRepresentation(const_op);
514 if (r.IsSmi()) {
515 DCHECK(constant->HasSmiValue());
516 return Operand(Smi::FromInt(constant->Integer32Value()));
517 } else if (r.IsInteger32()) {
518 DCHECK(constant->HasInteger32Value());
519 return Operand(constant->Integer32Value());
520 } else if (r.IsDouble()) {
521 Abort(kToOperandUnsupportedDoubleImmediate);
522 }
523 DCHECK(r.IsTagged());
524 return Operand(constant->handle(isolate()));
525 } else if (op->IsRegister()) {
526 return Operand(ToRegister(op));
527 } else if (op->IsDoubleRegister()) {
528 Abort(kToOperandIsDoubleRegisterUnimplemented);
529 return Operand((int64_t)0);
530 }
531 // Stack slots not implemented, use ToMemOperand instead.
532 UNREACHABLE();
533 return Operand((int64_t)0);
534 }
535
536
ArgumentsOffsetWithoutFrame(int index)537 static int ArgumentsOffsetWithoutFrame(int index) {
538 DCHECK(index < 0);
539 return -(index + 1) * kPointerSize;
540 }
541
542
ToMemOperand(LOperand * op) const543 MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
544 DCHECK(!op->IsRegister());
545 DCHECK(!op->IsDoubleRegister());
546 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
547 if (NeedsEagerFrame()) {
548 return MemOperand(fp, FrameSlotToFPOffset(op->index()));
549 } else {
550 // Retrieve parameter without eager stack-frame relative to the
551 // stack-pointer.
552 return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
553 }
554 }
555
556
ToHighMemOperand(LOperand * op) const557 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
558 DCHECK(op->IsDoubleStackSlot());
559 if (NeedsEagerFrame()) {
560 // return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize);
561 return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kIntSize);
562 } else {
563 // Retrieve parameter without eager stack-frame relative to the
564 // stack-pointer.
565 // return MemOperand(
566 // sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
567 return MemOperand(
568 sp, ArgumentsOffsetWithoutFrame(op->index()) + kIntSize);
569 }
570 }
571
572
WriteTranslation(LEnvironment * environment,Translation * translation)573 void LCodeGen::WriteTranslation(LEnvironment* environment,
574 Translation* translation) {
575 if (environment == NULL) return;
576
577 // The translation includes one command per value in the environment.
578 int translation_size = environment->translation_size();
579
580 WriteTranslation(environment->outer(), translation);
581 WriteTranslationFrame(environment, translation);
582
583 int object_index = 0;
584 int dematerialized_index = 0;
585 for (int i = 0; i < translation_size; ++i) {
586 LOperand* value = environment->values()->at(i);
587 AddToTranslation(
588 environment, translation, value, environment->HasTaggedValueAt(i),
589 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
590 }
591 }
592
593
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)594 void LCodeGen::AddToTranslation(LEnvironment* environment,
595 Translation* translation,
596 LOperand* op,
597 bool is_tagged,
598 bool is_uint32,
599 int* object_index_pointer,
600 int* dematerialized_index_pointer) {
601 if (op == LEnvironment::materialization_marker()) {
602 int object_index = (*object_index_pointer)++;
603 if (environment->ObjectIsDuplicateAt(object_index)) {
604 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
605 translation->DuplicateObject(dupe_of);
606 return;
607 }
608 int object_length = environment->ObjectLengthAt(object_index);
609 if (environment->ObjectIsArgumentsAt(object_index)) {
610 translation->BeginArgumentsObject(object_length);
611 } else {
612 translation->BeginCapturedObject(object_length);
613 }
614 int dematerialized_index = *dematerialized_index_pointer;
615 int env_offset = environment->translation_size() + dematerialized_index;
616 *dematerialized_index_pointer += object_length;
617 for (int i = 0; i < object_length; ++i) {
618 LOperand* value = environment->values()->at(env_offset + i);
619 AddToTranslation(environment,
620 translation,
621 value,
622 environment->HasTaggedValueAt(env_offset + i),
623 environment->HasUint32ValueAt(env_offset + i),
624 object_index_pointer,
625 dematerialized_index_pointer);
626 }
627 return;
628 }
629
630 if (op->IsStackSlot()) {
631 int index = op->index();
632 if (is_tagged) {
633 translation->StoreStackSlot(index);
634 } else if (is_uint32) {
635 translation->StoreUint32StackSlot(index);
636 } else {
637 translation->StoreInt32StackSlot(index);
638 }
639 } else if (op->IsDoubleStackSlot()) {
640 int index = op->index();
641 translation->StoreDoubleStackSlot(index);
642 } else if (op->IsRegister()) {
643 Register reg = ToRegister(op);
644 if (is_tagged) {
645 translation->StoreRegister(reg);
646 } else if (is_uint32) {
647 translation->StoreUint32Register(reg);
648 } else {
649 translation->StoreInt32Register(reg);
650 }
651 } else if (op->IsDoubleRegister()) {
652 DoubleRegister reg = ToDoubleRegister(op);
653 translation->StoreDoubleRegister(reg);
654 } else if (op->IsConstantOperand()) {
655 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
656 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
657 translation->StoreLiteral(src_index);
658 } else {
659 UNREACHABLE();
660 }
661 }
662
663
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)664 void LCodeGen::CallCode(Handle<Code> code,
665 RelocInfo::Mode mode,
666 LInstruction* instr) {
667 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
668 }
669
670
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)671 void LCodeGen::CallCodeGeneric(Handle<Code> code,
672 RelocInfo::Mode mode,
673 LInstruction* instr,
674 SafepointMode safepoint_mode) {
675 DCHECK(instr != NULL);
676 __ Call(code, mode);
677 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
678 }
679
680
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)681 void LCodeGen::CallRuntime(const Runtime::Function* function,
682 int num_arguments,
683 LInstruction* instr,
684 SaveFPRegsMode save_doubles) {
685 DCHECK(instr != NULL);
686
687 __ CallRuntime(function, num_arguments, save_doubles);
688
689 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
690 }
691
692
LoadContextFromDeferred(LOperand * context)693 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
694 if (context->IsRegister()) {
695 __ Move(cp, ToRegister(context));
696 } else if (context->IsStackSlot()) {
697 __ ld(cp, ToMemOperand(context));
698 } else if (context->IsConstantOperand()) {
699 HConstant* constant =
700 chunk_->LookupConstant(LConstantOperand::cast(context));
701 __ li(cp, Handle<Object>::cast(constant->handle(isolate())));
702 } else {
703 UNREACHABLE();
704 }
705 }
706
707
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)708 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
709 int argc,
710 LInstruction* instr,
711 LOperand* context) {
712 LoadContextFromDeferred(context);
713 __ CallRuntimeSaveDoubles(id);
714 RecordSafepointWithRegisters(
715 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
716 }
717
718
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)719 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
720 Safepoint::DeoptMode mode) {
721 environment->set_has_been_used();
722 if (!environment->HasBeenRegistered()) {
723 // Physical stack frame layout:
724 // -x ............. -4 0 ..................................... y
725 // [incoming arguments] [spill slots] [pushed outgoing arguments]
726
727 // Layout of the environment:
728 // 0 ..................................................... size-1
729 // [parameters] [locals] [expression stack including arguments]
730
731 // Layout of the translation:
732 // 0 ........................................................ size - 1 + 4
733 // [expression stack including arguments] [locals] [4 words] [parameters]
734 // |>------------ translation_size ------------<|
735
736 int frame_count = 0;
737 int jsframe_count = 0;
738 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
739 ++frame_count;
740 if (e->frame_type() == JS_FUNCTION) {
741 ++jsframe_count;
742 }
743 }
744 Translation translation(&translations_, frame_count, jsframe_count, zone());
745 WriteTranslation(environment, &translation);
746 int deoptimization_index = deoptimizations_.length();
747 int pc_offset = masm()->pc_offset();
748 environment->Register(deoptimization_index,
749 translation.index(),
750 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
751 deoptimizations_.Add(environment, zone());
752 }
753 }
754
DeoptimizeIf(Condition condition,LInstruction * instr,DeoptimizeReason deopt_reason,Deoptimizer::BailoutType bailout_type,Register src1,const Operand & src2)755 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
756 DeoptimizeReason deopt_reason,
757 Deoptimizer::BailoutType bailout_type,
758 Register src1, const Operand& src2) {
759 LEnvironment* environment = instr->environment();
760 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
761 DCHECK(environment->HasBeenRegistered());
762 int id = environment->deoptimization_index();
763 Address entry =
764 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
765 if (entry == NULL) {
766 Abort(kBailoutWasNotPrepared);
767 return;
768 }
769
770 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
771 Register scratch = scratch0();
772 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
773 Label no_deopt;
774 __ Push(a1, scratch);
775 __ li(scratch, Operand(count));
776 __ lw(a1, MemOperand(scratch));
777 __ Subu(a1, a1, Operand(1));
778 __ Branch(&no_deopt, ne, a1, Operand(zero_reg));
779 __ li(a1, Operand(FLAG_deopt_every_n_times));
780 __ sw(a1, MemOperand(scratch));
781 __ Pop(a1, scratch);
782
783 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
784 __ bind(&no_deopt);
785 __ sw(a1, MemOperand(scratch));
786 __ Pop(a1, scratch);
787 }
788
789 if (info()->ShouldTrapOnDeopt()) {
790 Label skip;
791 if (condition != al) {
792 __ Branch(&skip, NegateCondition(condition), src1, src2);
793 }
794 __ stop("trap_on_deopt");
795 __ bind(&skip);
796 }
797
798 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
799
800 DCHECK(info()->IsStub() || frame_is_built_);
801 // Go through jump table if we need to handle condition, build frame, or
802 // restore caller doubles.
803 if (condition == al && frame_is_built_ &&
804 !info()->saves_caller_doubles()) {
805 DeoptComment(deopt_info);
806 __ Call(entry, RelocInfo::RUNTIME_ENTRY, condition, src1, src2);
807 } else {
808 Deoptimizer::JumpTableEntry* table_entry =
809 new (zone()) Deoptimizer::JumpTableEntry(
810 entry, deopt_info, bailout_type, !frame_is_built_);
811 // We often have several deopts to the same entry, reuse the last
812 // jump entry if this is the case.
813 if (FLAG_trace_deopt || isolate()->is_profiling() ||
814 jump_table_.is_empty() ||
815 !table_entry->IsEquivalentTo(*jump_table_.last())) {
816 jump_table_.Add(table_entry, zone());
817 }
818 __ Branch(&jump_table_.last()->label, condition, src1, src2);
819 }
820 }
821
DeoptimizeIf(Condition condition,LInstruction * instr,DeoptimizeReason deopt_reason,Register src1,const Operand & src2)822 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
823 DeoptimizeReason deopt_reason, Register src1,
824 const Operand& src2) {
825 Deoptimizer::BailoutType bailout_type = info()->IsStub()
826 ? Deoptimizer::LAZY
827 : Deoptimizer::EAGER;
828 DeoptimizeIf(condition, instr, deopt_reason, bailout_type, src1, src2);
829 }
830
831
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)832 void LCodeGen::RecordSafepointWithLazyDeopt(
833 LInstruction* instr, SafepointMode safepoint_mode) {
834 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
835 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
836 } else {
837 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
838 RecordSafepointWithRegisters(
839 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
840 }
841 }
842
843
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)844 void LCodeGen::RecordSafepoint(
845 LPointerMap* pointers,
846 Safepoint::Kind kind,
847 int arguments,
848 Safepoint::DeoptMode deopt_mode) {
849 DCHECK(expected_safepoint_kind_ == kind);
850
851 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
852 Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
853 kind, arguments, deopt_mode);
854 for (int i = 0; i < operands->length(); i++) {
855 LOperand* pointer = operands->at(i);
856 if (pointer->IsStackSlot()) {
857 safepoint.DefinePointerSlot(pointer->index(), zone());
858 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
859 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
860 }
861 }
862 }
863
864
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)865 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
866 Safepoint::DeoptMode deopt_mode) {
867 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
868 }
869
870
RecordSafepoint(Safepoint::DeoptMode deopt_mode)871 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
872 LPointerMap empty_pointers(zone());
873 RecordSafepoint(&empty_pointers, deopt_mode);
874 }
875
876
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)877 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
878 int arguments,
879 Safepoint::DeoptMode deopt_mode) {
880 RecordSafepoint(
881 pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
882 }
883
884
LabelType(LLabel * label)885 static const char* LabelType(LLabel* label) {
886 if (label->is_loop_header()) return " (loop header)";
887 if (label->is_osr_entry()) return " (OSR entry)";
888 return "";
889 }
890
891
DoLabel(LLabel * label)892 void LCodeGen::DoLabel(LLabel* label) {
893 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
894 current_instruction_,
895 label->hydrogen_value()->id(),
896 label->block_id(),
897 LabelType(label));
898 __ bind(label->label());
899 current_block_ = label->block_id();
900 DoGap(label);
901 }
902
903
DoParallelMove(LParallelMove * move)904 void LCodeGen::DoParallelMove(LParallelMove* move) {
905 resolver_.Resolve(move);
906 }
907
908
DoGap(LGap * gap)909 void LCodeGen::DoGap(LGap* gap) {
910 for (int i = LGap::FIRST_INNER_POSITION;
911 i <= LGap::LAST_INNER_POSITION;
912 i++) {
913 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
914 LParallelMove* move = gap->GetParallelMove(inner_pos);
915 if (move != NULL) DoParallelMove(move);
916 }
917 }
918
919
DoInstructionGap(LInstructionGap * instr)920 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
921 DoGap(instr);
922 }
923
924
DoParameter(LParameter * instr)925 void LCodeGen::DoParameter(LParameter* instr) {
926 // Nothing to do.
927 }
928
929
DoUnknownOSRValue(LUnknownOSRValue * instr)930 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
931 GenerateOsrPrologue();
932 }
933
934
DoModByPowerOf2I(LModByPowerOf2I * instr)935 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
936 Register dividend = ToRegister(instr->dividend());
937 int32_t divisor = instr->divisor();
938 DCHECK(dividend.is(ToRegister(instr->result())));
939
940 // Theoretically, a variation of the branch-free code for integer division by
941 // a power of 2 (calculating the remainder via an additional multiplication
942 // (which gets simplified to an 'and') and subtraction) should be faster, and
943 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
944 // indicate that positive dividends are heavily favored, so the branching
945 // version performs better.
946 HMod* hmod = instr->hydrogen();
947 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
948 Label dividend_is_not_negative, done;
949
950 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
951 __ Branch(÷nd_is_not_negative, ge, dividend, Operand(zero_reg));
952 // Note: The code below even works when right contains kMinInt.
953 __ dsubu(dividend, zero_reg, dividend);
954 __ And(dividend, dividend, Operand(mask));
955 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
956 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend,
957 Operand(zero_reg));
958 }
959 __ Branch(USE_DELAY_SLOT, &done);
960 __ dsubu(dividend, zero_reg, dividend);
961 }
962
963 __ bind(÷nd_is_not_negative);
964 __ And(dividend, dividend, Operand(mask));
965 __ bind(&done);
966 }
967
968
DoModByConstI(LModByConstI * instr)969 void LCodeGen::DoModByConstI(LModByConstI* instr) {
970 Register dividend = ToRegister(instr->dividend());
971 int32_t divisor = instr->divisor();
972 Register result = ToRegister(instr->result());
973 DCHECK(!dividend.is(result));
974
975 if (divisor == 0) {
976 DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
977 return;
978 }
979
980 __ TruncatingDiv(result, dividend, Abs(divisor));
981 __ Dmul(result, result, Operand(Abs(divisor)));
982 __ Dsubu(result, dividend, Operand(result));
983
984 // Check for negative zero.
985 HMod* hmod = instr->hydrogen();
986 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
987 Label remainder_not_zero;
988 __ Branch(&remainder_not_zero, ne, result, Operand(zero_reg));
989 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, dividend,
990 Operand(zero_reg));
991 __ bind(&remainder_not_zero);
992 }
993 }
994
995
DoModI(LModI * instr)996 void LCodeGen::DoModI(LModI* instr) {
997 HMod* hmod = instr->hydrogen();
998 const Register left_reg = ToRegister(instr->left());
999 const Register right_reg = ToRegister(instr->right());
1000 const Register result_reg = ToRegister(instr->result());
1001
1002 // div runs in the background while we check for special cases.
1003 __ Dmod(result_reg, left_reg, right_reg);
1004
1005 Label done;
1006 // Check for x % 0, we have to deopt in this case because we can't return a
1007 // NaN.
1008 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1009 DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero, right_reg,
1010 Operand(zero_reg));
1011 }
1012
1013 // Check for kMinInt % -1, div will return kMinInt, which is not what we
1014 // want. We have to deopt if we care about -0, because we can't return that.
1015 if (hmod->CheckFlag(HValue::kCanOverflow)) {
1016 Label no_overflow_possible;
1017 __ Branch(&no_overflow_possible, ne, left_reg, Operand(kMinInt));
1018 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1019 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, right_reg,
1020 Operand(-1));
1021 } else {
1022 __ Branch(&no_overflow_possible, ne, right_reg, Operand(-1));
1023 __ Branch(USE_DELAY_SLOT, &done);
1024 __ mov(result_reg, zero_reg);
1025 }
1026 __ bind(&no_overflow_possible);
1027 }
1028
1029 // If we care about -0, test if the dividend is <0 and the result is 0.
1030 __ Branch(&done, ge, left_reg, Operand(zero_reg));
1031
1032 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1033 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result_reg,
1034 Operand(zero_reg));
1035 }
1036 __ bind(&done);
1037 }
1038
1039
DoDivByPowerOf2I(LDivByPowerOf2I * instr)1040 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1041 Register dividend = ToRegister(instr->dividend());
1042 int32_t divisor = instr->divisor();
1043 Register result = ToRegister(instr->result());
1044 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1045 DCHECK(!result.is(dividend));
1046
1047 // Check for (0 / -x) that will produce negative zero.
1048 HDiv* hdiv = instr->hydrogen();
1049 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1050 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend,
1051 Operand(zero_reg));
1052 }
1053 // Check for (kMinInt / -1).
1054 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1055 DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow, dividend,
1056 Operand(kMinInt));
1057 }
1058 // Deoptimize if remainder will not be 0.
1059 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1060 divisor != 1 && divisor != -1) {
1061 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1062 __ And(at, dividend, Operand(mask));
1063 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, at,
1064 Operand(zero_reg));
1065 }
1066
1067 if (divisor == -1) { // Nice shortcut, not needed for correctness.
1068 __ Dsubu(result, zero_reg, dividend);
1069 return;
1070 }
1071 uint16_t shift = WhichPowerOf2Abs(divisor);
1072 if (shift == 0) {
1073 __ Move(result, dividend);
1074 } else if (shift == 1) {
1075 __ dsrl32(result, dividend, 31);
1076 __ Daddu(result, dividend, Operand(result));
1077 } else {
1078 __ dsra32(result, dividend, 31);
1079 __ dsrl32(result, result, 32 - shift);
1080 __ Daddu(result, dividend, Operand(result));
1081 }
1082 if (shift > 0) __ dsra(result, result, shift);
1083 if (divisor < 0) __ Dsubu(result, zero_reg, result);
1084 }
1085
1086
DoDivByConstI(LDivByConstI * instr)1087 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1088 Register dividend = ToRegister(instr->dividend());
1089 int32_t divisor = instr->divisor();
1090 Register result = ToRegister(instr->result());
1091 DCHECK(!dividend.is(result));
1092
1093 if (divisor == 0) {
1094 DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
1095 return;
1096 }
1097
1098 // Check for (0 / -x) that will produce negative zero.
1099 HDiv* hdiv = instr->hydrogen();
1100 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1101 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend,
1102 Operand(zero_reg));
1103 }
1104
1105 __ TruncatingDiv(result, dividend, Abs(divisor));
1106 if (divisor < 0) __ Subu(result, zero_reg, result);
1107
1108 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1109 __ Dmul(scratch0(), result, Operand(divisor));
1110 __ Dsubu(scratch0(), scratch0(), dividend);
1111 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, scratch0(),
1112 Operand(zero_reg));
1113 }
1114 }
1115
1116
1117 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)1118 void LCodeGen::DoDivI(LDivI* instr) {
1119 HBinaryOperation* hdiv = instr->hydrogen();
1120 Register dividend = ToRegister(instr->dividend());
1121 Register divisor = ToRegister(instr->divisor());
1122 const Register result = ToRegister(instr->result());
1123
1124 // On MIPS div is asynchronous - it will run in the background while we
1125 // check for special cases.
1126 __ Div(result, dividend, divisor);
1127
1128 // Check for x / 0.
1129 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1130 DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero, divisor,
1131 Operand(zero_reg));
1132 }
1133
1134 // Check for (0 / -x) that will produce negative zero.
1135 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1136 Label left_not_zero;
1137 __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
1138 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, divisor,
1139 Operand(zero_reg));
1140 __ bind(&left_not_zero);
1141 }
1142
1143 // Check for (kMinInt / -1).
1144 if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1145 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1146 Label left_not_min_int;
1147 __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
1148 DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow, divisor, Operand(-1));
1149 __ bind(&left_not_min_int);
1150 }
1151
1152 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1153 // Calculate remainder.
1154 Register remainder = ToRegister(instr->temp());
1155 if (kArchVariant != kMips64r6) {
1156 __ mfhi(remainder);
1157 } else {
1158 __ dmod(remainder, dividend, divisor);
1159 }
1160 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, remainder,
1161 Operand(zero_reg));
1162 }
1163 }
1164
1165
DoMultiplyAddD(LMultiplyAddD * instr)1166 void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
1167 DoubleRegister addend = ToDoubleRegister(instr->addend());
1168 DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
1169 DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1170
1171 // This is computed in-place.
1172 DCHECK(addend.is(ToDoubleRegister(instr->result())));
1173
1174 __ Madd_d(addend, addend, multiplier, multiplicand, double_scratch0());
1175 }
1176
1177
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)1178 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1179 Register dividend = ToRegister(instr->dividend());
1180 Register result = ToRegister(instr->result());
1181 int32_t divisor = instr->divisor();
1182 Register scratch = result.is(dividend) ? scratch0() : dividend;
1183 DCHECK(!result.is(dividend) || !scratch.is(dividend));
1184
1185 // If the divisor is 1, return the dividend.
1186 if (divisor == 0) {
1187 __ Move(result, dividend);
1188 return;
1189 }
1190
1191 // If the divisor is positive, things are easy: There can be no deopts and we
1192 // can simply do an arithmetic right shift.
