1 // Copyright 2014 the V8 project authors. All rights reserved.
2 //
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5
6 #include "src/crankshaft/s390/lithium-codegen-s390.h"
7
8 #include "src/base/bits.h"
9 #include "src/code-factory.h"
10 #include "src/code-stubs.h"
11 #include "src/crankshaft/hydrogen-osr.h"
12 #include "src/crankshaft/s390/lithium-gap-resolver-s390.h"
13 #include "src/ic/ic.h"
14 #include "src/ic/stub-cache.h"
15
16 namespace v8 {
17 namespace internal {
18
19 class SafepointGenerator final : public CallWrapper {
20 public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)21 SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers,
22 Safepoint::DeoptMode mode)
23 : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) {}
~SafepointGenerator()24 virtual ~SafepointGenerator() {}
25
BeforeCall(int call_size) const26 void BeforeCall(int call_size) const override {}
27
AfterCall() const28 void AfterCall() const override {
29 codegen_->RecordSafepoint(pointers_, deopt_mode_);
30 }
31
32 private:
33 LCodeGen* codegen_;
34 LPointerMap* pointers_;
35 Safepoint::DeoptMode deopt_mode_;
36 };
37
PushSafepointRegistersScope(LCodeGen * codegen)38 LCodeGen::PushSafepointRegistersScope::PushSafepointRegistersScope(
39 LCodeGen* codegen)
40 : codegen_(codegen) {
41 DCHECK(codegen_->info()->is_calling());
42 DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple);
43 codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters;
44 StoreRegistersStateStub stub(codegen_->isolate());
45 codegen_->masm_->CallStub(&stub);
46 }
47
~PushSafepointRegistersScope()48 LCodeGen::PushSafepointRegistersScope::~PushSafepointRegistersScope() {
49 DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters);
50 RestoreRegistersStateStub stub(codegen_->isolate());
51 codegen_->masm_->CallStub(&stub);
52 codegen_->expected_safepoint_kind_ = Safepoint::kSimple;
53 }
54
55 #define __ masm()->
56
GenerateCode()57 bool LCodeGen::GenerateCode() {
58 LPhase phase("Z_Code generation", chunk());
59 DCHECK(is_unused());
60 status_ = GENERATING;
61
62 // Open a frame scope to indicate that there is a frame on the stack. The
63 // NONE indicates that the scope shouldn't actually generate code to set up
64 // the frame (that is done in GeneratePrologue).
65 FrameScope frame_scope(masm_, StackFrame::NONE);
66
67 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
68 GenerateJumpTable() && GenerateSafepointTable();
69 }
70
FinishCode(Handle<Code> code)71 void LCodeGen::FinishCode(Handle<Code> code) {
72 DCHECK(is_done());
73 code->set_stack_slots(GetTotalFrameSlotCount());
74 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
75 PopulateDeoptimizationData(code);
76 }
77
SaveCallerDoubles()78 void LCodeGen::SaveCallerDoubles() {
79 DCHECK(info()->saves_caller_doubles());
80 DCHECK(NeedsEagerFrame());
81 Comment(";;; Save clobbered callee double registers");
82 int count = 0;
83 BitVector* doubles = chunk()->allocated_double_registers();
84 BitVector::Iterator save_iterator(doubles);
85 while (!save_iterator.Done()) {
86 __ StoreDouble(DoubleRegister::from_code(save_iterator.Current()),
87 MemOperand(sp, count * kDoubleSize));
88 save_iterator.Advance();
89 count++;
90 }
91 }
92
RestoreCallerDoubles()93 void LCodeGen::RestoreCallerDoubles() {
94 DCHECK(info()->saves_caller_doubles());
95 DCHECK(NeedsEagerFrame());
96 Comment(";;; Restore clobbered callee double registers");
97 BitVector* doubles = chunk()->allocated_double_registers();
98 BitVector::Iterator save_iterator(doubles);
99 int count = 0;
100 while (!save_iterator.Done()) {
101 __ LoadDouble(DoubleRegister::from_code(save_iterator.Current()),
102 MemOperand(sp, count * kDoubleSize));
103 save_iterator.Advance();
104 count++;
105 }
106 }
107
GeneratePrologue()108 bool LCodeGen::GeneratePrologue() {
109 DCHECK(is_generating());
110
111 if (info()->IsOptimizing()) {
112 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
113
114 // r3: Callee's JS function.
115 // cp: Callee's context.
116 // fp: Caller's frame pointer.
117 // lr: Caller's pc.
118 // ip: Our own function entry (required by the prologue)
119 }
120
121 int prologue_offset = masm_->pc_offset();
122
123 if (prologue_offset) {
124 // Prologue logic requires its starting address in ip and the
125 // corresponding offset from the function entry. Need to add
126 // 4 bytes for the size of AHI/AGHI that AddP expands into.
127 prologue_offset += sizeof(FourByteInstr);
128 __ AddP(ip, ip, Operand(prologue_offset));
129 }
130 info()->set_prologue_offset(prologue_offset);
131 if (NeedsEagerFrame()) {
132 if (info()->IsStub()) {
133 __ StubPrologue(StackFrame::STUB, ip, prologue_offset);
134 } else {
135 __ Prologue(info()->GeneratePreagedPrologue(), ip, prologue_offset);
136 }
137 frame_is_built_ = true;
138 }
139
140 // Reserve space for the stack slots needed by the code.
141 int slots = GetStackSlotCount();
142 if (slots > 0) {
143 __ lay(sp, MemOperand(sp, -(slots * kPointerSize)));
144 if (FLAG_debug_code) {
145 __ Push(r2, r3);
146 __ mov(r2, Operand(slots * kPointerSize));
147 __ mov(r3, Operand(kSlotsZapValue));
148 Label loop;
149 __ bind(&loop);
150 __ StoreP(r3, MemOperand(sp, r2, kPointerSize));
151 __ lay(r2, MemOperand(r2, -kPointerSize));
152 __ CmpP(r2, Operand::Zero());
153 __ bne(&loop);
154 __ Pop(r2, r3);
155 }
156 }
157
158 if (info()->saves_caller_doubles()) {
159 SaveCallerDoubles();
160 }
161 return !is_aborted();
162 }
163
DoPrologue(LPrologue * instr)164 void LCodeGen::DoPrologue(LPrologue* instr) {
165 Comment(";;; Prologue begin");
166
167 // Possibly allocate a local context.
168 if (info()->scope()->NeedsContext()) {
169 Comment(";;; Allocate local context");
170 bool need_write_barrier = true;
171 // Argument to NewContext is the function, which is in r3.
172 int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
173 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
174 if (info()->scope()->is_script_scope()) {
175 __ push(r3);
176 __ Push(info()->scope()->scope_info());
177 __ CallRuntime(Runtime::kNewScriptContext);
178 deopt_mode = Safepoint::kLazyDeopt;
179 } else {
180 if (slots <= FastNewFunctionContextStub::kMaximumSlots) {
181 FastNewFunctionContextStub stub(isolate());
182 __ mov(FastNewFunctionContextDescriptor::SlotsRegister(),
183 Operand(slots));
184 __ CallStub(&stub);
185 // Result of FastNewFunctionContextStub is always in new space.
186 need_write_barrier = false;
187 } else {
188 __ push(r3);
189 __ CallRuntime(Runtime::kNewFunctionContext);
190 }
191 }
192 RecordSafepoint(deopt_mode);
193
194 // Context is returned in both r2 and cp. It replaces the context
195 // passed to us. It's saved in the stack and kept live in cp.
196 __ LoadRR(cp, r2);
197 __ StoreP(r2, MemOperand(fp, StandardFrameConstants::kContextOffset));
198 // Copy any necessary parameters into the context.
199 int num_parameters = info()->scope()->num_parameters();
200 int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
201 for (int i = first_parameter; i < num_parameters; i++) {
202 Variable* var = (i == -1) ? info()->scope()->receiver()
203 : info()->scope()->parameter(i);
204 if (var->IsContextSlot()) {
205 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
206 (num_parameters - 1 - i) * kPointerSize;
207 // Load parameter from stack.
208 __ LoadP(r2, MemOperand(fp, parameter_offset));
209 // Store it in the context.
210 MemOperand target = ContextMemOperand(cp, var->index());
211 __ StoreP(r2, target);
212 // Update the write barrier. This clobbers r5 and r2.
213 if (need_write_barrier) {
214 __ RecordWriteContextSlot(cp, target.offset(), r2, r5,
215 GetLinkRegisterState(), kSaveFPRegs);
216 } else if (FLAG_debug_code) {
217 Label done;
218 __ JumpIfInNewSpace(cp, r2, &done);
219 __ Abort(kExpectedNewSpaceObject);
220 __ bind(&done);
221 }
222 }
223 }
224 Comment(";;; End allocate local context");
225 }
226
227 Comment(";;; Prologue end");
228 }
229
GenerateOsrPrologue()230 void LCodeGen::GenerateOsrPrologue() {
231 // Generate the OSR entry prologue at the first unknown OSR value, or if there
232 // are none, at the OSR entrypoint instruction.
233 if (osr_pc_offset_ >= 0) return;
234
235 osr_pc_offset_ = masm()->pc_offset();
236
237 // Adjust the frame size, subsuming the unoptimized frame into the
238 // optimized frame.
239 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
240 DCHECK(slots >= 0);
241 __ lay(sp, MemOperand(sp, -slots * kPointerSize));
242 }
243
GenerateBodyInstructionPre(LInstruction * instr)244 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
245 if (instr->IsCall()) {
246 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
247 }
248 if (!instr->IsLazyBailout() && !instr->IsGap()) {
249 safepoints_.BumpLastLazySafepointIndex();
250 }
251 }
252
GenerateDeferredCode()253 bool LCodeGen::GenerateDeferredCode() {
254 DCHECK(is_generating());
255 if (deferred_.length() > 0) {
256 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
257 LDeferredCode* code = deferred_[i];
258
259 HValue* value =
260 instructions_->at(code->instruction_index())->hydrogen_value();
261 RecordAndWritePosition(value->position());
262
263 Comment(
264 ";;; <@%d,#%d> "
265 "-------------------- Deferred %s --------------------",
266 code->instruction_index(), code->instr()->hydrogen_value()->id(),
267 code->instr()->Mnemonic());
268 __ bind(code->entry());
269 if (NeedsDeferredFrame()) {
270 Comment(";;; Build frame");
271 DCHECK(!frame_is_built_);
272 DCHECK(info()->IsStub());
273 frame_is_built_ = true;
274 __ LoadSmiLiteral(scratch0(), Smi::FromInt(StackFrame::STUB));
275 __ PushCommonFrame(scratch0());
276 Comment(";;; Deferred code");
277 }
278 code->Generate();
279 if (NeedsDeferredFrame()) {
280 Comment(";;; Destroy frame");
281 DCHECK(frame_is_built_);
282 __ PopCommonFrame(scratch0());
283 frame_is_built_ = false;
284 }
285 __ b(code->exit());
286 }
287 }
288
289 return !is_aborted();
290 }
291
GenerateJumpTable()292 bool LCodeGen::GenerateJumpTable() {
293 // Check that the jump table is accessible from everywhere in the function
294 // code, i.e. that offsets in halfworld to the table can be encoded in the
295 // 32-bit signed immediate of a branch instruction.
296 // To simplify we consider the code size from the first instruction to the
297 // end of the jump table. We also don't consider the pc load delta.
298 // Each entry in the jump table generates one instruction and inlines one
299 // 32bit data after it.
300 // TODO(joransiu): The Int24 condition can likely be relaxed for S390
301 if (!is_int24(masm()->pc_offset() + jump_table_.length() * 7)) {
302 Abort(kGeneratedCodeIsTooLarge);
303 }
304
305 if (jump_table_.length() > 0) {
306 Label needs_frame, call_deopt_entry;
307
308 Comment(";;; -------------------- Jump table --------------------");
309 Address base = jump_table_[0].address;
310
311 Register entry_offset = scratch0();
312
313 int length = jump_table_.length();
314 for (int i = 0; i < length; i++) {
315 Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
316 __ bind(&table_entry->label);
317
318 DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type);
319 Address entry = table_entry->address;
320 DeoptComment(table_entry->deopt_info);
321
322 // Second-level deopt table entries are contiguous and small, so instead
323 // of loading the full, absolute address of each one, load an immediate
324 // offset which will be added to the base address later.
325 __ mov(entry_offset, Operand(entry - base));
326
327 if (table_entry->needs_frame) {
328 DCHECK(!info()->saves_caller_doubles());
329 Comment(";;; call deopt with frame");
330 __ PushCommonFrame();
331 __ b(r14, &needs_frame);
332 } else {
333 __ b(r14, &call_deopt_entry);
334 }
335 }
336
337 if (needs_frame.is_linked()) {
338 __ bind(&needs_frame);
339 // This variant of deopt can only be used with stubs. Since we don't
340 // have a function pointer to install in the stack frame that we're
341 // building, install a special marker there instead.
342 DCHECK(info()->IsStub());
343 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::STUB));
344 __ push(ip);
345 DCHECK(info()->IsStub());
346 }
347
348 Comment(";;; call deopt");
349 __ bind(&call_deopt_entry);
350
351 if (info()->saves_caller_doubles()) {
352 DCHECK(info()->IsStub());
353 RestoreCallerDoubles();
354 }
355
356 // Add the base address to the offset previously loaded in entry_offset.
357 __ mov(ip, Operand(ExternalReference::ForDeoptEntry(base)));
358 __ AddP(ip, entry_offset, ip);
359 __ Jump(ip);
360 }
361
362 // The deoptimization jump table is the last part of the instruction
363 // sequence. Mark the generated code as done unless we bailed out.
364 if (!is_aborted()) status_ = DONE;
365 return !is_aborted();
366 }
367
GenerateSafepointTable()368 bool LCodeGen::GenerateSafepointTable() {
369 DCHECK(is_done());
370 safepoints_.Emit(masm(), GetTotalFrameSlotCount());
371 return !is_aborted();
372 }
373
ToRegister(int code) const374 Register LCodeGen::ToRegister(int code) const {
375 return Register::from_code(code);
376 }
377
ToDoubleRegister(int code) const378 DoubleRegister LCodeGen::ToDoubleRegister(int code) const {
379 return DoubleRegister::from_code(code);
380 }
381
ToRegister(LOperand * op) const382 Register LCodeGen::ToRegister(LOperand* op) const {
383 DCHECK(op->IsRegister());
384 return ToRegister(op->index());
385 }
386
EmitLoadRegister(LOperand * op,Register scratch)387 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
388 if (op->IsRegister()) {
389 return ToRegister(op->index());
390 } else if (op->IsConstantOperand()) {
391 LConstantOperand* const_op = LConstantOperand::cast(op);
392 HConstant* constant = chunk_->LookupConstant(const_op);
393 Handle<Object> literal = constant->handle(isolate());
394 Representation r = chunk_->LookupLiteralRepresentation(const_op);
395 if (r.IsInteger32()) {
396 AllowDeferredHandleDereference get_number;
397 DCHECK(literal->IsNumber());
398 __ LoadIntLiteral(scratch, static_cast<int32_t>(literal->Number()));
399 } else if (r.IsDouble()) {
400 Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
401 } else {
402 DCHECK(r.IsSmiOrTagged());
403 __ Move(scratch, literal);
404 }
405 return scratch;
406 } else if (op->IsStackSlot()) {
407 __ LoadP(scratch, ToMemOperand(op));
408 return scratch;
409 }
410 UNREACHABLE();
411 return scratch;
412 }
413
EmitLoadIntegerConstant(LConstantOperand * const_op,Register dst)414 void LCodeGen::EmitLoadIntegerConstant(LConstantOperand* const_op,
415 Register dst) {
416 DCHECK(IsInteger32(const_op));
417 HConstant* constant = chunk_->LookupConstant(const_op);
418 int32_t value = constant->Integer32Value();
419 if (IsSmi(const_op)) {
420 __ LoadSmiLiteral(dst, Smi::FromInt(value));
421 } else {
422 __ LoadIntLiteral(dst, value);
423 }
424 }
425
ToDoubleRegister(LOperand * op) const426 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
427 DCHECK(op->IsDoubleRegister());
428 return ToDoubleRegister(op->index());
429 }
430
ToHandle(LConstantOperand * op) const431 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
432 HConstant* constant = chunk_->LookupConstant(op);
433 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
434 return constant->handle(isolate());
435 }
436
IsInteger32(LConstantOperand * op) const437 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
438 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
439 }
440
IsSmi(LConstantOperand * op) const441 bool LCodeGen::IsSmi(LConstantOperand* op) const {
442 return chunk_->LookupLiteralRepresentation(op).IsSmi();
443 }
444
ToInteger32(LConstantOperand * op) const445 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
446 return ToRepresentation(op, Representation::Integer32());
447 }
448
ToRepresentation(LConstantOperand * op,const Representation & r) const449 intptr_t LCodeGen::ToRepresentation(LConstantOperand* op,
450 const Representation& r) const {
451 HConstant* constant = chunk_->LookupConstant(op);
452 int32_t value = constant->Integer32Value();
453 if (r.IsInteger32()) return value;
454 DCHECK(r.IsSmiOrTagged());
455 return reinterpret_cast<intptr_t>(Smi::FromInt(value));
456 }
457
ToSmi(LConstantOperand * op) const458 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
459 HConstant* constant = chunk_->LookupConstant(op);
460 return Smi::FromInt(constant->Integer32Value());
461 }
462
ToDouble(LConstantOperand * op) const463 double LCodeGen::ToDouble(LConstantOperand* op) const {
464 HConstant* constant = chunk_->LookupConstant(op);
465 DCHECK(constant->HasDoubleValue());
466 return constant->DoubleValue();
467 }
468
ToOperand(LOperand * op)469 Operand LCodeGen::ToOperand(LOperand* op) {
470 if (op->IsConstantOperand()) {
471 LConstantOperand* const_op = LConstantOperand::cast(op);
472 HConstant* constant = chunk()->LookupConstant(const_op);
473 Representation r = chunk_->LookupLiteralRepresentation(const_op);
474 if (r.IsSmi()) {
475 DCHECK(constant->HasSmiValue());
476 return Operand(Smi::FromInt(constant->Integer32Value()));
477 } else if (r.IsInteger32()) {
478 DCHECK(constant->HasInteger32Value());
479 return Operand(constant->Integer32Value());
480 } else if (r.IsDouble()) {
481 Abort(kToOperandUnsupportedDoubleImmediate);
482 }
483 DCHECK(r.IsTagged());
484 return Operand(constant->handle(isolate()));
485 } else if (op->IsRegister()) {
486 return Operand(ToRegister(op));
487 } else if (op->IsDoubleRegister()) {
488 Abort(kToOperandIsDoubleRegisterUnimplemented);
489 return Operand::Zero();
490 }
491 // Stack slots not implemented, use ToMemOperand instead.
492 UNREACHABLE();
493 return Operand::Zero();
494 }
495
ArgumentsOffsetWithoutFrame(int index)496 static int ArgumentsOffsetWithoutFrame(int index) {
497 DCHECK(index < 0);
498 return -(index + 1) * kPointerSize;
499 }
500
ToMemOperand(LOperand * op) const501 MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
502 DCHECK(!op->IsRegister());
503 DCHECK(!op->IsDoubleRegister());
504 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
505 if (NeedsEagerFrame()) {
506 return MemOperand(fp, FrameSlotToFPOffset(op->index()));
507 } else {
508 // Retrieve parameter without eager stack-frame relative to the
509 // stack-pointer.
510 return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
511 }
512 }
513
ToHighMemOperand(LOperand * op) const514 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
515 DCHECK(op->IsDoubleStackSlot());
516 if (NeedsEagerFrame()) {
517 return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize);
518 } else {
519 // Retrieve parameter without eager stack-frame relative to the
520 // stack-pointer.
521 return MemOperand(sp,
522 ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
523 }
524 }
525
WriteTranslation(LEnvironment * environment,Translation * translation)526 void LCodeGen::WriteTranslation(LEnvironment* environment,
527 Translation* translation) {
528 if (environment == NULL) return;
529
530 // The translation includes one command per value in the environment.
531 int translation_size = environment->translation_size();
532
533 WriteTranslation(environment->outer(), translation);
534 WriteTranslationFrame(environment, translation);
535
536 int object_index = 0;
537 int dematerialized_index = 0;
538 for (int i = 0; i < translation_size; ++i) {
539 LOperand* value = environment->values()->at(i);
540 AddToTranslation(
541 environment, translation, value, environment->HasTaggedValueAt(i),
542 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
543 }
544 }
545
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)546 void LCodeGen::AddToTranslation(LEnvironment* environment,
547 Translation* translation, LOperand* op,
548 bool is_tagged, bool is_uint32,
549 int* object_index_pointer,
550 int* dematerialized_index_pointer) {
551 if (op == LEnvironment::materialization_marker()) {
552 int object_index = (*object_index_pointer)++;
553 if (environment->ObjectIsDuplicateAt(object_index)) {
554 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
555 translation->DuplicateObject(dupe_of);
556 return;
557 }
558 int object_length = environment->ObjectLengthAt(object_index);
559 if (environment->ObjectIsArgumentsAt(object_index)) {
560 translation->BeginArgumentsObject(object_length);
561 } else {
562 translation->BeginCapturedObject(object_length);
563 }
564 int dematerialized_index = *dematerialized_index_pointer;
565 int env_offset = environment->translation_size() + dematerialized_index;
566 *dematerialized_index_pointer += object_length;
567 for (int i = 0; i < object_length; ++i) {
568 LOperand* value = environment->values()->at(env_offset + i);
569 AddToTranslation(environment, translation, value,
570 environment->HasTaggedValueAt(env_offset + i),
571 environment->HasUint32ValueAt(env_offset + i),
572 object_index_pointer, dematerialized_index_pointer);
573 }
574 return;
575 }
576
577 if (op->IsStackSlot()) {
578 int index = op->index();
579 if (is_tagged) {
580 translation->StoreStackSlot(index);
581 } else if (is_uint32) {
582 translation->StoreUint32StackSlot(index);
583 } else {
584 translation->StoreInt32StackSlot(index);
585 }
586 } else if (op->IsDoubleStackSlot()) {
587 int index = op->index();
588 translation->StoreDoubleStackSlot(index);
589 } else if (op->IsRegister()) {
590 Register reg = ToRegister(op);
591 if (is_tagged) {
592 translation->StoreRegister(reg);
593 } else if (is_uint32) {
594 translation->StoreUint32Register(reg);
595 } else {
596 translation->StoreInt32Register(reg);
597 }
598 } else if (op->IsDoubleRegister()) {
599 DoubleRegister reg = ToDoubleRegister(op);
600 translation->StoreDoubleRegister(reg);
601 } else if (op->IsConstantOperand()) {
602 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
603 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
604 translation->StoreLiteral(src_index);
605 } else {
606 UNREACHABLE();
607 }
608 }
609
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)610 void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode,
611 LInstruction* instr) {
612 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
613 }
614
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)615 void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode,
616 LInstruction* instr,
617 SafepointMode safepoint_mode) {
618 DCHECK(instr != NULL);
619 __ Call(code, mode);
620 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
621
622 // Signal that we don't inline smi code before these stubs in the
623 // optimizing code generator.