1193 uint16_t shift = WhichPowerOf2Abs(divisor);
1194 if (divisor > 1) {
1195 __ dsra(result, dividend, shift);
1196 return;
1197 }
1198
1199 // If the divisor is negative, we have to negate and handle edge cases.
1200 // Dividend can be the same register as result so save the value of it
1201 // for checking overflow.
1202 __ Move(scratch, dividend);
1203
1204 __ Dsubu(result, zero_reg, dividend);
1205 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1206 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result,
1207 Operand(zero_reg));
1208 }
1209
1210 __ Xor(scratch, scratch, result);
1211 // Dividing by -1 is basically negation, unless we overflow.
1212 if (divisor == -1) {
1213 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1214 DeoptimizeIf(gt, instr, DeoptimizeReason::kOverflow, result,
1215 Operand(kMaxInt));
1216 }
1217 return;
1218 }
1219
1220 // If the negation could not overflow, simply shifting is OK.
1221 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1222 __ dsra(result, result, shift);
1223 return;
1224 }
1225
1226 Label no_overflow, done;
1227 __ Branch(&no_overflow, lt, scratch, Operand(zero_reg));
1228 __ li(result, Operand(kMinInt / divisor), CONSTANT_SIZE);
1229 __ Branch(&done);
1230 __ bind(&no_overflow);
1231 __ dsra(result, result, shift);
1232 __ bind(&done);
1233 }
1234
1235
DoFlooringDivByConstI(LFlooringDivByConstI * instr)1236 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1237 Register dividend = ToRegister(instr->dividend());
1238 int32_t divisor = instr->divisor();
1239 Register result = ToRegister(instr->result());
1240 DCHECK(!dividend.is(result));
1241
1242 if (divisor == 0) {
1243 DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
1244 return;
1245 }
1246
1247 // Check for (0 / -x) that will produce negative zero.
1248 HMathFloorOfDiv* hdiv = instr->hydrogen();
1249 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1250 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend,
1251 Operand(zero_reg));
1252 }
1253
1254 // Easy case: We need no dynamic check for the dividend and the flooring
1255 // division is the same as the truncating division.
1256 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1257 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1258 __ TruncatingDiv(result, dividend, Abs(divisor));
1259 if (divisor < 0) __ Dsubu(result, zero_reg, result);
1260 return;
1261 }
1262
1263 // In the general case we may need to adjust before and after the truncating
1264 // division to get a flooring division.
1265 Register temp = ToRegister(instr->temp());
1266 DCHECK(!temp.is(dividend) && !temp.is(result));
1267 Label needs_adjustment, done;
1268 __ Branch(&needs_adjustment, divisor > 0 ? lt : gt,
1269 dividend, Operand(zero_reg));
1270 __ TruncatingDiv(result, dividend, Abs(divisor));
1271 if (divisor < 0) __ Dsubu(result, zero_reg, result);
1272 __ jmp(&done);
1273 __ bind(&needs_adjustment);
1274 __ Daddu(temp, dividend, Operand(divisor > 0 ? 1 : -1));
1275 __ TruncatingDiv(result, temp, Abs(divisor));
1276 if (divisor < 0) __ Dsubu(result, zero_reg, result);
1277 __ Dsubu(result, result, Operand(1));
1278 __ bind(&done);
1279 }
1280
1281
1282 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)1283 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1284 HBinaryOperation* hdiv = instr->hydrogen();
1285 Register dividend = ToRegister(instr->dividend());
1286 Register divisor = ToRegister(instr->divisor());
1287 const Register result = ToRegister(instr->result());
1288
1289 // On MIPS div is asynchronous - it will run in the background while we
1290 // check for special cases.
1291 __ Ddiv(result, dividend, divisor);
1292
1293 // Check for x / 0.
1294 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1295 DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero, divisor,
1296 Operand(zero_reg));
1297 }
1298
1299 // Check for (0 / -x) that will produce negative zero.
1300 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1301 Label left_not_zero;
1302 __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
1303 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, divisor,
1304 Operand(zero_reg));
1305 __ bind(&left_not_zero);
1306 }
1307
1308 // Check for (kMinInt / -1).
1309 if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1310 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1311 Label left_not_min_int;
1312 __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
1313 DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow, divisor, Operand(-1));
1314 __ bind(&left_not_min_int);
1315 }
1316
1317 // We performed a truncating division. Correct the result if necessary.
1318 Label done;
1319 Register remainder = scratch0();
1320 if (kArchVariant != kMips64r6) {
1321 __ mfhi(remainder);
1322 } else {
1323 __ dmod(remainder, dividend, divisor);
1324 }
1325 __ Branch(&done, eq, remainder, Operand(zero_reg), USE_DELAY_SLOT);
1326 __ Xor(remainder, remainder, Operand(divisor));
1327 __ Branch(&done, ge, remainder, Operand(zero_reg));
1328 __ Dsubu(result, result, Operand(1));
1329 __ bind(&done);
1330 }
1331
1332
DoMulS(LMulS * instr)1333 void LCodeGen::DoMulS(LMulS* instr) {
1334 Register scratch = scratch0();
1335 Register result = ToRegister(instr->result());
1336 // Note that result may alias left.
1337 Register left = ToRegister(instr->left());
1338 LOperand* right_op = instr->right();
1339
1340 bool bailout_on_minus_zero =
1341 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1342 bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1343
1344 if (right_op->IsConstantOperand()) {
1345 int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1346
1347 if (bailout_on_minus_zero && (constant < 0)) {
1348 // The case of a null constant will be handled separately.
1349 // If constant is negative and left is null, the result should be -0.
1350 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, left,
1351 Operand(zero_reg));
1352 }
1353
1354 switch (constant) {
1355 case -1:
1356 if (overflow) {
1357 Label no_overflow;
1358 __ DsubBranchNoOvf(result, zero_reg, Operand(left), &no_overflow);
1359 DeoptimizeIf(al, instr);
1360 __ bind(&no_overflow);
1361 } else {
1362 __ Dsubu(result, zero_reg, left);
1363 }
1364 break;
1365 case 0:
1366 if (bailout_on_minus_zero) {
1367 // If left is strictly negative and the constant is null, the
1368 // result is -0. Deoptimize if required, otherwise return 0.
1369 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, left,
1370 Operand(zero_reg));
1371 }
1372 __ mov(result, zero_reg);
1373 break;
1374 case 1:
1375 // Nothing to do.
1376 __ Move(result, left);
1377 break;
1378 default:
1379 // Multiplying by powers of two and powers of two plus or minus
1380 // one can be done faster with shifted operands.
1381 // For other constants we emit standard code.
1382 int32_t mask = constant >> 31;
1383 uint32_t constant_abs = (constant + mask) ^ mask;
1384
1385 if (base::bits::IsPowerOfTwo32(constant_abs)) {
1386 int32_t shift = WhichPowerOf2(constant_abs);
1387 __ dsll(result, left, shift);
1388 // Correct the sign of the result if the constant is negative.
1389 if (constant < 0) __ Dsubu(result, zero_reg, result);
1390 } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1391 int32_t shift = WhichPowerOf2(constant_abs - 1);
1392 __ Dlsa(result, left, left, shift);
1393 // Correct the sign of the result if the constant is negative.
1394 if (constant < 0) __ Dsubu(result, zero_reg, result);
1395 } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1396 int32_t shift = WhichPowerOf2(constant_abs + 1);
1397 __ dsll(scratch, left, shift);
1398 __ Dsubu(result, scratch, left);
1399 // Correct the sign of the result if the constant is negative.
1400 if (constant < 0) __ Dsubu(result, zero_reg, result);
1401 } else {
1402 // Generate standard code.
1403 __ li(at, constant);
1404 __ Dmul(result, left, at);
1405 }
1406 }
1407 } else {
1408 DCHECK(right_op->IsRegister());
1409 Register right = ToRegister(right_op);
1410
1411 if (overflow) {
1412 // hi:lo = left * right.
1413 __ Dmulh(result, left, right);
1414 __ dsra32(scratch, result, 0);
1415 __ sra(at, result, 31);
1416 __ SmiTag(result);
1417 DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow, scratch,
1418 Operand(at));
1419 } else {
1420 __ SmiUntag(result, left);
1421 __ dmul(result, result, right);
1422 }
1423
1424 if (bailout_on_minus_zero) {
1425 Label done;
1426 __ Xor(at, left, right);
1427 __ Branch(&done, ge, at, Operand(zero_reg));
1428 // Bail out if the result is minus zero.
1429 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result,
1430 Operand(zero_reg));
1431 __ bind(&done);
1432 }
1433 }
1434 }
1435
1436
DoMulI(LMulI * instr)1437 void LCodeGen::DoMulI(LMulI* instr) {
1438 Register scratch = scratch0();
1439 Register result = ToRegister(instr->result());
1440 // Note that result may alias left.
1441 Register left = ToRegister(instr->left());
1442 LOperand* right_op = instr->right();
1443
1444 bool bailout_on_minus_zero =
1445 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1446 bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1447
1448 if (right_op->IsConstantOperand()) {
1449 int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1450
1451 if (bailout_on_minus_zero && (constant < 0)) {
1452 // The case of a null constant will be handled separately.
1453 // If constant is negative and left is null, the result should be -0.
1454 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, left,
1455 Operand(zero_reg));
1456 }
1457
1458 switch (constant) {
1459 case -1:
1460 if (overflow) {
1461 Label no_overflow;
1462 __ SubBranchNoOvf(result, zero_reg, Operand(left), &no_overflow);
1463 DeoptimizeIf(al, instr);
1464 __ bind(&no_overflow);
1465 } else {
1466 __ Subu(result, zero_reg, left);
1467 }
1468 break;
1469 case 0:
1470 if (bailout_on_minus_zero) {
1471 // If left is strictly negative and the constant is null, the
1472 // result is -0. Deoptimize if required, otherwise return 0.
1473 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, left,
1474 Operand(zero_reg));
1475 }
1476 __ mov(result, zero_reg);
1477 break;
1478 case 1:
1479 // Nothing to do.
1480 __ Move(result, left);
1481 break;
1482 default:
1483 // Multiplying by powers of two and powers of two plus or minus
1484 // one can be done faster with shifted operands.
1485 // For other constants we emit standard code.
1486 int32_t mask = constant >> 31;
1487 uint32_t constant_abs = (constant + mask) ^ mask;
1488
1489 if (base::bits::IsPowerOfTwo32(constant_abs)) {
1490 int32_t shift = WhichPowerOf2(constant_abs);
1491 __ sll(result, left, shift);
1492 // Correct the sign of the result if the constant is negative.
1493 if (constant < 0) __ Subu(result, zero_reg, result);
1494 } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1495 int32_t shift = WhichPowerOf2(constant_abs - 1);
1496 __ Lsa(result, left, left, shift);
1497 // Correct the sign of the result if the constant is negative.
1498 if (constant < 0) __ Subu(result, zero_reg, result);
1499 } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1500 int32_t shift = WhichPowerOf2(constant_abs + 1);
1501 __ sll(scratch, left, shift);
1502 __ Subu(result, scratch, left);
1503 // Correct the sign of the result if the constant is negative.
1504 if (constant < 0) __ Subu(result, zero_reg, result);
1505 } else {
1506 // Generate standard code.
1507 __ li(at, constant);
1508 __ Mul(result, left, at);
1509 }
1510 }
1511
1512 } else {
1513 DCHECK(right_op->IsRegister());
1514 Register right = ToRegister(right_op);
1515
1516 if (overflow) {
1517 // hi:lo = left * right.
1518 __ Dmul(result, left, right);
1519 __ dsra32(scratch, result, 0);
1520 __ sra(at, result, 31);
1521
1522 DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow, scratch,
1523 Operand(at));
1524 } else {
1525 __ mul(result, left, right);
1526 }
1527
1528 if (bailout_on_minus_zero) {
1529 Label done;
1530 __ Xor(at, left, right);
1531 __ Branch(&done, ge, at, Operand(zero_reg));
1532 // Bail out if the result is minus zero.
1533 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result,
1534 Operand(zero_reg));
1535 __ bind(&done);
1536 }
1537 }
1538 }
1539
1540
DoBitI(LBitI * instr)1541 void LCodeGen::DoBitI(LBitI* instr) {
1542 LOperand* left_op = instr->left();
1543 LOperand* right_op = instr->right();
1544 DCHECK(left_op->IsRegister());
1545 Register left = ToRegister(left_op);
1546 Register result = ToRegister(instr->result());
1547 Operand right(no_reg);
1548
1549 if (right_op->IsStackSlot()) {
1550 right = Operand(EmitLoadRegister(right_op, at));
1551 } else {
1552 DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
1553 right = ToOperand(right_op);
1554 }
1555
1556 switch (instr->op()) {
1557 case Token::BIT_AND:
1558 __ And(result, left, right);
1559 break;
1560 case Token::BIT_OR:
1561 __ Or(result, left, right);
1562 break;
1563 case Token::BIT_XOR:
1564 if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
1565 __ Nor(result, zero_reg, left);
1566 } else {
1567 __ Xor(result, left, right);
1568 }
1569 break;
1570 default:
1571 UNREACHABLE();
1572 break;
1573 }
1574 }
1575
1576
DoShiftI(LShiftI * instr)1577 void LCodeGen::DoShiftI(LShiftI* instr) {
1578 // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1579 // result may alias either of them.
1580 LOperand* right_op = instr->right();
1581 Register left = ToRegister(instr->left());
1582 Register result = ToRegister(instr->result());
1583
1584 if (right_op->IsRegister()) {
1585 // No need to mask the right operand on MIPS, it is built into the variable
1586 // shift instructions.
1587 switch (instr->op()) {
1588 case Token::ROR:
1589 __ Ror(result, left, Operand(ToRegister(right_op)));
1590 break;
1591 case Token::SAR:
1592 __ srav(result, left, ToRegister(right_op));
1593 break;
1594 case Token::SHR:
1595 __ srlv(result, left, ToRegister(right_op));
1596 if (instr->can_deopt()) {
1597 // TODO(yy): (-1) >>> 0. anything else?
1598 DeoptimizeIf(lt, instr, DeoptimizeReason::kNegativeValue, result,
1599 Operand(zero_reg));
1600 DeoptimizeIf(gt, instr, DeoptimizeReason::kNegativeValue, result,
1601 Operand(kMaxInt));
1602 }
1603 break;
1604 case Token::SHL:
1605 __ sllv(result, left, ToRegister(right_op));
1606 break;
1607 default:
1608 UNREACHABLE();
1609 break;
1610 }
1611 } else {
1612 // Mask the right_op operand.
1613 int value = ToInteger32(LConstantOperand::cast(right_op));
1614 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1615 switch (instr->op()) {
1616 case Token::ROR:
1617 if (shift_count != 0) {
1618 __ Ror(result, left, Operand(shift_count));
1619 } else {
1620 __ Move(result, left);
1621 }
1622 break;
1623 case Token::SAR:
1624 if (shift_count != 0) {
1625 __ sra(result, left, shift_count);
1626 } else {
1627 __ Move(result, left);
1628 }
1629 break;
1630 case Token::SHR:
1631 if (shift_count != 0) {
1632 __ srl(result, left, shift_count);
1633 } else {
1634 if (instr->can_deopt()) {
1635 __ And(at, left, Operand(0x80000000));
1636 DeoptimizeIf(ne, instr, DeoptimizeReason::kNegativeValue, at,
1637 Operand(zero_reg));
1638 }
1639 __ Move(result, left);
1640 }
1641 break;
1642 case Token::SHL:
1643 if (shift_count != 0) {
1644 if (instr->hydrogen_value()->representation().IsSmi()) {
1645 __ dsll(result, left, shift_count);
1646 } else {
1647 __ sll(result, left, shift_count);
1648 }
1649 } else {
1650 __ Move(result, left);
1651 }
1652 break;
1653 default:
1654 UNREACHABLE();
1655 break;
1656 }
1657 }
1658 }
1659
1660
DoSubS(LSubS * instr)1661 void LCodeGen::DoSubS(LSubS* instr) {
1662 LOperand* left = instr->left();
1663 LOperand* right = instr->right();
1664 LOperand* result = instr->result();
1665 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1666
1667 if (!can_overflow) {
1668 DCHECK(right->IsRegister() || right->IsConstantOperand());
1669 __ Dsubu(ToRegister(result), ToRegister(left), ToOperand(right));
1670 } else { // can_overflow.
1671 Register scratch = scratch0();
1672 Label no_overflow_label;
1673 DCHECK(right->IsRegister() || right->IsConstantOperand());
1674 __ DsubBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right),
1675 &no_overflow_label, scratch);
1676 DeoptimizeIf(al, instr);
1677 __ bind(&no_overflow_label);
1678 }
1679 }
1680
1681
DoSubI(LSubI * instr)1682 void LCodeGen::DoSubI(LSubI* instr) {
1683 LOperand* left = instr->left();
1684 LOperand* right = instr->right();
1685 LOperand* result = instr->result();
1686 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1687
1688 if (!can_overflow) {
1689 DCHECK(right->IsRegister() || right->IsConstantOperand());
1690 __ Subu(ToRegister(result), ToRegister(left), ToOperand(right));
1691 } else { // can_overflow.
1692 Register scratch = scratch0();
1693 Label no_overflow_label;
1694 DCHECK(right->IsRegister() || right->IsConstantOperand());
1695 __ SubBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right),
1696 &no_overflow_label, scratch);
1697 DeoptimizeIf(al, instr);
1698 __ bind(&no_overflow_label);
1699 }
1700 }
1701
1702
DoConstantI(LConstantI * instr)1703 void LCodeGen::DoConstantI(LConstantI* instr) {
1704 __ li(ToRegister(instr->result()), Operand(instr->value()));
1705 }
1706
1707
DoConstantS(LConstantS * instr)1708 void LCodeGen::DoConstantS(LConstantS* instr) {
1709 __ li(ToRegister(instr->result()), Operand(instr->value()));
1710 }
1711
1712
DoConstantD(LConstantD * instr)1713 void LCodeGen::DoConstantD(LConstantD* instr) {
1714 DCHECK(instr->result()->IsDoubleRegister());
1715 DoubleRegister result = ToDoubleRegister(instr->result());
1716 double v = instr->value();
1717 __ Move(result, v);
1718 }
1719
1720
DoConstantE(LConstantE * instr)1721 void LCodeGen::DoConstantE(LConstantE* instr) {
1722 __ li(ToRegister(instr->result()), Operand(instr->value()));
1723 }
1724
1725
DoConstantT(LConstantT * instr)1726 void LCodeGen::DoConstantT(LConstantT* instr) {
1727 Handle<Object> object = instr->value(isolate());
1728 AllowDeferredHandleDereference smi_check;
1729 __ li(ToRegister(instr->result()), object);
1730 }
1731
1732
BuildSeqStringOperand(Register string,LOperand * index,String::Encoding encoding)1733 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
1734 LOperand* index,
1735 String::Encoding encoding) {
1736 if (index->IsConstantOperand()) {
1737 int offset = ToInteger32(LConstantOperand::cast(index));
1738 if (encoding == String::TWO_BYTE_ENCODING) {
1739 offset *= kUC16Size;
1740 }
1741 STATIC_ASSERT(kCharSize == 1);
1742 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
1743 }
1744 Register scratch = scratch0();
1745 DCHECK(!scratch.is(string));
1746 DCHECK(!scratch.is(ToRegister(index)));
1747 if (encoding == String::ONE_BYTE_ENCODING) {
1748 __ Daddu(scratch, string, ToRegister(index));
1749 } else {
1750 STATIC_ASSERT(kUC16Size == 2);
1751 __ dsll(scratch, ToRegister(index), 1);
1752 __ Daddu(scratch, string, scratch);
1753 }
1754 return FieldMemOperand(scratch, SeqString::kHeaderSize);
1755 }
1756
1757
DoSeqStringGetChar(LSeqStringGetChar * instr)1758 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1759 String::Encoding encoding = instr->hydrogen()->encoding();
1760 Register string = ToRegister(instr->string());
1761 Register result = ToRegister(instr->result());
1762
1763 if (FLAG_debug_code) {
1764 Register scratch = scratch0();
1765 __ ld(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
1766 __ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1767
1768 __ And(scratch, scratch,
1769 Operand(kStringRepresentationMask | kStringEncodingMask));
1770 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1771 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1772 __ Dsubu(at, scratch, Operand(encoding == String::ONE_BYTE_ENCODING
1773 ? one_byte_seq_type : two_byte_seq_type));
1774 __ Check(eq, kUnexpectedStringType, at, Operand(zero_reg));
1775 }
1776
1777 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1778 if (encoding == String::ONE_BYTE_ENCODING) {
1779 __ lbu(result, operand);
1780 } else {
1781 __ lhu(result, operand);
1782 }
1783 }
1784
1785
DoSeqStringSetChar(LSeqStringSetChar * instr)1786 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1787 String::Encoding encoding = instr->hydrogen()->encoding();
1788 Register string = ToRegister(instr->string());
1789 Register value = ToRegister(instr->value());
1790
1791 if (FLAG_debug_code) {
1792 Register scratch = scratch0();
1793 Register index = ToRegister(instr->index());
1794 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1795 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1796 int encoding_mask =
1797 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1798 ? one_byte_seq_type : two_byte_seq_type;
1799 __ EmitSeqStringSetCharCheck(string, index, value, scratch, encoding_mask);
1800 }
1801
1802 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1803 if (encoding == String::ONE_BYTE_ENCODING) {
1804 __ sb(value, operand);
1805 } else {
1806 __ sh(value, operand);
1807 }
1808 }
1809
1810
DoAddE(LAddE * instr)1811 void LCodeGen::DoAddE(LAddE* instr) {
1812 LOperand* result = instr->result();
1813 LOperand* left = instr->left();
1814 LOperand* right = instr->right();
1815
1816 DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
1817 DCHECK(right->IsRegister() || right->IsConstantOperand());
1818 __ Daddu(ToRegister(result), ToRegister(left), ToOperand(right));
1819 }
1820
1821
DoAddS(LAddS * instr)1822 void LCodeGen::DoAddS(LAddS* instr) {
1823 LOperand* left = instr->left();
1824 LOperand* right = instr->right();
1825 LOperand* result = instr->result();
1826 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1827
1828 if (!can_overflow) {
1829 DCHECK(right->IsRegister() || right->IsConstantOperand());
1830 __ Daddu(ToRegister(result), ToRegister(left), ToOperand(right));
1831 } else { // can_overflow.
1832 Label no_overflow_label;
1833 Register scratch = scratch1();
1834 DCHECK(right->IsRegister() || right->IsConstantOperand());
1835 __ DaddBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right),
1836 &no_overflow_label, scratch);
1837 DeoptimizeIf(al, instr);
1838 __ bind(&no_overflow_label);
1839 }
1840 }
1841
1842
DoAddI(LAddI * instr)1843 void LCodeGen::DoAddI(LAddI* instr) {
1844 LOperand* left = instr->left();
1845 LOperand* right = instr->right();
1846 LOperand* result = instr->result();
1847 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1848
1849 if (!can_overflow) {
1850 DCHECK(right->IsRegister() || right->IsConstantOperand());
1851 __ Addu(ToRegister(result), ToRegister(left), ToOperand(right));
1852 } else { // can_overflow.
1853 Label no_overflow_label;
1854 Register scratch = scratch1();
1855 DCHECK(right->IsRegister() || right->IsConstantOperand());
1856 __ AddBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right),
1857 &no_overflow_label, scratch);
1858 DeoptimizeIf(al, instr);
1859 __ bind(&no_overflow_label);
1860 }
1861 }
1862
1863
DoMathMinMax(LMathMinMax * instr)1864 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1865 LOperand* left = instr->left();
1866 LOperand* right = instr->right();
1867 HMathMinMax::Operation operation = instr->hydrogen()->operation();
1868 Register scratch = scratch1();
1869 if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1870 Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
1871 Register left_reg = ToRegister(left);
1872 Register right_reg = EmitLoadRegister(right, scratch0());
1873 Register result_reg = ToRegister(instr->result());
1874 Label return_right, done;
1875 __ Slt(scratch, left_reg, Operand(right_reg));
1876 if (condition == ge) {
1877 __ Movz(result_reg, left_reg, scratch);
1878 __ Movn(result_reg, right_reg, scratch);
1879 } else {
1880 DCHECK(condition == le);
1881 __ Movn(result_reg, left_reg, scratch);
1882 __ Movz(result_reg, right_reg, scratch);
1883 }
1884 } else {
1885 DCHECK(instr->hydrogen()->representation().IsDouble());
1886 FPURegister left_reg = ToDoubleRegister(left);
1887 FPURegister right_reg = ToDoubleRegister(right);
1888 FPURegister result_reg = ToDoubleRegister(instr->result());
1889 Label nan, done;
1890 if (operation == HMathMinMax::kMathMax) {
1891 __ MaxNaNCheck_d(result_reg, left_reg, right_reg, &nan);
1892 } else {
1893 DCHECK(operation == HMathMinMax::kMathMin);
1894 __ MinNaNCheck_d(result_reg, left_reg, right_reg, &nan);
1895 }
1896 __ Branch(&done);
1897
1898 __ bind(&nan);
1899 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
1900 __ ldc1(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
1901
1902 __ bind(&done);
1903 }
1904 }
1905
1906
DoArithmeticD(LArithmeticD * instr)1907 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1908 DoubleRegister left = ToDoubleRegister(instr->left());
1909 DoubleRegister right = ToDoubleRegister(instr->right());
1910 DoubleRegister result = ToDoubleRegister(instr->result());
1911 switch (instr->op()) {
1912 case Token::ADD:
1913 __ add_d(result, left, right);
1914 break;
1915 case Token::SUB:
1916 __ sub_d(result, left, right);
1917 break;
1918 case Token::MUL:
1919 __ mul_d(result, left, right);
1920 break;
1921 case Token::DIV:
1922 __ div_d(result, left, right);
1923 break;
1924 case Token::MOD: {
1925 // Save a0-a3 on the stack.
1926 RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
1927 __ MultiPush(saved_regs);
1928
1929 __ PrepareCallCFunction(0, 2, scratch0());
1930 __ MovToFloatParameters(left, right);
1931 __ CallCFunction(
1932 ExternalReference::mod_two_doubles_operation(isolate()),
1933 0, 2);
1934 // Move the result in the double result register.
1935 __ MovFromFloatResult(result);
1936
1937 // Restore saved register.
1938 __ MultiPop(saved_regs);
1939 break;
1940 }
1941 default:
1942 UNREACHABLE();
1943 break;
1944 }
1945 }
1946
1947
DoArithmeticT(LArithmeticT * instr)1948 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1949 DCHECK(ToRegister(instr->context()).is(cp));
1950 DCHECK(ToRegister(instr->left()).is(a1));
1951 DCHECK(ToRegister(instr->right()).is(a0));
1952 DCHECK(ToRegister(instr->result()).is(v0));
1953
1954 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
1955 CallCode(code, RelocInfo::CODE_TARGET, instr);
1956 // Other arch use a nop here, to signal that there is no inlined
1957 // patchable code. Mips does not need the nop, since our marker
1958 // instruction (andi zero_reg) will never be used in normal code.
1959 }
1960
1961
1962 template<class InstrType>
EmitBranch(InstrType instr,Condition condition,Register src1,const Operand & src2)1963 void LCodeGen::EmitBranch(InstrType instr,
1964 Condition condition,
1965 Register src1,
1966 const Operand& src2) {
1967 int left_block = instr->TrueDestination(chunk_);
1968 int right_block = instr->FalseDestination(chunk_);
1969
1970 int next_block = GetNextEmittedBlock();
1971 if (right_block == left_block || condition == al) {
1972 EmitGoto(left_block);
1973 } else if (left_block == next_block) {
1974 __ Branch(chunk_->GetAssemblyLabel(right_block),
1975 NegateCondition(condition), src1, src2);
1976 } else if (right_block == next_block) {
1977 __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
1978 } else {
1979 __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
1980 __ Branch(chunk_->GetAssemblyLabel(right_block));
1981 }
1982 }
1983
1984
1985 template<class InstrType>
EmitBranchF(InstrType instr,Condition condition,FPURegister src1,FPURegister src2)1986 void LCodeGen::EmitBranchF(InstrType instr,
1987 Condition condition,
1988 FPURegister src1,
1989 FPURegister src2) {
1990 int right_block = instr->FalseDestination(chunk_);
1991 int left_block = instr->TrueDestination(chunk_);
1992
1993 int next_block = GetNextEmittedBlock();
1994 if (right_block == left_block) {
1995 EmitGoto(left_block);
1996 } else if (left_block == next_block) {
1997 __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
1998 NegateFpuCondition(condition), src1, src2);
1999 } else if (right_block == next_block) {
2000 __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
2001 condition, src1, src2);
2002 } else {
2003 __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
2004 condition, src1, src2);
2005 __ Branch(chunk_->GetAssemblyLabel(right_block));
2006 }
2007 }
2008
2009
2010 template <class InstrType>
EmitTrueBranch(InstrType instr,Condition condition,Register src1,const Operand & src2)2011 void LCodeGen::EmitTrueBranch(InstrType instr, Condition condition,
2012 Register src1, const Operand& src2) {
2013 int true_block = instr->TrueDestination(chunk_);
2014 __ Branch(chunk_->GetAssemblyLabel(true_block), condition, src1, src2);
2015 }
2016
2017
2018 template <class InstrType>
EmitFalseBranch(InstrType instr,Condition condition,Register src1,const Operand & src2)2019 void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition,
2020 Register src1, const Operand& src2) {
2021 int false_block = instr->FalseDestination(chunk_);
2022 __ Branch(chunk_->GetAssemblyLabel(false_block), condition, src1, src2);
2023 }
2024
2025
2026 template<class InstrType>
EmitFalseBranchF(InstrType instr,Condition condition,FPURegister src1,FPURegister src2)2027 void LCodeGen::EmitFalseBranchF(InstrType instr,
2028 Condition condition,
2029 FPURegister src1,
2030 FPURegister src2) {
2031 int false_block = instr->FalseDestination(chunk_);
2032 __ BranchF(chunk_->GetAssemblyLabel(false_block), NULL,
2033 condition, src1, src2);
2034 }
2035
2036
DoDebugBreak(LDebugBreak * instr)2037 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
2038 __ stop("LDebugBreak");
2039 }
2040
2041
DoBranch(LBranch * instr)2042 void LCodeGen::DoBranch(LBranch* instr) {
2043 Representation r = instr->hydrogen()->value()->representation();
2044 if (r.IsInteger32() || r.IsSmi()) {
2045 DCHECK(!info()->IsStub());
2046 Register reg = ToRegister(instr->value());
2047 EmitBranch(instr, ne, reg, Operand(zero_reg));
2048 } else if (r.IsDouble()) {
2049 DCHECK(!info()->IsStub());
2050 DoubleRegister reg = ToDoubleRegister(instr->value());
2051 // Test the double value. Zero and NaN are false.
2052 EmitBranchF(instr, ogl, reg, kDoubleRegZero);
2053 } else {
2054 DCHECK(r.IsTagged());
2055 Register reg = ToRegister(instr->value());
2056 HType type = instr->hydrogen()->value()->type();
2057 if (type.IsBoolean()) {
2058 DCHECK(!info()->IsStub());
2059 __ LoadRoot(at, Heap::kTrueValueRootIndex);
2060 EmitBranch(instr, eq, reg, Operand(at));
2061 } else if (type.IsSmi()) {
2062 DCHECK(!info()->IsStub());
2063 EmitBranch(instr, ne, reg, Operand(zero_reg));
2064 } else if (type.IsJSArray()) {
2065 DCHECK(!info()->IsStub());
2066 EmitBranch(instr, al, zero_reg, Operand(zero_reg));
2067 } else if (type.IsHeapNumber()) {
2068 DCHECK(!info()->IsStub());
2069 DoubleRegister dbl_scratch = double_scratch0();
2070 __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2071 // Test the double value. Zero and NaN are false.
2072 EmitBranchF(instr, ogl, dbl_scratch, kDoubleRegZero);
2073 } else if (type.IsString()) {
2074 DCHECK(!info()->IsStub());
2075 __ ld(at, FieldMemOperand(reg, String::kLengthOffset));
2076 EmitBranch(instr, ne, at, Operand(zero_reg));
2077 } else {
2078 ToBooleanHints expected = instr->hydrogen()->expected_input_types();
2079 // Avoid deopts in the case where we've never executed this path before.
2080 if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
2081
2082 if (expected & ToBooleanHint::kUndefined) {
2083 // undefined -> false.
2084 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
2085 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
2086 }
2087 if (expected & ToBooleanHint::kBoolean) {
2088 // Boolean -> its value.
2089 __ LoadRoot(at, Heap::kTrueValueRootIndex);
2090 __ Branch(instr->TrueLabel(chunk_), eq, reg, Operand(at));
2091 __ LoadRoot(at, Heap::kFalseValueRootIndex);
2092 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
2093 }
2094 if (expected & ToBooleanHint::kNull) {
2095 // 'null' -> false.
2096 __ LoadRoot(at, Heap::kNullValueRootIndex);
2097 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
2098 }
2099
2100 if (expected & ToBooleanHint::kSmallInteger) {
2101 // Smis: 0 -> false, all other -> true.
2102 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(zero_reg));
2103 __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2104 } else if (expected & ToBooleanHint::kNeedsMap) {
2105 // If we need a map later and have a Smi -> deopt.
2106 __ SmiTst(reg, at);
2107 DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, at, Operand(zero_reg));
2108 }
2109
2110 const Register map = scratch0();
2111 if (expected & ToBooleanHint::kNeedsMap) {
2112 __ ld(map, FieldMemOperand(reg, HeapObject::kMapOffset));
2113 if (expected & ToBooleanHint::kCanBeUndetectable) {
2114 // Undetectable -> false.
2115 __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
2116 __ And(at, at, Operand(1 << Map::kIsUndetectable));
2117 __ Branch(instr->FalseLabel(chunk_), ne, at, Operand(zero_reg));
2118 }
2119 }
2120
2121 if (expected & ToBooleanHint::kReceiver) {
2122 // spec object -> true.
2123 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
2124 __ Branch(instr->TrueLabel(chunk_),
2125 ge, at, Operand(FIRST_JS_RECEIVER_TYPE));
2126 }
2127
2128 if (expected & ToBooleanHint::kString) {
2129 // String value -> false iff empty.
2130 Label not_string;
2131 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
2132 __ Branch(¬_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
2133 __ ld(at, FieldMemOperand(reg, String::kLengthOffset));
2134 __ Branch(instr->TrueLabel(chunk_), ne, at, Operand(zero_reg));
2135 __ Branch(instr->FalseLabel(chunk_));
2136 __ bind(¬_string);
2137 }
2138
2139 if (expected & ToBooleanHint::kSymbol) {
2140 // Symbol value -> true.
2141 const Register scratch = scratch1();
2142 __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
2143 __ Branch(instr->TrueLabel(chunk_), eq, scratch, Operand(SYMBOL_TYPE));
2144 }
2145
2146 if (expected & ToBooleanHint::kSimdValue) {
2147 // SIMD value -> true.
2148 const Register scratch = scratch1();
2149 __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
2150 __ Branch(instr->TrueLabel(chunk_), eq, scratch,
2151 Operand(SIMD128_VALUE_TYPE));
2152 }
2153
2154 if (expected & ToBooleanHint::kHeapNumber) {
2155 // heap number -> false iff +0, -0, or NaN.
2156 DoubleRegister dbl_scratch = double_scratch0();
2157 Label not_heap_number;
2158 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
2159 __ Branch(¬_heap_number, ne, map, Operand(at));
2160 __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2161 __ BranchF(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2162 ne, dbl_scratch, kDoubleRegZero);
2163 // Falls through if dbl_scratch == 0.
2164 __ Branch(instr->FalseLabel(chunk_));
2165 __ bind(¬_heap_number);
2166 }
2167
2168 if (expected != ToBooleanHint::kAny) {
2169 // We've seen something for the first time -> deopt.
2170 // This can only happen if we are not generic already.
2171 DeoptimizeIf(al, instr, DeoptimizeReason::kUnexpectedObject, zero_reg,
2172 Operand(zero_reg));
2173 }
2174 }
2175 }
2176 }
2177
2178
EmitGoto(int block)2179 void LCodeGen::EmitGoto(int block) {
2180 if (!IsNextEmittedBlock(block)) {
2181 __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
2182 }
2183 }
2184
2185
DoGoto(LGoto * instr)2186 void LCodeGen::DoGoto(LGoto* instr) {
2187 EmitGoto(instr->block_id());
2188 }
2189
2190
TokenToCondition(Token::Value op,bool is_unsigned)2191 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2192 Condition cond = kNoCondition;
2193 switch (op) {
2194 case Token::EQ:
2195 case Token::EQ_STRICT:
2196 cond = eq;
2197 break;
2198 case Token::NE:
2199 case Token::NE_STRICT:
2200 cond = ne;
2201 break;
2202 case Token::LT:
2203 cond = is_unsigned ? lo : lt;
2204 break;
2205 case Token::GT:
2206 cond = is_unsigned ? hi : gt;
2207 break;
2208 case Token::LTE:
2209 cond = is_unsigned ? ls : le;
2210 break;
2211 case Token::GTE:
2212 cond = is_unsigned ? hs : ge;
2213 break;
2214 case Token::IN:
2215 case Token::INSTANCEOF:
2216 default:
2217 UNREACHABLE();
2218 }
2219 return cond;
2220 }
2221
2222
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2223 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2224 LOperand* left = instr->left();
2225 LOperand* right = instr->right();
2226 bool is_unsigned =
2227 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2228 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2229 Condition cond = TokenToCondition(instr->op(), is_unsigned);
2230
2231 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2232 // We can statically evaluate the comparison.
2233 double left_val = ToDouble(LConstantOperand::cast(left));
2234 double right_val = ToDouble(LConstantOperand::cast(right));
2235 int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2236 ? instr->TrueDestination(chunk_)
2237 : instr->FalseDestination(chunk_);
2238 EmitGoto(next_block);
2239 } else {
2240 if (instr->is_double()) {
2241 // Compare left and right as doubles and load the
2242 // resulting flags into the normal status register.
2243 FPURegister left_reg = ToDoubleRegister(left);
2244 FPURegister right_reg = ToDoubleRegister(right);
2245
2246 // If a NaN is involved, i.e. the result is unordered,
2247 // jump to false block label.
2248 __ BranchF(NULL, instr->FalseLabel(chunk_), eq,
2249 left_reg, right_reg);
2250
2251 EmitBranchF(instr, cond, left_reg, right_reg);
2252 } else {
2253 Register cmp_left;
2254 Operand cmp_right = Operand((int64_t)0);
2255 if (right->IsConstantOperand()) {
2256 int32_t value = ToInteger32(LConstantOperand::cast(right));
2257 if (instr->hydrogen_value()->representation().IsSmi()) {
2258 cmp_left = ToRegister(left);
2259 cmp_right = Operand(Smi::FromInt(value));
2260 } else {
2261 cmp_left = ToRegister(left);
2262 cmp_right = Operand(value);
2263 }
2264 } else if (left->IsConstantOperand()) {
2265 int32_t value = ToInteger32(LConstantOperand::cast(left));
2266 if (instr->hydrogen_value()->representation().IsSmi()) {
2267 cmp_left = ToRegister(right);
2268 cmp_right = Operand(Smi::FromInt(value));
2269 } else {
2270 cmp_left = ToRegister(right);
2271 cmp_right = Operand(value);
2272 }
2273 // We commuted the operands, so commute the condition.
2274 cond = CommuteCondition(cond);
2275 } else {
2276 cmp_left = ToRegister(left);
2277 cmp_right = Operand(ToRegister(right));
2278 }
2279
2280 EmitBranch(instr, cond, cmp_left, cmp_right);
2281 }
2282 }
2283 }
2284
2285
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2286 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2287 Register left = ToRegister(instr->left());
2288 Register right = ToRegister(instr->right());
2289
2290 EmitBranch(instr, eq, left, Operand(right));
2291 }
2292
2293
DoCmpHoleAndBranch(LCmpHoleAndBranch * instr)2294 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2295 if (instr->hydrogen()->representation().IsTagged()) {
2296 Register input_reg = ToRegister(instr->object());
2297 __ li(at, Operand(factory()->the_hole_value()));
2298 EmitBranch(instr, eq, input_reg, Operand(at));
2299 return;
2300 }
2301
2302 DoubleRegister input_reg = ToDoubleRegister(instr->object());
2303 EmitFalseBranchF(instr, eq, input_reg, input_reg);
2304
2305 Register scratch = scratch0();
2306 __ FmoveHigh(scratch, input_reg);
2307 EmitBranch(instr, eq, scratch,
2308 Operand(static_cast<int32_t>(kHoleNanUpper32)));
2309 }
2310
2311
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)2312 Condition LCodeGen::EmitIsString(Register input,
2313 Register temp1,
2314 Label* is_not_string,
2315 SmiCheck check_needed = INLINE_SMI_CHECK) {
2316 if (check_needed == INLINE_SMI_CHECK) {
2317 __ JumpIfSmi(input, is_not_string);
2318 }
2319 __ GetObjectType(input, temp1, temp1);
2320
2321 return lt;
2322 }
2323
2324
DoIsStringAndBranch(LIsStringAndBranch * instr)2325 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2326 Register reg = ToRegister(instr->value());
2327 Register temp1 = ToRegister(instr->temp());
2328
2329 SmiCheck check_needed =
2330 instr->hydrogen()->value()->type().IsHeapObject()
2331 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2332 Condition true_cond =
2333 EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
2334
2335 EmitBranch(instr, true_cond, temp1,
2336 Operand(FIRST_NONSTRING_TYPE));
2337 }
2338
2339
DoIsSmiAndBranch(LIsSmiAndBranch * instr)2340 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2341 Register input_reg = EmitLoadRegister(instr->value(), at);
2342 __ And(at, input_reg, kSmiTagMask);
2343 EmitBranch(instr, eq, at, Operand(zero_reg));
2344 }
2345
2346
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)2347 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2348 Register input = ToRegister(instr->value());
2349 Register temp = ToRegister(instr->temp());
2350
2351 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2352 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2353 }
2354 __ ld(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2355 __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2356 __ And(at, temp, Operand(1 << Map::kIsUndetectable));
2357 EmitBranch(instr, ne, at, Operand(zero_reg));
2358 }
2359
2360
ComputeCompareCondition(Token::Value op)2361 static Condition ComputeCompareCondition(Token::Value op) {
2362 switch (op) {
2363 case Token::EQ_STRICT:
2364 case Token::EQ:
2365 return eq;
2366 case Token::LT:
2367 return lt;
2368 case Token::GT:
2369 return gt;
2370 case Token::LTE:
2371 return le;
2372 case Token::GTE:
2373 return ge;
2374 default:
2375 UNREACHABLE();
2376 return kNoCondition;
2377 }
2378 }
2379
2380
DoStringCompareAndBranch(LStringCompareAndBranch * instr)2381 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2382 DCHECK(ToRegister(instr->context()).is(cp));
2383 DCHECK(ToRegister(instr->left()).is(a1));
2384 DCHECK(ToRegister(instr->right()).is(a0));
2385
2386 Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
2387 CallCode(code, RelocInfo::CODE_TARGET, instr);
2388 __ LoadRoot(at, Heap::kTrueValueRootIndex);
2389 EmitBranch(instr, eq, v0, Operand(at));
2390 }
2391
2392
TestType(HHasInstanceTypeAndBranch * instr)2393 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2394 InstanceType from = instr->from();
2395 InstanceType to = instr->to();
2396 if (from == FIRST_TYPE) return to;
2397 DCHECK(from == to || to == LAST_TYPE);
2398 return from;
2399 }
2400
2401
BranchCondition(HHasInstanceTypeAndBranch * instr)2402 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2403 InstanceType from = instr->from();
2404 InstanceType to = instr->to();
2405 if (from == to) return eq;
2406 if (to == LAST_TYPE) return hs;
2407 if (from == FIRST_TYPE) return ls;
2408 UNREACHABLE();
2409 return eq;
2410 }
2411
2412
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)2413 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2414 Register scratch = scratch0();
2415 Register input = ToRegister(instr->value());
2416
2417 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2418 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2419 }
2420
2421 __ GetObjectType(input, scratch, scratch);
2422 EmitBranch(instr,
2423 BranchCondition(instr->hydrogen()),
2424 scratch,
2425 Operand(TestType(instr->hydrogen())));
2426 }
2427
2428 // Branches to a label or falls through with the answer in flags. Trashes
2429 // the temp registers, but not the input.
EmitClassOfTest(Label * is_true,Label * is_false,Handle<String> class_name,Register input,Register temp,Register temp2)2430 void LCodeGen::EmitClassOfTest(Label* is_true,
2431 Label* is_false,
2432 Handle<String>class_name,
2433 Register input,
2434 Register temp,
2435 Register temp2) {
2436 DCHECK(!input.is(temp));
2437 DCHECK(!input.is(temp2));
2438 DCHECK(!temp.is(temp2));
2439
2440 __ JumpIfSmi(input, is_false);
2441
2442 __ GetObjectType(input, temp, temp2);
2443 STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2444 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2445 __ Branch(is_true, hs, temp2, Operand(FIRST_FUNCTION_TYPE));
2446 } else {
2447 __ Branch(is_false, hs, temp2, Operand(FIRST_FUNCTION_TYPE));
2448 }
2449
2450 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
2451 // Check if the constructor in the map is a function.