624 if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) {
625 __ nop();
626 }
627 }
628
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)629 void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments,
630 LInstruction* instr, SaveFPRegsMode save_doubles) {
631 DCHECK(instr != NULL);
632
633 __ CallRuntime(function, num_arguments, save_doubles);
634
635 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
636 }
637
LoadContextFromDeferred(LOperand * context)638 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
639 if (context->IsRegister()) {
640 __ Move(cp, ToRegister(context));
641 } else if (context->IsStackSlot()) {
642 __ LoadP(cp, ToMemOperand(context));
643 } else if (context->IsConstantOperand()) {
644 HConstant* constant =
645 chunk_->LookupConstant(LConstantOperand::cast(context));
646 __ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
647 } else {
648 UNREACHABLE();
649 }
650 }
651
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)652 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc,
653 LInstruction* instr, LOperand* context) {
654 LoadContextFromDeferred(context);
655 __ CallRuntimeSaveDoubles(id);
656 RecordSafepointWithRegisters(instr->pointer_map(), argc,
657 Safepoint::kNoLazyDeopt);
658 }
659
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)660 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
661 Safepoint::DeoptMode mode) {
662 environment->set_has_been_used();
663 if (!environment->HasBeenRegistered()) {
664 // Physical stack frame layout:
665 // -x ............. -4 0 ..................................... y
666 // [incoming arguments] [spill slots] [pushed outgoing arguments]
667
668 // Layout of the environment:
669 // 0 ..................................................... size-1
670 // [parameters] [locals] [expression stack including arguments]
671
672 // Layout of the translation:
673 // 0 ........................................................ size - 1 + 4
674 // [expression stack including arguments] [locals] [4 words] [parameters]
675 // |>------------ translation_size ------------<|
676
677 int frame_count = 0;
678 int jsframe_count = 0;
679 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
680 ++frame_count;
681 if (e->frame_type() == JS_FUNCTION) {
682 ++jsframe_count;
683 }
684 }
685 Translation translation(&translations_, frame_count, jsframe_count, zone());
686 WriteTranslation(environment, &translation);
687 int deoptimization_index = deoptimizations_.length();
688 int pc_offset = masm()->pc_offset();
689 environment->Register(deoptimization_index, translation.index(),
690 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
691 deoptimizations_.Add(environment, zone());
692 }
693 }
694
DeoptimizeIf(Condition cond,LInstruction * instr,DeoptimizeReason deopt_reason,Deoptimizer::BailoutType bailout_type,CRegister cr)695 void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
696 DeoptimizeReason deopt_reason,
697 Deoptimizer::BailoutType bailout_type,
698 CRegister cr) {
699 LEnvironment* environment = instr->environment();
700 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
701 DCHECK(environment->HasBeenRegistered());
702 int id = environment->deoptimization_index();
703 Address entry =
704 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
705 if (entry == NULL) {
706 Abort(kBailoutWasNotPrepared);
707 return;
708 }
709
710 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
711 Register scratch = scratch0();
712 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
713 Label no_deopt;
714
715 // Store the condition on the stack if necessary
716 if (cond != al) {
717 Label done;
718 __ LoadImmP(scratch, Operand::Zero());
719 __ b(NegateCondition(cond), &done, Label::kNear);
720 __ LoadImmP(scratch, Operand(1));
721 __ bind(&done);
722 __ push(scratch);
723 }
724
725 Label done;
726 __ Push(r3);
727 __ mov(scratch, Operand(count));
728 __ LoadW(r3, MemOperand(scratch));
729 __ Sub32(r3, r3, Operand(1));
730 __ Cmp32(r3, Operand::Zero());
731 __ bne(&no_deopt, Label::kNear);
732
733 __ LoadImmP(r3, Operand(FLAG_deopt_every_n_times));
734 __ StoreW(r3, MemOperand(scratch));
735 __ Pop(r3);
736
737 if (cond != al) {
738 // Clean up the stack before the deoptimizer call
739 __ pop(scratch);
740 }
741
742 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
743
744 __ b(&done);
745
746 __ bind(&no_deopt);
747 __ StoreW(r3, MemOperand(scratch));
748 __ Pop(r3);
749
750 if (cond != al) {
751 // Clean up the stack before the deoptimizer call
752 __ pop(scratch);
753 }
754
755 __ bind(&done);
756
757 if (cond != al) {
758 cond = ne;
759 __ CmpP(scratch, Operand::Zero());
760 }
761 }
762
763 if (info()->ShouldTrapOnDeopt()) {
764 __ stop("trap_on_deopt", cond, kDefaultStopCode, cr);
765 }
766
767 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
768
769 DCHECK(info()->IsStub() || frame_is_built_);
770 // Go through jump table if we need to handle condition, build frame, or
771 // restore caller doubles.
772 if (cond == al && frame_is_built_ && !info()->saves_caller_doubles()) {
773 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
774 } else {
775 Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
776 !frame_is_built_);
777 // We often have several deopts to the same entry, reuse the last
778 // jump entry if this is the case.
779 if (FLAG_trace_deopt || isolate()->is_profiling() ||
780 jump_table_.is_empty() ||
781 !table_entry.IsEquivalentTo(jump_table_.last())) {
782 jump_table_.Add(table_entry, zone());
783 }
784 __ b(cond, &jump_table_.last().label /*, cr*/);
785 }
786 }
787
DeoptimizeIf(Condition cond,LInstruction * instr,DeoptimizeReason deopt_reason,CRegister cr)788 void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
789 DeoptimizeReason deopt_reason, CRegister cr) {
790 Deoptimizer::BailoutType bailout_type =
791 info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
792 DeoptimizeIf(cond, instr, deopt_reason, bailout_type, cr);
793 }
794
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)795 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
796 SafepointMode safepoint_mode) {
797 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
798 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
799 } else {
800 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
801 RecordSafepointWithRegisters(instr->pointer_map(), 0,
802 Safepoint::kLazyDeopt);
803 }
804 }
805
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)806 void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::Kind kind,
807 int arguments, Safepoint::DeoptMode deopt_mode) {
808 DCHECK(expected_safepoint_kind_ == kind);
809
810 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
811 Safepoint safepoint =
812 safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
813 for (int i = 0; i < operands->length(); i++) {
814 LOperand* pointer = operands->at(i);
815 if (pointer->IsStackSlot()) {
816 safepoint.DefinePointerSlot(pointer->index(), zone());
817 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
818 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
819 }
820 }
821 }
822
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)823 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
824 Safepoint::DeoptMode deopt_mode) {
825 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
826 }
827
RecordSafepoint(Safepoint::DeoptMode deopt_mode)828 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
829 LPointerMap empty_pointers(zone());
830 RecordSafepoint(&empty_pointers, deopt_mode);
831 }
832
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)833 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
834 int arguments,
835 Safepoint::DeoptMode deopt_mode) {
836 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
837 }
838
LabelType(LLabel * label)839 static const char* LabelType(LLabel* label) {
840 if (label->is_loop_header()) return " (loop header)";
841 if (label->is_osr_entry()) return " (OSR entry)";
842 return "";
843 }
844
DoLabel(LLabel * label)845 void LCodeGen::DoLabel(LLabel* label) {
846 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
847 current_instruction_, label->hydrogen_value()->id(),
848 label->block_id(), LabelType(label));
849 __ bind(label->label());
850 current_block_ = label->block_id();
851 DoGap(label);
852 }
853
DoParallelMove(LParallelMove * move)854 void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); }
855
DoGap(LGap * gap)856 void LCodeGen::DoGap(LGap* gap) {
857 for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION;
858 i++) {
859 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
860 LParallelMove* move = gap->GetParallelMove(inner_pos);
861 if (move != NULL) DoParallelMove(move);
862 }
863 }
864
DoInstructionGap(LInstructionGap * instr)865 void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); }
866
DoParameter(LParameter * instr)867 void LCodeGen::DoParameter(LParameter* instr) {
868 // Nothing to do.
869 }
870
DoUnknownOSRValue(LUnknownOSRValue * instr)871 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
872 GenerateOsrPrologue();
873 }
874
DoModByPowerOf2I(LModByPowerOf2I * instr)875 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
876 Register dividend = ToRegister(instr->dividend());
877 int32_t divisor = instr->divisor();
878 DCHECK(dividend.is(ToRegister(instr->result())));
879
880 // Theoretically, a variation of the branch-free code for integer division by
881 // a power of 2 (calculating the remainder via an additional multiplication
882 // (which gets simplified to an 'and') and subtraction) should be faster, and
883 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
884 // indicate that positive dividends are heavily favored, so the branching
885 // version performs better.
886 HMod* hmod = instr->hydrogen();
887 int32_t shift = WhichPowerOf2Abs(divisor);
888 Label dividend_is_not_negative, done;
889 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
890 __ CmpP(dividend, Operand::Zero());
891 __ bge(÷nd_is_not_negative, Label::kNear);
892 if (shift) {
893 // Note that this is correct even for kMinInt operands.
894 __ LoadComplementRR(dividend, dividend);
895 __ ExtractBitRange(dividend, dividend, shift - 1, 0);
896 __ LoadComplementRR(dividend, dividend);
897 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
898 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
899 }
900 } else if (!hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
901 __ mov(dividend, Operand::Zero());
902 } else {
903 DeoptimizeIf(al, instr, DeoptimizeReason::kMinusZero);
904 }
905 __ b(&done, Label::kNear);
906 }
907
908 __ bind(÷nd_is_not_negative);
909 if (shift) {
910 __ ExtractBitRange(dividend, dividend, shift - 1, 0);
911 } else {
912 __ mov(dividend, Operand::Zero());
913 }
914 __ bind(&done);
915 }
916
DoModByConstI(LModByConstI * instr)917 void LCodeGen::DoModByConstI(LModByConstI* instr) {
918 Register dividend = ToRegister(instr->dividend());
919 int32_t divisor = instr->divisor();
920 Register result = ToRegister(instr->result());
921 DCHECK(!dividend.is(result));
922
923 if (divisor == 0) {
924 DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
925 return;
926 }
927
928 __ TruncatingDiv(result, dividend, Abs(divisor));
929 __ mov(ip, Operand(Abs(divisor)));
930 __ Mul(result, result, ip);
931 __ SubP(result, dividend, result /*, LeaveOE, SetRC*/);
932
933 // Check for negative zero.
934 HMod* hmod = instr->hydrogen();
935 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
936 Label remainder_not_zero;
937 __ bne(&remainder_not_zero, Label::kNear /*, cr0*/);
938 __ Cmp32(dividend, Operand::Zero());
939 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
940 __ bind(&remainder_not_zero);
941 }
942 }
943
DoModI(LModI * instr)944 void LCodeGen::DoModI(LModI* instr) {
945 HMod* hmod = instr->hydrogen();
946 Register left_reg = ToRegister(instr->left());
947 Register right_reg = ToRegister(instr->right());
948 Register result_reg = ToRegister(instr->result());
949 Label done;
950
951 // Check for x % 0.
952 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
953 __ Cmp32(right_reg, Operand::Zero());
954 DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
955 }
956
957 // Check for kMinInt % -1, dr will return undefined, which is not what we
958 // want. We have to deopt if we care about -0, because we can't return that.
959 if (hmod->CheckFlag(HValue::kCanOverflow)) {
960 Label no_overflow_possible;
961 __ Cmp32(left_reg, Operand(kMinInt));
962 __ bne(&no_overflow_possible, Label::kNear);
963 __ Cmp32(right_reg, Operand(-1));
964 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
965 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
966 } else {
967 __ b(ne, &no_overflow_possible, Label::kNear);
968 __ mov(result_reg, Operand::Zero());
969 __ b(&done, Label::kNear);
970 }
971 __ bind(&no_overflow_possible);
972 }
973
974 // Divide instruction dr will implicity use register pair
975 // r0 & r1 below.
976 DCHECK(!left_reg.is(r1));
977 DCHECK(!right_reg.is(r1));
978 DCHECK(!result_reg.is(r1));
979 __ LoadRR(r0, left_reg);
980 __ srda(r0, Operand(32));
981 __ dr(r0, right_reg); // R0:R1 = R1 / divisor - R0 remainder
982
983 __ LoadAndTestP_ExtendSrc(result_reg, r0); // Copy remainder to resultreg
984
985 // If we care about -0, test if the dividend is <0 and the result is 0.
986 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
987 __ bne(&done, Label::kNear);
988 __ Cmp32(left_reg, Operand::Zero());
989 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
990 }
991
992 __ bind(&done);
993 }
994
DoDivByPowerOf2I(LDivByPowerOf2I * instr)995 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
996 Register dividend = ToRegister(instr->dividend());
997 int32_t divisor = instr->divisor();
998 Register result = ToRegister(instr->result());
999 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1000 DCHECK(!result.is(dividend));
1001
1002 // Check for (0 / -x) that will produce negative zero.
1003 HDiv* hdiv = instr->hydrogen();
1004 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1005 __ Cmp32(dividend, Operand::Zero());
1006 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1007 }
1008 // Check for (kMinInt / -1).
1009 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1010 __ Cmp32(dividend, Operand(0x80000000));
1011 DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1012 }
1013
1014 int32_t shift = WhichPowerOf2Abs(divisor);
1015
1016 // Deoptimize if remainder will not be 0.
1017 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && shift) {
1018 __ TestBitRange(dividend, shift - 1, 0, r0);
1019 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, cr0);
1020 }
1021
1022 if (divisor == -1) { // Nice shortcut, not needed for correctness.
1023 __ LoadComplementRR(result, dividend);
1024 return;
1025 }
1026 if (shift == 0) {
1027 __ LoadRR(result, dividend);
1028 } else {
1029 if (shift == 1) {
1030 __ ShiftRight(result, dividend, Operand(31));
1031 } else {
1032 __ ShiftRightArith(result, dividend, Operand(31));
1033 __ ShiftRight(result, result, Operand(32 - shift));
1034 }
1035 __ AddP(result, dividend, result);
1036 __ ShiftRightArith(result, result, Operand(shift));
1037 #if V8_TARGET_ARCH_S390X
1038 __ lgfr(result, result);
1039 #endif
1040 }
1041 if (divisor < 0) __ LoadComplementRR(result, result);
1042 }
1043
DoDivByConstI(LDivByConstI * instr)1044 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1045 Register dividend = ToRegister(instr->dividend());
1046 int32_t divisor = instr->divisor();
1047 Register result = ToRegister(instr->result());
1048 DCHECK(!dividend.is(result));
1049
1050 if (divisor == 0) {
1051 DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
1052 return;
1053 }
1054
1055 // Check for (0 / -x) that will produce negative zero.
1056 HDiv* hdiv = instr->hydrogen();
1057 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1058 __ Cmp32(dividend, Operand::Zero());
1059 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1060 }
1061
1062 __ TruncatingDiv(result, dividend, Abs(divisor));
1063 if (divisor < 0) __ LoadComplementRR(result, result);
1064
1065 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1066 Register scratch = scratch0();
1067 __ mov(ip, Operand(divisor));
1068 __ Mul(scratch, result, ip);
1069 __ Cmp32(scratch, dividend);
1070 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision);
1071 }
1072 }
1073
1074 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)1075 void LCodeGen::DoDivI(LDivI* instr) {
1076 HBinaryOperation* hdiv = instr->hydrogen();
1077 const Register dividend = ToRegister(instr->dividend());
1078 const Register divisor = ToRegister(instr->divisor());
1079 Register result = ToRegister(instr->result());
1080
1081 DCHECK(!dividend.is(result));
1082 DCHECK(!divisor.is(result));
1083
1084 // Check for x / 0.
1085 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1086 __ Cmp32(divisor, Operand::Zero());
1087 DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
1088 }
1089
1090 // Check for (0 / -x) that will produce negative zero.
1091 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1092 Label dividend_not_zero;
1093 __ Cmp32(dividend, Operand::Zero());
1094 __ bne(÷nd_not_zero, Label::kNear);
1095 __ Cmp32(divisor, Operand::Zero());
1096 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
1097 __ bind(÷nd_not_zero);
1098 }
1099
1100 // Check for (kMinInt / -1).
1101 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1102 Label dividend_not_min_int;
1103 __ Cmp32(dividend, Operand(kMinInt));
1104 __ bne(÷nd_not_min_int, Label::kNear);
1105 __ Cmp32(divisor, Operand(-1));
1106 DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1107 __ bind(÷nd_not_min_int);
1108 }
1109
1110 __ LoadRR(r0, dividend);
1111 __ srda(r0, Operand(32));
1112 __ dr(r0, divisor); // R0:R1 = R1 / divisor - R0 remainder - R1 quotient
1113
1114 __ LoadAndTestP_ExtendSrc(result, r1); // Move quotient to result register
1115
1116 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1117 // Deoptimize if remainder is not 0.
1118 __ Cmp32(r0, Operand::Zero());
1119 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision);
1120 }
1121 }
1122
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)1123 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1124 HBinaryOperation* hdiv = instr->hydrogen();
1125 Register dividend = ToRegister(instr->dividend());
1126 Register result = ToRegister(instr->result());
1127 int32_t divisor = instr->divisor();
1128 bool can_overflow = hdiv->CheckFlag(HValue::kLeftCanBeMinInt);
1129
1130 // If the divisor is positive, things are easy: There can be no deopts and we
1131 // can simply do an arithmetic right shift.
1132 int32_t shift = WhichPowerOf2Abs(divisor);
1133 if (divisor > 0) {
1134 if (shift || !result.is(dividend)) {
1135 __ ShiftRightArith(result, dividend, Operand(shift));
1136 #if V8_TARGET_ARCH_S390X
1137 __ lgfr(result, result);
1138 #endif
1139 }
1140 return;
1141 }
1142
1143 // If the divisor is negative, we have to negate and handle edge cases.
1144 #if V8_TARGET_ARCH_S390X
1145 if (divisor == -1 && can_overflow) {
1146 __ Cmp32(dividend, Operand(0x80000000));
1147 DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1148 }
1149 #endif
1150
1151 __ LoadComplementRR(result, dividend);
1152 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1153 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, cr0);
1154 }
1155
1156 // If the negation could not overflow, simply shifting is OK.
1157 #if !V8_TARGET_ARCH_S390X
1158 if (!can_overflow) {
1159 #endif
1160 if (shift) {
1161 __ ShiftRightArithP(result, result, Operand(shift));
1162 }
1163 return;
1164 #if !V8_TARGET_ARCH_S390X
1165 }
1166
1167 // Dividing by -1 is basically negation, unless we overflow.
1168 if (divisor == -1) {
1169 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow, cr0);
1170 return;
1171 }
1172
1173 Label overflow_label, done;
1174 __ b(overflow, &overflow_label, Label::kNear);
1175 __ ShiftRightArith(result, result, Operand(shift));
1176 #if V8_TARGET_ARCH_S390X
1177 __ lgfr(result, result);
1178 #endif
1179 __ b(&done, Label::kNear);
1180 __ bind(&overflow_label);
1181 __ mov(result, Operand(kMinInt / divisor));
1182 __ bind(&done);
1183 #endif
1184 }
1185
DoFlooringDivByConstI(LFlooringDivByConstI * instr)1186 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1187 Register dividend = ToRegister(instr->dividend());
1188 int32_t divisor = instr->divisor();
1189 Register result = ToRegister(instr->result());
1190 DCHECK(!dividend.is(result));
1191
1192 if (divisor == 0) {
1193 DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
1194 return;
1195 }
1196
1197 // Check for (0 / -x) that will produce negative zero.
1198 HMathFloorOfDiv* hdiv = instr->hydrogen();
1199 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1200 __ Cmp32(dividend, Operand::Zero());
1201 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1202 }
1203
1204 // Easy case: We need no dynamic check for the dividend and the flooring
1205 // division is the same as the truncating division.
1206 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1207 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1208 __ TruncatingDiv(result, dividend, Abs(divisor));
1209 if (divisor < 0) __ LoadComplementRR(result, result);
1210 return;
1211 }
1212
1213 // In the general case we may need to adjust before and after the truncating
1214 // division to get a flooring division.
1215 Register temp = ToRegister(instr->temp());
1216 DCHECK(!temp.is(dividend) && !temp.is(result));
1217 Label needs_adjustment, done;
1218 __ Cmp32(dividend, Operand::Zero());
1219 __ b(divisor > 0 ? lt : gt, &needs_adjustment);
1220 __ TruncatingDiv(result, dividend, Abs(divisor));
1221 if (divisor < 0) __ LoadComplementRR(result, result);
1222 __ b(&done, Label::kNear);
1223 __ bind(&needs_adjustment);
1224 __ AddP(temp, dividend, Operand(divisor > 0 ? 1 : -1));
1225 __ TruncatingDiv(result, temp, Abs(divisor));
1226 if (divisor < 0) __ LoadComplementRR(result, result);
1227 __ SubP(result, result, Operand(1));
1228 __ bind(&done);
1229 }
1230
1231 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)1232 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1233 HBinaryOperation* hdiv = instr->hydrogen();
1234 const Register dividend = ToRegister(instr->dividend());
1235 const Register divisor = ToRegister(instr->divisor());
1236 Register result = ToRegister(instr->result());
1237
1238 DCHECK(!dividend.is(result));
1239 DCHECK(!divisor.is(result));
1240
1241 // Check for x / 0.
1242 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1243 __ Cmp32(divisor, Operand::Zero());
1244 DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
1245 }
1246
1247 // Check for (0 / -x) that will produce negative zero.
1248 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1249 Label dividend_not_zero;
1250 __ Cmp32(dividend, Operand::Zero());
1251 __ bne(÷nd_not_zero, Label::kNear);
1252 __ Cmp32(divisor, Operand::Zero());
1253 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
1254 __ bind(÷nd_not_zero);
1255 }
1256
1257 // Check for (kMinInt / -1).
1258 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1259 Label no_overflow_possible;
1260 __ Cmp32(dividend, Operand(kMinInt));
1261 __ bne(&no_overflow_possible, Label::kNear);
1262 __ Cmp32(divisor, Operand(-1));
1263 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1264 DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1265 } else {
1266 __ bne(&no_overflow_possible, Label::kNear);
1267 __ LoadRR(result, dividend);
1268 }
1269 __ bind(&no_overflow_possible);
1270 }
1271
1272 __ LoadRR(r0, dividend);
1273 __ srda(r0, Operand(32));
1274 __ dr(r0, divisor); // R0:R1 = R1 / divisor - R0 remainder - R1 quotient
1275
1276 __ lr(result, r1); // Move quotient to result register
1277
1278 Label done;
1279 Register scratch = scratch0();
1280 // If both operands have the same sign then we are done.
1281 __ Xor(scratch, dividend, divisor);
1282 __ ltr(scratch, scratch); // use 32 bit version LoadAndTestRR even in 64 bit
1283 __ bge(&done, Label::kNear);
1284
1285 // If there is no remainder then we are done.
1286 __ lr(scratch, result);
1287 __ msr(scratch, divisor);
1288 __ Cmp32(dividend, scratch);
1289 __ beq(&done, Label::kNear);
1290
1291 // We performed a truncating division. Correct the result.
1292 __ Sub32(result, result, Operand(1));
1293 __ bind(&done);
1294 }
1295
DoMultiplyAddD(LMultiplyAddD * instr)1296 void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
1297 DoubleRegister addend = ToDoubleRegister(instr->addend());
1298 DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
1299 DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1300 DoubleRegister result = ToDoubleRegister(instr->result());
1301
1302 // Unable to use madbr as the intermediate value is not rounded
1303 // to proper precision
1304 __ ldr(result, multiplier);
1305 __ mdbr(result, multiplicand);
1306 __ adbr(result, addend);
1307 }
1308
DoMultiplySubD(LMultiplySubD * instr)1309 void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
1310 DoubleRegister minuend = ToDoubleRegister(instr->minuend());
1311 DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
1312 DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1313 DoubleRegister result = ToDoubleRegister(instr->result());
1314
1315 // Unable to use msdbr as the intermediate value is not rounded
1316 // to proper precision
1317 __ ldr(result, multiplier);
1318 __ mdbr(result, multiplicand);
1319 __ sdbr(result, minuend);
1320 }
1321
DoMulI(LMulI * instr)1322 void LCodeGen::DoMulI(LMulI* instr) {
1323 Register scratch = scratch0();
1324 Register result = ToRegister(instr->result());
1325 // Note that result may alias left.
1326 Register left = ToRegister(instr->left());
1327 LOperand* right_op = instr->right();
1328
1329 bool bailout_on_minus_zero =
1330 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1331 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1332
1333 if (right_op->IsConstantOperand()) {
1334 int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1335
1336 if (bailout_on_minus_zero && (constant < 0)) {
1337 // The case of a null constant will be handled separately.
1338 // If constant is negative and left is null, the result should be -0.
1339 __ CmpP(left, Operand::Zero());
1340 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1341 }
1342
1343 switch (constant) {
1344 case -1:
1345 if (can_overflow) {
1346 #if V8_TARGET_ARCH_S390X
1347 if (instr->hydrogen()->representation().IsSmi()) {
1348 #endif
1349 __ LoadComplementRR(result, left);
1350 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1351 #if V8_TARGET_ARCH_S390X
1352 } else {
1353 __ LoadComplementRR(result, left);
1354 __ TestIfInt32(result, r0);
1355 DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
1356 }
1357 #endif
1358 } else {
1359 __ LoadComplementRR(result, left);
1360 }
1361 break;
1362 case 0:
1363 if (bailout_on_minus_zero) {
1364 // If left is strictly negative and the constant is null, the
1365 // result is -0. Deoptimize if required, otherwise return 0.
1366 #if V8_TARGET_ARCH_S390X
1367 if (instr->hydrogen()->representation().IsSmi()) {
1368 #endif
1369 __ Cmp32(left, Operand::Zero());
1370 #if V8_TARGET_ARCH_S390X
1371 } else {
1372 __ Cmp32(left, Operand::Zero());
1373 }
1374 #endif
1375 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
1376 }
1377 __ LoadImmP(result, Operand::Zero());
1378 break;
1379 case 1:
1380 __ Move(result, left);
1381 break;
1382 default:
1383 // Multiplying by powers of two and powers of two plus or minus
1384 // one can be done faster with shifted operands.
1385 // For other constants we emit standard code.
1386 int32_t mask = constant >> 31;
1387 uint32_t constant_abs = (constant + mask) ^ mask;
1388
1389 if (base::bits::IsPowerOfTwo32(constant_abs)) {
1390 int32_t shift = WhichPowerOf2(constant_abs);
1391 __ ShiftLeftP(result, left, Operand(shift));
1392 // Correct the sign of the result if the constant is negative.
1393 if (constant < 0) __ LoadComplementRR(result, result);
1394 } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1395 int32_t shift = WhichPowerOf2(constant_abs - 1);
1396 __ ShiftLeftP(scratch, left, Operand(shift));
1397 __ AddP(result, scratch, left);
1398 // Correct the sign of the result if the constant is negative.
1399 if (constant < 0) __ LoadComplementRR(result, result);
1400 } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1401 int32_t shift = WhichPowerOf2(constant_abs + 1);
1402 __ ShiftLeftP(scratch, left, Operand(shift));
1403 __ SubP(result, scratch, left);
1404 // Correct the sign of the result if the constant is negative.
1405 if (constant < 0) __ LoadComplementRR(result, result);
1406 } else {
1407 // Generate standard code.
1408 __ Move(result, left);
1409 __ MulP(result, Operand(constant));
1410 }
1411 }
1412
1413 } else {
1414 DCHECK(right_op->IsRegister());
1415 Register right = ToRegister(right_op);
1416
1417 if (can_overflow) {
1418 #if V8_TARGET_ARCH_S390X
1419 // result = left * right.
1420 if (instr->hydrogen()->representation().IsSmi()) {
1421 __ SmiUntag(result, left);
1422 __ SmiUntag(scratch, right);
1423 __ msgr(result, scratch);
1424 } else {
1425 __ LoadRR(result, left);
1426 __ msgr(result, right);
1427 }
1428 __ TestIfInt32(result, r0);
1429 DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
1430 if (instr->hydrogen()->representation().IsSmi()) {
1431 __ SmiTag(result);
1432 }
1433 #else
1434 // r0:scratch = scratch * right
1435 if (instr->hydrogen()->representation().IsSmi()) {
1436 __ SmiUntag(scratch, left);
1437 __ mr_z(r0, right);
1438 __ LoadRR(result, scratch);
1439 } else {
1440 // r0:scratch = scratch * right
1441 __ LoadRR(scratch, left);
1442 __ mr_z(r0, right);
1443 __ LoadRR(result, scratch);
1444 }
1445 __ TestIfInt32(r0, result, scratch);
1446 DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
1447 #endif
1448 } else {
1449 if (instr->hydrogen()->representation().IsSmi()) {
1450 __ SmiUntag(result, left);
1451 __ Mul(result, result, right);
1452 } else {
1453 __ Mul(result, left, right);
1454 }
1455 }
1456
1457 if (bailout_on_minus_zero) {
1458 Label done;
1459 #if V8_TARGET_ARCH_S390X
1460 if (instr->hydrogen()->representation().IsSmi()) {
1461 #endif
1462 __ XorP(r0, left, right);
1463 __ LoadAndTestRR(r0, r0);
1464 __ bge(&done, Label::kNear);
1465 #if V8_TARGET_ARCH_S390X
1466 } else {
1467 __ XorP(r0, left, right);
1468 __ Cmp32(r0, Operand::Zero());
1469 __ bge(&done, Label::kNear);
1470 }
1471 #endif
1472 // Bail out if the result is minus zero.
1473 __ CmpP(result, Operand::Zero());
1474 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1475 __ bind(&done);
1476 }
1477 }
1478 }
1479
DoBitI(LBitI * instr)1480 void LCodeGen::DoBitI(LBitI* instr) {
1481 LOperand* left_op = instr->left();
1482 LOperand* right_op = instr->right();
1483 DCHECK(left_op->IsRegister());
1484 Register left = ToRegister(left_op);
1485 Register result = ToRegister(instr->result());
1486
1487 if (right_op->IsConstantOperand()) {
1488 switch (instr->op()) {
1489 case Token::BIT_AND:
1490 __ AndP(result, left, Operand(ToOperand(right_op)));
1491 break;
1492 case Token::BIT_OR:
1493 __ OrP(result, left, Operand(ToOperand(right_op)));
1494 break;
1495 case Token::BIT_XOR:
1496 __ XorP(result, left, Operand(ToOperand(right_op)));
1497 break;
1498 default:
1499 UNREACHABLE();
1500 break;
1501 }
1502 } else if (right_op->IsStackSlot()) {
1503 // Reg-Mem instruction clobbers, so copy src to dst first.
1504 if (!left.is(result)) __ LoadRR(result, left);
1505 switch (instr->op()) {
1506 case Token::BIT_AND:
1507 __ AndP(result, ToMemOperand(right_op));
1508 break;
1509 case Token::BIT_OR:
1510 __ OrP(result, ToMemOperand(right_op));
1511 break;
1512 case Token::BIT_XOR:
1513 __ XorP(result, ToMemOperand(right_op));
1514 break;
1515 default:
1516 UNREACHABLE();
1517 break;
1518 }
1519 } else {
1520 DCHECK(right_op->IsRegister());
1521
1522 switch (instr->op()) {
1523 case Token::BIT_AND:
1524 __ AndP(result, left, ToRegister(right_op));
1525 break;
1526 case Token::BIT_OR:
1527 __ OrP(result, left, ToRegister(right_op));
1528 break;
1529 case Token::BIT_XOR:
1530 __ XorP(result, left, ToRegister(right_op));
1531 break;
1532 default:
1533 UNREACHABLE();
1534 break;
1535 }
1536 }
1537 }
1538
DoShiftI(LShiftI * instr)1539 void LCodeGen::DoShiftI(LShiftI* instr) {
1540 // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1541 // result may alias either of them.
1542 LOperand* right_op = instr->right();
1543 Register left = ToRegister(instr->left());
1544 Register result = ToRegister(instr->result());
1545 Register scratch = scratch0();
1546 if (right_op->IsRegister()) {
1547 // Mask the right_op operand.
1548 __ AndP(scratch, ToRegister(right_op), Operand(0x1F));
1549 switch (instr->op()) {
1550 case Token::ROR:
1551 // rotate_right(a, b) == rotate_left(a, 32 - b)
1552 __ LoadComplementRR(scratch, scratch);
1553 __ rll(result, left, scratch, Operand(32));
1554 #if V8_TARGET_ARCH_S390X
1555 __ lgfr(result, result);
1556 #endif
1557 break;
1558 case Token::SAR:
1559 __ ShiftRightArith(result, left, scratch);
1560 #if V8_TARGET_ARCH_S390X
1561 __ lgfr(result, result);
1562 #endif
1563 break;
1564 case Token::SHR:
1565 __ ShiftRight(result, left, scratch);
1566 #if V8_TARGET_ARCH_S390X
1567 __ lgfr(result, result);
1568 #endif
1569 if (instr->can_deopt()) {
1570 #if V8_TARGET_ARCH_S390X
1571 __ ltgfr(result, result /*, SetRC*/);
1572 #else
1573 __ ltr(result, result); // Set the <,==,> condition
1574 #endif
1575 DeoptimizeIf(lt, instr, DeoptimizeReason::kNegativeValue, cr0);
1576 }
1577 break;
1578 case Token::SHL:
1579 __ ShiftLeft(result, left, scratch);
1580 #if V8_TARGET_ARCH_S390X
1581 __ lgfr(result, result);
1582 #endif
1583 break;
1584 default:
1585 UNREACHABLE();
1586 break;
1587 }
1588 } else {
1589 // Mask the right_op operand.
1590 int value = ToInteger32(LConstantOperand::cast(right_op));
1591 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1592 switch (instr->op()) {
1593 case Token::ROR:
1594 if (shift_count != 0) {
1595 __ rll(result, left, Operand(32 - shift_count));
1596 #if V8_TARGET_ARCH_S390X
1597 __ lgfr(result, result);
1598 #endif
1599 } else {
1600 __ Move(result, left);
1601 }
1602 break;
1603 case Token::SAR:
1604 if (shift_count != 0) {
1605 __ ShiftRightArith(result, left, Operand(shift_count));
1606 #if V8_TARGET_ARCH_S390X
1607 __ lgfr(result, result);
1608 #endif
1609 } else {
1610 __ Move(result, left);
1611 }
1612 break;
1613 case Token::SHR:
1614 if (shift_count != 0) {
1615 __ ShiftRight(result, left, Operand(shift_count));
1616 #if V8_TARGET_ARCH_S390X
1617 __ lgfr(result, result);
1618 #endif
1619 } else {
1620 if (instr->can_deopt()) {
1621 __ Cmp32(left, Operand::Zero());
1622 DeoptimizeIf(lt, instr, DeoptimizeReason::kNegativeValue);
1623 }
1624 __ Move(result, left);
1625 }
1626 break;
1627 case Token::SHL:
1628 if (shift_count != 0) {
1629 #if V8_TARGET_ARCH_S390X
1630 if (instr->hydrogen_value()->representation().IsSmi()) {
1631 __ ShiftLeftP(result, left, Operand(shift_count));
1632 #else
1633 if (instr->hydrogen_value()->representation().IsSmi() &&
1634 instr->can_deopt()) {
1635 if (shift_count != 1) {
1636 __ ShiftLeft(result, left, Operand(shift_count - 1));
1637 #if V8_TARGET_ARCH_S390X
1638 __ lgfr(result, result);
1639 #endif
1640 __ SmiTagCheckOverflow(result, result, scratch);
1641 } else {
1642 __ SmiTagCheckOverflow(result, left, scratch);
1643 }
1644 DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, cr0);
1645 #endif
1646 } else {
1647 __ ShiftLeft(result, left, Operand(shift_count));
1648 #if V8_TARGET_ARCH_S390X
1649 __ lgfr(result, result);
1650 #endif
1651 }
1652 } else {
1653 __ Move(result, left);
1654 }
1655 break;
1656 default:
1657 UNREACHABLE();
1658 break;
1659 }
1660 }
1661 }
1662
1663 void LCodeGen::DoSubI(LSubI* instr) {
1664 LOperand* left = instr->left();
1665 LOperand* right = instr->right();
1666 LOperand* result = instr->result();
1667
1668 bool isInteger = !(instr->hydrogen()->representation().IsSmi() ||
1669 instr->hydrogen()->representation().IsExternal());
1670
1671 #if V8_TARGET_ARCH_S390X
1672 // The overflow detection needs to be tested on the lower 32-bits.
1673 // As a result, on 64-bit, we need to force 32-bit arithmetic operations
1674 // to set the CC overflow bit properly. The result is then sign-extended.
1675 bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1676 #else
1677 bool checkOverflow = true;
1678 #endif
1679
1680 if (right->IsConstantOperand()) {
1681 if (!isInteger || !checkOverflow)
1682 __ SubP(ToRegister(result), ToRegister(left), ToOperand(right));
1683 else
1684 __ Sub32(ToRegister(result), ToRegister(left), ToOperand(right));
1685 } else if (right->IsRegister()) {
1686 if (!isInteger)
1687 __ SubP(ToRegister(result), ToRegister(left), ToRegister(right));
1688 else if (!checkOverflow)
1689 __ SubP_ExtendSrc(ToRegister(result), ToRegister(left),
1690 ToRegister(right));
1691 else
1692 __ Sub32(ToRegister(result), ToRegister(left), ToRegister(right));
1693 } else {
1694 if (!left->Equals(instr->result()))
1695 __ LoadRR(ToRegister(result), ToRegister(left));
1696
1697 MemOperand mem = ToMemOperand(right);
1698 if (!isInteger) {
1699 __ SubP(ToRegister(result), mem);
1700 } else {
1701 #if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN
1702 // We want to read the 32-bits directly from memory
1703 MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4);
1704 #else
1705 MemOperand Upper32Mem = ToMemOperand(right);
1706 #endif
1707 if (checkOverflow) {
1708 __ Sub32(ToRegister(result), Upper32Mem);
1709 } else {
1710 __ SubP_ExtendSrc(ToRegister(result), Upper32Mem);
1711 }
1712 }
1713 }
1714
1715 #if V8_TARGET_ARCH_S390X
1716 if (isInteger && checkOverflow)
1717 __ lgfr(ToRegister(result), ToRegister(result));
1718 #endif
1719 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1720 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1721 }
1722 }
1723
1724 void LCodeGen::DoRSubI(LRSubI* instr) {
1725 LOperand* left = instr->left();
1726 LOperand* right = instr->right();
1727 LOperand* result = instr->result();
1728
1729 DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow) &&
1730 right->IsConstantOperand());
1731
1732 #if V8_TARGET_ARCH_S390X
1733 // The overflow detection needs to be tested on the lower 32-bits.
1734 // As a result, on 64-bit, we need to force 32-bit arithmetic operations
1735 // to set the CC overflow bit properly. The result is then sign-extended.
1736 bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1737 #else
1738 bool checkOverflow = true;
1739 #endif
1740
1741 Operand right_operand = ToOperand(right);
1742 __ mov(r0, right_operand);
1743
1744 if (!checkOverflow) {
1745 __ SubP_ExtendSrc(ToRegister(result), r0, ToRegister(left));
1746 } else {
1747 __ Sub32(ToRegister(result), r0, ToRegister(left));
1748 }
1749 }
1750
1751 void LCodeGen::DoConstantI(LConstantI* instr) {
1752 __ mov(ToRegister(instr->result()), Operand(instr->value()));
1753 }
1754
1755 void LCodeGen::DoConstantS(LConstantS* instr) {
1756 __ LoadSmiLiteral(ToRegister(instr->result()), instr->value());
1757 }
1758
1759 void LCodeGen::DoConstantD(LConstantD* instr) {
1760 DCHECK(instr->result()->IsDoubleRegister());
1761 DoubleRegister result = ToDoubleRegister(instr->result());
1762 uint64_t bits = instr->bits();
1763 __ LoadDoubleLiteral(result, bits, scratch0());
1764 }
1765
1766 void LCodeGen::DoConstantE(LConstantE* instr) {
1767 __ mov(ToRegister(instr->result()), Operand(instr->value()));
1768 }
1769
1770 void LCodeGen::DoConstantT(LConstantT* instr) {
1771 Handle<Object> object = instr->value(isolate());
1772 AllowDeferredHandleDereference smi_check;
1773 __ Move(ToRegister(instr->result()), object);
1774 }
1775
1776 MemOperand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index,
1777 String::Encoding encoding) {
1778 if (index->IsConstantOperand()) {
1779 int offset = ToInteger32(LConstantOperand::cast(index));
1780 if (encoding == String::TWO_BYTE_ENCODING) {
1781 offset *= kUC16Size;
1782 }
1783 STATIC_ASSERT(kCharSize == 1);
1784 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
1785 }
1786 Register scratch = scratch0();
1787 DCHECK(!scratch.is(string));
1788 DCHECK(!scratch.is(ToRegister(index)));
1789 // TODO(joransiu) : Fold Add into FieldMemOperand
1790 if (encoding == String::ONE_BYTE_ENCODING) {
1791 __ AddP(scratch, string, ToRegister(index));
1792 } else {
1793 STATIC_ASSERT(kUC16Size == 2);
1794 __ ShiftLeftP(scratch, ToRegister(index), Operand(1));
1795 __ AddP(scratch, string, scratch);
1796 }
1797 return FieldMemOperand(scratch, SeqString::kHeaderSize);
1798 }
1799
1800 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1801 String::Encoding encoding = instr->hydrogen()->encoding();
1802 Register string = ToRegister(instr->string());
1803 Register result = ToRegister(instr->result());
1804
1805 if (FLAG_debug_code) {
1806 Register scratch = scratch0();
1807 __ LoadP(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
1808 __ llc(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1809
1810 __ AndP(scratch, scratch,
1811 Operand(kStringRepresentationMask | kStringEncodingMask));
1812 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1813 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1814 __ CmpP(scratch,
1815 Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type
1816 : two_byte_seq_type));
1817 __ Check(eq, kUnexpectedStringType);
1818 }
1819
1820 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1821 if (encoding == String::ONE_BYTE_ENCODING) {
1822 __ llc(result, operand);
1823 } else {
1824 __ llh(result, operand);
1825 }
1826 }
1827
1828 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1829 String::Encoding encoding = instr->hydrogen()->encoding();
1830 Register string = ToRegister(instr->string());
1831 Register value = ToRegister(instr->value());
1832
1833 if (FLAG_debug_code) {
1834 Register index = ToRegister(instr->index());
1835 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1836 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1837 int encoding_mask =
1838 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1839 ? one_byte_seq_type
1840 : two_byte_seq_type;
1841 __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
1842 }
1843
1844 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1845 if (encoding == String::ONE_BYTE_ENCODING) {
1846 __ stc(value, operand);
1847 } else {
1848 __ sth(value, operand);
1849 }
1850 }
1851
1852 void LCodeGen::DoAddI(LAddI* instr) {
1853 LOperand* left = instr->left();
1854 LOperand* right = instr->right();
1855 LOperand* result = instr->result();
1856 bool isInteger = !(instr->hydrogen()->representation().IsSmi() ||
1857 instr->hydrogen()->representation().IsExternal());
1858 #if V8_TARGET_ARCH_S390X
1859 // The overflow detection needs to be tested on the lower 32-bits.
1860 // As a result, on 64-bit, we need to force 32-bit arithmetic operations
1861 // to set the CC overflow bit properly. The result is then sign-extended.