2452 Register instance_type = scratch1();
2453 DCHECK(!instance_type.is(temp));
2454 __ GetMapConstructor(temp, temp, temp2, instance_type);
2455
2456 // Objects with a non-function constructor have class 'Object'.
2457 if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2458 __ Branch(is_true, ne, instance_type, Operand(JS_FUNCTION_TYPE));
2459 } else {
2460 __ Branch(is_false, ne, instance_type, Operand(JS_FUNCTION_TYPE));
2461 }
2462
2463 // temp now contains the constructor function. Grab the
2464 // instance class name from there.
2465 __ ld(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2466 __ ld(temp, FieldMemOperand(temp,
2467 SharedFunctionInfo::kInstanceClassNameOffset));
2468 // The class name we are testing against is internalized since it's a literal.
2469 // The name in the constructor is internalized because of the way the context
2470 // is booted. This routine isn't expected to work for random API-created
2471 // classes and it doesn't have to because you can't access it with natives
2472 // syntax. Since both sides are internalized it is sufficient to use an
2473 // identity comparison.
2474
2475 // End with the address of this class_name instance in temp register.
2476 // On MIPS, the caller must do the comparison with Handle<String>class_name.
2477 }
2478
2479
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2480 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2481 Register input = ToRegister(instr->value());
2482 Register temp = scratch0();
2483 Register temp2 = ToRegister(instr->temp());
2484 Handle<String> class_name = instr->hydrogen()->class_name();
2485
2486 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2487 class_name, input, temp, temp2);
2488
2489 EmitBranch(instr, eq, temp, Operand(class_name));
2490 }
2491
2492
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2493 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2494 Register reg = ToRegister(instr->value());
2495 Register temp = ToRegister(instr->temp());
2496
2497 __ ld(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2498 EmitBranch(instr, eq, temp, Operand(instr->map()));
2499 }
2500
2501
DoHasInPrototypeChainAndBranch(LHasInPrototypeChainAndBranch * instr)2502 void LCodeGen::DoHasInPrototypeChainAndBranch(
2503 LHasInPrototypeChainAndBranch* instr) {
2504 Register const object = ToRegister(instr->object());
2505 Register const object_map = scratch0();
2506 Register const object_instance_type = scratch1();
2507 Register const object_prototype = object_map;
2508 Register const prototype = ToRegister(instr->prototype());
2509
2510 // The {object} must be a spec object. It's sufficient to know that {object}
2511 // is not a smi, since all other non-spec objects have {null} prototypes and
2512 // will be ruled out below.
2513 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2514 __ SmiTst(object, at);
2515 EmitFalseBranch(instr, eq, at, Operand(zero_reg));
2516 }
2517
2518 // Loop through the {object}s prototype chain looking for the {prototype}.
2519 __ ld(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2520 Label loop;
2521 __ bind(&loop);
2522
2523 // Deoptimize if the object needs to be access checked.
2524 __ lbu(object_instance_type,
2525 FieldMemOperand(object_map, Map::kBitFieldOffset));
2526 __ And(object_instance_type, object_instance_type,
2527 Operand(1 << Map::kIsAccessCheckNeeded));
2528 DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck, object_instance_type,
2529 Operand(zero_reg));
2530 __ lbu(object_instance_type,
2531 FieldMemOperand(object_map, Map::kInstanceTypeOffset));
2532 DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy, object_instance_type,
2533 Operand(JS_PROXY_TYPE));
2534
2535 __ ld(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
2536 __ LoadRoot(at, Heap::kNullValueRootIndex);
2537 EmitFalseBranch(instr, eq, object_prototype, Operand(at));
2538 EmitTrueBranch(instr, eq, object_prototype, Operand(prototype));
2539 __ Branch(&loop, USE_DELAY_SLOT);
2540 __ ld(object_map, FieldMemOperand(object_prototype,
2541 HeapObject::kMapOffset)); // In delay slot.
2542 }
2543
2544
DoCmpT(LCmpT * instr)2545 void LCodeGen::DoCmpT(LCmpT* instr) {
2546 DCHECK(ToRegister(instr->context()).is(cp));
2547 Token::Value op = instr->op();
2548
2549 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2550 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2551 // On MIPS there is no need for a "no inlined smi code" marker (nop).
2552
2553 Condition condition = ComputeCompareCondition(op);
2554 // A minor optimization that relies on LoadRoot always emitting one
2555 // instruction.
2556 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
2557 Label done, check;
2558 __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
2559 __ bind(&check);
2560 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2561 DCHECK_EQ(1, masm()->InstructionsGeneratedSince(&check));
2562 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2563 __ bind(&done);
2564 }
2565
2566
DoReturn(LReturn * instr)2567 void LCodeGen::DoReturn(LReturn* instr) {
2568 if (FLAG_trace && info()->IsOptimizing()) {
2569 // Push the return value on the stack as the parameter.
2570 // Runtime::TraceExit returns its parameter in v0. We're leaving the code
2571 // managed by the register allocator and tearing down the frame, it's
2572 // safe to write to the context register.
2573 __ push(v0);
2574 __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2575 __ CallRuntime(Runtime::kTraceExit);
2576 }
2577 if (info()->saves_caller_doubles()) {
2578 RestoreCallerDoubles();
2579 }
2580 if (NeedsEagerFrame()) {
2581 __ mov(sp, fp);
2582 __ Pop(ra, fp);
2583 }
2584 if (instr->has_constant_parameter_count()) {
2585 int parameter_count = ToInteger32(instr->constant_parameter_count());
2586 int32_t sp_delta = (parameter_count + 1) * kPointerSize;
2587 if (sp_delta != 0) {
2588 __ Daddu(sp, sp, Operand(sp_delta));
2589 }
2590 } else {
2591 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
2592 Register reg = ToRegister(instr->parameter_count());
2593 // The argument count parameter is a smi
2594 __ SmiUntag(reg);
2595 __ Dlsa(sp, sp, reg, kPointerSizeLog2);
2596 }
2597
2598 __ Jump(ra);
2599 }
2600
2601
DoLoadContextSlot(LLoadContextSlot * instr)2602 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2603 Register context = ToRegister(instr->context());
2604 Register result = ToRegister(instr->result());
2605
2606 __ ld(result, ContextMemOperand(context, instr->slot_index()));
2607 if (instr->hydrogen()->RequiresHoleCheck()) {
2608 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2609
2610 if (instr->hydrogen()->DeoptimizesOnHole()) {
2611 DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, result, Operand(at));
2612 } else {
2613 Label is_not_hole;
2614 __ Branch(&is_not_hole, ne, result, Operand(at));
2615 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2616 __ bind(&is_not_hole);
2617 }
2618 }
2619 }
2620
2621
DoStoreContextSlot(LStoreContextSlot * instr)2622 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2623 Register context = ToRegister(instr->context());
2624 Register value = ToRegister(instr->value());
2625 Register scratch = scratch0();
2626 MemOperand target = ContextMemOperand(context, instr->slot_index());
2627
2628 Label skip_assignment;
2629
2630 if (instr->hydrogen()->RequiresHoleCheck()) {
2631 __ ld(scratch, target);
2632 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2633
2634 if (instr->hydrogen()->DeoptimizesOnHole()) {
2635 DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, scratch, Operand(at));
2636 } else {
2637 __ Branch(&skip_assignment, ne, scratch, Operand(at));
2638 }
2639 }
2640
2641 __ sd(value, target);
2642 if (instr->hydrogen()->NeedsWriteBarrier()) {
2643 SmiCheck check_needed =
2644 instr->hydrogen()->value()->type().IsHeapObject()
2645 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2646 __ RecordWriteContextSlot(context,
2647 target.offset(),
2648 value,
2649 scratch0(),
2650 GetRAState(),
2651 kSaveFPRegs,
2652 EMIT_REMEMBERED_SET,
2653 check_needed);
2654 }
2655
2656 __ bind(&skip_assignment);
2657 }
2658
2659
DoLoadNamedField(LLoadNamedField * instr)2660 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2661 HObjectAccess access = instr->hydrogen()->access();
2662 int offset = access.offset();
2663 Register object = ToRegister(instr->object());
2664 if (access.IsExternalMemory()) {
2665 Register result = ToRegister(instr->result());
2666 MemOperand operand = MemOperand(object, offset);
2667 __ Load(result, operand, access.representation());
2668 return;
2669 }
2670
2671 if (instr->hydrogen()->representation().IsDouble()) {
2672 DoubleRegister result = ToDoubleRegister(instr->result());
2673 __ ldc1(result, FieldMemOperand(object, offset));
2674 return;
2675 }
2676
2677 Register result = ToRegister(instr->result());
2678 if (!access.IsInobject()) {
2679 __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2680 object = result;
2681 }
2682
2683 Representation representation = access.representation();
2684 if (representation.IsSmi() && SmiValuesAre32Bits() &&
2685 instr->hydrogen()->representation().IsInteger32()) {
2686 if (FLAG_debug_code) {
2687 // Verify this is really an Smi.
2688 Register scratch = scratch0();
2689 __ Load(scratch, FieldMemOperand(object, offset), representation);
2690 __ AssertSmi(scratch);
2691 }
2692
2693 // Read int value directly from upper half of the smi.
2694 STATIC_ASSERT(kSmiTag == 0);
2695 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
2696 offset = SmiWordOffset(offset);
2697 representation = Representation::Integer32();
2698 }
2699 __ Load(result, FieldMemOperand(object, offset), representation);
2700 }
2701
2702
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)2703 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2704 Register scratch = scratch0();
2705 Register function = ToRegister(instr->function());
2706 Register result = ToRegister(instr->result());
2707
2708 // Get the prototype or initial map from the function.
2709 __ ld(result,
2710 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2711
2712 // Check that the function has a prototype or an initial map.
2713 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2714 DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, result, Operand(at));
2715
2716 // If the function does not have an initial map, we're done.
2717 Label done;
2718 __ GetObjectType(result, scratch, scratch);
2719 __ Branch(&done, ne, scratch, Operand(MAP_TYPE));
2720
2721 // Get the prototype from the initial map.
2722 __ ld(result, FieldMemOperand(result, Map::kPrototypeOffset));
2723
2724 // All done.
2725 __ bind(&done);
2726 }
2727
2728
DoLoadRoot(LLoadRoot * instr)2729 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2730 Register result = ToRegister(instr->result());
2731 __ LoadRoot(result, instr->index());
2732 }
2733
2734
DoAccessArgumentsAt(LAccessArgumentsAt * instr)2735 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2736 Register arguments = ToRegister(instr->arguments());
2737 Register result = ToRegister(instr->result());
2738 // There are two words between the frame pointer and the last argument.
2739 // Subtracting from length accounts for one of them add one more.
2740 if (instr->length()->IsConstantOperand()) {
2741 int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2742 if (instr->index()->IsConstantOperand()) {
2743 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2744 int index = (const_length - const_index) + 1;
2745 __ ld(result, MemOperand(arguments, index * kPointerSize));
2746 } else {
2747 Register index = ToRegister(instr->index());
2748 __ li(at, Operand(const_length + 1));
2749 __ Dsubu(result, at, index);
2750 __ Dlsa(at, arguments, result, kPointerSizeLog2);
2751 __ ld(result, MemOperand(at));
2752 }
2753 } else if (instr->index()->IsConstantOperand()) {
2754 Register length = ToRegister(instr->length());
2755 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2756 int loc = const_index - 1;
2757 if (loc != 0) {
2758 __ Dsubu(result, length, Operand(loc));
2759 __ Dlsa(at, arguments, result, kPointerSizeLog2);
2760 __ ld(result, MemOperand(at));
2761 } else {
2762 __ Dlsa(at, arguments, length, kPointerSizeLog2);
2763 __ ld(result, MemOperand(at));
2764 }
2765 } else {
2766 Register length = ToRegister(instr->length());
2767 Register index = ToRegister(instr->index());
2768 __ Dsubu(result, length, index);
2769 __ Daddu(result, result, 1);
2770 __ Dlsa(at, arguments, result, kPointerSizeLog2);
2771 __ ld(result, MemOperand(at));
2772 }
2773 }
2774
2775
DoLoadKeyedExternalArray(LLoadKeyed * instr)2776 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2777 Register external_pointer = ToRegister(instr->elements());
2778 Register key = no_reg;
2779 ElementsKind elements_kind = instr->elements_kind();
2780 bool key_is_constant = instr->key()->IsConstantOperand();
2781 int constant_key = 0;
2782 if (key_is_constant) {
2783 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2784 if (constant_key & 0xF0000000) {
2785 Abort(kArrayIndexConstantValueTooBig);
2786 }
2787 } else {
2788 key = ToRegister(instr->key());
2789 }
2790 int element_size_shift = ElementsKindToShiftSize(elements_kind);
2791 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
2792 ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
2793 : element_size_shift;
2794 int base_offset = instr->base_offset();
2795
2796 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
2797 FPURegister result = ToDoubleRegister(instr->result());
2798 if (key_is_constant) {
2799 __ Daddu(scratch0(), external_pointer,
2800 constant_key << element_size_shift);
2801 } else {
2802 if (shift_size < 0) {
2803 if (shift_size == -32) {
2804 __ dsra32(scratch0(), key, 0);
2805 } else {
2806 __ dsra(scratch0(), key, -shift_size);
2807 }
2808 } else {
2809 __ dsll(scratch0(), key, shift_size);
2810 }
2811 __ Daddu(scratch0(), scratch0(), external_pointer);
2812 }
2813 if (elements_kind == FLOAT32_ELEMENTS) {
2814 __ lwc1(result, MemOperand(scratch0(), base_offset));
2815 __ cvt_d_s(result, result);
2816 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
2817 __ ldc1(result, MemOperand(scratch0(), base_offset));
2818 }
2819 } else {
2820 Register result = ToRegister(instr->result());
2821 MemOperand mem_operand = PrepareKeyedOperand(
2822 key, external_pointer, key_is_constant, constant_key,
2823 element_size_shift, shift_size, base_offset);
2824 switch (elements_kind) {
2825 case INT8_ELEMENTS:
2826 __ lb(result, mem_operand);
2827 break;
2828 case UINT8_ELEMENTS:
2829 case UINT8_CLAMPED_ELEMENTS:
2830 __ lbu(result, mem_operand);
2831 break;
2832 case INT16_ELEMENTS:
2833 __ lh(result, mem_operand);
2834 break;
2835 case UINT16_ELEMENTS:
2836 __ lhu(result, mem_operand);
2837 break;
2838 case INT32_ELEMENTS:
2839 __ lw(result, mem_operand);
2840 break;
2841 case UINT32_ELEMENTS:
2842 __ lw(result, mem_operand);
2843 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
2844 DeoptimizeIf(Ugreater_equal, instr, DeoptimizeReason::kNegativeValue,
2845 result, Operand(0x80000000));
2846 }
2847 break;
2848 case FLOAT32_ELEMENTS:
2849 case FLOAT64_ELEMENTS:
2850 case FAST_DOUBLE_ELEMENTS:
2851 case FAST_ELEMENTS:
2852 case FAST_SMI_ELEMENTS:
2853 case FAST_HOLEY_DOUBLE_ELEMENTS:
2854 case FAST_HOLEY_ELEMENTS:
2855 case FAST_HOLEY_SMI_ELEMENTS:
2856 case DICTIONARY_ELEMENTS:
2857 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
2858 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
2859 case FAST_STRING_WRAPPER_ELEMENTS:
2860 case SLOW_STRING_WRAPPER_ELEMENTS:
2861 case NO_ELEMENTS:
2862 UNREACHABLE();
2863 break;
2864 }
2865 }
2866 }
2867
2868
DoLoadKeyedFixedDoubleArray(LLoadKeyed * instr)2869 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
2870 Register elements = ToRegister(instr->elements());
2871 bool key_is_constant = instr->key()->IsConstantOperand();
2872 Register key = no_reg;
2873 DoubleRegister result = ToDoubleRegister(instr->result());
2874 Register scratch = scratch0();
2875
2876 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
2877
2878 int base_offset = instr->base_offset();
2879 if (key_is_constant) {
2880 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2881 if (constant_key & 0xF0000000) {
2882 Abort(kArrayIndexConstantValueTooBig);
2883 }
2884 base_offset += constant_key * kDoubleSize;
2885 }
2886 __ Daddu(scratch, elements, Operand(base_offset));
2887
2888 if (!key_is_constant) {
2889 key = ToRegister(instr->key());
2890 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
2891 ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
2892 : element_size_shift;
2893 if (shift_size > 0) {
2894 __ dsll(at, key, shift_size);
2895 } else if (shift_size == -32) {
2896 __ dsra32(at, key, 0);
2897 } else {
2898 __ dsra(at, key, -shift_size);
2899 }
2900 __ Daddu(scratch, scratch, at);
2901 }
2902
2903 __ ldc1(result, MemOperand(scratch));
2904
2905 if (instr->hydrogen()->RequiresHoleCheck()) {
2906 __ FmoveHigh(scratch, result);
2907 DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, scratch,
2908 Operand(static_cast<int32_t>(kHoleNanUpper32)));
2909 }
2910 }
2911
2912
DoLoadKeyedFixedArray(LLoadKeyed * instr)2913 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
2914 HLoadKeyed* hinstr = instr->hydrogen();
2915 Register elements = ToRegister(instr->elements());
2916 Register result = ToRegister(instr->result());
2917 Register scratch = scratch0();
2918 Register store_base = scratch;
2919 int offset = instr->base_offset();
2920
2921 if (instr->key()->IsConstantOperand()) {
2922 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
2923 offset += ToInteger32(const_operand) * kPointerSize;
2924 store_base = elements;
2925 } else {
2926 Register key = ToRegister(instr->key());
2927 // Even though the HLoadKeyed instruction forces the input
2928 // representation for the key to be an integer, the input gets replaced
2929 // during bound check elimination with the index argument to the bounds
2930 // check, which can be tagged, so that case must be handled here, too.
2931 if (instr->hydrogen()->key()->representation().IsSmi()) {
2932 __ SmiScale(scratch, key, kPointerSizeLog2);
2933 __ daddu(scratch, elements, scratch);
2934 } else {
2935 __ Dlsa(scratch, elements, key, kPointerSizeLog2);
2936 }
2937 }
2938
2939 Representation representation = hinstr->representation();
2940 if (representation.IsInteger32() && SmiValuesAre32Bits() &&
2941 hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
2942 DCHECK(!hinstr->RequiresHoleCheck());
2943 if (FLAG_debug_code) {
2944 Register temp = scratch1();
2945 __ Load(temp, MemOperand(store_base, offset), Representation::Smi());
2946 __ AssertSmi(temp);
2947 }
2948
2949 // Read int value directly from upper half of the smi.
2950 STATIC_ASSERT(kSmiTag == 0);
2951 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
2952 offset = SmiWordOffset(offset);
2953 }
2954
2955 __ Load(result, MemOperand(store_base, offset), representation);
2956
2957 // Check for the hole value.
2958 if (hinstr->RequiresHoleCheck()) {
2959 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
2960 __ SmiTst(result, scratch);
2961 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, scratch,
2962 Operand(zero_reg));
2963 } else {
2964 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2965 DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, result,
2966 Operand(scratch));
2967 }
2968 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
2969 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
2970 Label done;
2971 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2972 __ Branch(&done, ne, result, Operand(scratch));
2973 if (info()->IsStub()) {
2974 // A stub can safely convert the hole to undefined only if the array
2975 // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise
2976 // it needs to bail out.
2977 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
2978 // The comparison only needs LS bits of value, which is a smi.
2979 __ ld(result, FieldMemOperand(result, Cell::kValueOffset));
2980 DeoptimizeIf(ne, instr, DeoptimizeReason::kHole, result,
2981 Operand(Smi::FromInt(Isolate::kProtectorValid)));
2982 }
2983 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2984 __ bind(&done);
2985 }
2986 }
2987
2988
DoLoadKeyed(LLoadKeyed * instr)2989 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
2990 if (instr->is_fixed_typed_array()) {
2991 DoLoadKeyedExternalArray(instr);
2992 } else if (instr->hydrogen()->representation().IsDouble()) {
2993 DoLoadKeyedFixedDoubleArray(instr);
2994 } else {
2995 DoLoadKeyedFixedArray(instr);
2996 }
2997 }
2998
2999
PrepareKeyedOperand(Register key,Register base,bool key_is_constant,int constant_key,int element_size,int shift_size,int base_offset)3000 MemOperand LCodeGen::PrepareKeyedOperand(Register key,
3001 Register base,
3002 bool key_is_constant,
3003 int constant_key,
3004 int element_size,
3005 int shift_size,
3006 int base_offset) {
3007 if (key_is_constant) {
3008 return MemOperand(base, (constant_key << element_size) + base_offset);
3009 }
3010
3011 if (base_offset == 0) {
3012 if (shift_size >= 0) {
3013 __ dsll(scratch0(), key, shift_size);
3014 __ Daddu(scratch0(), base, scratch0());
3015 return MemOperand(scratch0());
3016 } else {
3017 if (shift_size == -32) {
3018 __ dsra32(scratch0(), key, 0);
3019 } else {
3020 __ dsra(scratch0(), key, -shift_size);
3021 }
3022 __ Daddu(scratch0(), base, scratch0());
3023 return MemOperand(scratch0());
3024 }
3025 }
3026
3027 if (shift_size >= 0) {
3028 __ dsll(scratch0(), key, shift_size);
3029 __ Daddu(scratch0(), base, scratch0());
3030 return MemOperand(scratch0(), base_offset);
3031 } else {
3032 if (shift_size == -32) {
3033 __ dsra32(scratch0(), key, 0);
3034 } else {
3035 __ dsra(scratch0(), key, -shift_size);
3036 }
3037 __ Daddu(scratch0(), base, scratch0());
3038 return MemOperand(scratch0(), base_offset);
3039 }
3040 }
3041
3042
DoArgumentsElements(LArgumentsElements * instr)3043 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3044 Register scratch = scratch0();
3045 Register temp = scratch1();
3046 Register result = ToRegister(instr->result());
3047
3048 if (instr->hydrogen()->from_inlined()) {
3049 __ Dsubu(result, sp, 2 * kPointerSize);
3050 } else if (instr->hydrogen()->arguments_adaptor()) {
3051 // Check if the calling frame is an arguments adaptor frame.
3052 Label done, adapted;
3053 __ ld(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3054 __ ld(result,
3055 MemOperand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset));
3056 __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3057
3058 // Result is the frame pointer for the frame if not adapted and for the real
3059 // frame below the adaptor frame if adapted.
3060 __ Movn(result, fp, temp); // Move only if temp is not equal to zero (ne).
3061 __ Movz(result, scratch, temp); // Move only if temp is equal to zero (eq).
3062 } else {
3063 __ mov(result, fp);
3064 }
3065 }
3066
3067
DoArgumentsLength(LArgumentsLength * instr)3068 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3069 Register elem = ToRegister(instr->elements());
3070 Register result = ToRegister(instr->result());
3071
3072 Label done;
3073
3074 // If no arguments adaptor frame the number of arguments is fixed.
3075 __ Daddu(result, zero_reg, Operand(scope()->num_parameters()));
3076 __ Branch(&done, eq, fp, Operand(elem));
3077
3078 // Arguments adaptor frame present. Get argument length from there.
3079 __ ld(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3080 __ ld(result,
3081 MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
3082 __ SmiUntag(result);
3083
3084 // Argument length is in result register.
3085 __ bind(&done);
3086 }
3087
3088
DoWrapReceiver(LWrapReceiver * instr)3089 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3090 Register receiver = ToRegister(instr->receiver());
3091 Register function = ToRegister(instr->function());
3092 Register result = ToRegister(instr->result());
3093 Register scratch = scratch0();
3094
3095 // If the receiver is null or undefined, we have to pass the global
3096 // object as a receiver to normal functions. Values have to be
3097 // passed unchanged to builtins and strict-mode functions.
3098 Label global_object, result_in_receiver;
3099
3100 if (!instr->hydrogen()->known_function()) {
3101 // Do not transform the receiver to object for strict mode functions.
3102 __ ld(scratch,
3103 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3104
3105 // Do not transform the receiver to object for builtins.
3106 int32_t strict_mode_function_mask =
3107 1 << SharedFunctionInfo::kStrictModeBitWithinByte;
3108 int32_t native_mask = 1 << SharedFunctionInfo::kNativeBitWithinByte;
3109
3110 __ lbu(at,
3111 FieldMemOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset));
3112 __ And(at, at, Operand(strict_mode_function_mask));
3113 __ Branch(&result_in_receiver, ne, at, Operand(zero_reg));
3114 __ lbu(at,
3115 FieldMemOperand(scratch, SharedFunctionInfo::kNativeByteOffset));
3116 __ And(at, at, Operand(native_mask));
3117 __ Branch(&result_in_receiver, ne, at, Operand(zero_reg));
3118 }
3119
3120 // Normal function. Replace undefined or null with global receiver.
3121 __ LoadRoot(scratch, Heap::kNullValueRootIndex);
3122 __ Branch(&global_object, eq, receiver, Operand(scratch));
3123 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3124 __ Branch(&global_object, eq, receiver, Operand(scratch));
3125
3126 // Deoptimize if the receiver is not a JS object.
3127 __ SmiTst(receiver, scratch);
3128 DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, scratch, Operand(zero_reg));
3129
3130 __ GetObjectType(receiver, scratch, scratch);
3131 DeoptimizeIf(lt, instr, DeoptimizeReason::kNotAJavaScriptObject, scratch,
3132 Operand(FIRST_JS_RECEIVER_TYPE));
3133 __ Branch(&result_in_receiver);
3134
3135 __ bind(&global_object);
3136 __ ld(result, FieldMemOperand(function, JSFunction::kContextOffset));
3137 __ ld(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
3138 __ ld(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
3139
3140 if (result.is(receiver)) {
3141 __ bind(&result_in_receiver);
3142 } else {
3143 Label result_ok;
3144 __ Branch(&result_ok);
3145 __ bind(&result_in_receiver);
3146 __ mov(result, receiver);
3147 __ bind(&result_ok);
3148 }
3149 }
3150
3151
DoApplyArguments(LApplyArguments * instr)3152 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3153 Register receiver = ToRegister(instr->receiver());
3154 Register function = ToRegister(instr->function());
3155 Register length = ToRegister(instr->length());
3156 Register elements = ToRegister(instr->elements());
3157 Register scratch = scratch0();
3158 DCHECK(receiver.is(a0)); // Used for parameter count.
3159 DCHECK(function.is(a1)); // Required by InvokeFunction.
3160 DCHECK(ToRegister(instr->result()).is(v0));
3161
3162 // Copy the arguments to this function possibly from the
3163 // adaptor frame below it.
3164 const uint32_t kArgumentsLimit = 1 * KB;
3165 DeoptimizeIf(hi, instr, DeoptimizeReason::kTooManyArguments, length,
3166 Operand(kArgumentsLimit));
3167
3168 // Push the receiver and use the register to keep the original
3169 // number of arguments.
3170 __ push(receiver);
3171 __ Move(receiver, length);
3172 // The arguments are at a one pointer size offset from elements.
3173 __ Daddu(elements, elements, Operand(1 * kPointerSize));
3174
3175 // Loop through the arguments pushing them onto the execution
3176 // stack.
3177 Label invoke, loop;
3178 // length is a small non-negative integer, due to the test above.
3179 __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg));
3180 __ dsll(scratch, length, kPointerSizeLog2);
3181 __ bind(&loop);
3182 __ Daddu(scratch, elements, scratch);
3183 __ ld(scratch, MemOperand(scratch));
3184 __ push(scratch);
3185 __ Dsubu(length, length, Operand(1));
3186 __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg));
3187 __ dsll(scratch, length, kPointerSizeLog2);
3188
3189 __ bind(&invoke);
3190
3191 InvokeFlag flag = CALL_FUNCTION;
3192 if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
3193 DCHECK(!info()->saves_caller_doubles());
3194 // TODO(ishell): drop current frame before pushing arguments to the stack.
3195 flag = JUMP_FUNCTION;
3196 ParameterCount actual(a0);
3197 // It is safe to use t0, t1 and t2 as scratch registers here given that
3198 // we are not going to return to caller function anyway.
3199 PrepareForTailCall(actual, t0, t1, t2);
3200 }
3201
3202 DCHECK(instr->HasPointerMap());
3203 LPointerMap* pointers = instr->pointer_map();
3204 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
3205 // The number of arguments is stored in receiver which is a0, as expected
3206 // by InvokeFunction.
3207 ParameterCount actual(receiver);
3208 __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
3209 }
3210
3211
DoPushArgument(LPushArgument * instr)3212 void LCodeGen::DoPushArgument(LPushArgument* instr) {
3213 LOperand* argument = instr->value();
3214 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
3215 Abort(kDoPushArgumentNotImplementedForDoubleType);
3216 } else {
3217 Register argument_reg = EmitLoadRegister(argument, at);
3218 __ push(argument_reg);
3219 }
3220 }
3221
3222
DoDrop(LDrop * instr)3223 void LCodeGen::DoDrop(LDrop* instr) {
3224 __ Drop(instr->count());
3225 }
3226
3227
DoThisFunction(LThisFunction * instr)3228 void LCodeGen::DoThisFunction(LThisFunction* instr) {
3229 Register result = ToRegister(instr->result());
3230 __ ld(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3231 }
3232
3233
DoContext(LContext * instr)3234 void LCodeGen::DoContext(LContext* instr) {
3235 // If there is a non-return use, the context must be moved to a register.
3236 Register result = ToRegister(instr->result());
3237 if (info()->IsOptimizing()) {
3238 __ ld(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
3239 } else {
3240 // If there is no frame, the context must be in cp.
3241 DCHECK(result.is(cp));
3242 }
3243 }
3244
3245
DoDeclareGlobals(LDeclareGlobals * instr)3246 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3247 DCHECK(ToRegister(instr->context()).is(cp));
3248 __ li(scratch0(), instr->hydrogen()->pairs());
3249 __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
3250 __ Push(scratch0(), scratch1());
3251 __ li(scratch0(), instr->hydrogen()->feedback_vector());
3252 __ Push(scratch0());
3253 CallRuntime(Runtime::kDeclareGlobals, instr);
3254 }
3255
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,bool is_tail_call,LInstruction * instr)3256 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3257 int formal_parameter_count, int arity,
3258 bool is_tail_call, LInstruction* instr) {
3259 bool dont_adapt_arguments =
3260 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3261 bool can_invoke_directly =
3262 dont_adapt_arguments || formal_parameter_count == arity;
3263
3264 Register function_reg = a1;
3265 LPointerMap* pointers = instr->pointer_map();
3266
3267 if (can_invoke_directly) {
3268 // Change context.
3269 __ ld(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
3270
3271 // Always initialize new target and number of actual arguments.
3272 __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
3273 __ li(a0, Operand(arity));
3274
3275 bool is_self_call = function.is_identical_to(info()->closure());
3276
3277 // Invoke function.
3278 if (is_self_call) {
3279 Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
3280 if (is_tail_call) {
3281 __ Jump(self, RelocInfo::CODE_TARGET);
3282 } else {
3283 __ Call(self, RelocInfo::CODE_TARGET);
3284 }
3285 } else {
3286 __ ld(at, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
3287 if (is_tail_call) {
3288 __ Jump(at);
3289 } else {
3290 __ Call(at);
3291 }
3292 }
3293
3294 if (!is_tail_call) {
3295 // Set up deoptimization.
3296 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3297 }
3298 } else {
3299 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3300 ParameterCount actual(arity);
3301 ParameterCount expected(formal_parameter_count);
3302 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3303 __ InvokeFunction(function_reg, expected, actual, flag, generator);
3304 }
3305 }
3306
3307
DoDeferredMathAbsTaggedHeapNumber(LMathAbs * instr)3308 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3309 DCHECK(instr->context() != NULL);
3310 DCHECK(ToRegister(instr->context()).is(cp));
3311 Register input = ToRegister(instr->value());
3312 Register result = ToRegister(instr->result());
3313 Register scratch = scratch0();
3314
3315 // Deoptimize if not a heap number.
3316 __ ld(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
3317 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3318 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber, scratch,
3319 Operand(at));
3320
3321 Label done;
3322 Register exponent = scratch0();
3323 scratch = no_reg;
3324 __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3325 // Check the sign of the argument. If the argument is positive, just
3326 // return it.
3327 __ Move(result, input);
3328 __ And(at, exponent, Operand(HeapNumber::kSignMask));
3329 __ Branch(&done, eq, at, Operand(zero_reg));
3330
3331 // Input is negative. Reverse its sign.
3332 // Preserve the value of all registers.
3333 {
3334 PushSafepointRegistersScope scope(this);
3335
3336 // Registers were saved at the safepoint, so we can use
3337 // many scratch registers.
3338 Register tmp1 = input.is(a1) ? a0 : a1;
3339 Register tmp2 = input.is(a2) ? a0 : a2;
3340 Register tmp3 = input.is(a3) ? a0 : a3;
3341 Register tmp4 = input.is(a4) ? a0 : a4;
3342
3343 // exponent: floating point exponent value.
3344
3345 Label allocated, slow;
3346 __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
3347 __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
3348 __ Branch(&allocated);
3349
3350 // Slow case: Call the runtime system to do the number allocation.
3351 __ bind(&slow);
3352
3353 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3354 instr->context());
3355 // Set the pointer to the new heap number in tmp.
3356 if (!tmp1.is(v0))
3357 __ mov(tmp1, v0);
3358 // Restore input_reg after call to runtime.
3359 __ LoadFromSafepointRegisterSlot(input, input);
3360 __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3361
3362 __ bind(&allocated);
3363 // exponent: floating point exponent value.
3364 // tmp1: allocated heap number.
3365 __ And(exponent, exponent, Operand(~HeapNumber::kSignMask));
3366 __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
3367 __ lwu(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
3368 __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
3369
3370 __ StoreToSafepointRegisterSlot(tmp1, result);
3371 }
3372
3373 __ bind(&done);
3374 }
3375
3376
EmitIntegerMathAbs(LMathAbs * instr)3377 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3378 Register input = ToRegister(instr->value());
3379 Register result = ToRegister(instr->result());
3380 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
3381 Label done;
3382 __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
3383 __ mov(result, input);
3384 __ subu(result, zero_reg, input);
3385 // Overflow if result is still negative, i.e. 0x80000000.
3386 DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, result,
3387 Operand(zero_reg));
3388 __ bind(&done);
3389 }
3390
3391
EmitSmiMathAbs(LMathAbs * instr)3392 void LCodeGen::EmitSmiMathAbs(LMathAbs* instr) {
3393 Register input = ToRegister(instr->value());
3394 Register result = ToRegister(instr->result());
3395 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
3396 Label done;
3397 __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
3398 __ mov(result, input);
3399 __ dsubu(result, zero_reg, input);
3400 // Overflow if result is still negative, i.e. 0x80000000 00000000.
3401 DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, result,
3402 Operand(zero_reg));
3403 __ bind(&done);
3404 }
3405
3406
DoMathAbs(LMathAbs * instr)3407 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3408 // Class for deferred case.
3409 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3410 public:
3411 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3412 : LDeferredCode(codegen), instr_(instr) { }
3413 void Generate() override {
3414 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3415 }
3416 LInstruction* instr() override { return instr_; }
3417
3418 private:
3419 LMathAbs* instr_;
3420 };
3421
3422 Representation r = instr->hydrogen()->value()->representation();
3423 if (r.IsDouble()) {
3424 FPURegister input = ToDoubleRegister(instr->value());
3425 FPURegister result = ToDoubleRegister(instr->result());
3426 __ abs_d(result, input);
3427 } else if (r.IsInteger32()) {
3428 EmitIntegerMathAbs(instr);
3429 } else if (r.IsSmi()) {
3430 EmitSmiMathAbs(instr);
3431 } else {
3432 // Representation is tagged.
3433 DeferredMathAbsTaggedHeapNumber* deferred =
3434 new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3435 Register input = ToRegister(instr->value());
3436 // Smi check.
3437 __ JumpIfNotSmi(input, deferred->entry());
3438 // If smi, handle it directly.
3439 EmitSmiMathAbs(instr);
3440 __ bind(deferred->exit());
3441 }
3442 }
3443
3444
DoMathFloor(LMathFloor * instr)3445 void LCodeGen::DoMathFloor(LMathFloor* instr) {
3446 DoubleRegister input = ToDoubleRegister(instr->value());
3447 Register result = ToRegister(instr->result());
3448 Register scratch1 = scratch0();
3449 Register except_flag = ToRegister(instr->temp());
3450
3451 __ EmitFPUTruncate(kRoundToMinusInf,
3452 result,
3453 input,
3454 scratch1,
3455 double_scratch0(),
3456 except_flag);
3457
3458 // Deopt if the operation did not succeed.
3459 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag,
3460 Operand(zero_reg));
3461
3462 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3463 // Test for -0.
3464 Label done;
3465 __ Branch(&done, ne, result, Operand(zero_reg));
3466 __ mfhc1(scratch1, input); // Get exponent/sign bits.
3467 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
3468 DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch1,
3469 Operand(zero_reg));
3470 __ bind(&done);
3471 }
3472 }
3473
3474
DoMathRound(LMathRound * instr)3475 void LCodeGen::DoMathRound(LMathRound* instr) {
3476 DoubleRegister input = ToDoubleRegister(instr->value());
3477 Register result = ToRegister(instr->result());
3478 DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
3479 Register scratch = scratch0();
3480 Label done, check_sign_on_zero;
3481
3482 // Extract exponent bits.
3483 __ mfhc1(result, input);
3484 __ Ext(scratch,
3485 result,
3486 HeapNumber::kExponentShift,
3487 HeapNumber::kExponentBits);
3488
3489 // If the number is in ]-0.5, +0.5[, the result is +/- 0.
3490 Label skip1;
3491 __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2));
3492 __ mov(result, zero_reg);
3493 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3494 __ Branch(&check_sign_on_zero);
3495 } else {
3496 __ Branch(&done);
3497 }
3498 __ bind(&skip1);
3499
3500 // The following conversion will not work with numbers
3501 // outside of ]-2^32, 2^32[.
3502 DeoptimizeIf(ge, instr, DeoptimizeReason::kOverflow, scratch,
3503 Operand(HeapNumber::kExponentBias + 32));
3504
3505 // Save the original sign for later comparison.
3506 __ And(scratch, result, Operand(HeapNumber::kSignMask));
3507
3508 __ Move(double_scratch0(), 0.5);
3509 __ add_d(double_scratch0(), input, double_scratch0());
3510
3511 // Check sign of the result: if the sign changed, the input
3512 // value was in ]0.5, 0[ and the result should be -0.
3513 __ mfhc1(result, double_scratch0());
3514 // mfhc1 sign-extends, clear the upper bits.
3515 __ dsll32(result, result, 0);
3516 __ dsrl32(result, result, 0);
3517 __ Xor(result, result, Operand(scratch));
3518 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3519 // ARM uses 'mi' here, which is 'lt'
3520 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, result,
3521 Operand(zero_reg));
3522 } else {
3523 Label skip2;
3524 // ARM uses 'mi' here, which is 'lt'
3525 // Negating it results in 'ge'
3526 __ Branch(&skip2, ge, result, Operand(zero_reg));
3527 __ mov(result, zero_reg);
3528 __ Branch(&done);
3529 __ bind(&skip2);
3530 }
3531
3532 Register except_flag = scratch;
3533 __ EmitFPUTruncate(kRoundToMinusInf,
3534 result,
3535 double_scratch0(),
3536 at,
3537 double_scratch1,
3538 except_flag);
3539
3540 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag,
3541 Operand(zero_reg));
3542
3543 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3544 // Test for -0.
3545 __ Branch(&done, ne, result, Operand(zero_reg));
3546 __ bind(&check_sign_on_zero);
3547 __ mfhc1(scratch, input); // Get exponent/sign bits.
3548 __ And(scratch, scratch, Operand(HeapNumber::kSignMask));
3549 DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch,
3550 Operand(zero_reg));
3551 }
3552 __ bind(&done);
3553 }
3554
3555
DoMathFround(LMathFround * instr)3556 void LCodeGen::DoMathFround(LMathFround* instr) {
3557 DoubleRegister input = ToDoubleRegister(instr->value());
3558 DoubleRegister result = ToDoubleRegister(instr->result());
3559 __ cvt_s_d(result, input);
3560 __ cvt_d_s(result, result);
3561 }
3562
3563
DoMathSqrt(LMathSqrt * instr)3564 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3565 DoubleRegister input = ToDoubleRegister(instr->value());
3566 DoubleRegister result = ToDoubleRegister(instr->result());
3567 __ sqrt_d(result, input);
3568 }
3569
3570
DoMathPowHalf(LMathPowHalf * instr)3571 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3572 DoubleRegister input = ToDoubleRegister(instr->value());
3573 DoubleRegister result = ToDoubleRegister(instr->result());
3574 DoubleRegister temp = ToDoubleRegister(instr->temp());
3575
3576 DCHECK(!input.is(result));
3577
3578 // Note that according to ECMA-262 15.8.2.13:
3579 // Math.pow(-Infinity, 0.5) == Infinity
3580 // Math.sqrt(-Infinity) == NaN
3581 Label done;
3582 __ Move(temp, static_cast<double>(-V8_INFINITY));
3583 // Set up Infinity.
3584 __ Neg_d(result, temp);
3585 // result is overwritten if the branch is not taken.
3586 __ BranchF(&done, NULL, eq, temp, input);
3587
3588 // Add +0 to convert -0 to +0.
3589 __ add_d(result, input, kDoubleRegZero);
3590 __ sqrt_d(result, result);
3591 __ bind(&done);
3592 }
3593
3594
DoPower(LPower * instr)3595 void LCodeGen::DoPower(LPower* instr) {
3596 Representation exponent_type = instr->hydrogen()->right()->representation();
3597 // Having marked this as a call, we can use any registers.
3598 // Just make sure that the input/output registers are the expected ones.
3599 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3600 DCHECK(!instr->right()->IsDoubleRegister() ||
3601 ToDoubleRegister(instr->right()).is(f4));
3602 DCHECK(!instr->right()->IsRegister() ||
3603 ToRegister(instr->right()).is(tagged_exponent));
3604 DCHECK(ToDoubleRegister(instr->left()).is(f2));
3605 DCHECK(ToDoubleRegister(instr->result()).is(f0));
3606
3607 if (exponent_type.IsSmi()) {
3608 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3609 __ CallStub(&stub);
3610 } else if (exponent_type.IsTagged()) {
3611 Label no_deopt;
3612 __ JumpIfSmi(tagged_exponent, &no_deopt);
3613 DCHECK(!a7.is(tagged_exponent));
3614 __ lw(a7, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
3615 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3616 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber, a7, Operand(at));
3617 __ bind(&no_deopt);
3618 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3619 __ CallStub(&stub);
3620 } else if (exponent_type.IsInteger32()) {
3621 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3622 __ CallStub(&stub);
3623 } else {
3624 DCHECK(exponent_type.IsDouble());
3625 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3626 __ CallStub(&stub);
3627 }
3628 }
3629
DoMathCos(LMathCos * instr)3630 void LCodeGen::DoMathCos(LMathCos* instr) {
3631 __ PrepareCallCFunction(0, 1, scratch0());
3632 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3633 __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1);
3634 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3635 }
3636
DoMathSin(LMathSin * instr)3637 void LCodeGen::DoMathSin(LMathSin* instr) {
3638 __ PrepareCallCFunction(0, 1, scratch0());
3639 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3640 __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1);
3641 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3642 }
3643
DoMathExp(LMathExp * instr)3644 void LCodeGen::DoMathExp(LMathExp* instr) {
3645 __ PrepareCallCFunction(0, 1, scratch0());
3646 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3647 __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1);
3648 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3649 }
3650
3651
DoMathLog(LMathLog * instr)3652 void LCodeGen::DoMathLog(LMathLog* instr) {
3653 __ PrepareCallCFunction(0, 1, scratch0());
3654 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3655 __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1);
3656 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3657 }
3658
3659
DoMathClz32(LMathClz32 * instr)3660 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3661 Register input = ToRegister(instr->value());
3662 Register result = ToRegister(instr->result());
3663 __ Clz(result, input);
3664 }
3665
PrepareForTailCall(const ParameterCount & actual,Register scratch1,Register scratch2,Register scratch3)3666 void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
3667 Register scratch1, Register scratch2,
3668 Register scratch3) {
3669 #if DEBUG
3670 if (actual.is_reg()) {
3671 DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
3672 } else {
3673 DCHECK(!AreAliased(scratch1, scratch2, scratch3));
3674 }
3675 #endif
3676 if (FLAG_code_comments) {
3677 if (actual.is_reg()) {
3678 Comment(";;; PrepareForTailCall, actual: %s {",
3679 RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
3680 actual.reg().code()));
3681 } else {
3682 Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
3683 }
3684 }
3685
3686 // Check if next frame is an arguments adaptor frame.