1862 bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1863 #else
1864 bool checkOverflow = true;
1865 #endif
1866
1867 if (right->IsConstantOperand()) {
1868 if (!isInteger || !checkOverflow)
1869 __ AddP(ToRegister(result), ToRegister(left), ToOperand(right));
1870 else
1871 __ Add32(ToRegister(result), ToRegister(left), ToOperand(right));
1872 } else if (right->IsRegister()) {
1873 if (!isInteger)
1874 __ AddP(ToRegister(result), ToRegister(left), ToRegister(right));
1875 else if (!checkOverflow)
1876 __ AddP_ExtendSrc(ToRegister(result), ToRegister(left),
1877 ToRegister(right));
1878 else
1879 __ Add32(ToRegister(result), ToRegister(left), ToRegister(right));
1880 } else {
1881 if (!left->Equals(instr->result()))
1882 __ LoadRR(ToRegister(result), ToRegister(left));
1883
1884 MemOperand mem = ToMemOperand(right);
1885 if (!isInteger) {
1886 __ AddP(ToRegister(result), mem);
1887 } else {
1888 #if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN
1889 // We want to read the 32-bits directly from memory
1890 MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4);
1891 #else
1892 MemOperand Upper32Mem = ToMemOperand(right);
1893 #endif
1894 if (checkOverflow) {
1895 __ Add32(ToRegister(result), Upper32Mem);
1896 } else {
1897 __ AddP_ExtendSrc(ToRegister(result), Upper32Mem);
1898 }
1899 }
1900 }
1901
1902 #if V8_TARGET_ARCH_S390X
1903 if (isInteger && checkOverflow)
1904 __ lgfr(ToRegister(result), ToRegister(result));
1905 #endif
1906 // Doptimize on overflow
1907 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1908 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1909 }
1910 }
1911
1912 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1913 LOperand* left = instr->left();
1914 LOperand* right = instr->right();
1915 HMathMinMax::Operation operation = instr->hydrogen()->operation();
1916 Condition cond = (operation == HMathMinMax::kMathMin) ? le : ge;
1917 if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1918 Register left_reg = ToRegister(left);
1919 Register right_reg = EmitLoadRegister(right, ip);
1920 Register result_reg = ToRegister(instr->result());
1921 Label return_left, done;
1922 #if V8_TARGET_ARCH_S390X
1923 if (instr->hydrogen_value()->representation().IsSmi()) {
1924 #endif
1925 __ CmpP(left_reg, right_reg);
1926 #if V8_TARGET_ARCH_S390X
1927 } else {
1928 __ Cmp32(left_reg, right_reg);
1929 }
1930 #endif
1931 __ b(cond, &return_left, Label::kNear);
1932 __ Move(result_reg, right_reg);
1933 __ b(&done, Label::kNear);
1934 __ bind(&return_left);
1935 __ Move(result_reg, left_reg);
1936 __ bind(&done);
1937 } else {
1938 DCHECK(instr->hydrogen()->representation().IsDouble());
1939 DoubleRegister left_reg = ToDoubleRegister(left);
1940 DoubleRegister right_reg = ToDoubleRegister(right);
1941 DoubleRegister result_reg = ToDoubleRegister(instr->result());
1942 Label check_nan_left, check_zero, return_left, return_right, done;
1943 __ cdbr(left_reg, right_reg);
1944 __ bunordered(&check_nan_left, Label::kNear);
1945 __ beq(&check_zero);
1946 __ b(cond, &return_left, Label::kNear);
1947 __ b(&return_right, Label::kNear);
1948
1949 __ bind(&check_zero);
1950 __ lzdr(kDoubleRegZero);
1951 __ cdbr(left_reg, kDoubleRegZero);
1952 __ bne(&return_left, Label::kNear); // left == right != 0.
1953
1954 // At this point, both left and right are either 0 or -0.
1955 // N.B. The following works because +0 + -0 == +0
1956 if (operation == HMathMinMax::kMathMin) {
1957 // For min we want logical-or of sign bit: -(-L + -R)
1958 __ lcdbr(left_reg, left_reg);
1959 __ ldr(result_reg, left_reg);
1960 if (left_reg.is(right_reg)) {
1961 __ adbr(result_reg, right_reg);
1962 } else {
1963 __ sdbr(result_reg, right_reg);
1964 }
1965 __ lcdbr(result_reg, result_reg);
1966 } else {
1967 // For max we want logical-and of sign bit: (L + R)
1968 __ ldr(result_reg, left_reg);
1969 __ adbr(result_reg, right_reg);
1970 }
1971 __ b(&done, Label::kNear);
1972
1973 __ bind(&check_nan_left);
1974 __ cdbr(left_reg, left_reg);
1975 __ bunordered(&return_left, Label::kNear); // left == NaN.
1976
1977 __ bind(&return_right);
1978 if (!right_reg.is(result_reg)) {
1979 __ ldr(result_reg, right_reg);
1980 }
1981 __ b(&done, Label::kNear);
1982
1983 __ bind(&return_left);
1984 if (!left_reg.is(result_reg)) {
1985 __ ldr(result_reg, left_reg);
1986 }
1987 __ bind(&done);
1988 }
1989 }
1990
1991 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1992 DoubleRegister left = ToDoubleRegister(instr->left());
1993 DoubleRegister right = ToDoubleRegister(instr->right());
1994 DoubleRegister result = ToDoubleRegister(instr->result());
1995 // All operations except MOD are computed in-place.
1996 DCHECK(instr->op() == Token::MOD || left.is(result));
1997 switch (instr->op()) {
1998 case Token::ADD:
1999 __ adbr(result, right);
2000 break;
2001 case Token::SUB:
2002 __ sdbr(result, right);
2003 break;
2004 case Token::MUL:
2005 __ mdbr(result, right);
2006 break;
2007 case Token::DIV:
2008 __ ddbr(result, right);
2009 break;
2010 case Token::MOD: {
2011 __ PrepareCallCFunction(0, 2, scratch0());
2012 __ MovToFloatParameters(left, right);
2013 __ CallCFunction(ExternalReference::mod_two_doubles_operation(isolate()),
2014 0, 2);
2015 // Move the result in the double result register.
2016 __ MovFromFloatResult(result);
2017 break;
2018 }
2019 default:
2020 UNREACHABLE();
2021 break;
2022 }
2023 }
2024
2025 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
2026 DCHECK(ToRegister(instr->context()).is(cp));
2027 DCHECK(ToRegister(instr->left()).is(r3));
2028 DCHECK(ToRegister(instr->right()).is(r2));
2029 DCHECK(ToRegister(instr->result()).is(r2));
2030
2031 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
2032 CallCode(code, RelocInfo::CODE_TARGET, instr);
2033 }
2034
2035 template <class InstrType>
2036 void LCodeGen::EmitBranch(InstrType instr, Condition cond) {
2037 int left_block = instr->TrueDestination(chunk_);
2038 int right_block = instr->FalseDestination(chunk_);
2039
2040 int next_block = GetNextEmittedBlock();
2041
2042 if (right_block == left_block || cond == al) {
2043 EmitGoto(left_block);
2044 } else if (left_block == next_block) {
2045 __ b(NegateCondition(cond), chunk_->GetAssemblyLabel(right_block));
2046 } else if (right_block == next_block) {
2047 __ b(cond, chunk_->GetAssemblyLabel(left_block));
2048 } else {
2049 __ b(cond, chunk_->GetAssemblyLabel(left_block));
2050 __ b(chunk_->GetAssemblyLabel(right_block));
2051 }
2052 }
2053
2054 template <class InstrType>
2055 void LCodeGen::EmitTrueBranch(InstrType instr, Condition cond) {
2056 int true_block = instr->TrueDestination(chunk_);
2057 __ b(cond, chunk_->GetAssemblyLabel(true_block));
2058 }
2059
2060 template <class InstrType>
2061 void LCodeGen::EmitFalseBranch(InstrType instr, Condition cond) {
2062 int false_block = instr->FalseDestination(chunk_);
2063 __ b(cond, chunk_->GetAssemblyLabel(false_block));
2064 }
2065
2066 void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ stop("LBreak"); }
2067
2068 void LCodeGen::DoBranch(LBranch* instr) {
2069 Representation r = instr->hydrogen()->value()->representation();
2070 DoubleRegister dbl_scratch = double_scratch0();
2071
2072 if (r.IsInteger32()) {
2073 DCHECK(!info()->IsStub());
2074 Register reg = ToRegister(instr->value());
2075 __ Cmp32(reg, Operand::Zero());
2076 EmitBranch(instr, ne);
2077 } else if (r.IsSmi()) {
2078 DCHECK(!info()->IsStub());
2079 Register reg = ToRegister(instr->value());
2080 __ CmpP(reg, Operand::Zero());
2081 EmitBranch(instr, ne);
2082 } else if (r.IsDouble()) {
2083 DCHECK(!info()->IsStub());
2084 DoubleRegister reg = ToDoubleRegister(instr->value());
2085 __ lzdr(kDoubleRegZero);
2086 __ cdbr(reg, kDoubleRegZero);
2087 // Test the double value. Zero and NaN are false.
2088 Condition lt_gt = static_cast<Condition>(lt | gt);
2089
2090 EmitBranch(instr, lt_gt);
2091 } else {
2092 DCHECK(r.IsTagged());
2093 Register reg = ToRegister(instr->value());
2094 HType type = instr->hydrogen()->value()->type();
2095 if (type.IsBoolean()) {
2096 DCHECK(!info()->IsStub());
2097 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2098 EmitBranch(instr, eq);
2099 } else if (type.IsSmi()) {
2100 DCHECK(!info()->IsStub());
2101 __ CmpP(reg, Operand::Zero());
2102 EmitBranch(instr, ne);
2103 } else if (type.IsJSArray()) {
2104 DCHECK(!info()->IsStub());
2105 EmitBranch(instr, al);
2106 } else if (type.IsHeapNumber()) {
2107 DCHECK(!info()->IsStub());
2108 __ LoadDouble(dbl_scratch,
2109 FieldMemOperand(reg, HeapNumber::kValueOffset));
2110 // Test the double value. Zero and NaN are false.
2111 __ lzdr(kDoubleRegZero);
2112 __ cdbr(dbl_scratch, kDoubleRegZero);
2113 Condition lt_gt = static_cast<Condition>(lt | gt);
2114 EmitBranch(instr, lt_gt);
2115 } else if (type.IsString()) {
2116 DCHECK(!info()->IsStub());
2117 __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
2118 __ CmpP(ip, Operand::Zero());
2119 EmitBranch(instr, ne);
2120 } else {
2121 ToBooleanHints expected = instr->hydrogen()->expected_input_types();
2122 // Avoid deopts in the case where we've never executed this path before.
2123 if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
2124
2125 if (expected & ToBooleanHint::kUndefined) {
2126 // undefined -> false.
2127 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
2128 __ beq(instr->FalseLabel(chunk_));
2129 }
2130 if (expected & ToBooleanHint::kBoolean) {
2131 // Boolean -> its value.
2132 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2133 __ beq(instr->TrueLabel(chunk_));
2134 __ CompareRoot(reg, Heap::kFalseValueRootIndex);
2135 __ beq(instr->FalseLabel(chunk_));
2136 }
2137 if (expected & ToBooleanHint::kNull) {
2138 // 'null' -> false.
2139 __ CompareRoot(reg, Heap::kNullValueRootIndex);
2140 __ beq(instr->FalseLabel(chunk_));
2141 }
2142
2143 if (expected & ToBooleanHint::kSmallInteger) {
2144 // Smis: 0 -> false, all other -> true.
2145 __ CmpP(reg, Operand::Zero());
2146 __ beq(instr->FalseLabel(chunk_));
2147 __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2148 } else if (expected & ToBooleanHint::kNeedsMap) {
2149 // If we need a map later and have a Smi -> deopt.
2150 __ TestIfSmi(reg);
2151 DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, cr0);
2152 }
2153
2154 const Register map = scratch0();
2155 if (expected & ToBooleanHint::kNeedsMap) {
2156 __ LoadP(map, FieldMemOperand(reg, HeapObject::kMapOffset));
2157
2158 if (expected & ToBooleanHint::kCanBeUndetectable) {
2159 // Undetectable -> false.
2160 __ tm(FieldMemOperand(map, Map::kBitFieldOffset),
2161 Operand(1 << Map::kIsUndetectable));
2162 __ bne(instr->FalseLabel(chunk_));
2163 }
2164 }
2165
2166 if (expected & ToBooleanHint::kReceiver) {
2167 // spec object -> true.
2168 __ CompareInstanceType(map, ip, FIRST_JS_RECEIVER_TYPE);
2169 __ bge(instr->TrueLabel(chunk_));
2170 }
2171
2172 if (expected & ToBooleanHint::kString) {
2173 // String value -> false iff empty.
2174 Label not_string;
2175 __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
2176 __ bge(¬_string, Label::kNear);
2177 __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
2178 __ CmpP(ip, Operand::Zero());
2179 __ bne(instr->TrueLabel(chunk_));
2180 __ b(instr->FalseLabel(chunk_));
2181 __ bind(¬_string);
2182 }
2183
2184 if (expected & ToBooleanHint::kSymbol) {
2185 // Symbol value -> true.
2186 __ CompareInstanceType(map, ip, SYMBOL_TYPE);
2187 __ beq(instr->TrueLabel(chunk_));
2188 }
2189
2190 if (expected & ToBooleanHint::kSimdValue) {
2191 // SIMD value -> true.
2192 Label not_simd;
2193 __ CompareInstanceType(map, ip, SIMD128_VALUE_TYPE);
2194 __ beq(instr->TrueLabel(chunk_));
2195 }
2196
2197 if (expected & ToBooleanHint::kHeapNumber) {
2198 // heap number -> false iff +0, -0, or NaN.
2199 Label not_heap_number;
2200 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
2201 __ bne(¬_heap_number, Label::kNear);
2202 __ LoadDouble(dbl_scratch,
2203 FieldMemOperand(reg, HeapNumber::kValueOffset));
2204 __ lzdr(kDoubleRegZero);
2205 __ cdbr(dbl_scratch, kDoubleRegZero);
2206 __ bunordered(instr->FalseLabel(chunk_)); // NaN -> false.
2207 __ beq(instr->FalseLabel(chunk_)); // +0, -0 -> false.
2208 __ b(instr->TrueLabel(chunk_));
2209 __ bind(¬_heap_number);
2210 }
2211
2212 if (expected != ToBooleanHint::kAny) {
2213 // We've seen something for the first time -> deopt.
2214 // This can only happen if we are not generic already.
2215 DeoptimizeIf(al, instr, DeoptimizeReason::kUnexpectedObject);
2216 }
2217 }
2218 }
2219 }
2220
2221 void LCodeGen::EmitGoto(int block) {
2222 if (!IsNextEmittedBlock(block)) {
2223 __ b(chunk_->GetAssemblyLabel(LookupDestination(block)));
2224 }
2225 }
2226
2227 void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); }
2228
2229 Condition LCodeGen::TokenToCondition(Token::Value op) {
2230 Condition cond = kNoCondition;
2231 switch (op) {
2232 case Token::EQ:
2233 case Token::EQ_STRICT:
2234 cond = eq;
2235 break;
2236 case Token::NE:
2237 case Token::NE_STRICT:
2238 cond = ne;
2239 break;
2240 case Token::LT:
2241 cond = lt;
2242 break;
2243 case Token::GT:
2244 cond = gt;
2245 break;
2246 case Token::LTE:
2247 cond = le;
2248 break;
2249 case Token::GTE:
2250 cond = ge;
2251 break;
2252 case Token::IN:
2253 case Token::INSTANCEOF:
2254 default:
2255 UNREACHABLE();
2256 }
2257 return cond;
2258 }
2259
2260 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2261 LOperand* left = instr->left();
2262 LOperand* right = instr->right();
2263 bool is_unsigned =
2264 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2265 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2266 Condition cond = TokenToCondition(instr->op());
2267
2268 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2269 // We can statically evaluate the comparison.
2270 double left_val = ToDouble(LConstantOperand::cast(left));
2271 double right_val = ToDouble(LConstantOperand::cast(right));
2272 int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2273 ? instr->TrueDestination(chunk_)
2274 : instr->FalseDestination(chunk_);
2275 EmitGoto(next_block);
2276 } else {
2277 if (instr->is_double()) {
2278 // Compare left and right operands as doubles and load the
2279 // resulting flags into the normal status register.
2280 __ cdbr(ToDoubleRegister(left), ToDoubleRegister(right));
2281 // If a NaN is involved, i.e. the result is unordered,
2282 // jump to false block label.
2283 __ bunordered(instr->FalseLabel(chunk_));
2284 } else {
2285 if (right->IsConstantOperand()) {
2286 int32_t value = ToInteger32(LConstantOperand::cast(right));
2287 if (instr->hydrogen_value()->representation().IsSmi()) {
2288 if (is_unsigned) {
2289 __ CmpLogicalSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
2290 } else {
2291 __ CmpSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
2292 }
2293 } else {
2294 if (is_unsigned) {
2295 __ CmpLogical32(ToRegister(left), ToOperand(right));
2296 } else {
2297 __ Cmp32(ToRegister(left), ToOperand(right));
2298 }
2299 }
2300 } else if (left->IsConstantOperand()) {
2301 int32_t value = ToInteger32(LConstantOperand::cast(left));
2302 if (instr->hydrogen_value()->representation().IsSmi()) {
2303 if (is_unsigned) {
2304 __ CmpLogicalSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
2305 } else {
2306 __ CmpSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
2307 }
2308 } else {
2309 if (is_unsigned) {
2310 __ CmpLogical32(ToRegister(right), ToOperand(left));
2311 } else {
2312 __ Cmp32(ToRegister(right), ToOperand(left));
2313 }
2314 }
2315 // We commuted the operands, so commute the condition.
2316 cond = CommuteCondition(cond);
2317 } else if (instr->hydrogen_value()->representation().IsSmi()) {
2318 if (is_unsigned) {
2319 __ CmpLogicalP(ToRegister(left), ToRegister(right));
2320 } else {
2321 __ CmpP(ToRegister(left), ToRegister(right));
2322 }
2323 } else {
2324 if (is_unsigned) {
2325 __ CmpLogical32(ToRegister(left), ToRegister(right));
2326 } else {
2327 __ Cmp32(ToRegister(left), ToRegister(right));
2328 }
2329 }
2330 }
2331 EmitBranch(instr, cond);
2332 }
2333 }
2334
2335 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2336 Register left = ToRegister(instr->left());
2337 Register right = ToRegister(instr->right());
2338
2339 __ CmpP(left, right);
2340 EmitBranch(instr, eq);
2341 }
2342
2343 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2344 if (instr->hydrogen()->representation().IsTagged()) {
2345 Register input_reg = ToRegister(instr->object());
2346 __ CmpP(input_reg, Operand(factory()->the_hole_value()));
2347 EmitBranch(instr, eq);
2348 return;
2349 }
2350
2351 DoubleRegister input_reg = ToDoubleRegister(instr->object());
2352 __ cdbr(input_reg, input_reg);
2353 EmitFalseBranch(instr, ordered);
2354
2355 Register scratch = scratch0();
2356 // Convert to GPR and examine the upper 32 bits
2357 __ lgdr(scratch, input_reg);
2358 __ srlg(scratch, scratch, Operand(32));
2359 __ Cmp32(scratch, Operand(kHoleNanUpper32));
2360 EmitBranch(instr, eq);
2361 }
2362
2363 Condition LCodeGen::EmitIsString(Register input, Register temp1,
2364 Label* is_not_string,
2365 SmiCheck check_needed = INLINE_SMI_CHECK) {
2366 if (check_needed == INLINE_SMI_CHECK) {
2367 __ JumpIfSmi(input, is_not_string);
2368 }
2369 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
2370
2371 return lt;
2372 }
2373
2374 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2375 Register reg = ToRegister(instr->value());
2376 Register temp1 = ToRegister(instr->temp());
2377
2378 SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
2379 ? OMIT_SMI_CHECK
2380 : INLINE_SMI_CHECK;
2381 Condition true_cond =
2382 EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
2383
2384 EmitBranch(instr, true_cond);
2385 }
2386
2387 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2388 Register input_reg = EmitLoadRegister(instr->value(), ip);
2389 __ TestIfSmi(input_reg);
2390 EmitBranch(instr, eq);
2391 }
2392
2393 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2394 Register input = ToRegister(instr->value());
2395 Register temp = ToRegister(instr->temp());
2396
2397 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2398 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2399 }
2400 __ LoadP(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2401 __ tm(FieldMemOperand(temp, Map::kBitFieldOffset),
2402 Operand(1 << Map::kIsUndetectable));
2403 EmitBranch(instr, ne);
2404 }
2405
2406 static Condition ComputeCompareCondition(Token::Value op) {
2407 switch (op) {
2408 case Token::EQ_STRICT:
2409 case Token::EQ:
2410 return eq;
2411 case Token::LT:
2412 return lt;
2413 case Token::GT:
2414 return gt;
2415 case Token::LTE:
2416 return le;
2417 case Token::GTE:
2418 return ge;
2419 default:
2420 UNREACHABLE();
2421 return kNoCondition;
2422 }
2423 }
2424
2425 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2426 DCHECK(ToRegister(instr->context()).is(cp));
2427 DCHECK(ToRegister(instr->left()).is(r3));
2428 DCHECK(ToRegister(instr->right()).is(r2));
2429
2430 Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
2431 CallCode(code, RelocInfo::CODE_TARGET, instr);
2432 __ CompareRoot(r2, Heap::kTrueValueRootIndex);
2433 EmitBranch(instr, eq);
2434 }
2435
2436 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2437 InstanceType from = instr->from();
2438 InstanceType to = instr->to();
2439 if (from == FIRST_TYPE) return to;
2440 DCHECK(from == to || to == LAST_TYPE);
2441 return from;
2442 }
2443
2444 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2445 InstanceType from = instr->from();
2446 InstanceType to = instr->to();
2447 if (from == to) return eq;
2448 if (to == LAST_TYPE) return ge;
2449 if (from == FIRST_TYPE) return le;
2450 UNREACHABLE();
2451 return eq;
2452 }
2453
2454 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2455 Register scratch = scratch0();
2456 Register input = ToRegister(instr->value());
2457
2458 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2459 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2460 }
2461
2462 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2463 EmitBranch(instr, BranchCondition(instr->hydrogen()));
2464 }
2465
2466 // Branches to a label or falls through with the answer in flags. Trashes
2467 // the temp registers, but not the input.