3687 Register caller_args_count_reg = scratch1;
3688 Label no_arguments_adaptor, formal_parameter_count_loaded;
3689 __ ld(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3690 __ ld(scratch3, MemOperand(scratch2, StandardFrameConstants::kContextOffset));
3691 __ Branch(&no_arguments_adaptor, ne, scratch3,
3692 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3693
3694 // Drop current frame and load arguments count from arguments adaptor frame.
3695 __ mov(fp, scratch2);
3696 __ ld(caller_args_count_reg,
3697 MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
3698 __ SmiUntag(caller_args_count_reg);
3699 __ Branch(&formal_parameter_count_loaded);
3700
3701 __ bind(&no_arguments_adaptor);
3702 // Load caller's formal parameter count
3703 __ li(caller_args_count_reg, Operand(info()->literal()->parameter_count()));
3704
3705 __ bind(&formal_parameter_count_loaded);
3706 __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
3707
3708 Comment(";;; }");
3709 }
3710
DoInvokeFunction(LInvokeFunction * instr)3711 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3712 HInvokeFunction* hinstr = instr->hydrogen();
3713 DCHECK(ToRegister(instr->context()).is(cp));
3714 DCHECK(ToRegister(instr->function()).is(a1));
3715 DCHECK(instr->HasPointerMap());
3716
3717 bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
3718
3719 if (is_tail_call) {
3720 DCHECK(!info()->saves_caller_doubles());
3721 ParameterCount actual(instr->arity());
3722 // It is safe to use t0, t1 and t2 as scratch registers here given that
3723 // we are not going to return to caller function anyway.
3724 PrepareForTailCall(actual, t0, t1, t2);
3725 }
3726
3727 Handle<JSFunction> known_function = hinstr->known_function();
3728 if (known_function.is_null()) {
3729 LPointerMap* pointers = instr->pointer_map();
3730 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3731 ParameterCount actual(instr->arity());
3732 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3733 __ InvokeFunction(a1, no_reg, actual, flag, generator);
3734 } else {
3735 CallKnownFunction(known_function, hinstr->formal_parameter_count(),
3736 instr->arity(), is_tail_call, instr);
3737 }
3738 }
3739
3740
DoCallWithDescriptor(LCallWithDescriptor * instr)3741 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3742 DCHECK(ToRegister(instr->result()).is(v0));
3743
3744 if (instr->hydrogen()->IsTailCall()) {
3745 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
3746
3747 if (instr->target()->IsConstantOperand()) {
3748 LConstantOperand* target = LConstantOperand::cast(instr->target());
3749 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3750 __ Jump(code, RelocInfo::CODE_TARGET);
3751 } else {
3752 DCHECK(instr->target()->IsRegister());
3753 Register target = ToRegister(instr->target());
3754 __ Daddu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3755 __ Jump(target);
3756 }
3757 } else {
3758 LPointerMap* pointers = instr->pointer_map();
3759 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3760
3761 if (instr->target()->IsConstantOperand()) {
3762 LConstantOperand* target = LConstantOperand::cast(instr->target());
3763 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3764 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3765 __ Call(code, RelocInfo::CODE_TARGET);
3766 } else {
3767 DCHECK(instr->target()->IsRegister());
3768 Register target = ToRegister(instr->target());
3769 generator.BeforeCall(__ CallSize(target));
3770 __ Daddu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3771 __ Call(target);
3772 }
3773 generator.AfterCall();
3774 }
3775 }
3776
3777
DoCallNewArray(LCallNewArray * instr)3778 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3779 DCHECK(ToRegister(instr->context()).is(cp));
3780 DCHECK(ToRegister(instr->constructor()).is(a1));
3781 DCHECK(ToRegister(instr->result()).is(v0));
3782
3783 __ li(a0, Operand(instr->arity()));
3784 __ li(a2, instr->hydrogen()->site());
3785
3786 ElementsKind kind = instr->hydrogen()->elements_kind();
3787 AllocationSiteOverrideMode override_mode =
3788 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3789 ? DISABLE_ALLOCATION_SITES
3790 : DONT_OVERRIDE;
3791
3792 if (instr->arity() == 0) {
3793 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3794 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3795 } else if (instr->arity() == 1) {
3796 Label done;
3797 if (IsFastPackedElementsKind(kind)) {
3798 Label packed_case;
3799 // We might need a change here,
3800 // look at the first argument.
3801 __ ld(a5, MemOperand(sp, 0));
3802 __ Branch(&packed_case, eq, a5, Operand(zero_reg));
3803
3804 ElementsKind holey_kind = GetHoleyElementsKind(kind);
3805 ArraySingleArgumentConstructorStub stub(isolate(),
3806 holey_kind,
3807 override_mode);
3808 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3809 __ jmp(&done);
3810 __ bind(&packed_case);
3811 }
3812
3813 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3814 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3815 __ bind(&done);
3816 } else {
3817 ArrayNArgumentsConstructorStub stub(isolate());
3818 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3819 }
3820 }
3821
3822
DoCallRuntime(LCallRuntime * instr)3823 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3824 CallRuntime(instr->function(), instr->arity(), instr);
3825 }
3826
3827
DoStoreCodeEntry(LStoreCodeEntry * instr)3828 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3829 Register function = ToRegister(instr->function());
3830 Register code_object = ToRegister(instr->code_object());
3831 __ Daddu(code_object, code_object,
3832 Operand(Code::kHeaderSize - kHeapObjectTag));
3833 __ sd(code_object,
3834 FieldMemOperand(function, JSFunction::kCodeEntryOffset));
3835 }
3836
3837
DoInnerAllocatedObject(LInnerAllocatedObject * instr)3838 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3839 Register result = ToRegister(instr->result());
3840 Register base = ToRegister(instr->base_object());
3841 if (instr->offset()->IsConstantOperand()) {
3842 LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3843 __ Daddu(result, base, Operand(ToInteger32(offset)));
3844 } else {
3845 Register offset = ToRegister(instr->offset());
3846 __ Daddu(result, base, offset);
3847 }
3848 }
3849
3850
DoStoreNamedField(LStoreNamedField * instr)3851 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3852 Representation representation = instr->representation();
3853
3854 Register object = ToRegister(instr->object());
3855 Register scratch2 = scratch1();
3856 Register scratch1 = scratch0();
3857
3858 HObjectAccess access = instr->hydrogen()->access();
3859 int offset = access.offset();
3860 if (access.IsExternalMemory()) {
3861 Register value = ToRegister(instr->value());
3862 MemOperand operand = MemOperand(object, offset);
3863 __ Store(value, operand, representation);
3864 return;
3865 }
3866
3867 __ AssertNotSmi(object);
3868
3869 DCHECK(!representation.IsSmi() ||
3870 !instr->value()->IsConstantOperand() ||
3871 IsSmi(LConstantOperand::cast(instr->value())));
3872 if (!FLAG_unbox_double_fields && representation.IsDouble()) {
3873 DCHECK(access.IsInobject());
3874 DCHECK(!instr->hydrogen()->has_transition());
3875 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
3876 DoubleRegister value = ToDoubleRegister(instr->value());
3877 __ sdc1(value, FieldMemOperand(object, offset));
3878 return;
3879 }
3880
3881 if (instr->hydrogen()->has_transition()) {
3882 Handle<Map> transition = instr->hydrogen()->transition_map();
3883 AddDeprecationDependency(transition);
3884 __ li(scratch1, Operand(transition));
3885 __ sd(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
3886 if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
3887 Register temp = ToRegister(instr->temp());
3888 // Update the write barrier for the map field.
3889 __ RecordWriteForMap(object,
3890 scratch1,
3891 temp,
3892 GetRAState(),
3893 kSaveFPRegs);
3894 }
3895 }
3896
3897 // Do the store.
3898 Register destination = object;
3899 if (!access.IsInobject()) {
3900 destination = scratch1;
3901 __ ld(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
3902 }
3903
3904 if (representation.IsSmi() && SmiValuesAre32Bits() &&
3905 instr->hydrogen()->value()->representation().IsInteger32()) {
3906 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
3907 if (FLAG_debug_code) {
3908 __ Load(scratch2, FieldMemOperand(destination, offset), representation);
3909 __ AssertSmi(scratch2);
3910 }
3911 // Store int value directly to upper half of the smi.
3912 offset = SmiWordOffset(offset);
3913 representation = Representation::Integer32();
3914 }
3915 MemOperand operand = FieldMemOperand(destination, offset);
3916
3917 if (FLAG_unbox_double_fields && representation.IsDouble()) {
3918 DCHECK(access.IsInobject());
3919 DoubleRegister value = ToDoubleRegister(instr->value());
3920 __ sdc1(value, operand);
3921 } else {
3922 DCHECK(instr->value()->IsRegister());
3923 Register value = ToRegister(instr->value());
3924 __ Store(value, operand, representation);
3925 }
3926
3927 if (instr->hydrogen()->NeedsWriteBarrier()) {
3928 // Update the write barrier for the object for in-object properties.
3929 Register value = ToRegister(instr->value());
3930 __ RecordWriteField(destination,
3931 offset,
3932 value,
3933 scratch2,
3934 GetRAState(),
3935 kSaveFPRegs,
3936 EMIT_REMEMBERED_SET,
3937 instr->hydrogen()->SmiCheckForWriteBarrier(),
3938 instr->hydrogen()->PointersToHereCheckForValue());
3939 }
3940 }
3941
3942
DoBoundsCheck(LBoundsCheck * instr)3943 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3944 Condition cc = instr->hydrogen()->allow_equality() ? hi : hs;
3945 Operand operand((int64_t)0);
3946 Register reg;
3947 if (instr->index()->IsConstantOperand()) {
3948 operand = ToOperand(instr->index());
3949 reg = ToRegister(instr->length());
3950 cc = CommuteCondition(cc);
3951 } else {
3952 reg = ToRegister(instr->index());
3953 operand = ToOperand(instr->length());
3954 }
3955 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
3956 Label done;
3957 __ Branch(&done, NegateCondition(cc), reg, operand);
3958 __ stop("eliminated bounds check failed");
3959 __ bind(&done);
3960 } else {
3961 DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds, reg, operand);
3962 }
3963 }
3964
3965
DoStoreKeyedExternalArray(LStoreKeyed * instr)3966 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
3967 Register external_pointer = ToRegister(instr->elements());
3968 Register key = no_reg;
3969 ElementsKind elements_kind = instr->elements_kind();
3970 bool key_is_constant = instr->key()->IsConstantOperand();
3971 int constant_key = 0;
3972 if (key_is_constant) {
3973 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3974 if (constant_key & 0xF0000000) {
3975 Abort(kArrayIndexConstantValueTooBig);
3976 }
3977 } else {
3978 key = ToRegister(instr->key());
3979 }
3980 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3981 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3982 ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
3983 : element_size_shift;
3984 int base_offset = instr->base_offset();
3985
3986 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
3987 Register address = scratch0();
3988 FPURegister value(ToDoubleRegister(instr->value()));
3989 if (key_is_constant) {
3990 if (constant_key != 0) {
3991 __ Daddu(address, external_pointer,
3992 Operand(constant_key << element_size_shift));
3993 } else {
3994 address = external_pointer;
3995 }
3996 } else {
3997 if (shift_size < 0) {
3998 if (shift_size == -32) {
3999 __ dsra32(address, key, 0);
4000 } else {
4001 __ dsra(address, key, -shift_size);
4002 }
4003 } else {
4004 __ dsll(address, key, shift_size);
4005 }
4006 __ Daddu(address, external_pointer, address);
4007 }
4008
4009 if (elements_kind == FLOAT32_ELEMENTS) {
4010 __ cvt_s_d(double_scratch0(), value);
4011 __ swc1(double_scratch0(), MemOperand(address, base_offset));
4012 } else { // Storing doubles, not floats.
4013 __ sdc1(value, MemOperand(address, base_offset));
4014 }
4015 } else {
4016 Register value(ToRegister(instr->value()));
4017 MemOperand mem_operand = PrepareKeyedOperand(
4018 key, external_pointer, key_is_constant, constant_key,
4019 element_size_shift, shift_size,
4020 base_offset);
4021 switch (elements_kind) {
4022 case UINT8_ELEMENTS:
4023 case UINT8_CLAMPED_ELEMENTS:
4024 case INT8_ELEMENTS:
4025 __ sb(value, mem_operand);
4026 break;
4027 case INT16_ELEMENTS:
4028 case UINT16_ELEMENTS:
4029 __ sh(value, mem_operand);
4030 break;
4031 case INT32_ELEMENTS:
4032 case UINT32_ELEMENTS:
4033 __ sw(value, mem_operand);
4034 break;
4035 case FLOAT32_ELEMENTS:
4036 case FLOAT64_ELEMENTS:
4037 case FAST_DOUBLE_ELEMENTS:
4038 case FAST_ELEMENTS:
4039 case FAST_SMI_ELEMENTS:
4040 case FAST_HOLEY_DOUBLE_ELEMENTS:
4041 case FAST_HOLEY_ELEMENTS:
4042 case FAST_HOLEY_SMI_ELEMENTS:
4043 case DICTIONARY_ELEMENTS:
4044 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
4045 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
4046 case FAST_STRING_WRAPPER_ELEMENTS:
4047 case SLOW_STRING_WRAPPER_ELEMENTS:
4048 case NO_ELEMENTS:
4049 UNREACHABLE();
4050 break;
4051 }
4052 }
4053 }
4054
4055
DoStoreKeyedFixedDoubleArray(LStoreKeyed * instr)4056 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4057 DoubleRegister value = ToDoubleRegister(instr->value());
4058 Register elements = ToRegister(instr->elements());
4059 Register scratch = scratch0();
4060 DoubleRegister double_scratch = double_scratch0();
4061 bool key_is_constant = instr->key()->IsConstantOperand();
4062 int base_offset = instr->base_offset();
4063 Label not_nan, done;
4064
4065 // Calculate the effective address of the slot in the array to store the
4066 // double value.
4067 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
4068 if (key_is_constant) {
4069 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4070 if (constant_key & 0xF0000000) {
4071 Abort(kArrayIndexConstantValueTooBig);
4072 }
4073 __ Daddu(scratch, elements,
4074 Operand((constant_key << element_size_shift) + base_offset));
4075 } else {
4076 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
4077 ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
4078 : element_size_shift;
4079 __ Daddu(scratch, elements, Operand(base_offset));
4080 DCHECK((shift_size == 3) || (shift_size == -29));
4081 if (shift_size == 3) {
4082 __ dsll(at, ToRegister(instr->key()), 3);
4083 } else if (shift_size == -29) {
4084 __ dsra(at, ToRegister(instr->key()), 29);
4085 }
4086 __ Daddu(scratch, scratch, at);
4087 }
4088
4089 if (instr->NeedsCanonicalization()) {
4090 __ FPUCanonicalizeNaN(double_scratch, value);
4091 __ sdc1(double_scratch, MemOperand(scratch, 0));
4092 } else {
4093 __ sdc1(value, MemOperand(scratch, 0));
4094 }
4095 }
4096
4097
DoStoreKeyedFixedArray(LStoreKeyed * instr)4098 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4099 Register value = ToRegister(instr->value());
4100 Register elements = ToRegister(instr->elements());
4101 Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
4102 : no_reg;
4103 Register scratch = scratch0();
4104 Register store_base = scratch;
4105 int offset = instr->base_offset();
4106
4107 // Do the store.
4108 if (instr->key()->IsConstantOperand()) {
4109 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4110 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
4111 offset += ToInteger32(const_operand) * kPointerSize;
4112 store_base = elements;
4113 } else {
4114 // Even though the HLoadKeyed instruction forces the input
4115 // representation for the key to be an integer, the input gets replaced
4116 // during bound check elimination with the index argument to the bounds
4117 // check, which can be tagged, so that case must be handled here, too.
4118 if (instr->hydrogen()->key()->representation().IsSmi()) {
4119 __ SmiScale(scratch, key, kPointerSizeLog2);
4120 __ daddu(store_base, elements, scratch);
4121 } else {
4122 __ Dlsa(store_base, elements, key, kPointerSizeLog2);
4123 }
4124 }
4125
4126 Representation representation = instr->hydrogen()->value()->representation();
4127 if (representation.IsInteger32() && SmiValuesAre32Bits()) {
4128 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4129 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
4130 if (FLAG_debug_code) {
4131 Register temp = scratch1();
4132 __ Load(temp, MemOperand(store_base, offset), Representation::Smi());
4133 __ AssertSmi(temp);
4134 }
4135
4136 // Store int value directly to upper half of the smi.
4137 STATIC_ASSERT(kSmiTag == 0);
4138 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
4139 offset = SmiWordOffset(offset);
4140 representation = Representation::Integer32();
4141 }
4142
4143 __ Store(value, MemOperand(store_base, offset), representation);
4144
4145 if (instr->hydrogen()->NeedsWriteBarrier()) {
4146 SmiCheck check_needed =
4147 instr->hydrogen()->value()->type().IsHeapObject()
4148 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4149 // Compute address of modified element and store it into key register.
4150 __ Daddu(key, store_base, Operand(offset));
4151 __ RecordWrite(elements,
4152 key,
4153 value,
4154 GetRAState(),
4155 kSaveFPRegs,
4156 EMIT_REMEMBERED_SET,
4157 check_needed,
4158 instr->hydrogen()->PointersToHereCheckForValue());
4159 }
4160 }
4161
4162
DoStoreKeyed(LStoreKeyed * instr)4163 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4164 // By cases: external, fast double
4165 if (instr->is_fixed_typed_array()) {
4166 DoStoreKeyedExternalArray(instr);
4167 } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4168 DoStoreKeyedFixedDoubleArray(instr);
4169 } else {
4170 DoStoreKeyedFixedArray(instr);
4171 }
4172 }
4173
4174
DoMaybeGrowElements(LMaybeGrowElements * instr)4175 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4176 class DeferredMaybeGrowElements final : public LDeferredCode {
4177 public:
4178 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4179 : LDeferredCode(codegen), instr_(instr) {}
4180 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4181 LInstruction* instr() override { return instr_; }
4182
4183 private:
4184 LMaybeGrowElements* instr_;
4185 };
4186
4187 Register result = v0;
4188 DeferredMaybeGrowElements* deferred =
4189 new (zone()) DeferredMaybeGrowElements(this, instr);
4190 LOperand* key = instr->key();
4191 LOperand* current_capacity = instr->current_capacity();
4192
4193 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
4194 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
4195 DCHECK(key->IsConstantOperand() || key->IsRegister());
4196 DCHECK(current_capacity->IsConstantOperand() ||
4197 current_capacity->IsRegister());
4198
4199 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
4200 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4201 int32_t constant_capacity =
4202 ToInteger32(LConstantOperand::cast(current_capacity));
4203 if (constant_key >= constant_capacity) {
4204 // Deferred case.
4205 __ jmp(deferred->entry());
4206 }
4207 } else if (key->IsConstantOperand()) {
4208 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4209 __ Branch(deferred->entry(), le, ToRegister(current_capacity),
4210 Operand(constant_key));
4211 } else if (current_capacity->IsConstantOperand()) {
4212 int32_t constant_capacity =
4213 ToInteger32(LConstantOperand::cast(current_capacity));
4214 __ Branch(deferred->entry(), ge, ToRegister(key),
4215 Operand(constant_capacity));
4216 } else {
4217 __ Branch(deferred->entry(), ge, ToRegister(key),
4218 Operand(ToRegister(current_capacity)));
4219 }
4220
4221 if (instr->elements()->IsRegister()) {
4222 __ mov(result, ToRegister(instr->elements()));
4223 } else {
4224 __ ld(result, ToMemOperand(instr->elements()));
4225 }
4226
4227 __ bind(deferred->exit());
4228 }
4229
4230
DoDeferredMaybeGrowElements(LMaybeGrowElements * instr)4231 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4232 // TODO(3095996): Get rid of this. For now, we need to make the
4233 // result register contain a valid pointer because it is already
4234 // contained in the register pointer map.
4235 Register result = v0;
4236 __ mov(result, zero_reg);
4237
4238 // We have to call a stub.
4239 {
4240 PushSafepointRegistersScope scope(this);
4241 if (instr->object()->IsRegister()) {
4242 __ mov(result, ToRegister(instr->object()));
4243 } else {
4244 __ ld(result, ToMemOperand(instr->object()));
4245 }
4246
4247 LOperand* key = instr->key();
4248 if (key->IsConstantOperand()) {
4249 LConstantOperand* constant_key = LConstantOperand::cast(key);
4250 int32_t int_key = ToInteger32(constant_key);
4251 if (Smi::IsValid(int_key)) {
4252 __ li(a3, Operand(Smi::FromInt(int_key)));
4253 } else {
4254 // We should never get here at runtime because there is a smi check on
4255 // the key before this point.
4256 __ stop("expected smi");
4257 }
4258 } else {
4259 __ mov(a3, ToRegister(key));
4260 __ SmiTag(a3);
4261 }
4262
4263 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind());
4264 __ mov(a0, result);
4265 __ CallStub(&stub);
4266 RecordSafepointWithLazyDeopt(
4267 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4268 __ StoreToSafepointRegisterSlot(result, result);
4269 }
4270
4271 // Deopt on smi, which means the elements array changed to dictionary mode.
4272 __ SmiTst(result, at);
4273 DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, at, Operand(zero_reg));
4274 }
4275
4276
DoTransitionElementsKind(LTransitionElementsKind * instr)4277 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4278 Register object_reg = ToRegister(instr->object());
4279 Register scratch = scratch0();
4280
4281 Handle<Map> from_map = instr->original_map();
4282 Handle<Map> to_map = instr->transitioned_map();
4283 ElementsKind from_kind = instr->from_kind();
4284 ElementsKind to_kind = instr->to_kind();
4285
4286 Label not_applicable;
4287 __ ld(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4288 __ Branch(¬_applicable, ne, scratch, Operand(from_map));
4289
4290 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4291 Register new_map_reg = ToRegister(instr->new_map_temp());
4292 __ li(new_map_reg, Operand(to_map));
4293 __ sd(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4294 // Write barrier.