2468 void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false,
2469 Handle<String> class_name, Register input,
2470 Register temp, Register temp2) {
2471 DCHECK(!input.is(temp));
2472 DCHECK(!input.is(temp2));
2473 DCHECK(!temp.is(temp2));
2474
2475 __ JumpIfSmi(input, is_false);
2476
2477 __ CompareObjectType(input, temp, temp2, FIRST_FUNCTION_TYPE);
2478 STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2479 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2480 __ bge(is_true);
2481 } else {
2482 __ bge(is_false);
2483 }
2484
2485 // Check if the constructor in the map is a function.
2486 Register instance_type = ip;
2487 __ GetMapConstructor(temp, temp, temp2, instance_type);
2488
2489 // Objects with a non-function constructor have class 'Object'.
2490 __ CmpP(instance_type, Operand(JS_FUNCTION_TYPE));
2491 if (String::Equals(isolate()->factory()->Object_string(), class_name)) {
2492 __ bne(is_true);
2493 } else {
2494 __ bne(is_false);
2495 }
2496
2497 // temp now contains the constructor function. Grab the
2498 // instance class name from there.
2499 __ LoadP(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2500 __ LoadP(temp,
2501 FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset));
2502 // The class name we are testing against is internalized since it's a literal.
2503 // The name in the constructor is internalized because of the way the context
2504 // is booted. This routine isn't expected to work for random API-created
2505 // classes and it doesn't have to because you can't access it with natives
2506 // syntax. Since both sides are internalized it is sufficient to use an
2507 // identity comparison.
2508 __ CmpP(temp, Operand(class_name));
2509 // End with the answer in flags.
2510 }
2511
2512 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2513 Register input = ToRegister(instr->value());
2514 Register temp = scratch0();
2515 Register temp2 = ToRegister(instr->temp());
2516 Handle<String> class_name = instr->hydrogen()->class_name();
2517
2518 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2519 class_name, input, temp, temp2);
2520
2521 EmitBranch(instr, eq);
2522 }
2523
2524 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2525 Register reg = ToRegister(instr->value());
2526 Register temp = ToRegister(instr->temp());
2527
2528 __ mov(temp, Operand(instr->map()));
2529 __ CmpP(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2530 EmitBranch(instr, eq);
2531 }
2532
2533 void LCodeGen::DoHasInPrototypeChainAndBranch(
2534 LHasInPrototypeChainAndBranch* instr) {
2535 Register const object = ToRegister(instr->object());
2536 Register const object_map = scratch0();
2537 Register const object_instance_type = ip;
2538 Register const object_prototype = object_map;
2539 Register const prototype = ToRegister(instr->prototype());
2540
2541 // The {object} must be a spec object. It's sufficient to know that {object}
2542 // is not a smi, since all other non-spec objects have {null} prototypes and
2543 // will be ruled out below.
2544 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2545 __ TestIfSmi(object);
2546 EmitFalseBranch(instr, eq);
2547 }
2548 // Loop through the {object}s prototype chain looking for the {prototype}.
2549 __ LoadP(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2550 Label loop;
2551 __ bind(&loop);
2552
2553 // Deoptimize if the object needs to be access checked.
2554 __ LoadlB(object_instance_type,
2555 FieldMemOperand(object_map, Map::kBitFieldOffset));
2556 __ TestBit(object_instance_type, Map::kIsAccessCheckNeeded, r0);
2557 DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck, cr0);
2558 // Deoptimize for proxies.
2559 __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
2560 DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy);
2561 __ LoadP(object_prototype,
2562 FieldMemOperand(object_map, Map::kPrototypeOffset));
2563 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2564 EmitFalseBranch(instr, eq);
2565 __ CmpP(object_prototype, prototype);
2566 EmitTrueBranch(instr, eq);
2567 __ LoadP(object_map,
2568 FieldMemOperand(object_prototype, HeapObject::kMapOffset));
2569 __ b(&loop);
2570 }
2571
2572 void LCodeGen::DoCmpT(LCmpT* instr) {
2573 DCHECK(ToRegister(instr->context()).is(cp));
2574 Token::Value op = instr->op();
2575
2576 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2577 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2578 // This instruction also signals no smi code inlined
2579 __ CmpP(r2, Operand::Zero());
2580
2581 Condition condition = ComputeCompareCondition(op);
2582 Label true_value, done;
2583
2584 __ b(condition, &true_value, Label::kNear);
2585
2586 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2587 __ b(&done, Label::kNear);
2588
2589 __ bind(&true_value);
2590 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2591
2592 __ bind(&done);
2593 }
2594
2595 void LCodeGen::DoReturn(LReturn* instr) {
2596 if (FLAG_trace && info()->IsOptimizing()) {
2597 // Push the return value on the stack as the parameter.
2598 // Runtime::TraceExit returns its parameter in r2. We're leaving the code
2599 // managed by the register allocator and tearing down the frame, it's
2600 // safe to write to the context register.
2601 __ push(r2);
2602 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2603 __ CallRuntime(Runtime::kTraceExit);
2604 }
2605 if (info()->saves_caller_doubles()) {
2606 RestoreCallerDoubles();
2607 }
2608 if (instr->has_constant_parameter_count()) {
2609 int parameter_count = ToInteger32(instr->constant_parameter_count());
2610 int32_t sp_delta = (parameter_count + 1) * kPointerSize;
2611 if (NeedsEagerFrame()) {
2612 masm_->LeaveFrame(StackFrame::JAVA_SCRIPT, sp_delta);
2613 } else if (sp_delta != 0) {
2614 // TODO(joransiu): Clean this up into Macro Assembler
2615 if (sp_delta >= 0 && sp_delta < 4096)
2616 __ la(sp, MemOperand(sp, sp_delta));
2617 else
2618 __ lay(sp, MemOperand(sp, sp_delta));
2619 }
2620 } else {
2621 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
2622 Register reg = ToRegister(instr->parameter_count());
2623 // The argument count parameter is a smi
2624 if (NeedsEagerFrame()) {
2625 masm_->LeaveFrame(StackFrame::JAVA_SCRIPT);
2626 }
2627 __ SmiToPtrArrayOffset(r0, reg);
2628 __ AddP(sp, sp, r0);
2629 }
2630
2631 __ Ret();
2632 }
2633
2634 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2635 Register context = ToRegister(instr->context());
2636 Register result = ToRegister(instr->result());
2637 __ LoadP(result, ContextMemOperand(context, instr->slot_index()));
2638 if (instr->hydrogen()->RequiresHoleCheck()) {
2639 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2640 if (instr->hydrogen()->DeoptimizesOnHole()) {
2641 DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2642 } else {
2643 Label skip;
2644 __ bne(&skip, Label::kNear);
2645 __ mov(result, Operand(factory()->undefined_value()));
2646 __ bind(&skip);
2647 }
2648 }
2649 }
2650
2651 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2652 Register context = ToRegister(instr->context());
2653 Register value = ToRegister(instr->value());
2654 Register scratch = scratch0();
2655 MemOperand target = ContextMemOperand(context, instr->slot_index());
2656
2657 Label skip_assignment;
2658
2659 if (instr->hydrogen()->RequiresHoleCheck()) {
2660 __ LoadP(scratch, target);
2661 __ CompareRoot(scratch, Heap::kTheHoleValueRootIndex);
2662 if (instr->hydrogen()->DeoptimizesOnHole()) {
2663 DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2664 } else {
2665 __ bne(&skip_assignment);
2666 }
2667 }
2668
2669 __ StoreP(value, target);
2670 if (instr->hydrogen()->NeedsWriteBarrier()) {
2671 SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
2672 ? OMIT_SMI_CHECK
2673 : INLINE_SMI_CHECK;
2674 __ RecordWriteContextSlot(context, target.offset(), value, scratch,
2675 GetLinkRegisterState(), kSaveFPRegs,
2676 EMIT_REMEMBERED_SET, check_needed);
2677 }
2678
2679 __ bind(&skip_assignment);
2680 }
2681
2682 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2683 HObjectAccess access = instr->hydrogen()->access();
2684 int offset = access.offset();
2685 Register object = ToRegister(instr->object());
2686
2687 if (access.IsExternalMemory()) {
2688 Register result = ToRegister(instr->result());
2689 MemOperand operand = MemOperand(object, offset);
2690 __ LoadRepresentation(result, operand, access.representation(), r0);
2691 return;
2692 }
2693
2694 if (instr->hydrogen()->representation().IsDouble()) {
2695 DCHECK(access.IsInobject());
2696 DoubleRegister result = ToDoubleRegister(instr->result());
2697 __ LoadDouble(result, FieldMemOperand(object, offset));
2698 return;
2699 }
2700
2701 Register result = ToRegister(instr->result());
2702 if (!access.IsInobject()) {
2703 __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2704 object = result;
2705 }
2706
2707 Representation representation = access.representation();
2708
2709 #if V8_TARGET_ARCH_S390X
2710 // 64-bit Smi optimization
2711 if (representation.IsSmi() &&
2712 instr->hydrogen()->representation().IsInteger32()) {
2713 // Read int value directly from upper half of the smi.
2714 offset = SmiWordOffset(offset);
2715 representation = Representation::Integer32();
2716 }
2717 #endif
2718
2719 __ LoadRepresentation(result, FieldMemOperand(object, offset), representation,
2720 r0);
2721 }
2722
2723 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2724 Register scratch = scratch0();
2725 Register function = ToRegister(instr->function());
2726 Register result = ToRegister(instr->result());
2727
2728 // Get the prototype or initial map from the function.
2729 __ LoadP(result,
2730 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2731
2732 // Check that the function has a prototype or an initial map.
2733 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2734 DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2735
2736 // If the function does not have an initial map, we're done.
2737 Label done;
2738 __ CompareObjectType(result, scratch, scratch, MAP_TYPE);
2739 __ bne(&done, Label::kNear);
2740
2741 // Get the prototype from the initial map.
2742 __ LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset));
2743
2744 // All done.
2745 __ bind(&done);
2746 }
2747
2748 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2749 Register result = ToRegister(instr->result());
2750 __ LoadRoot(result, instr->index());
2751 }
2752
2753 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2754 Register arguments = ToRegister(instr->arguments());
2755 Register result = ToRegister(instr->result());
2756 // There are two words between the frame pointer and the last argument.
2757 // Subtracting from length accounts for one of them add one more.
2758 if (instr->length()->IsConstantOperand()) {
2759 int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2760 if (instr->index()->IsConstantOperand()) {
2761 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2762 int index = (const_length - const_index) + 1;
2763 __ LoadP(result, MemOperand(arguments, index * kPointerSize));
2764 } else {
2765 Register index = ToRegister(instr->index());
2766 __ SubP(result, index, Operand(const_length + 1));
2767 __ LoadComplementRR(result, result);
2768 __ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
2769 __ LoadP(result, MemOperand(arguments, result));
2770 }
2771 } else if (instr->index()->IsConstantOperand()) {
2772 Register length = ToRegister(instr->length());
2773 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2774 int loc = const_index - 1;
2775 if (loc != 0) {
2776 __ SubP(result, length, Operand(loc));
2777 __ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
2778 __ LoadP(result, MemOperand(arguments, result));
2779 } else {
2780 __ ShiftLeftP(result, length, Operand(kPointerSizeLog2));
2781 __ LoadP(result, MemOperand(arguments, result));
2782 }
2783 } else {
2784 Register length = ToRegister(instr->length());
2785 Register index = ToRegister(instr->index());
2786 __ SubP(result, length, index);
2787 __ AddP(result, result, Operand(1));
2788 __ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
2789 __ LoadP(result, MemOperand(arguments, result));
2790 }
2791 }
2792
2793 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2794 Register external_pointer = ToRegister(instr->elements());
2795 Register key = no_reg;
2796 ElementsKind elements_kind = instr->elements_kind();
2797 bool key_is_constant = instr->key()->IsConstantOperand();
2798 int constant_key = 0;
2799 if (key_is_constant) {
2800 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2801 if (constant_key & 0xF0000000) {
2802 Abort(kArrayIndexConstantValueTooBig);
2803 }
2804 } else {
2805 key = ToRegister(instr->key());
2806 }
2807 int element_size_shift = ElementsKindToShiftSize(elements_kind);
2808 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
2809 bool keyMaybeNegative = instr->hydrogen()->IsDehoisted();
2810 int base_offset = instr->base_offset();
2811 bool use_scratch = false;
2812
2813 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
2814 DoubleRegister result = ToDoubleRegister(instr->result());
2815 if (key_is_constant) {
2816 base_offset += constant_key << element_size_shift;
2817 if (!is_int20(base_offset)) {
2818 __ mov(scratch0(), Operand(base_offset));
2819 base_offset = 0;
2820 use_scratch = true;
2821 }
2822 } else {
2823 __ IndexToArrayOffset(scratch0(), key, element_size_shift, key_is_smi,
2824 keyMaybeNegative);
2825 use_scratch = true;
2826 }
2827 if (elements_kind == FLOAT32_ELEMENTS) {
2828 if (!use_scratch) {
2829 __ ldeb(result, MemOperand(external_pointer, base_offset));
2830 } else {
2831 __ ldeb(result, MemOperand(scratch0(), external_pointer, base_offset));
2832 }
2833 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
2834 if (!use_scratch) {
2835 __ LoadDouble(result, MemOperand(external_pointer, base_offset));
2836 } else {
2837 __ LoadDouble(result,
2838 MemOperand(scratch0(), external_pointer, base_offset));
2839 }
2840 }
2841 } else {
2842 Register result = ToRegister(instr->result());
2843 MemOperand mem_operand =
2844 PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
2845 constant_key, element_size_shift, base_offset,
2846 keyMaybeNegative);
2847 switch (elements_kind) {
2848 case INT8_ELEMENTS:
2849 __ LoadB(result, mem_operand);
2850 break;
2851 case UINT8_ELEMENTS:
2852 case UINT8_CLAMPED_ELEMENTS:
2853 __ LoadlB(result, mem_operand);
2854 break;
2855 case INT16_ELEMENTS:
2856 __ LoadHalfWordP(result, mem_operand);
2857 break;
2858 case UINT16_ELEMENTS:
2859 __ LoadLogicalHalfWordP(result, mem_operand);
2860 break;
2861 case INT32_ELEMENTS:
2862 __ LoadW(result, mem_operand, r0);
2863 break;
2864 case UINT32_ELEMENTS:
2865 __ LoadlW(result, mem_operand, r0);
2866 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
2867 __ CmpLogical32(result, Operand(0x80000000));
2868 DeoptimizeIf(ge, instr, DeoptimizeReason::kNegativeValue);
2869 }
2870 break;
2871 case FLOAT32_ELEMENTS:
2872 case FLOAT64_ELEMENTS:
2873 case FAST_HOLEY_DOUBLE_ELEMENTS:
2874 case FAST_HOLEY_ELEMENTS:
2875 case FAST_HOLEY_SMI_ELEMENTS:
2876 case FAST_DOUBLE_ELEMENTS:
2877 case FAST_ELEMENTS:
2878 case FAST_SMI_ELEMENTS:
2879 case DICTIONARY_ELEMENTS:
2880 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
2881 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
2882 case FAST_STRING_WRAPPER_ELEMENTS:
2883 case SLOW_STRING_WRAPPER_ELEMENTS:
2884 case NO_ELEMENTS:
2885 UNREACHABLE();
2886 break;
2887 }
2888 }
2889 }
2890
2891 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
2892 Register elements = ToRegister(instr->elements());
2893 bool key_is_constant = instr->key()->IsConstantOperand();
2894 Register key = no_reg;
2895 DoubleRegister result = ToDoubleRegister(instr->result());
2896 Register scratch = scratch0();
2897
2898 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
2899 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
2900 bool keyMaybeNegative = instr->hydrogen()->IsDehoisted();
2901 int constant_key = 0;
2902 if (key_is_constant) {
2903 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2904 if (constant_key & 0xF0000000) {
2905 Abort(kArrayIndexConstantValueTooBig);
2906 }
2907 } else {
2908 key = ToRegister(instr->key());
2909 }
2910
2911 bool use_scratch = false;
2912 intptr_t base_offset = instr->base_offset() + constant_key * kDoubleSize;
2913 if (!key_is_constant) {
2914 use_scratch = true;
2915 __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi,
2916 keyMaybeNegative);
2917 }
2918
2919 // Memory references support up to 20-bits signed displacement in RXY form
2920 // Include Register::kExponentOffset in check, so we are guaranteed not to
2921 // overflow displacement later.
2922 if (!is_int20(base_offset + Register::kExponentOffset)) {
2923 use_scratch = true;
2924 if (key_is_constant) {
2925 __ mov(scratch, Operand(base_offset));
2926 } else {
2927 __ AddP(scratch, Operand(base_offset));
2928 }
2929 base_offset = 0;
2930 }
2931
2932 if (!use_scratch) {
2933 __ LoadDouble(result, MemOperand(elements, base_offset));
2934 } else {
2935 __ LoadDouble(result, MemOperand(scratch, elements, base_offset));
2936 }
2937
2938 if (instr->hydrogen()->RequiresHoleCheck()) {
2939 if (!use_scratch) {
2940 __ LoadlW(r0,
2941 MemOperand(elements, base_offset + Register::kExponentOffset));
2942 } else {
2943 __ LoadlW(r0, MemOperand(scratch, elements,
2944 base_offset + Register::kExponentOffset));
2945 }
2946 __ Cmp32(r0, Operand(kHoleNanUpper32));
2947 DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2948 }
2949 }
2950
2951 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
2952 HLoadKeyed* hinstr = instr->hydrogen();
2953 Register elements = ToRegister(instr->elements());
2954 Register result = ToRegister(instr->result());
2955 Register scratch = scratch0();
2956 int offset = instr->base_offset();
2957
2958 if (instr->key()->IsConstantOperand()) {
2959 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
2960 offset += ToInteger32(const_operand) * kPointerSize;
2961 } else {
2962 Register key = ToRegister(instr->key());
2963 // Even though the HLoadKeyed instruction forces the input
2964 // representation for the key to be an integer, the input gets replaced
2965 // during bound check elimination with the index argument to the bounds
2966 // check, which can be tagged, so that case must be handled here, too.
2967 if (hinstr->key()->representation().IsSmi()) {
2968 __ SmiToPtrArrayOffset(scratch, key);
2969 } else {
2970 __ ShiftLeftP(scratch, key, Operand(kPointerSizeLog2));
2971 }
2972 }
2973
2974 bool requires_hole_check = hinstr->RequiresHoleCheck();
2975 Representation representation = hinstr->representation();
2976
2977 #if V8_TARGET_ARCH_S390X
2978 // 64-bit Smi optimization
2979 if (representation.IsInteger32() &&
2980 hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
2981 DCHECK(!requires_hole_check);
2982 // Read int value directly from upper half of the smi.
2983 offset = SmiWordOffset(offset);
2984 }
2985 #endif
2986
2987 if (instr->key()->IsConstantOperand()) {
2988 __ LoadRepresentation(result, MemOperand(elements, offset), representation,
2989 r1);
2990 } else {
2991 __ LoadRepresentation(result, MemOperand(scratch, elements, offset),
2992 representation, r1);
2993 }
2994
2995 // Check for the hole value.
2996 if (requires_hole_check) {
2997 if (IsFastSmiElementsKind(hinstr->elements_kind())) {
2998 __ TestIfSmi(result);
2999 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, cr0);
3000 } else {
3001 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
3002 DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
3003 }
3004 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
3005 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
3006 Label done;
3007 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
3008 __ CmpP(result, scratch);
3009 __ bne(&done);
3010 if (info()->IsStub()) {
3011 // A stub can safely convert the hole to undefined only if the array
3012 // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise
3013 // it needs to bail out.
3014 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
3015 __ LoadP(result, FieldMemOperand(result, Cell::kValueOffset));
3016 __ CmpSmiLiteral(result, Smi::FromInt(Isolate::kProtectorValid), r0);
3017 DeoptimizeIf(ne, instr, DeoptimizeReason::kHole);
3018 }
3019 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3020 __ bind(&done);
3021 }
3022 }
3023
3024 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
3025 if (instr->is_fixed_typed_array()) {
3026 DoLoadKeyedExternalArray(instr);
3027 } else if (instr->hydrogen()->representation().IsDouble()) {
3028 DoLoadKeyedFixedDoubleArray(instr);
3029 } else {
3030 DoLoadKeyedFixedArray(instr);
3031 }
3032 }
3033
3034 MemOperand LCodeGen::PrepareKeyedOperand(Register key, Register base,
3035 bool key_is_constant, bool key_is_smi,
3036 int constant_key,
3037 int element_size_shift,
3038 int base_offset,
3039 bool keyMaybeNegative) {
3040 Register scratch = scratch0();
3041
3042 if (key_is_constant) {
3043 int offset = (base_offset + (constant_key << element_size_shift));
3044 if (!is_int20(offset)) {
3045 __ mov(scratch, Operand(offset));
3046 return MemOperand(base, scratch);
3047 } else {
3048 return MemOperand(base,
3049 (constant_key << element_size_shift) + base_offset);
3050 }
3051 }
3052
3053 bool needs_shift =
3054 (element_size_shift != (key_is_smi ? kSmiTagSize + kSmiShiftSize : 0));
3055
3056 if (needs_shift) {
3057 __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi,
3058 keyMaybeNegative);
3059 } else {
3060 scratch = key;
3061 }
3062
3063 if (!is_int20(base_offset)) {
3064 __ AddP(scratch, Operand(base_offset));
3065 base_offset = 0;
3066 }
3067 return MemOperand(scratch, base, base_offset);
3068 }
3069
3070 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3071 Register scratch = scratch0();
3072 Register result = ToRegister(instr->result());
3073
3074 if (instr->hydrogen()->from_inlined()) {
3075 __ lay(result, MemOperand(sp, -2 * kPointerSize));
3076 } else if (instr->hydrogen()->arguments_adaptor()) {
3077 // Check if the calling frame is an arguments adaptor frame.
3078 Label done, adapted;
3079 __ LoadP(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3080 __ LoadP(
3081 result,
3082 MemOperand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset));
3083 __ LoadSmiLiteral(r0, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3084 __ CmpP(result, r0);
3085
3086 // Result is the frame pointer for the frame if not adapted and for the real
3087 // frame below the adaptor frame if adapted.