4295 __ RecordWriteForMap(object_reg,
4296 new_map_reg,
4297 scratch,
4298 GetRAState(),
4299 kDontSaveFPRegs);
4300 } else {
4301 DCHECK(object_reg.is(a0));
4302 DCHECK(ToRegister(instr->context()).is(cp));
4303 PushSafepointRegistersScope scope(this);
4304 __ li(a1, Operand(to_map));
4305 TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
4306 __ CallStub(&stub);
4307 RecordSafepointWithRegisters(
4308 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
4309 }
4310 __ bind(¬_applicable);
4311 }
4312
4313
DoTrapAllocationMemento(LTrapAllocationMemento * instr)4314 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4315 Register object = ToRegister(instr->object());
4316 Register temp = ToRegister(instr->temp());
4317 Label no_memento_found;
4318 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4319 DeoptimizeIf(al, instr, DeoptimizeReason::kMementoFound);
4320 __ bind(&no_memento_found);
4321 }
4322
4323
DoStringAdd(LStringAdd * instr)4324 void LCodeGen::DoStringAdd(LStringAdd* instr) {
4325 DCHECK(ToRegister(instr->context()).is(cp));
4326 DCHECK(ToRegister(instr->left()).is(a1));
4327 DCHECK(ToRegister(instr->right()).is(a0));
4328 StringAddStub stub(isolate(),
4329 instr->hydrogen()->flags(),
4330 instr->hydrogen()->pretenure_flag());
4331 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4332 }
4333
4334
DoStringCharCodeAt(LStringCharCodeAt * instr)4335 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4336 class DeferredStringCharCodeAt final : public LDeferredCode {
4337 public:
4338 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4339 : LDeferredCode(codegen), instr_(instr) { }
4340 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4341 LInstruction* instr() override { return instr_; }
4342
4343 private:
4344 LStringCharCodeAt* instr_;
4345 };
4346
4347 DeferredStringCharCodeAt* deferred =
4348 new(zone()) DeferredStringCharCodeAt(this, instr);
4349 StringCharLoadGenerator::Generate(masm(),
4350 ToRegister(instr->string()),
4351 ToRegister(instr->index()),
4352 ToRegister(instr->result()),
4353 deferred->entry());
4354 __ bind(deferred->exit());
4355 }
4356
4357
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)4358 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4359 Register string = ToRegister(instr->string());
4360 Register result = ToRegister(instr->result());
4361 Register scratch = scratch0();
4362
4363 // TODO(3095996): Get rid of this. For now, we need to make the
4364 // result register contain a valid pointer because it is already
4365 // contained in the register pointer map.
4366 __ mov(result, zero_reg);
4367
4368 PushSafepointRegistersScope scope(this);
4369 __ push(string);
4370 // Push the index as a smi. This is safe because of the checks in
4371 // DoStringCharCodeAt above.
4372 if (instr->index()->IsConstantOperand()) {
4373 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4374 __ Daddu(scratch, zero_reg, Operand(Smi::FromInt(const_index)));
4375 __ push(scratch);
4376 } else {
4377 Register index = ToRegister(instr->index());
4378 __ SmiTag(index);
4379 __ push(index);
4380 }
4381 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
4382 instr->context());
4383 __ AssertSmi(v0);
4384 __ SmiUntag(v0);
4385 __ StoreToSafepointRegisterSlot(v0, result);
4386 }
4387
4388
DoStringCharFromCode(LStringCharFromCode * instr)4389 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4390 class DeferredStringCharFromCode final : public LDeferredCode {
4391 public:
4392 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4393 : LDeferredCode(codegen), instr_(instr) { }
4394 void Generate() override {
4395 codegen()->DoDeferredStringCharFromCode(instr_);
4396 }
4397 LInstruction* instr() override { return instr_; }
4398
4399 private:
4400 LStringCharFromCode* instr_;
4401 };
4402
4403 DeferredStringCharFromCode* deferred =
4404 new(zone()) DeferredStringCharFromCode(this, instr);
4405
4406 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4407 Register char_code = ToRegister(instr->char_code());
4408 Register result = ToRegister(instr->result());
4409 Register scratch = scratch0();
4410 DCHECK(!char_code.is(result));
4411
4412 __ Branch(deferred->entry(), hi,
4413 char_code, Operand(String::kMaxOneByteCharCode));
4414 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4415 __ Dlsa(result, result, char_code, kPointerSizeLog2);
4416 __ ld(result, FieldMemOperand(result, FixedArray::kHeaderSize));
4417 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4418 __ Branch(deferred->entry(), eq, result, Operand(scratch));
4419 __ bind(deferred->exit());
4420 }
4421
4422
DoDeferredStringCharFromCode(LStringCharFromCode * instr)4423 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4424 Register char_code = ToRegister(instr->char_code());
4425 Register result = ToRegister(instr->result());
4426
4427 // TODO(3095996): Get rid of this. For now, we need to make the
4428 // result register contain a valid pointer because it is already
4429 // contained in the register pointer map.
4430 __ mov(result, zero_reg);
4431
4432 PushSafepointRegistersScope scope(this);
4433 __ SmiTag(char_code);
4434 __ push(char_code);
4435 CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4436 instr->context());
4437 __ StoreToSafepointRegisterSlot(v0, result);
4438 }
4439
4440
DoInteger32ToDouble(LInteger32ToDouble * instr)4441 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4442 LOperand* input = instr->value();
4443 DCHECK(input->IsRegister() || input->IsStackSlot());
4444 LOperand* output = instr->result();
4445 DCHECK(output->IsDoubleRegister());
4446 FPURegister single_scratch = double_scratch0().low();
4447 if (input->IsStackSlot()) {
4448 Register scratch = scratch0();
4449 __ ld(scratch, ToMemOperand(input));
4450 __ mtc1(scratch, single_scratch);
4451 } else {
4452 __ mtc1(ToRegister(input), single_scratch);
4453 }
4454 __ cvt_d_w(ToDoubleRegister(output), single_scratch);
4455 }
4456
4457
DoUint32ToDouble(LUint32ToDouble * instr)4458 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4459 LOperand* input = instr->value();
4460 LOperand* output = instr->result();
4461
4462 FPURegister dbl_scratch = double_scratch0();
4463 __ mtc1(ToRegister(input), dbl_scratch);
4464 __ Cvt_d_uw(ToDoubleRegister(output), dbl_scratch);
4465 }
4466
4467
DoNumberTagU(LNumberTagU * instr)4468 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4469 class DeferredNumberTagU final : public LDeferredCode {
4470 public:
4471 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4472 : LDeferredCode(codegen), instr_(instr) { }
4473 void Generate() override {
4474 codegen()->DoDeferredNumberTagIU(instr_,
4475 instr_->value(),
4476 instr_->temp1(),
4477 instr_->temp2(),
4478 UNSIGNED_INT32);
4479 }
4480 LInstruction* instr() override { return instr_; }
4481
4482 private:
4483 LNumberTagU* instr_;
4484 };
4485
4486 Register input = ToRegister(instr->value());
4487 Register result = ToRegister(instr->result());
4488
4489 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4490 __ Branch(deferred->entry(), hi, input, Operand(Smi::kMaxValue));
4491 __ SmiTag(result, input);
4492 __ bind(deferred->exit());
4493 }
4494
4495
DoDeferredNumberTagIU(LInstruction * instr,LOperand * value,LOperand * temp1,LOperand * temp2,IntegerSignedness signedness)4496 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4497 LOperand* value,
4498 LOperand* temp1,
4499 LOperand* temp2,
4500 IntegerSignedness signedness) {
4501 Label done, slow;
4502 Register src = ToRegister(value);
4503 Register dst = ToRegister(instr->result());
4504 Register tmp1 = scratch0();
4505 Register tmp2 = ToRegister(temp1);
4506 Register tmp3 = ToRegister(temp2);
4507 DoubleRegister dbl_scratch = double_scratch0();
4508
4509 if (signedness == SIGNED_INT32) {
4510 // There was overflow, so bits 30 and 31 of the original integer
4511 // disagree. Try to allocate a heap number in new space and store
4512 // the value in there. If that fails, call the runtime system.
4513 if (dst.is(src)) {
4514 __ SmiUntag(src, dst);
4515 __ Xor(src, src, Operand(0x80000000));
4516 }
4517 __ mtc1(src, dbl_scratch);
4518 __ cvt_d_w(dbl_scratch, dbl_scratch);
4519 } else {
4520 __ mtc1(src, dbl_scratch);
4521 __ Cvt_d_uw(dbl_scratch, dbl_scratch);
4522 }
4523
4524 if (FLAG_inline_new) {
4525 __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
4526 __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow);
4527 __ Branch(&done);
4528 }
4529
4530 // Slow case: Call the runtime system to do the number allocation.
4531 __ bind(&slow);
4532 {
4533 // TODO(3095996): Put a valid pointer value in the stack slot where the
4534 // result register is stored, as this register is in the pointer map, but
4535 // contains an integer value.
4536 __ mov(dst, zero_reg);
4537 // Preserve the value of all registers.
4538 PushSafepointRegistersScope scope(this);
4539 // Reset the context register.
4540 if (!dst.is(cp)) {
4541 __ mov(cp, zero_reg);
4542 }
4543 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4544 RecordSafepointWithRegisters(
4545 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4546 __ StoreToSafepointRegisterSlot(v0, dst);
4547 }
4548
4549 // Done. Put the value in dbl_scratch into the value of the allocated heap
4550 // number.
4551 __ bind(&done);
4552 __ sdc1(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4553 }
4554
4555
DoNumberTagD(LNumberTagD * instr)4556 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4557 class DeferredNumberTagD final : public LDeferredCode {
4558 public:
4559 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4560 : LDeferredCode(codegen), instr_(instr) { }
4561 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4562 LInstruction* instr() override { return instr_; }
4563
4564 private:
4565 LNumberTagD* instr_;
4566 };
4567
4568 DoubleRegister input_reg = ToDoubleRegister(instr->value());
4569 Register scratch = scratch0();
4570 Register reg = ToRegister(instr->result());
4571 Register temp1 = ToRegister(instr->temp());
4572 Register temp2 = ToRegister(instr->temp2());
4573
4574 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4575 if (FLAG_inline_new) {
4576 __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
4577 // We want the untagged address first for performance
4578 __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
4579 } else {
4580 __ Branch(deferred->entry());
4581 }
4582 __ bind(deferred->exit());
4583 __ sdc1(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
4584 }
4585
4586
DoDeferredNumberTagD(LNumberTagD * instr)4587 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4588 // TODO(3095996): Get rid of this. For now, we need to make the
4589 // result register contain a valid pointer because it is already
4590 // contained in the register pointer map.
4591 Register reg = ToRegister(instr->result());
4592 __ mov(reg, zero_reg);
4593
4594 PushSafepointRegistersScope scope(this);
4595 // Reset the context register.
4596 if (!reg.is(cp)) {
4597 __ mov(cp, zero_reg);
4598 }
4599 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4600 RecordSafepointWithRegisters(
4601 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4602 __ StoreToSafepointRegisterSlot(v0, reg);
4603 }
4604
4605
DoSmiTag(LSmiTag * instr)4606 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4607 HChange* hchange = instr->hydrogen();
4608 Register input = ToRegister(instr->value());
4609 Register output = ToRegister(instr->result());
4610 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4611 hchange->value()->CheckFlag(HValue::kUint32)) {
4612 __ And(at, input, Operand(0x80000000));
4613 DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow, at, Operand(zero_reg));
4614 }
4615 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4616 !hchange->value()->CheckFlag(HValue::kUint32)) {
4617 __ SmiTagCheckOverflow(output, input, at);
4618 DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, at, Operand(zero_reg));
4619 } else {
4620 __ SmiTag(output, input);
4621 }
4622 }
4623
4624
DoSmiUntag(LSmiUntag * instr)4625 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4626 Register scratch = scratch0();
4627 Register input = ToRegister(instr->value());
4628 Register result = ToRegister(instr->result());
4629 if (instr->needs_check()) {
4630 STATIC_ASSERT(kHeapObjectTag == 1);
4631 // If the input is a HeapObject, value of scratch won't be zero.
4632 __ And(scratch, input, Operand(kHeapObjectTag));
4633 __ SmiUntag(result, input);
4634 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, scratch,
4635 Operand(zero_reg));
4636 } else {
4637 __ SmiUntag(result, input);
4638 }
4639 }
4640
4641
EmitNumberUntagD(LNumberUntagD * instr,Register input_reg,DoubleRegister result_reg,NumberUntagDMode mode)4642 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4643 DoubleRegister result_reg,
4644 NumberUntagDMode mode) {
4645 bool can_convert_undefined_to_nan = instr->truncating();
4646 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4647
4648 Register scratch = scratch0();
4649 Label convert, load_smi, done;
4650 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4651 // Smi check.
4652 __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
4653 // Heap number map check.
4654 __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4655 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
4656 if (can_convert_undefined_to_nan) {
4657 __ Branch(&convert, ne, scratch, Operand(at));
4658 } else {
4659 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber, scratch,
4660 Operand(at));
4661 }
4662 // Load heap number.
4663 __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4664 if (deoptimize_on_minus_zero) {
4665 __ mfc1(at, result_reg);
4666 __ Branch(&done, ne, at, Operand(zero_reg));
4667 __ mfhc1(scratch, result_reg); // Get exponent/sign bits.
4668 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, scratch,
4669 Operand(HeapNumber::kSignMask));
4670 }
4671 __ Branch(&done);
4672 if (can_convert_undefined_to_nan) {
4673 __ bind(&convert);
4674 // Convert undefined (and hole) to NaN.
4675 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4676 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined,
4677 input_reg, Operand(at));
4678 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4679 __ ldc1(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4680 __ Branch(&done);
4681 }
4682 } else {
4683 __ SmiUntag(scratch, input_reg);
4684 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4685 }
4686 // Smi to double register conversion
4687 __ bind(&load_smi);
4688 // scratch: untagged value of input_reg
4689 __ mtc1(scratch, result_reg);
4690 __ cvt_d_w(result_reg, result_reg);
4691 __ bind(&done);
4692 }
4693
4694
DoDeferredTaggedToI(LTaggedToI * instr)4695 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
4696 Register input_reg = ToRegister(instr->value());
4697 Register scratch1 = scratch0();
4698 Register scratch2 = ToRegister(instr->temp());
4699 DoubleRegister double_scratch = double_scratch0();
4700 DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
4701
4702 DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4703 DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4704
4705 Label done;
4706
4707 // The input is a tagged HeapObject.
4708 // Heap number map check.
4709 __ ld(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4710 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
4711 // This 'at' value and scratch1 map value are used for tests in both clauses
4712 // of the if.
4713
4714 if (instr->truncating()) {
4715 Label truncate;
4716 __ Branch(USE_DELAY_SLOT, &truncate, eq, scratch1, Operand(at));
4717 __ mov(scratch2, input_reg); // In delay slot.
4718 __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
4719 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotANumberOrOddball, scratch1,
4720 Operand(ODDBALL_TYPE));
4721 __ bind(&truncate);
4722 __ TruncateHeapNumberToI(input_reg, scratch2);
4723 } else {
4724 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber, scratch1,
4725 Operand(at));
4726
4727 // Load the double value.
4728 __ ldc1(double_scratch,
4729 FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4730
4731 Register except_flag = scratch2;
4732 __ EmitFPUTruncate(kRoundToZero,
4733 input_reg,
4734 double_scratch,
4735 scratch1,
4736 double_scratch2,
4737 except_flag,
4738 kCheckForInexactConversion);
4739
4740 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag,
4741 Operand(zero_reg));
4742
4743 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4744 __ Branch(&done, ne, input_reg, Operand(zero_reg));
4745
4746 __ mfhc1(scratch1, double_scratch); // Get exponent/sign bits.
4747 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
4748 DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch1,
4749 Operand(zero_reg));
4750 }
4751 }
4752 __ bind(&done);
4753 }
4754
4755
DoTaggedToI(LTaggedToI * instr)4756 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4757 class DeferredTaggedToI final : public LDeferredCode {
4758 public:
4759 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4760 : LDeferredCode(codegen), instr_(instr) { }
4761 void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
4762 LInstruction* instr() override { return instr_; }
4763
4764 private:
4765 LTaggedToI* instr_;
4766 };
4767
4768 LOperand* input = instr->value();
4769 DCHECK(input->IsRegister());
4770 DCHECK(input->Equals(instr->result()));
4771
4772 Register input_reg = ToRegister(input);
4773
4774 if (instr->hydrogen()->value()->representation().IsSmi()) {
4775 __ SmiUntag(input_reg);
4776 } else {
4777 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
4778
4779 // Let the deferred code handle the HeapObject case.
4780 __ JumpIfNotSmi(input_reg, deferred->entry());
4781
4782 // Smi to int32 conversion.
4783 __ SmiUntag(input_reg);
4784 __ bind(deferred->exit());
4785 }
4786 }
4787
4788
DoNumberUntagD(LNumberUntagD * instr)4789 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4790 LOperand* input = instr->value();
4791 DCHECK(input->IsRegister());
4792 LOperand* result = instr->result();
4793 DCHECK(result->IsDoubleRegister());
4794
4795 Register input_reg = ToRegister(input);
4796 DoubleRegister result_reg = ToDoubleRegister(result);
4797
4798 HValue* value = instr->hydrogen()->value();
4799 NumberUntagDMode mode = value->representation().IsSmi()
4800 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4801
4802 EmitNumberUntagD(instr, input_reg, result_reg, mode);
4803 }
4804
4805
DoDoubleToI(LDoubleToI * instr)4806 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4807 Register result_reg = ToRegister(instr->result());
4808 Register scratch1 = scratch0();
4809 DoubleRegister double_input = ToDoubleRegister(instr->value());
4810
4811 if (instr->truncating()) {
4812 __ TruncateDoubleToI(result_reg, double_input);
4813 } else {
4814 Register except_flag = LCodeGen::scratch1();
4815
4816 __ EmitFPUTruncate(kRoundToMinusInf,
4817 result_reg,
4818 double_input,
4819 scratch1,
4820 double_scratch0(),
4821 except_flag,
4822 kCheckForInexactConversion);
4823
4824 // Deopt if the operation did not succeed (except_flag != 0).
4825 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag,
4826 Operand(zero_reg));
4827
4828 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4829 Label done;
4830 __ Branch(&done, ne, result_reg, Operand(zero_reg));
4831 __ mfhc1(scratch1, double_input); // Get exponent/sign bits.
4832 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
4833 DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch1,
4834 Operand(zero_reg));
4835 __ bind(&done);
4836 }
4837 }
4838 }
4839
4840
DoDoubleToSmi(LDoubleToSmi * instr)4841 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4842 Register result_reg = ToRegister(instr->result());
4843 Register scratch1 = LCodeGen::scratch0();
4844 DoubleRegister double_input = ToDoubleRegister(instr->value());
4845
4846 if (instr->truncating()) {
4847 __ TruncateDoubleToI(result_reg, double_input);
4848 } else {
4849 Register except_flag = LCodeGen::scratch1();
4850
4851 __ EmitFPUTruncate(kRoundToMinusInf,
4852 result_reg,
4853 double_input,
4854 scratch1,
4855 double_scratch0(),
4856 except_flag,
4857 kCheckForInexactConversion);
4858
4859 // Deopt if the operation did not succeed (except_flag != 0).
4860 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag,
4861 Operand(zero_reg));
4862
4863 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4864 Label done;
4865 __ Branch(&done, ne, result_reg, Operand(zero_reg));
4866 __ mfhc1(scratch1, double_input); // Get exponent/sign bits.
4867 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
4868 DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch1,
4869 Operand(zero_reg));
4870 __ bind(&done);
4871 }
4872 }
4873 __ SmiTag(result_reg, result_reg);
4874 }
4875
4876
DoCheckSmi(LCheckSmi * instr)4877 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4878 LOperand* input = instr->value();
4879 __ SmiTst(ToRegister(input), at);
4880 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, at, Operand(zero_reg));
4881 }
4882
4883
DoCheckNonSmi(LCheckNonSmi * instr)4884 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4885 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4886 LOperand* input = instr->value();
4887 __ SmiTst(ToRegister(input), at);
4888 DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, at, Operand(zero_reg));
4889 }
4890 }
4891
4892
DoCheckArrayBufferNotNeutered(LCheckArrayBufferNotNeutered * instr)4893 void LCodeGen::DoCheckArrayBufferNotNeutered(
4894 LCheckArrayBufferNotNeutered* instr) {
4895 Register view = ToRegister(instr->view());
4896 Register scratch = scratch0();
4897
4898 __ ld(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
4899 __ lw(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
4900 __ And(at, scratch, 1 << JSArrayBuffer::WasNeutered::kShift);
4901 DeoptimizeIf(ne, instr, DeoptimizeReason::kOutOfBounds, at,
4902 Operand(zero_reg));
4903 }
4904
4905
DoCheckInstanceType(LCheckInstanceType * instr)4906 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4907 Register input = ToRegister(instr->value());
4908 Register scratch = scratch0();
4909
4910 __ GetObjectType(input, scratch, scratch);
4911
4912 if (instr->hydrogen()->is_interval_check()) {
4913 InstanceType first;
4914 InstanceType last;
4915 instr->hydrogen()->GetCheckInterval(&first, &last);
4916
4917 // If there is only one type in the interval check for equality.
4918 if (first == last) {
4919 DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType, scratch,
4920 Operand(first));
4921 } else {
4922 DeoptimizeIf(lo, instr, DeoptimizeReason::kWrongInstanceType, scratch,
4923 Operand(first));
4924 // Omit check for the last type.