3088 __ beq(&adapted, Label::kNear);
3089 __ LoadRR(result, fp);
3090 __ b(&done, Label::kNear);
3091
3092 __ bind(&adapted);
3093 __ LoadRR(result, scratch);
3094 __ bind(&done);
3095 } else {
3096 __ LoadRR(result, fp);
3097 }
3098 }
3099
3100 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3101 Register elem = ToRegister(instr->elements());
3102 Register result = ToRegister(instr->result());
3103
3104 Label done;
3105
3106 // If no arguments adaptor frame the number of arguments is fixed.
3107 __ CmpP(fp, elem);
3108 __ mov(result, Operand(scope()->num_parameters()));
3109 __ beq(&done, Label::kNear);
3110
3111 // Arguments adaptor frame present. Get argument length from there.
3112 __ LoadP(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3113 __ LoadP(result,
3114 MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
3115 __ SmiUntag(result);
3116
3117 // Argument length is in result register.
3118 __ bind(&done);
3119 }
3120
3121 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3122 Register receiver = ToRegister(instr->receiver());
3123 Register function = ToRegister(instr->function());
3124 Register result = ToRegister(instr->result());
3125 Register scratch = scratch0();
3126
3127 // If the receiver is null or undefined, we have to pass the global
3128 // object as a receiver to normal functions. Values have to be
3129 // passed unchanged to builtins and strict-mode functions.
3130 Label global_object, result_in_receiver;
3131
3132 if (!instr->hydrogen()->known_function()) {
3133 // Do not transform the receiver to object for strict mode
3134 // functions or builtins.
3135 __ LoadP(scratch,
3136 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3137 __ LoadlW(scratch, FieldMemOperand(
3138 scratch, SharedFunctionInfo::kCompilerHintsOffset));
3139 __ AndP(r0, scratch, Operand((1 << SharedFunctionInfo::kStrictModeBit) |
3140 (1 << SharedFunctionInfo::kNativeBit)));
3141 __ bne(&result_in_receiver, Label::kNear);
3142 }
3143
3144 // Normal function. Replace undefined or null with global receiver.
3145 __ CompareRoot(receiver, Heap::kNullValueRootIndex);
3146 __ beq(&global_object, Label::kNear);
3147 __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
3148 __ beq(&global_object, Label::kNear);
3149
3150 // Deoptimize if the receiver is not a JS object.
3151 __ TestIfSmi(receiver);
3152 DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, cr0);
3153 __ CompareObjectType(receiver, scratch, scratch, FIRST_JS_RECEIVER_TYPE);
3154 DeoptimizeIf(lt, instr, DeoptimizeReason::kNotAJavaScriptObject);
3155
3156 __ b(&result_in_receiver, Label::kNear);
3157 __ bind(&global_object);
3158 __ LoadP(result, FieldMemOperand(function, JSFunction::kContextOffset));
3159 __ LoadP(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
3160 __ LoadP(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
3161
3162 if (result.is(receiver)) {
3163 __ bind(&result_in_receiver);
3164 } else {
3165 Label result_ok;
3166 __ b(&result_ok, Label::kNear);
3167 __ bind(&result_in_receiver);
3168 __ LoadRR(result, receiver);
3169 __ bind(&result_ok);
3170 }
3171 }
3172
3173 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3174 Register receiver = ToRegister(instr->receiver());
3175 Register function = ToRegister(instr->function());
3176 Register length = ToRegister(instr->length());
3177 Register elements = ToRegister(instr->elements());
3178 Register scratch = scratch0();
3179 DCHECK(receiver.is(r2)); // Used for parameter count.
3180 DCHECK(function.is(r3)); // Required by InvokeFunction.
3181 DCHECK(ToRegister(instr->result()).is(r2));
3182
3183 // Copy the arguments to this function possibly from the
3184 // adaptor frame below it.
3185 const uint32_t kArgumentsLimit = 1 * KB;
3186 __ CmpLogicalP(length, Operand(kArgumentsLimit));
3187 DeoptimizeIf(gt, instr, DeoptimizeReason::kTooManyArguments);
3188
3189 // Push the receiver and use the register to keep the original
3190 // number of arguments.
3191 __ push(receiver);
3192 __ LoadRR(receiver, length);
3193 // The arguments are at a one pointer size offset from elements.
3194 __ AddP(elements, Operand(1 * kPointerSize));
3195
3196 // Loop through the arguments pushing them onto the execution
3197 // stack.
3198 Label invoke, loop;
3199 // length is a small non-negative integer, due to the test above.
3200 __ CmpP(length, Operand::Zero());
3201 __ beq(&invoke, Label::kNear);
3202 __ bind(&loop);
3203 __ ShiftLeftP(r1, length, Operand(kPointerSizeLog2));
3204 __ LoadP(scratch, MemOperand(elements, r1));
3205 __ push(scratch);
3206 __ BranchOnCount(length, &loop);
3207
3208 __ bind(&invoke);
3209
3210 InvokeFlag flag = CALL_FUNCTION;
3211 if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
3212 DCHECK(!info()->saves_caller_doubles());
3213 // TODO(ishell): drop current frame before pushing arguments to the stack.
3214 flag = JUMP_FUNCTION;
3215 ParameterCount actual(r2);
3216 // It is safe to use r5, r6 and r7 as scratch registers here given that
3217 // 1) we are not going to return to caller function anyway,
3218 // 2) r5 (new.target) will be initialized below.
3219 PrepareForTailCall(actual, r5, r6, r7);
3220 }
3221
3222 DCHECK(instr->HasPointerMap());
3223 LPointerMap* pointers = instr->pointer_map();
3224 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
3225 // The number of arguments is stored in receiver which is r2, as expected
3226 // by InvokeFunction.
3227 ParameterCount actual(receiver);
3228 __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
3229 }
3230
3231 void LCodeGen::DoPushArgument(LPushArgument* instr) {
3232 LOperand* argument = instr->value();
3233 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
3234 Abort(kDoPushArgumentNotImplementedForDoubleType);
3235 } else {
3236 Register argument_reg = EmitLoadRegister(argument, ip);
3237 __ push(argument_reg);
3238 }
3239 }
3240
3241 void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); }
3242
3243 void LCodeGen::DoThisFunction(LThisFunction* instr) {
3244 Register result = ToRegister(instr->result());
3245 __ LoadP(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3246 }
3247
3248 void LCodeGen::DoContext(LContext* instr) {
3249 // If there is a non-return use, the context must be moved to a register.
3250 Register result = ToRegister(instr->result());
3251 if (info()->IsOptimizing()) {
3252 __ LoadP(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
3253 } else {
3254 // If there is no frame, the context must be in cp.
3255 DCHECK(result.is(cp));
3256 }
3257 }
3258
3259 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3260 DCHECK(ToRegister(instr->context()).is(cp));
3261 __ Move(scratch0(), instr->hydrogen()->pairs());
3262 __ push(scratch0());
3263 __ LoadSmiLiteral(scratch0(), Smi::FromInt(instr->hydrogen()->flags()));
3264 __ push(scratch0());
3265 __ Move(scratch0(), instr->hydrogen()->feedback_vector());
3266 __ push(scratch0());
3267 CallRuntime(Runtime::kDeclareGlobals, instr);
3268 }
3269
3270 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3271 int formal_parameter_count, int arity,
3272 bool is_tail_call, LInstruction* instr) {
3273 bool dont_adapt_arguments =
3274 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3275 bool can_invoke_directly =
3276 dont_adapt_arguments || formal_parameter_count == arity;
3277
3278 Register function_reg = r3;
3279
3280 LPointerMap* pointers = instr->pointer_map();
3281
3282 if (can_invoke_directly) {
3283 // Change context.
3284 __ LoadP(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
3285
3286 // Always initialize new target and number of actual arguments.
3287 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
3288 __ mov(r2, Operand(arity));
3289
3290 bool is_self_call = function.is_identical_to(info()->closure());
3291
3292 // Invoke function.
3293 if (is_self_call) {
3294 Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
3295 if (is_tail_call) {
3296 __ Jump(self, RelocInfo::CODE_TARGET);
3297 } else {
3298 __ Call(self, RelocInfo::CODE_TARGET);
3299 }
3300 } else {
3301 __ LoadP(ip, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
3302 if (is_tail_call) {
3303 __ JumpToJSEntry(ip);
3304 } else {
3305 __ CallJSEntry(ip);
3306 }
3307 }
3308
3309 if (!is_tail_call) {
3310 // Set up deoptimization.
3311 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3312 }
3313 } else {
3314 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3315 ParameterCount actual(arity);
3316 ParameterCount expected(formal_parameter_count);
3317 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3318 __ InvokeFunction(function_reg, expected, actual, flag, generator);
3319 }
3320 }
3321
3322 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3323 DCHECK(instr->context() != NULL);
3324 DCHECK(ToRegister(instr->context()).is(cp));
3325 Register input = ToRegister(instr->value());
3326 Register result = ToRegister(instr->result());
3327 Register scratch = scratch0();
3328
3329 // Deoptimize if not a heap number.
3330 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
3331 __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
3332 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
3333
3334 Label done;
3335 Register exponent = scratch0();
3336 scratch = no_reg;
3337 __ LoadlW(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3338 // Check the sign of the argument. If the argument is positive, just
3339 // return it.
3340 __ Cmp32(exponent, Operand::Zero());
3341 // Move the input to the result if necessary.
3342 __ Move(result, input);
3343 __ bge(&done);
3344
3345 // Input is negative. Reverse its sign.
3346 // Preserve the value of all registers.
3347 {
3348 PushSafepointRegistersScope scope(this);
3349
3350 // Registers were saved at the safepoint, so we can use
3351 // many scratch registers.
3352 Register tmp1 = input.is(r3) ? r2 : r3;
3353 Register tmp2 = input.is(r4) ? r2 : r4;
3354 Register tmp3 = input.is(r5) ? r2 : r5;
3355 Register tmp4 = input.is(r6) ? r2 : r6;
3356
3357 // exponent: floating point exponent value.
3358
3359 Label allocated, slow;
3360 __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
3361 __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
3362 __ b(&allocated);
3363
3364 // Slow case: Call the runtime system to do the number allocation.
3365 __ bind(&slow);
3366
3367 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3368 instr->context());
3369 // Set the pointer to the new heap number in tmp.
3370 if (!tmp1.is(r2)) __ LoadRR(tmp1, r2);
3371 // Restore input_reg after call to runtime.
3372 __ LoadFromSafepointRegisterSlot(input, input);
3373 __ LoadlW(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3374
3375 __ bind(&allocated);
3376 // exponent: floating point exponent value.
3377 // tmp1: allocated heap number.
3378
3379 // Clear the sign bit.
3380 __ nilf(exponent, Operand(~HeapNumber::kSignMask));
3381 __ StoreW(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
3382 __ LoadlW(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
3383 __ StoreW(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
3384
3385 __ StoreToSafepointRegisterSlot(tmp1, result);
3386 }
3387
3388 __ bind(&done);
3389 }
3390
3391 void LCodeGen::EmitMathAbs(LMathAbs* instr) {
3392 Register input = ToRegister(instr->value());
3393 Register result = ToRegister(instr->result());
3394 Label done;
3395 __ CmpP(input, Operand::Zero());
3396 __ Move(result, input);
3397 __ bge(&done, Label::kNear);
3398 __ LoadComplementRR(result, result);
3399 // Deoptimize on overflow.
3400 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow, cr0);
3401 __ bind(&done);
3402 }
3403
3404 #if V8_TARGET_ARCH_S390X
3405 void LCodeGen::EmitInteger32MathAbs(LMathAbs* instr) {
3406 Register input = ToRegister(instr->value());
3407 Register result = ToRegister(instr->result());
3408 Label done;
3409 __ Cmp32(input, Operand::Zero());
3410 __ Move(result, input);
3411 __ bge(&done, Label::kNear);
3412
3413 // Deoptimize on overflow.
3414 __ Cmp32(input, Operand(0x80000000));
3415 DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
3416
3417 __ LoadComplementRR(result, result);
3418 __ bind(&done);
3419 }
3420 #endif
3421
3422 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3423 // Class for deferred case.
3424 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3425 public:
3426 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3427 : LDeferredCode(codegen), instr_(instr) {}
3428 void Generate() override {
3429 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3430 }
3431 LInstruction* instr() override { return instr_; }
3432
3433 private:
3434 LMathAbs* instr_;
3435 };
3436
3437 Representation r = instr->hydrogen()->value()->representation();
3438 if (r.IsDouble()) {
3439 DoubleRegister input = ToDoubleRegister(instr->value());
3440 DoubleRegister result = ToDoubleRegister(instr->result());
3441 __ lpdbr(result, input);
3442 #if V8_TARGET_ARCH_S390X
3443 } else if (r.IsInteger32()) {
3444 EmitInteger32MathAbs(instr);
3445 } else if (r.IsSmi()) {
3446 #else
3447 } else if (r.IsSmiOrInteger32()) {
3448 #endif
3449 EmitMathAbs(instr);
3450 } else {
3451 // Representation is tagged.
3452 DeferredMathAbsTaggedHeapNumber* deferred =
3453 new (zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3454 Register input = ToRegister(instr->value());
3455 // Smi check.
3456 __ JumpIfNotSmi(input, deferred->entry());
3457 // If smi, handle it directly.
3458 EmitMathAbs(instr);
3459 __ bind(deferred->exit());
3460 }
3461 }
3462
3463 void LCodeGen::DoMathFloor(LMathFloor* instr) {
3464 DoubleRegister input = ToDoubleRegister(instr->value());
3465 Register result = ToRegister(instr->result());
3466 Register input_high = scratch0();
3467 Register scratch = ip;
3468 Label done, exact;
3469
3470 __ TryInt32Floor(result, input, input_high, scratch, double_scratch0(), &done,
3471 &exact);
3472 DeoptimizeIf(al, instr, DeoptimizeReason::kLostPrecisionOrNaN);
3473
3474 __ bind(&exact);
3475 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3476 // Test for -0.
3477 __ CmpP(result, Operand::Zero());
3478 __ bne(&done, Label::kNear);
3479 __ Cmp32(input_high, Operand::Zero());
3480 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
3481 }
3482 __ bind(&done);
3483 }
3484
3485 void LCodeGen::DoMathRound(LMathRound* instr) {
3486 DoubleRegister input = ToDoubleRegister(instr->value());
3487 Register result = ToRegister(instr->result());
3488 DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
3489 DoubleRegister input_plus_dot_five = double_scratch1;
3490 Register scratch1 = scratch0();
3491 Register scratch2 = ip;
3492 DoubleRegister dot_five = double_scratch0();
3493 Label convert, done;
3494
3495 __ LoadDoubleLiteral(dot_five, 0.5, r0);
3496 __ lpdbr(double_scratch1, input);
3497 __ cdbr(double_scratch1, dot_five);
3498 DeoptimizeIf(unordered, instr, DeoptimizeReason::kLostPrecisionOrNaN);
3499 // If input is in [-0.5, -0], the result is -0.
3500 // If input is in [+0, +0.5[, the result is +0.
3501 // If the input is +0.5, the result is 1.
3502 __ bgt(&convert, Label::kNear); // Out of [-0.5, +0.5].
3503 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3504 // [-0.5, -0] (negative) yields minus zero.
3505 __ TestDoubleSign(input, scratch1);
3506 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
3507 }
3508 Label return_zero;
3509 __ cdbr(input, dot_five);
3510 __ bne(&return_zero, Label::kNear);
3511 __ LoadImmP(result, Operand(1)); // +0.5.
3512 __ b(&done, Label::kNear);
3513 // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
3514 // flag kBailoutOnMinusZero.
3515 __ bind(&return_zero);
3516 __ LoadImmP(result, Operand::Zero());
3517 __ b(&done, Label::kNear);
3518
3519 __ bind(&convert);
3520 __ ldr(input_plus_dot_five, input);
3521 __ adbr(input_plus_dot_five, dot_five);
3522 // Reuse dot_five (double_scratch0) as we no longer need this value.
3523 __ TryInt32Floor(result, input_plus_dot_five, scratch1, scratch2,
3524 double_scratch0(), &done, &done);
3525 DeoptimizeIf(al, instr, DeoptimizeReason::kLostPrecisionOrNaN);
3526 __ bind(&done);
3527 }
3528
3529 void LCodeGen::DoMathFround(LMathFround* instr) {
3530 DoubleRegister input_reg = ToDoubleRegister(instr->value());
3531 DoubleRegister output_reg = ToDoubleRegister(instr->result());
3532
3533 // Round double to float
3534 __ ledbr(output_reg, input_reg);
3535 // Extend from float to double
3536 __ ldebr(output_reg, output_reg);
3537 }
3538
3539 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3540 DoubleRegister input = ToDoubleRegister(instr->value());
3541 DoubleRegister result = ToDoubleRegister(instr->result());
3542 __ sqdbr(result, input);
3543 }
3544
3545 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3546 DoubleRegister input = ToDoubleRegister(instr->value());
3547 DoubleRegister result = ToDoubleRegister(instr->result());
3548 DoubleRegister temp = double_scratch0();
3549
3550 // Note that according to ECMA-262 15.8.2.13:
3551 // Math.pow(-Infinity, 0.5) == Infinity
3552 // Math.sqrt(-Infinity) == NaN
3553 Label skip, done;
3554
3555 __ LoadDoubleLiteral(temp, -V8_INFINITY, scratch0());
3556 __ cdbr(input, temp);
3557 __ bne(&skip, Label::kNear);
3558 __ lcdbr(result, temp);
3559 __ b(&done, Label::kNear);
3560
3561 // Add +0 to convert -0 to +0.
3562 __ bind(&skip);
3563 __ ldr(result, input);
3564 __ lzdr(kDoubleRegZero);
3565 __ adbr(result, kDoubleRegZero);
3566 __ sqdbr(result, result);
3567 __ bind(&done);
3568 }
3569
3570 void LCodeGen::DoPower(LPower* instr) {
3571 Representation exponent_type = instr->hydrogen()->right()->representation();
3572 // Having marked this as a call, we can use any registers.
3573 // Just make sure that the input/output registers are the expected ones.
3574 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3575 DCHECK(!instr->right()->IsDoubleRegister() ||
3576 ToDoubleRegister(instr->right()).is(d2));
3577 DCHECK(!instr->right()->IsRegister() ||
3578 ToRegister(instr->right()).is(tagged_exponent));
3579 DCHECK(ToDoubleRegister(instr->left()).is(d1));
3580 DCHECK(ToDoubleRegister(instr->result()).is(d3));
3581
3582 if (exponent_type.IsSmi()) {
3583 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3584 __ CallStub(&stub);
3585 } else if (exponent_type.IsTagged()) {
3586 Label no_deopt;
3587 __ JumpIfSmi(tagged_exponent, &no_deopt);
3588 __ LoadP(r9, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
3589 __ CompareRoot(r9, Heap::kHeapNumberMapRootIndex);
3590 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
3591 __ bind(&no_deopt);
3592 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3593 __ CallStub(&stub);
3594 } else if (exponent_type.IsInteger32()) {
3595 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3596 __ CallStub(&stub);
3597 } else {
3598 DCHECK(exponent_type.IsDouble());
3599 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3600 __ CallStub(&stub);
3601 }
3602 }
3603
3604 void LCodeGen::DoMathCos(LMathCos* instr) {
3605 __ PrepareCallCFunction(0, 1, scratch0());
3606 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3607 __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1);
3608 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3609 }
3610
3611 void LCodeGen::DoMathSin(LMathSin* instr) {
3612 __ PrepareCallCFunction(0, 1, scratch0());
3613 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3614 __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1);
3615 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3616 }
3617
3618 void LCodeGen::DoMathExp(LMathExp* instr) {
3619 __ PrepareCallCFunction(0, 1, scratch0());
3620 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3621 __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1);
3622 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3623 }
3624
3625 void LCodeGen::DoMathLog(LMathLog* instr) {
3626 __ PrepareCallCFunction(0, 1, scratch0());
3627 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3628 __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1);
3629 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3630 }
3631
3632 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3633 Register input = ToRegister(instr->value());
3634 Register result = ToRegister(instr->result());
3635 Label done;
3636 __ llgfr(result, input);
3637 __ flogr(r0, result);
3638 __ LoadRR(result, r0);
3639 __ CmpP(r0, Operand::Zero());
3640 __ beq(&done, Label::kNear);
3641 __ SubP(result, Operand(32));
3642 __ bind(&done);
3643 }
3644
3645 void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
3646 Register scratch1, Register scratch2,
3647 Register scratch3) {
3648 #if DEBUG
3649 if (actual.is_reg()) {
3650 DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
3651 } else {
3652 DCHECK(!AreAliased(scratch1, scratch2, scratch3));
3653 }
3654 #endif
3655 if (FLAG_code_comments) {
3656 if (actual.is_reg()) {
3657 Comment(";;; PrepareForTailCall, actual: %s {",
3658 RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
3659 actual.reg().code()));
3660 } else {
3661 Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
3662 }
3663 }
3664
3665 // Check if next frame is an arguments adaptor frame.
3666 Register caller_args_count_reg = scratch1;
3667 Label no_arguments_adaptor, formal_parameter_count_loaded;
3668 __ LoadP(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3669 __ LoadP(scratch3,
3670 MemOperand(scratch2, StandardFrameConstants::kContextOffset));
3671 __ CmpSmiLiteral(scratch3, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
3672 __ bne(&no_arguments_adaptor);
3673
3674 // Drop current frame and load arguments count from arguments adaptor frame.
3675 __ LoadRR(fp, scratch2);
3676 __ LoadP(caller_args_count_reg,
3677 MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
3678 __ SmiUntag(caller_args_count_reg);
3679 __ b(&formal_parameter_count_loaded);
3680
3681 __ bind(&no_arguments_adaptor);
3682 // Load caller's formal parameter count
3683 __ mov(caller_args_count_reg, Operand(info()->literal()->parameter_count()));
3684
3685 __ bind(&formal_parameter_count_loaded);
3686 __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
3687
3688 Comment(";;; }");
3689 }
3690
3691 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3692 HInvokeFunction* hinstr = instr->hydrogen();
3693 DCHECK(ToRegister(instr->context()).is(cp));
3694 DCHECK(ToRegister(instr->function()).is(r3));
3695 DCHECK(instr->HasPointerMap());
3696
3697 bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
3698
3699 if (is_tail_call) {
3700 DCHECK(!info()->saves_caller_doubles());
3701 ParameterCount actual(instr->arity());
3702 // It is safe to use r5, r6 and r7 as scratch registers here given that
3703 // 1) we are not going to return to caller function anyway,
3704 // 2) r5 (new.target) will be initialized below.