4925 if (last != LAST_TYPE) {
4926 DeoptimizeIf(hi, instr, DeoptimizeReason::kWrongInstanceType, scratch,
4927 Operand(last));
4928 }
4929 }
4930 } else {
4931 uint8_t mask;
4932 uint8_t tag;
4933 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4934
4935 if (base::bits::IsPowerOfTwo32(mask)) {
4936 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
4937 __ And(at, scratch, mask);
4938 DeoptimizeIf(tag == 0 ? ne : eq, instr,
4939 DeoptimizeReason::kWrongInstanceType, at, Operand(zero_reg));
4940 } else {
4941 __ And(scratch, scratch, Operand(mask));
4942 DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType, scratch,
4943 Operand(tag));
4944 }
4945 }
4946 }
4947
4948
DoCheckValue(LCheckValue * instr)4949 void LCodeGen::DoCheckValue(LCheckValue* instr) {
4950 Register reg = ToRegister(instr->value());
4951 Handle<HeapObject> object = instr->hydrogen()->object().handle();
4952 AllowDeferredHandleDereference smi_check;
4953 if (isolate()->heap()->InNewSpace(*object)) {
4954 Register reg = ToRegister(instr->value());
4955 Handle<Cell> cell = isolate()->factory()->NewCell(object);
4956 __ li(at, Operand(cell));
4957 __ ld(at, FieldMemOperand(at, Cell::kValueOffset));
4958 DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch, reg, Operand(at));
4959 } else {
4960 DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch, reg,
4961 Operand(object));
4962 }
4963 }
4964
4965
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)4966 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
4967 {
4968 PushSafepointRegistersScope scope(this);
4969 __ push(object);
4970 __ mov(cp, zero_reg);
4971 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
4972 RecordSafepointWithRegisters(
4973 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
4974 __ StoreToSafepointRegisterSlot(v0, scratch0());
4975 }
4976 __ SmiTst(scratch0(), at);
4977 DeoptimizeIf(eq, instr, DeoptimizeReason::kInstanceMigrationFailed, at,
4978 Operand(zero_reg));
4979 }
4980
4981
DoCheckMaps(LCheckMaps * instr)4982 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
4983 class DeferredCheckMaps final : public LDeferredCode {
4984 public:
4985 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
4986 : LDeferredCode(codegen), instr_(instr), object_(object) {
4987 SetExit(check_maps());
4988 }
4989 void Generate() override {
4990 codegen()->DoDeferredInstanceMigration(instr_, object_);
4991 }
4992 Label* check_maps() { return &check_maps_; }
4993 LInstruction* instr() override { return instr_; }
4994
4995 private:
4996 LCheckMaps* instr_;
4997 Label check_maps_;
4998 Register object_;
4999 };
5000
5001 if (instr->hydrogen()->IsStabilityCheck()) {
5002 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5003 for (int i = 0; i < maps->size(); ++i) {
5004 AddStabilityDependency(maps->at(i).handle());
5005 }
5006 return;
5007 }
5008
5009 Register map_reg = scratch0();
5010 LOperand* input = instr->value();
5011 DCHECK(input->IsRegister());
5012 Register reg = ToRegister(input);
5013 __ ld(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
5014
5015 DeferredCheckMaps* deferred = NULL;
5016 if (instr->hydrogen()->HasMigrationTarget()) {
5017 deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
5018 __ bind(deferred->check_maps());
5019 }
5020
5021 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5022 Label success;
5023 for (int i = 0; i < maps->size() - 1; i++) {
5024 Handle<Map> map = maps->at(i).handle();
5025 __ CompareMapAndBranch(map_reg, map, &success, eq, &success);
5026 }
5027 Handle<Map> map = maps->at(maps->size() - 1).handle();
5028 // Do the CompareMap() directly within the Branch() and DeoptimizeIf().
5029 if (instr->hydrogen()->HasMigrationTarget()) {
5030 __ Branch(deferred->entry(), ne, map_reg, Operand(map));
5031 } else {
5032 DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap, map_reg, Operand(map));
5033 }
5034
5035 __ bind(&success);
5036 }
5037
5038
DoClampDToUint8(LClampDToUint8 * instr)5039 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
5040 DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
5041 Register result_reg = ToRegister(instr->result());
5042 DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
5043 __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
5044 }
5045
5046
DoClampIToUint8(LClampIToUint8 * instr)5047 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
5048 Register unclamped_reg = ToRegister(instr->unclamped());
5049 Register result_reg = ToRegister(instr->result());
5050 __ ClampUint8(result_reg, unclamped_reg);
5051 }
5052
5053
DoClampTToUint8(LClampTToUint8 * instr)5054 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
5055 Register scratch = scratch0();
5056 Register input_reg = ToRegister(instr->unclamped());
5057 Register result_reg = ToRegister(instr->result());
5058 DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
5059 Label is_smi, done, heap_number;
5060
5061 // Both smi and heap number cases are handled.
5062 __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi);
5063
5064 // Check for heap number
5065 __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
5066 __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map()));
5067
5068 // Check for undefined. Undefined is converted to zero for clamping
5069 // conversions.
5070 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined, input_reg,
5071 Operand(factory()->undefined_value()));
5072 __ mov(result_reg, zero_reg);
5073 __ jmp(&done);
5074
5075 // Heap number
5076 __ bind(&heap_number);
5077 __ ldc1(double_scratch0(), FieldMemOperand(input_reg,
5078 HeapNumber::kValueOffset));
5079 __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
5080 __ jmp(&done);
5081
5082 __ bind(&is_smi);
5083 __ ClampUint8(result_reg, scratch);
5084
5085 __ bind(&done);
5086 }
5087
5088
DoAllocate(LAllocate * instr)5089 void LCodeGen::DoAllocate(LAllocate* instr) {
5090 class DeferredAllocate final : public LDeferredCode {
5091 public:
5092 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
5093 : LDeferredCode(codegen), instr_(instr) { }
5094 void Generate() override { codegen()->DoDeferredAllocate(instr_); }
5095 LInstruction* instr() override { return instr_; }
5096
5097 private:
5098 LAllocate* instr_;
5099 };
5100
5101 DeferredAllocate* deferred =
5102 new(zone()) DeferredAllocate(this, instr);
5103
5104 Register result = ToRegister(instr->result());
5105 Register scratch = ToRegister(instr->temp1());
5106 Register scratch2 = ToRegister(instr->temp2());
5107
5108 // Allocate memory for the object.
5109 AllocationFlags flags = NO_ALLOCATION_FLAGS;
5110 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5111 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5112 }
5113 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5114 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5115 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5116 }
5117
5118 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
5119 flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
5120 }
5121 DCHECK(!instr->hydrogen()->IsAllocationFolded());
5122
5123 if (instr->size()->IsConstantOperand()) {
5124 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5125 CHECK(size <= kMaxRegularHeapObjectSize);
5126 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5127 } else {
5128 Register size = ToRegister(instr->size());
5129 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5130 }
5131
5132 __ bind(deferred->exit());
5133
5134 if (instr->hydrogen()->MustPrefillWithFiller()) {
5135 STATIC_ASSERT(kHeapObjectTag == 1);
5136 if (instr->size()->IsConstantOperand()) {
5137 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5138 __ li(scratch, Operand(size - kHeapObjectTag));
5139 } else {
5140 __ Dsubu(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
5141 }
5142 __ li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
5143 Label loop;
5144 __ bind(&loop);
5145 __ Dsubu(scratch, scratch, Operand(kPointerSize));
5146 __ Daddu(at, result, Operand(scratch));
5147 __ sd(scratch2, MemOperand(at));
5148 __ Branch(&loop, ge, scratch, Operand(zero_reg));
5149 }
5150 }
5151
5152
DoDeferredAllocate(LAllocate * instr)5153 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5154 Register result = ToRegister(instr->result());
5155
5156 // TODO(3095996): Get rid of this. For now, we need to make the
5157 // result register contain a valid pointer because it is already
5158 // contained in the register pointer map.
5159 __ mov(result, zero_reg);
5160
5161 PushSafepointRegistersScope scope(this);
5162 if (instr->size()->IsRegister()) {
5163 Register size = ToRegister(instr->size());
5164 DCHECK(!size.is(result));
5165 __ SmiTag(size);
5166 __ push(size);
5167 } else {
5168 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5169 if (size >= 0 && size <= Smi::kMaxValue) {
5170 __ li(v0, Operand(Smi::FromInt(size)));
5171 __ Push(v0);
5172 } else {
5173 // We should never get here at runtime => abort
5174 __ stop("invalid allocation size");
5175 return;
5176 }
5177 }
5178
5179 int flags = AllocateDoubleAlignFlag::encode(
5180 instr->hydrogen()->MustAllocateDoubleAligned());
5181 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5182 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5183 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
5184 } else {
5185 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5186 }
5187 __ li(v0, Operand(Smi::FromInt(flags)));
5188 __ Push(v0);
5189
5190 CallRuntimeFromDeferred(
5191 Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
5192 __ StoreToSafepointRegisterSlot(v0, result);
5193
5194 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
5195 AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
5196 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5197 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5198 allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
5199 }
5200 // If the allocation folding dominator allocate triggered a GC, allocation
5201 // happend in the runtime. We have to reset the top pointer to virtually
5202 // undo the allocation.
5203 ExternalReference allocation_top =
5204 AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
5205 Register top_address = scratch0();
5206 __ Dsubu(v0, v0, Operand(kHeapObjectTag));
5207 __ li(top_address, Operand(allocation_top));
5208 __ sd(v0, MemOperand(top_address));
5209 __ Daddu(v0, v0, Operand(kHeapObjectTag));
5210 }
5211 }
5212
DoFastAllocate(LFastAllocate * instr)5213 void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
5214 DCHECK(instr->hydrogen()->IsAllocationFolded());
5215 DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
5216 Register result = ToRegister(instr->result());
5217 Register scratch1 = ToRegister(instr->temp1());
5218 Register scratch2 = ToRegister(instr->temp2());
5219
5220 AllocationFlags flags = ALLOCATION_FOLDED;
5221 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5222 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5223 }
5224 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5225 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5226 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5227 }
5228 if (instr->size()->IsConstantOperand()) {
5229 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5230 CHECK(size <= kMaxRegularHeapObjectSize);
5231 __ FastAllocate(size, result, scratch1, scratch2, flags);
5232 } else {
5233 Register size = ToRegister(instr->size());
5234 __ FastAllocate(size, result, scratch1, scratch2, flags);
5235 }
5236 }
5237
5238
DoTypeof(LTypeof * instr)5239 void LCodeGen::DoTypeof(LTypeof* instr) {
5240 DCHECK(ToRegister(instr->value()).is(a3));
5241 DCHECK(ToRegister(instr->result()).is(v0));
5242 Label end, do_call;
5243 Register value_register = ToRegister(instr->value());
5244 __ JumpIfNotSmi(value_register, &do_call);
5245 __ li(v0, Operand(isolate()->factory()->number_string()));
5246 __ jmp(&end);
5247 __ bind(&do_call);
5248 Callable callable = CodeFactory::Typeof(isolate());
5249 CallCode(callable.code(), RelocInfo::CODE_TARGET, instr);
5250 __ bind(&end);
5251 }
5252
5253
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5254 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5255 Register input = ToRegister(instr->value());
5256
5257 Register cmp1 = no_reg;
5258 Operand cmp2 = Operand(no_reg);
5259
5260 Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
5261 instr->FalseLabel(chunk_),
5262 input,
5263 instr->type_literal(),
5264 &cmp1,
5265 &cmp2);
5266
5267 DCHECK(cmp1.is_valid());
5268 DCHECK(!cmp2.is_reg() || cmp2.rm().is_valid());
5269
5270 if (final_branch_condition != kNoCondition) {
5271 EmitBranch(instr, final_branch_condition, cmp1, cmp2);
5272 }
5273 }
5274
5275
EmitTypeofIs(Label * true_label,Label * false_label,Register input,Handle<String> type_name,Register * cmp1,Operand * cmp2)5276 Condition LCodeGen::EmitTypeofIs(Label* true_label,
5277 Label* false_label,
5278 Register input,
5279 Handle<String> type_name,
5280 Register* cmp1,
5281 Operand* cmp2) {
5282 // This function utilizes the delay slot heavily. This is used to load
5283 // values that are always usable without depending on the type of the input
5284 // register.
5285 Condition final_branch_condition = kNoCondition;
5286 Register scratch = scratch0();
5287 Factory* factory = isolate()->factory();
5288 if (String::Equals(type_name, factory->number_string())) {
5289 __ JumpIfSmi(input, true_label);
5290 __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset));
5291 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
5292 *cmp1 = input;
5293 *cmp2 = Operand(at);
5294 final_branch_condition = eq;
5295
5296 } else if (String::Equals(type_name, factory->string_string())) {
5297 __ JumpIfSmi(input, false_label);
5298 __ GetObjectType(input, input, scratch);
5299 *cmp1 = scratch;
5300 *cmp2 = Operand(FIRST_NONSTRING_TYPE);
5301 final_branch_condition = lt;
5302
5303 } else if (String::Equals(type_name, factory->symbol_string())) {
5304 __ JumpIfSmi(input, false_label);
5305 __ GetObjectType(input, input, scratch);
5306 *cmp1 = scratch;
5307 *cmp2 = Operand(SYMBOL_TYPE);
5308 final_branch_condition = eq;
5309
5310 } else if (String::Equals(type_name, factory->boolean_string())) {
5311 __ LoadRoot(at, Heap::kTrueValueRootIndex);
5312 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5313 __ LoadRoot(at, Heap::kFalseValueRootIndex);
5314 *cmp1 = at;
5315 *cmp2 = Operand(input);
5316 final_branch_condition = eq;
5317
5318 } else if (String::Equals(type_name, factory->undefined_string())) {
5319 __ LoadRoot(at, Heap::kNullValueRootIndex);
5320 __ Branch(USE_DELAY_SLOT, false_label, eq, at, Operand(input));
5321 // The first instruction of JumpIfSmi is an And - it is safe in the delay
5322 // slot.
5323 __ JumpIfSmi(input, false_label);
5324 // Check for undetectable objects => true.
5325 __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset));
5326 __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
5327 __ And(at, at, 1 << Map::kIsUndetectable);
5328 *cmp1 = at;
5329 *cmp2 = Operand(zero_reg);
5330 final_branch_condition = ne;
5331
5332 } else if (String::Equals(type_name, factory->function_string())) {
5333 __ JumpIfSmi(input, false_label);
5334 __ ld(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5335 __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5336 __ And(scratch, scratch,
5337 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5338 *cmp1 = scratch;
5339 *cmp2 = Operand(1 << Map::kIsCallable);
5340 final_branch_condition = eq;
5341
5342 } else if (String::Equals(type_name, factory->object_string())) {
5343 __ JumpIfSmi(input, false_label);
5344 __ LoadRoot(at, Heap::kNullValueRootIndex);
5345 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5346 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5347 __ GetObjectType(input, scratch, scratch1());
5348 __ Branch(false_label, lt, scratch1(), Operand(FIRST_JS_RECEIVER_TYPE));
5349 // Check for callable or undetectable objects => false.
5350 __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5351 __ And(at, scratch,
5352 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5353 *cmp1 = at;
5354 *cmp2 = Operand(zero_reg);
5355 final_branch_condition = eq;
5356
5357 // clang-format off
5358 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5359 } else if (String::Equals(type_name, factory->type##_string())) { \
5360 __ JumpIfSmi(input, false_label); \
5361 __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset)); \
5362 __ LoadRoot(at, Heap::k##Type##MapRootIndex); \
5363 *cmp1 = input; \
5364 *cmp2 = Operand(at); \
5365 final_branch_condition = eq;
5366 SIMD128_TYPES(SIMD128_TYPE)
5367 #undef SIMD128_TYPE
5368 // clang-format on
5369
5370
5371 } else {
5372 *cmp1 = at;
5373 *cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion.
5374 __ Branch(false_label);
5375 }
5376
5377 return final_branch_condition;
5378 }
5379
5380
EnsureSpaceForLazyDeopt(int space_needed)5381 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5382 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5383 // Ensure that we have enough space after the previous lazy-bailout
5384 // instruction for patching the code here.
5385 int current_pc = masm()->pc_offset();
5386 if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5387 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5388 DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
5389 while (padding_size > 0) {
5390 __ nop();
5391 padding_size -= Assembler::kInstrSize;
5392 }
5393 }
5394 }
5395 last_lazy_deopt_pc_ = masm()->pc_offset();
5396 }
5397
5398
DoLazyBailout(LLazyBailout * instr)5399 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5400 last_lazy_deopt_pc_ = masm()->pc_offset();
5401 DCHECK(instr->HasEnvironment());
5402 LEnvironment* env = instr->environment();
5403 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5404 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5405 }
5406
5407
DoDeoptimize(LDeoptimize * instr)5408 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5409 Deoptimizer::BailoutType type = instr->hydrogen()->type();
5410 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5411 // needed return address), even though the implementation of LAZY and EAGER is
5412 // now identical. When LAZY is eventually completely folded into EAGER, remove
5413 // the special case below.
5414 if (info()->IsStub() && type == Deoptimizer::EAGER) {
5415 type = Deoptimizer::LAZY;
5416 }
5417
5418 DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type, zero_reg,
5419 Operand(zero_reg));
5420 }
5421
5422
DoDummy(LDummy * instr)5423 void LCodeGen::DoDummy(LDummy* instr) {
5424 // Nothing to see here, move on!
5425 }
5426
5427
DoDummyUse(LDummyUse * instr)5428 void LCodeGen::DoDummyUse(LDummyUse* instr) {
5429 // Nothing to see here, move on!
5430 }
5431
5432
DoDeferredStackCheck(LStackCheck * instr)5433 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5434 PushSafepointRegistersScope scope(this);
5435 LoadContextFromDeferred(instr->context());
5436 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5437 RecordSafepointWithLazyDeopt(
5438 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5439 DCHECK(instr->HasEnvironment());
5440 LEnvironment* env = instr->environment();
5441 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5442 }
5443
5444
DoStackCheck(LStackCheck * instr)5445 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5446 class DeferredStackCheck final : public LDeferredCode {
5447 public:
5448 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5449 : LDeferredCode(codegen), instr_(instr) { }
5450 void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5451 LInstruction* instr() override { return instr_; }
5452
5453 private:
5454 LStackCheck* instr_;
5455 };
5456
5457 DCHECK(instr->HasEnvironment());
5458 LEnvironment* env = instr->environment();
5459 // There is no LLazyBailout instruction for stack-checks. We have to
5460 // prepare for lazy deoptimization explicitly here.
5461 if (instr->hydrogen()->is_function_entry()) {
5462 // Perform stack overflow check.
5463 Label done;
5464 __ LoadRoot(at, Heap::kStackLimitRootIndex);
5465 __ Branch(&done, hs, sp, Operand(at));
5466 DCHECK(instr->context()->IsRegister());
5467 DCHECK(ToRegister(instr->context()).is(cp));
5468 CallCode(isolate()->builtins()->StackCheck(),
5469 RelocInfo::CODE_TARGET,
5470 instr);
5471 __ bind(&done);
5472 } else {
5473 DCHECK(instr->hydrogen()->is_backwards_branch());
5474 // Perform stack overflow check if this goto needs it before jumping.
5475 DeferredStackCheck* deferred_stack_check =
5476 new(zone()) DeferredStackCheck(this, instr);
5477 __ LoadRoot(at, Heap::kStackLimitRootIndex);
5478 __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at));
5479 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5480 __ bind(instr->done_label());
5481 deferred_stack_check->SetExit(instr->done_label());
5482 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5483 // Don't record a deoptimization index for the safepoint here.
5484 // This will be done explicitly when emitting call and the safepoint in
5485 // the deferred code.
5486 }
5487 }
5488
5489
DoOsrEntry(LOsrEntry * instr)5490 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5491 // This is a pseudo-instruction that ensures that the environment here is
5492 // properly registered for deoptimization and records the assembler's PC
5493 // offset.
5494 LEnvironment* environment = instr->environment();
5495
5496 // If the environment were already registered, we would have no way of
5497 // backpatching it with the spill slot operands.
5498 DCHECK(!environment->HasBeenRegistered());
5499 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5500
5501 GenerateOsrPrologue();
5502 }
5503
5504
DoForInPrepareMap(LForInPrepareMap * instr)5505 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5506 Register result = ToRegister(instr->result());
5507 Register object = ToRegister(instr->object());
5508
5509 Label use_cache, call_runtime;
5510 DCHECK(object.is(a0));
5511 __ CheckEnumCache(&call_runtime);
5512
5513 __ ld(result, FieldMemOperand(object, HeapObject::kMapOffset));
5514 __ Branch(&use_cache);
5515
5516 // Get the set of properties to enumerate.
5517 __ bind(&call_runtime);
5518 __ push(object);
5519 CallRuntime(Runtime::kForInEnumerate, instr);
5520 __ bind(&use_cache);
5521 }
5522
5523
DoForInCacheArray(LForInCacheArray * instr)5524 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5525 Register map = ToRegister(instr->map());
5526 Register result = ToRegister(instr->result());
5527 Label load_cache, done;
5528 __ EnumLength(result, map);
5529 __ Branch(&load_cache, ne, result, Operand(Smi::kZero));
5530 __ li(result, Operand(isolate()->factory()->empty_fixed_array()));
5531 __ jmp(&done);
5532
5533 __ bind(&load_cache);
5534 __ LoadInstanceDescriptors(map, result);
5535 __ ld(result,
5536 FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
5537 __ ld(result,
5538 FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5539 DeoptimizeIf(eq, instr, DeoptimizeReason::kNoCache, result,
5540 Operand(zero_reg));
5541
5542 __ bind(&done);
5543 }
5544
5545
DoCheckMapValue(LCheckMapValue * instr)5546 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5547 Register object = ToRegister(instr->value());
5548 Register map = ToRegister(instr->map());
5549 __ ld(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5550 DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap, map,
5551 Operand(scratch0()));
5552 }
5553
5554
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register result,Register object,Register index)5555 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5556 Register result,
5557 Register object,
5558 Register index) {
5559 PushSafepointRegistersScope scope(this);
5560 __ Push(object, index);
5561 __ mov(cp, zero_reg);
5562 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5563 RecordSafepointWithRegisters(
5564 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5565 __ StoreToSafepointRegisterSlot(v0, result);
5566 }
5567
5568
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5569 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5570 class DeferredLoadMutableDouble final : public LDeferredCode {
5571 public:
5572 DeferredLoadMutableDouble(LCodeGen* codegen,
5573 LLoadFieldByIndex* instr,
5574 Register result,
5575 Register object,
5576 Register index)
5577 : LDeferredCode(codegen),
5578 instr_(instr),
5579 result_(result),
5580 object_(object),
5581 index_(index) {
5582 }
5583 void Generate() override {
5584 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5585 }
5586 LInstruction* instr() override { return instr_; }
5587
5588 private:
5589 LLoadFieldByIndex* instr_;
5590 Register result_;
5591 Register object_;
5592 Register index_;
5593 };
5594
5595 Register object = ToRegister(instr->object());
5596 Register index = ToRegister(instr->index());
5597 Register result = ToRegister(instr->result());
5598 Register scratch = scratch0();
5599
5600 DeferredLoadMutableDouble* deferred;
5601 deferred = new(zone()) DeferredLoadMutableDouble(
5602 this, instr, result, object, index);
5603
5604 Label out_of_object, done;
5605
5606 __ And(scratch, index, Operand(Smi::FromInt(1)));
5607 __ Branch(deferred->entry(), ne, scratch, Operand(zero_reg));
5608 __ dsra(index, index, 1);
5609
5610 __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg));
5611 __ SmiScale(scratch, index, kPointerSizeLog2); // In delay slot.
5612 __ Daddu(scratch, object, scratch);
5613 __ ld(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5614
5615 __ Branch(&done);
5616
5617 __ bind(&out_of_object);
5618 __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5619 // Index is equal to negated out of object property index plus 1.
5620 __ Dsubu(scratch, result, scratch);
5621 __ ld(result, FieldMemOperand(scratch,
5622 FixedArray::kHeaderSize - kPointerSize));
5623 __ bind(deferred->exit());
5624 __ bind(&done);
5625 }
5626
5627 #undef __
5628
5629 } // namespace internal
5630 } // namespace v8
5631