3705 PrepareForTailCall(actual, r5, r6, r7);
3706 }
3707
3708 Handle<JSFunction> known_function = hinstr->known_function();
3709 if (known_function.is_null()) {
3710 LPointerMap* pointers = instr->pointer_map();
3711 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3712 ParameterCount actual(instr->arity());
3713 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3714 __ InvokeFunction(r3, no_reg, actual, flag, generator);
3715 } else {
3716 CallKnownFunction(known_function, hinstr->formal_parameter_count(),
3717 instr->arity(), is_tail_call, instr);
3718 }
3719 }
3720
3721 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3722 DCHECK(ToRegister(instr->result()).is(r2));
3723
3724 if (instr->hydrogen()->IsTailCall()) {
3725 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
3726
3727 if (instr->target()->IsConstantOperand()) {
3728 LConstantOperand* target = LConstantOperand::cast(instr->target());
3729 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3730 __ Jump(code, RelocInfo::CODE_TARGET);
3731 } else {
3732 DCHECK(instr->target()->IsRegister());
3733 Register target = ToRegister(instr->target());
3734 __ AddP(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3735 __ JumpToJSEntry(ip);
3736 }
3737 } else {
3738 LPointerMap* pointers = instr->pointer_map();
3739 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3740
3741 if (instr->target()->IsConstantOperand()) {
3742 LConstantOperand* target = LConstantOperand::cast(instr->target());
3743 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3744 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3745 __ Call(code, RelocInfo::CODE_TARGET);
3746 } else {
3747 DCHECK(instr->target()->IsRegister());
3748 Register target = ToRegister(instr->target());
3749 generator.BeforeCall(__ CallSize(target));
3750 __ AddP(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3751 __ CallJSEntry(ip);
3752 }
3753 generator.AfterCall();
3754 }
3755 }
3756
3757 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3758 DCHECK(ToRegister(instr->context()).is(cp));
3759 DCHECK(ToRegister(instr->constructor()).is(r3));
3760 DCHECK(ToRegister(instr->result()).is(r2));
3761
3762 __ mov(r2, Operand(instr->arity()));
3763 __ Move(r4, instr->hydrogen()->site());
3764
3765 ElementsKind kind = instr->hydrogen()->elements_kind();
3766 AllocationSiteOverrideMode override_mode =
3767 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3768 ? DISABLE_ALLOCATION_SITES
3769 : DONT_OVERRIDE;
3770
3771 if (instr->arity() == 0) {
3772 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3773 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3774 } else if (instr->arity() == 1) {
3775 Label done;
3776 if (IsFastPackedElementsKind(kind)) {
3777 Label packed_case;
3778 // We might need a change here
3779 // look at the first argument
3780 __ LoadP(r7, MemOperand(sp, 0));
3781 __ CmpP(r7, Operand::Zero());
3782 __ beq(&packed_case, Label::kNear);
3783
3784 ElementsKind holey_kind = GetHoleyElementsKind(kind);
3785 ArraySingleArgumentConstructorStub stub(isolate(), holey_kind,
3786 override_mode);
3787 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3788 __ b(&done, Label::kNear);
3789 __ bind(&packed_case);
3790 }
3791
3792 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3793 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3794 __ bind(&done);
3795 } else {
3796 ArrayNArgumentsConstructorStub stub(isolate());
3797 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3798 }
3799 }
3800
3801 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3802 CallRuntime(instr->function(), instr->arity(), instr);
3803 }
3804
3805 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3806 Register function = ToRegister(instr->function());
3807 Register code_object = ToRegister(instr->code_object());
3808 __ lay(code_object,
3809 MemOperand(code_object, Code::kHeaderSize - kHeapObjectTag));
3810 __ StoreP(code_object,
3811 FieldMemOperand(function, JSFunction::kCodeEntryOffset), r0);
3812 }
3813
3814 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3815 Register result = ToRegister(instr->result());
3816 Register base = ToRegister(instr->base_object());
3817 if (instr->offset()->IsConstantOperand()) {
3818 LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3819 __ lay(result, MemOperand(base, ToInteger32(offset)));
3820 } else {
3821 Register offset = ToRegister(instr->offset());
3822 __ lay(result, MemOperand(base, offset));
3823 }
3824 }
3825
3826 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3827 HStoreNamedField* hinstr = instr->hydrogen();
3828 Representation representation = instr->representation();
3829
3830 Register object = ToRegister(instr->object());
3831 Register scratch = scratch0();
3832 HObjectAccess access = hinstr->access();
3833 int offset = access.offset();
3834
3835 if (access.IsExternalMemory()) {
3836 Register value = ToRegister(instr->value());
3837 MemOperand operand = MemOperand(object, offset);
3838 __ StoreRepresentation(value, operand, representation, r0);
3839 return;
3840 }
3841
3842 __ AssertNotSmi(object);
3843
3844 #if V8_TARGET_ARCH_S390X
3845 DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
3846 IsInteger32(LConstantOperand::cast(instr->value())));
3847 #else
3848 DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
3849 IsSmi(LConstantOperand::cast(instr->value())));
3850 #endif
3851 if (!FLAG_unbox_double_fields && representation.IsDouble()) {
3852 DCHECK(access.IsInobject());
3853 DCHECK(!hinstr->has_transition());
3854 DCHECK(!hinstr->NeedsWriteBarrier());
3855 DoubleRegister value = ToDoubleRegister(instr->value());
3856 DCHECK(offset >= 0);
3857 __ StoreDouble(value, FieldMemOperand(object, offset));
3858 return;
3859 }
3860
3861 if (hinstr->has_transition()) {
3862 Handle<Map> transition = hinstr->transition_map();
3863 AddDeprecationDependency(transition);
3864 __ mov(scratch, Operand(transition));
3865 __ StoreP(scratch, FieldMemOperand(object, HeapObject::kMapOffset), r0);
3866 if (hinstr->NeedsWriteBarrierForMap()) {
3867 Register temp = ToRegister(instr->temp());
3868 // Update the write barrier for the map field.
3869 __ RecordWriteForMap(object, scratch, temp, GetLinkRegisterState(),
3870 kSaveFPRegs);
3871 }
3872 }
3873
3874 // Do the store.
3875 Register record_dest = object;
3876 Register record_value = no_reg;
3877 Register record_scratch = scratch;
3878 #if V8_TARGET_ARCH_S390X
3879 if (FLAG_unbox_double_fields && representation.IsDouble()) {
3880 DCHECK(access.IsInobject());
3881 DoubleRegister value = ToDoubleRegister(instr->value());
3882 __ StoreDouble(value, FieldMemOperand(object, offset));
3883 if (hinstr->NeedsWriteBarrier()) {
3884 record_value = ToRegister(instr->value());
3885 }
3886 } else {
3887 if (representation.IsSmi() &&
3888 hinstr->value()->representation().IsInteger32()) {
3889 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
3890 // 64-bit Smi optimization
3891 // Store int value directly to upper half of the smi.
3892 offset = SmiWordOffset(offset);
3893 representation = Representation::Integer32();
3894 }
3895 #endif
3896 if (access.IsInobject()) {
3897 Register value = ToRegister(instr->value());
3898 MemOperand operand = FieldMemOperand(object, offset);
3899 __ StoreRepresentation(value, operand, representation, r0);
3900 record_value = value;
3901 } else {
3902 Register value = ToRegister(instr->value());
3903 __ LoadP(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
3904 MemOperand operand = FieldMemOperand(scratch, offset);
3905 __ StoreRepresentation(value, operand, representation, r0);
3906 record_dest = scratch;
3907 record_value = value;
3908 record_scratch = object;
3909 }
3910 #if V8_TARGET_ARCH_S390X
3911 }
3912 #endif
3913
3914 if (hinstr->NeedsWriteBarrier()) {
3915 __ RecordWriteField(record_dest, offset, record_value, record_scratch,
3916 GetLinkRegisterState(), kSaveFPRegs,
3917 EMIT_REMEMBERED_SET, hinstr->SmiCheckForWriteBarrier(),
3918 hinstr->PointersToHereCheckForValue());
3919 }
3920 }
3921
3922 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3923 Representation representation = instr->hydrogen()->length()->representation();
3924 DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
3925 DCHECK(representation.IsSmiOrInteger32());
3926 Register temp = scratch0();
3927
3928 Condition cc = instr->hydrogen()->allow_equality() ? lt : le;
3929 if (instr->length()->IsConstantOperand()) {
3930 int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
3931 Register index = ToRegister(instr->index());
3932 if (representation.IsSmi()) {
3933 __ CmpLogicalSmiLiteral(index, Smi::FromInt(length), temp);
3934 } else {
3935 __ CmpLogical32(index, Operand(length));
3936 }
3937 cc = CommuteCondition(cc);
3938 } else if (instr->index()->IsConstantOperand()) {
3939 int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
3940 Register length = ToRegister(instr->length());
3941 if (representation.IsSmi()) {
3942 __ CmpLogicalSmiLiteral(length, Smi::FromInt(index), temp);
3943 } else {
3944 __ CmpLogical32(length, Operand(index));
3945 }
3946 } else {
3947 Register index = ToRegister(instr->index());
3948 Register length = ToRegister(instr->length());
3949 if (representation.IsSmi()) {
3950 __ CmpLogicalP(length, index);
3951 } else {
3952 __ CmpLogical32(length, index);
3953 }
3954 }
3955 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
3956 Label done;
3957 __ b(NegateCondition(cc), &done, Label::kNear);
3958 __ stop("eliminated bounds check failed");
3959 __ bind(&done);
3960 } else {
3961 DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds);
3962 }
3963 }
3964
3965 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
3966 Register external_pointer = ToRegister(instr->elements());
3967 Register key = no_reg;
3968 ElementsKind elements_kind = instr->elements_kind();
3969 bool key_is_constant = instr->key()->IsConstantOperand();
3970 int constant_key = 0;
3971 if (key_is_constant) {
3972 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3973 if (constant_key & 0xF0000000) {
3974 Abort(kArrayIndexConstantValueTooBig);
3975 }
3976 } else {
3977 key = ToRegister(instr->key());
3978 }
3979 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3980 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3981 bool keyMaybeNegative = instr->hydrogen()->IsDehoisted();
3982 int base_offset = instr->base_offset();
3983
3984 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
3985 Register address = scratch0();
3986 DoubleRegister value(ToDoubleRegister(instr->value()));
3987 if (key_is_constant) {
3988 if (constant_key != 0) {
3989 base_offset += constant_key << element_size_shift;
3990 if (!is_int20(base_offset)) {
3991 __ mov(address, Operand(base_offset));
3992 __ AddP(address, external_pointer);
3993 } else {
3994 __ AddP(address, external_pointer, Operand(base_offset));
3995 }
3996 base_offset = 0;
3997 } else {
3998 address = external_pointer;
3999 }
4000 } else {
4001 __ IndexToArrayOffset(address, key, element_size_shift, key_is_smi,
4002 keyMaybeNegative);
4003 __ AddP(address, external_pointer);
4004 }
4005 if (elements_kind == FLOAT32_ELEMENTS) {
4006 __ ledbr(double_scratch0(), value);
4007 __ StoreFloat32(double_scratch0(), MemOperand(address, base_offset));
4008 } else { // Storing doubles, not floats.
4009 __ StoreDouble(value, MemOperand(address, base_offset));
4010 }
4011 } else {
4012 Register value(ToRegister(instr->value()));
4013 MemOperand mem_operand =
4014 PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
4015 constant_key, element_size_shift, base_offset,
4016 keyMaybeNegative);
4017 switch (elements_kind) {
4018 case UINT8_ELEMENTS:
4019 case UINT8_CLAMPED_ELEMENTS:
4020 case INT8_ELEMENTS:
4021 if (key_is_constant) {
4022 __ StoreByte(value, mem_operand, r0);
4023 } else {
4024 __ StoreByte(value, mem_operand);
4025 }
4026 break;
4027 case INT16_ELEMENTS:
4028 case UINT16_ELEMENTS:
4029 if (key_is_constant) {
4030 __ StoreHalfWord(value, mem_operand, r0);
4031 } else {
4032 __ StoreHalfWord(value, mem_operand);
4033 }
4034 break;
4035 case INT32_ELEMENTS:
4036 case UINT32_ELEMENTS:
4037 if (key_is_constant) {
4038 __ StoreW(value, mem_operand, r0);
4039 } else {
4040 __ StoreW(value, mem_operand);
4041 }
4042 break;
4043 case FLOAT32_ELEMENTS:
4044 case FLOAT64_ELEMENTS:
4045 case FAST_DOUBLE_ELEMENTS:
4046 case FAST_ELEMENTS:
4047 case FAST_SMI_ELEMENTS:
4048 case FAST_HOLEY_DOUBLE_ELEMENTS:
4049 case FAST_HOLEY_ELEMENTS:
4050 case FAST_HOLEY_SMI_ELEMENTS:
4051 case DICTIONARY_ELEMENTS:
4052 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
4053 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
4054 case FAST_STRING_WRAPPER_ELEMENTS:
4055 case SLOW_STRING_WRAPPER_ELEMENTS:
4056 case NO_ELEMENTS:
4057 UNREACHABLE();
4058 break;
4059 }
4060 }
4061 }
4062
4063 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4064 DoubleRegister value = ToDoubleRegister(instr->value());
4065 Register elements = ToRegister(instr->elements());
4066 Register key = no_reg;
4067 Register scratch = scratch0();
4068 DoubleRegister double_scratch = double_scratch0();
4069 bool key_is_constant = instr->key()->IsConstantOperand();
4070 int constant_key = 0;
4071
4072 // Calculate the effective address of the slot in the array to store the
4073 // double value.
4074 if (key_is_constant) {
4075 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4076 if (constant_key & 0xF0000000) {
4077 Abort(kArrayIndexConstantValueTooBig);
4078 }
4079 } else {
4080 key = ToRegister(instr->key());
4081 }
4082 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
4083 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
4084 bool keyMaybeNegative = instr->hydrogen()->IsDehoisted();
4085 int base_offset = instr->base_offset() + constant_key * kDoubleSize;
4086 bool use_scratch = false;
4087 intptr_t address_offset = base_offset;
4088
4089 if (key_is_constant) {
4090 // Memory references support up to 20-bits signed displacement in RXY form
4091 if (!is_int20((address_offset))) {
4092 __ mov(scratch, Operand(address_offset));
4093 address_offset = 0;
4094 use_scratch = true;
4095 }
4096 } else {
4097 use_scratch = true;
4098 __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi,
4099 keyMaybeNegative);
4100 // Memory references support up to 20-bits signed displacement in RXY form
4101 if (!is_int20((address_offset))) {
4102 __ AddP(scratch, Operand(address_offset));
4103 address_offset = 0;
4104 }
4105 }
4106
4107 if (instr->NeedsCanonicalization()) {
4108 // Turn potential sNaN value into qNaN.
4109 __ CanonicalizeNaN(double_scratch, value);
4110 DCHECK(address_offset >= 0);
4111 if (use_scratch)
4112 __ StoreDouble(double_scratch,
4113 MemOperand(scratch, elements, address_offset));
4114 else
4115 __ StoreDouble(double_scratch, MemOperand(elements, address_offset));
4116 } else {
4117 if (use_scratch)
4118 __ StoreDouble(value, MemOperand(scratch, elements, address_offset));
4119 else
4120 __ StoreDouble(value, MemOperand(elements, address_offset));
4121 }
4122 }
4123
4124 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4125 HStoreKeyed* hinstr = instr->hydrogen();
4126 Register value = ToRegister(instr->value());
4127 Register elements = ToRegister(instr->elements());
4128 Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
4129 Register scratch = scratch0();
4130 int offset = instr->base_offset();
4131
4132 // Do the store.
4133 if (instr->key()->IsConstantOperand()) {
4134 DCHECK(!hinstr->NeedsWriteBarrier());
4135 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
4136 offset += ToInteger32(const_operand) * kPointerSize;
4137 } else {
4138 // Even though the HLoadKeyed instruction forces the input
4139 // representation for the key to be an integer, the input gets replaced
4140 // during bound check elimination with the index argument to the bounds
4141 // check, which can be tagged, so that case must be handled here, too.
4142 if (hinstr->key()->representation().IsSmi()) {
4143 __ SmiToPtrArrayOffset(scratch, key);
4144 } else {
4145 if (instr->hydrogen()->IsDehoisted() ||
4146 !CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
4147 #if V8_TARGET_ARCH_S390X
4148 // If array access is dehoisted, the key, being an int32, can contain
4149 // a negative value, as needs to be sign-extended to 64-bit for
4150 // memory access.
4151 __ lgfr(key, key);
4152 #endif
4153 __ ShiftLeftP(scratch, key, Operand(kPointerSizeLog2));
4154 } else {
4155 // Small optimization to reduce pathlength. After Bounds Check,
4156 // the key is guaranteed to be non-negative. Leverage RISBG,
4157 // which also performs zero-extension.
4158 __ risbg(scratch, key, Operand(32 - kPointerSizeLog2),
4159 Operand(63 - kPointerSizeLog2), Operand(kPointerSizeLog2),
4160 true);
4161 }
4162 }
4163 }
4164
4165 Representation representation = hinstr->value()->representation();
4166
4167 #if V8_TARGET_ARCH_S390X
4168 // 64-bit Smi optimization
4169 if (representation.IsInteger32()) {
4170 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4171 DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
4172 // Store int value directly to upper half of the smi.
4173 offset = SmiWordOffset(offset);
4174 }
4175 #endif
4176
4177 if (instr->key()->IsConstantOperand()) {
4178 __ StoreRepresentation(value, MemOperand(elements, offset), representation,
4179 scratch);
4180 } else {
4181 __ StoreRepresentation(value, MemOperand(scratch, elements, offset),
4182 representation, r0);
4183 }
4184
4185 if (hinstr->NeedsWriteBarrier()) {
4186 SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
4187 ? OMIT_SMI_CHECK
4188 : INLINE_SMI_CHECK;
4189 // Compute address of modified element and store it into key register.
4190 if (instr->key()->IsConstantOperand()) {
4191 __ lay(key, MemOperand(elements, offset));
4192 } else {
4193 __ lay(key, MemOperand(scratch, elements, offset));
4194 }
4195 __ RecordWrite(elements, key, value, GetLinkRegisterState(), kSaveFPRegs,
4196 EMIT_REMEMBERED_SET, check_needed,
4197 hinstr->PointersToHereCheckForValue());
4198 }
4199 }
4200
4201 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4202 // By cases: external, fast double
4203 if (instr->is_fixed_typed_array()) {
4204 DoStoreKeyedExternalArray(instr);
4205 } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4206 DoStoreKeyedFixedDoubleArray(instr);
4207 } else {
4208 DoStoreKeyedFixedArray(instr);
4209 }
4210 }
4211
4212 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4213 class DeferredMaybeGrowElements final : public LDeferredCode {
4214 public:
4215 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4216 : LDeferredCode(codegen), instr_(instr) {}
4217 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4218 LInstruction* instr() override { return instr_; }
4219
4220 private:
4221 LMaybeGrowElements* instr_;
4222 };
4223
4224 Register result = r2;
4225 DeferredMaybeGrowElements* deferred =
4226 new (zone()) DeferredMaybeGrowElements(this, instr);
4227 LOperand* key = instr->key();
4228 LOperand* current_capacity = instr->current_capacity();
4229
4230 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
4231 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
4232 DCHECK(key->IsConstantOperand() || key->IsRegister());
4233 DCHECK(current_capacity->IsConstantOperand() ||
4234 current_capacity->IsRegister());
4235
4236 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
4237 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4238 int32_t constant_capacity =
4239 ToInteger32(LConstantOperand::cast(current_capacity));
4240 if (constant_key >= constant_capacity) {
4241 // Deferred case.
4242 __ b(deferred->entry());
4243 }
4244 } else if (key->IsConstantOperand()) {
4245 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4246 __ Cmp32(ToRegister(current_capacity), Operand(constant_key));
4247 __ ble(deferred->entry());
4248 } else if (current_capacity->IsConstantOperand()) {
4249 int32_t constant_capacity =
4250 ToInteger32(LConstantOperand::cast(current_capacity));
4251 __ Cmp32(ToRegister(key), Operand(constant_capacity));
4252 __ bge(deferred->entry());
4253 } else {
4254 __ Cmp32(ToRegister(key), ToRegister(current_capacity));
4255 __ bge(deferred->entry());
4256 }
4257
4258 if (instr->elements()->IsRegister()) {
4259 __ Move(result, ToRegister(instr->elements()));
4260 } else {
4261 __ LoadP(result, ToMemOperand(instr->elements()));
4262 }
4263
4264 __ bind(deferred->exit());
4265 }
4266
4267 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4268 // TODO(3095996): Get rid of this. For now, we need to make the
4269 // result register contain a valid pointer because it is already
4270 // contained in the register pointer map.
4271 Register result = r2;
4272 __ LoadImmP(result, Operand::Zero());
4273
4274 // We have to call a stub.
4275 {
4276 PushSafepointRegistersScope scope(this);
4277 if (instr->object()->IsRegister()) {
4278 __ Move(result, ToRegister(instr->object()));
4279 } else {
4280 __ LoadP(result, ToMemOperand(instr->object()));
4281 }
4282
4283 LOperand* key = instr->key();
4284 if (key->IsConstantOperand()) {
4285 LConstantOperand* constant_key = LConstantOperand::cast(key);
4286 int32_t int_key = ToInteger32(constant_key);
4287 if (Smi::IsValid(int_key)) {
4288 __ LoadSmiLiteral(r5, Smi::FromInt(int_key));
4289 } else {
4290 // We should never get here at runtime because there is a smi check on
4291 // the key before this point.
4292 __ stop("expected smi");
4293 }
4294 } else {
4295 __ SmiTag(r5, ToRegister(key));
4296 }
4297
4298 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind());
4299 __ CallStub(&stub);
4300 RecordSafepointWithLazyDeopt(
4301 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4302 __ StoreToSafepointRegisterSlot(result, result);
4303 }
4304
4305 // Deopt on smi, which means the elements array changed to dictionary mode.
4306 __ TestIfSmi(result);
4307 DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, cr0);
4308 }
4309
4310 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4311 Register object_reg = ToRegister(instr->object());
4312 Register scratch = scratch0();
4313
4314 Handle<Map> from_map = instr->original_map();
4315 Handle<Map> to_map = instr->transitioned_map();
4316 ElementsKind from_kind = instr->from_kind();
4317 ElementsKind to_kind = instr->to_kind();
4318
4319 Label not_applicable;
4320 __ LoadP(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4321 __ CmpP(scratch, Operand(from_map));
4322 __ bne(¬_applicable);
4323
4324 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4325 Register new_map_reg = ToRegister(instr->new_map_temp());
4326 __ mov(new_map_reg, Operand(to_map));
4327 __ StoreP(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4328 // Write barrier.
4329 __ RecordWriteForMap(object_reg, new_map_reg, scratch,
4330 GetLinkRegisterState(), kDontSaveFPRegs);
4331 } else {
4332 DCHECK(ToRegister(instr->context()).is(cp));
4333 DCHECK(object_reg.is(r2));
4334 PushSafepointRegistersScope scope(this);
4335 __ Move(r3, to_map);
4336 TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
4337 __ CallStub(&stub);
4338 RecordSafepointWithRegisters(instr->pointer_map(), 0,
4339 Safepoint::kLazyDeopt);
4340 }
4341 __ bind(¬_applicable);
4342 }
4343
4344 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4345 Register object = ToRegister(instr->object());
4346 Register temp1 = ToRegister(instr->temp1());
4347 Register temp2 = ToRegister(instr->temp2());
4348 Label no_memento_found;
4349 __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
4350 DeoptimizeIf(eq, instr, DeoptimizeReason::kMementoFound);
4351 __ bind(&no_memento_found);
4352 }
4353
4354 void LCodeGen::DoStringAdd(LStringAdd* instr) {
4355 DCHECK(ToRegister(instr->context()).is(cp));
4356 DCHECK(ToRegister(instr->left()).is(r3));
4357 DCHECK(ToRegister(instr->right()).is(r2));
4358 StringAddStub stub(isolate(), instr->hydrogen()->flags(),
4359 instr->hydrogen()->pretenure_flag());
4360 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4361 }
4362
4363 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4364 class DeferredStringCharCodeAt final : public LDeferredCode {
4365 public:
4366 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4367 : LDeferredCode(codegen), instr_(instr) {}
4368 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4369 LInstruction* instr() override { return instr_; }
4370
4371 private:
4372 LStringCharCodeAt* instr_;
4373 };
4374
4375 DeferredStringCharCodeAt* deferred =
4376 new (zone()) DeferredStringCharCodeAt(this, instr);
4377
4378 StringCharLoadGenerator::Generate(
4379 masm(), ToRegister(instr->string()), ToRegister(instr->index()),
4380 ToRegister(instr->result()), deferred->entry());
4381 __ bind(deferred->exit());
4382 }
4383
4384 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4385 Register string = ToRegister(instr->string());
4386 Register result = ToRegister(instr->result());
4387 Register scratch = scratch0();
4388
4389 // TODO(3095996): Get rid of this. For now, we need to make the
4390 // result register contain a valid pointer because it is already
4391 // contained in the register pointer map.
4392 __ LoadImmP(result, Operand::Zero());
4393
4394 PushSafepointRegistersScope scope(this);
4395 __ push(string);
4396 // Push the index as a smi. This is safe because of the checks in
4397 // DoStringCharCodeAt above.
4398 if (instr->index()->IsConstantOperand()) {
4399 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4400 __ LoadSmiLiteral(scratch, Smi::FromInt(const_index));
4401 __ push(scratch);
4402 } else {
4403 Register index = ToRegister(instr->index());
4404 __ SmiTag(index);
4405 __ push(index);
4406 }
4407 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
4408 instr->context());
4409 __ AssertSmi(r2);
4410 __ SmiUntag(r2);
4411 __ StoreToSafepointRegisterSlot(r2, result);
4412 }
4413
4414 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4415 class DeferredStringCharFromCode final : public LDeferredCode {
4416 public:
4417 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4418 : LDeferredCode(codegen), instr_(instr) {}
4419 void Generate() override {
4420 codegen()->DoDeferredStringCharFromCode(instr_);
4421 }
4422 LInstruction* instr() override { return instr_; }
4423
4424 private:
4425 LStringCharFromCode* instr_;
4426 };
4427
4428 DeferredStringCharFromCode* deferred =
4429 new (zone()) DeferredStringCharFromCode(this, instr);
4430
4431 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4432 Register char_code = ToRegister(instr->char_code());
4433 Register result = ToRegister(instr->result());
4434 DCHECK(!char_code.is(result));
4435
4436 __ CmpLogicalP(char_code, Operand(String::kMaxOneByteCharCode));
4437 __ bgt(deferred->entry());
4438 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4439 __ ShiftLeftP(r0, char_code, Operand(kPointerSizeLog2));
4440 __ AddP(result, r0);
4441 __ LoadP(result, FieldMemOperand(result, FixedArray::kHeaderSize));
4442 __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
4443 __ beq(deferred->entry());
4444 __ bind(deferred->exit());
4445 }
4446
4447 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4448 Register char_code = ToRegister(instr->char_code());
4449 Register result = ToRegister(instr->result());
4450
4451 // TODO(3095996): Get rid of this. For now, we need to make the
4452 // result register contain a valid pointer because it is already
4453 // contained in the register pointer map.
4454 __ LoadImmP(result, Operand::Zero());
4455
4456 PushSafepointRegistersScope scope(this);
4457 __ SmiTag(char_code);
4458 __ push(char_code);
4459 CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4460 instr->context());
4461 __ StoreToSafepointRegisterSlot(r2, result);
4462 }
4463
4464 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4465 LOperand* input = instr->value();
4466 DCHECK(input->IsRegister() || input->IsStackSlot());
4467 LOperand* output = instr->result();
4468 DCHECK(output->IsDoubleRegister());
4469 if (input->IsStackSlot()) {
4470 Register scratch = scratch0();
4471 __ LoadP(scratch, ToMemOperand(input));
4472 __ ConvertIntToDouble(scratch, ToDoubleRegister(output));
4473 } else {
4474 __ ConvertIntToDouble(ToRegister(input), ToDoubleRegister(output));
4475 }
4476 }
4477
4478 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4479 LOperand* input = instr->value();
4480 LOperand* output = instr->result();
4481 __ ConvertUnsignedIntToDouble(ToRegister(input), ToDoubleRegister(output));
4482 }
4483
4484 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4485 class DeferredNumberTagI final : public LDeferredCode {
4486 public:
4487 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4488 : LDeferredCode(codegen), instr_(instr) {}
4489 void Generate() override {
4490 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4491 instr_->temp2(), SIGNED_INT32);
4492 }
4493 LInstruction* instr() override { return instr_; }
4494
4495 private:
4496 LNumberTagI* instr_;
4497 };
4498
4499 Register src = ToRegister(instr->value());
4500 Register dst = ToRegister(instr->result());
4501
4502 DeferredNumberTagI* deferred = new (zone()) DeferredNumberTagI(this, instr);
4503 #if V8_TARGET_ARCH_S390X
4504 __ SmiTag(dst, src);
4505 #else
4506 // Add src to itself to defect SMI overflow.
4507 __ Add32(dst, src, src);
4508 __ b(overflow, deferred->entry());
4509 #endif
4510 __ bind(deferred->exit());
4511 }
4512
4513 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4514 class DeferredNumberTagU final : public LDeferredCode {
4515 public:
4516 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4517 : LDeferredCode(codegen), instr_(instr) {}
4518 void Generate() override {
4519 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4520 instr_->temp2(), UNSIGNED_INT32);
4521 }
4522 LInstruction* instr() override { return instr_; }
4523
4524 private:
4525 LNumberTagU* instr_;
4526 };
4527
4528 Register input = ToRegister(instr->value());
4529 Register result = ToRegister(instr->result());
4530
4531 DeferredNumberTagU* deferred = new (zone()) DeferredNumberTagU(this, instr);
4532 __ CmpLogicalP(input, Operand(Smi::kMaxValue));
4533 __ bgt(deferred->entry());
4534 __ SmiTag(result, input);
4535 __ bind(deferred->exit());
4536 }
4537
4538 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, LOperand* value,
4539 LOperand* temp1, LOperand* temp2,
4540 IntegerSignedness signedness) {
4541 Label done, slow;
4542 Register src = ToRegister(value);
4543 Register dst = ToRegister(instr->result());
4544 Register tmp1 = scratch0();
4545 Register tmp2 = ToRegister(temp1);
4546 Register tmp3 = ToRegister(temp2);
4547 DoubleRegister dbl_scratch = double_scratch0();
4548
4549 if (signedness == SIGNED_INT32) {
4550 // There was overflow, so bits 30 and 31 of the original integer
4551 // disagree. Try to allocate a heap number in new space and store
4552 // the value in there. If that fails, call the runtime system.
4553 if (dst.is(src)) {
4554 __ SmiUntag(src, dst);
4555 __ xilf(src, Operand(HeapNumber::kSignMask));
4556 }
4557 __ ConvertIntToDouble(src, dbl_scratch);
4558 } else {
4559 __ ConvertUnsignedIntToDouble(src, dbl_scratch);
4560 }
4561
4562 if (FLAG_inline_new) {
4563 __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
4564 __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow);
4565 __ b(&done);
4566 }
4567
4568 // Slow case: Call the runtime system to do the number allocation.
4569 __ bind(&slow);
4570 {
4571 // TODO(3095996): Put a valid pointer value in the stack slot where the
4572 // result register is stored, as this register is in the pointer map, but
4573 // contains an integer value.
4574 __ LoadImmP(dst, Operand::Zero());
4575
4576 // Preserve the value of all registers.
4577 PushSafepointRegistersScope scope(this);
4578 // Reset the context register.
4579 if (!dst.is(cp)) {
4580 __ LoadImmP(cp, Operand::Zero());
4581 }
4582 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4583 RecordSafepointWithRegisters(instr->pointer_map(), 0,
4584 Safepoint::kNoLazyDeopt);
4585 __ StoreToSafepointRegisterSlot(r2, dst);
4586 }
4587
4588 // Done. Put the value in dbl_scratch into the value of the allocated heap
4589 // number.
4590 __ bind(&done);
4591 __ StoreDouble(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4592 }
4593
4594 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4595 class DeferredNumberTagD final : public LDeferredCode {
4596 public:
4597 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4598 : LDeferredCode(codegen), instr_(instr) {}
4599 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4600 LInstruction* instr() override { return instr_; }
4601
4602 private:
4603 LNumberTagD* instr_;
4604 };
4605
4606 DoubleRegister input_reg = ToDoubleRegister(instr->value());
4607 Register scratch = scratch0();
4608 Register reg = ToRegister(instr->result());
4609 Register temp1 = ToRegister(instr->temp());
4610 Register temp2 = ToRegister(instr->temp2());
4611
4612 DeferredNumberTagD* deferred = new (zone()) DeferredNumberTagD(this, instr);
4613 if (FLAG_inline_new) {
4614 __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
4615 __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
4616 } else {
4617 __ b(deferred->entry());
4618 }
4619 __ bind(deferred->exit());
4620 __ StoreDouble(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
4621 }
4622
4623 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4624 // TODO(3095996): Get rid of this. For now, we need to make the
4625 // result register contain a valid pointer because it is already
4626 // contained in the register pointer map.
4627 Register reg = ToRegister(instr->result());
4628 __ LoadImmP(reg, Operand::Zero());
4629
4630 PushSafepointRegistersScope scope(this);
4631 // Reset the context register.
4632 if (!reg.is(cp)) {
4633 __ LoadImmP(cp, Operand::Zero());
4634 }
4635 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4636 RecordSafepointWithRegisters(instr->pointer_map(), 0,
4637 Safepoint::kNoLazyDeopt);
4638 __ StoreToSafepointRegisterSlot(r2, reg);
4639 }
4640
4641 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4642 HChange* hchange = instr->hydrogen();
4643 Register input = ToRegister(instr->value());
4644 Register output = ToRegister(instr->result());
4645 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4646 hchange->value()->CheckFlag(HValue::kUint32)) {
4647 __ TestUnsignedSmiCandidate(input, r0);
4648 DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow, cr0);
4649 }
4650 #if !V8_TARGET_ARCH_S390X
4651 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4652 !hchange->value()->CheckFlag(HValue::kUint32)) {
4653 __ SmiTagCheckOverflow(output, input, r0);
4654 DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, cr0);
4655 } else {
4656 #endif
4657 __ SmiTag(output, input);
4658 #if !V8_TARGET_ARCH_S390X
4659 }
4660 #endif
4661 }
4662
4663 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4664 Register input = ToRegister(instr->value());
4665 Register result = ToRegister(instr->result());
4666 if (instr->needs_check()) {
4667 __ tmll(input, Operand(kHeapObjectTag));
4668 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, cr0);
4669 __ SmiUntag(result, input);
4670 } else {
4671 __ SmiUntag(result, input);
4672 }
4673 }
4674
4675 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4676 DoubleRegister result_reg,
4677 NumberUntagDMode mode) {
4678 bool can_convert_undefined_to_nan = instr->truncating();
4679 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4680
4681 Register scratch = scratch0();
4682 DCHECK(!result_reg.is(double_scratch0()));
4683
4684 Label convert, load_smi, done;
4685
4686 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4687 // Smi check.
4688 __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
4689
4690 // Heap number map check.
4691 __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4692 __ CmpP(scratch, RootMemOperand(Heap::kHeapNumberMapRootIndex));
4693
4694 if (can_convert_undefined_to_nan) {
4695 __ bne(&convert, Label::kNear);
4696 } else {
4697 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
4698 }
4699 // load heap number
4700 __ LoadDouble(result_reg,
4701 FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4702 if (deoptimize_on_minus_zero) {
4703 __ TestDoubleIsMinusZero(result_reg, scratch, ip);
4704 DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
4705 }
4706 __ b(&done, Label::kNear);
4707 if (can_convert_undefined_to_nan) {
4708 __ bind(&convert);
4709 // Convert undefined (and hole) to NaN.
4710 __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
4711 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined);
4712 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4713 __ LoadDouble(result_reg,
4714 FieldMemOperand(scratch, HeapNumber::kValueOffset));
4715 __ b(&done, Label::kNear);
4716 }
4717 } else {
4718 __ SmiUntag(scratch, input_reg);
4719 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4720 }
4721 // Smi to double register conversion
4722 __ bind(&load_smi);
4723 // scratch: untagged value of input_reg
4724 __ ConvertIntToDouble(scratch, result_reg);
4725 __ bind(&done);
4726 }
4727
4728 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
4729 Register input_reg = ToRegister(instr->value());
4730 Register scratch1 = scratch0();
4731 Register scratch2 = ToRegister(instr->temp());
4732 DoubleRegister double_scratch = double_scratch0();
4733 DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
4734
4735 DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4736 DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4737
4738 Label done;
4739
4740 // Heap number map check.
4741 __ LoadP(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4742 __ CompareRoot(scratch1, Heap::kHeapNumberMapRootIndex);
4743
4744 if (instr->truncating()) {
4745 Label truncate;
4746 __ beq(&truncate);
4747 __ CompareInstanceType(scratch1, scratch1, ODDBALL_TYPE);
4748 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotANumberOrOddball);
4749 __ bind(&truncate);
4750 __ LoadRR(scratch2, input_reg);
4751 __ TruncateHeapNumberToI(input_reg, scratch2);
4752 } else {
4753 // Deoptimize if we don't have a heap number.
4754 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
4755
4756 __ LoadDouble(double_scratch2,
4757 FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4758 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4759 // preserve heap number pointer in scratch2 for minus zero check below
4760 __ LoadRR(scratch2, input_reg);
4761 }
4762 __ TryDoubleToInt32Exact(input_reg, double_scratch2, scratch1,
4763 double_scratch);
4764 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
4765
4766 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4767 __ CmpP(input_reg, Operand::Zero());
4768 __ bne(&done, Label::kNear);
4769 __ TestHeapNumberSign(scratch2, scratch1);
4770 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
4771 }
4772 }
4773 __ bind(&done);
4774 }
4775
4776 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4777 class DeferredTaggedToI final : public LDeferredCode {
4778 public:
4779 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4780 : LDeferredCode(codegen), instr_(instr) {}
4781 void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
4782 LInstruction* instr() override { return instr_; }
4783
4784 private:
4785 LTaggedToI* instr_;
4786 };
4787
4788 LOperand* input = instr->value();
4789 DCHECK(input->IsRegister());
4790 DCHECK(input->Equals(instr->result()));
4791
4792 Register input_reg = ToRegister(input);
4793
4794 if (instr->hydrogen()->value()->representation().IsSmi()) {
4795 __ SmiUntag(input_reg);
4796 } else {
4797 DeferredTaggedToI* deferred = new (zone()) DeferredTaggedToI(this, instr);
4798
4799 // Branch to deferred code if the input is a HeapObject.
4800 __ JumpIfNotSmi(input_reg, deferred->entry());
4801
4802 __ SmiUntag(input_reg);
4803 __ bind(deferred->exit());
4804 }
4805 }
4806
4807 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4808 LOperand* input = instr->value();
4809 DCHECK(input->IsRegister());
4810 LOperand* result = instr->result();
4811 DCHECK(result->IsDoubleRegister());
4812
4813 Register input_reg = ToRegister(input);
4814 DoubleRegister result_reg = ToDoubleRegister(result);
4815
4816 HValue* value = instr->hydrogen()->value();
4817 NumberUntagDMode mode = value->representation().IsSmi()
4818 ? NUMBER_CANDIDATE_IS_SMI
4819 : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4820
4821 EmitNumberUntagD(instr, input_reg, result_reg, mode);
4822 }
4823
4824 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4825 Register result_reg = ToRegister(instr->result());
4826 Register scratch1 = scratch0();
4827 DoubleRegister double_input = ToDoubleRegister(instr->value());
4828 DoubleRegister double_scratch = double_scratch0();
4829
4830 if (instr->truncating()) {
4831 __ TruncateDoubleToI(result_reg, double_input);
4832 } else {
4833 __ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
4834 double_scratch);
4835 // Deoptimize if the input wasn't a int32 (inside a double).
4836 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
4837 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4838 Label done;
4839 __ CmpP(result_reg, Operand::Zero());
4840 __ bne(&done, Label::kNear);
4841 __ TestDoubleSign(double_input, scratch1);
4842 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
4843 __ bind(&done);
4844 }
4845 }
4846 }
4847
4848 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4849 Register result_reg = ToRegister(instr->result());
4850 Register scratch1 = scratch0();
4851 DoubleRegister double_input = ToDoubleRegister(instr->value());
4852 DoubleRegister double_scratch = double_scratch0();
4853
4854 if (instr->truncating()) {
4855 __ TruncateDoubleToI(result_reg, double_input);
4856 } else {
4857 __ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
4858 double_scratch);
4859 // Deoptimize if the input wasn't a int32 (inside a double).
4860 DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
4861 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4862 Label done;
4863 __ CmpP(result_reg, Operand::Zero());
4864 __ bne(&done, Label::kNear);
4865 __ TestDoubleSign(double_input, scratch1);
4866 DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
4867 __ bind(&done);
4868 }
4869 }
4870 #if V8_TARGET_ARCH_S390X
4871 __ SmiTag(result_reg);
4872 #else
4873 __ SmiTagCheckOverflow(result_reg, r0);
4874 DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, cr0);
4875 #endif
4876 }
4877
4878 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4879 LOperand* input = instr->value();
4880 __ TestIfSmi(ToRegister(input));
4881 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, cr0);
4882 }
4883
4884 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4885 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4886 LOperand* input = instr->value();
4887 __ TestIfSmi(ToRegister(input));
4888 DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, cr0);
4889 }
4890 }
4891
4892 void LCodeGen::DoCheckArrayBufferNotNeutered(
4893 LCheckArrayBufferNotNeutered* instr) {
4894 Register view = ToRegister(instr->view());
4895 Register scratch = scratch0();
4896
4897 __ LoadP(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
4898 __ LoadlW(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
4899 __ And(r0, scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
4900 DeoptimizeIf(ne, instr, DeoptimizeReason::kOutOfBounds, cr0);
4901 }
4902
4903 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4904 Register input = ToRegister(instr->value());
4905 Register scratch = scratch0();
4906
4907 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
4908
4909 if (instr->hydrogen()->is_interval_check()) {
4910 InstanceType first;
4911 InstanceType last;
4912 instr->hydrogen()->GetCheckInterval(&first, &last);
4913
4914 __ CmpLogicalByte(FieldMemOperand(scratch, Map::kInstanceTypeOffset),
4915 Operand(first));
4916
4917 // If there is only one type in the interval check for equality.
4918 if (first == last) {
4919 DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType);
4920 } else {
4921 DeoptimizeIf(lt, instr, DeoptimizeReason::kWrongInstanceType);
4922 // Omit check for the last type.
4923 if (last != LAST_TYPE) {
4924 __ CmpLogicalByte(FieldMemOperand(scratch, Map::kInstanceTypeOffset),
4925 Operand(last));
4926 DeoptimizeIf(gt, instr, DeoptimizeReason::kWrongInstanceType);
4927 }
4928 }
4929 } else {
4930 uint8_t mask;
4931 uint8_t tag;
4932 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4933
4934 __ LoadlB(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
4935
4936 if (base::bits::IsPowerOfTwo32(mask)) {
4937 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
4938 __ AndP(scratch, Operand(mask));
4939 DeoptimizeIf(tag == 0 ? ne : eq, instr,
4940 DeoptimizeReason::kWrongInstanceType);
4941 } else {
4942 __ AndP(scratch, Operand(mask));
4943 __ CmpP(scratch, Operand(tag));
4944 DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType);
4945 }
4946 }
4947 }
4948
4949 void LCodeGen::DoCheckValue(LCheckValue* instr) {
4950 Register reg = ToRegister(instr->value());
4951 Handle<HeapObject> object = instr->hydrogen()->object().handle();
4952 AllowDeferredHandleDereference smi_check;
4953 if (isolate()->heap()->InNewSpace(*object)) {
4954 Register reg = ToRegister(instr->value());
4955 Handle<Cell> cell = isolate()->factory()->NewCell(object);
4956 __ mov(ip, Operand(cell));
4957 __ CmpP(reg, FieldMemOperand(ip, Cell::kValueOffset));
4958 } else {
4959 __ CmpP(reg, Operand(object));
4960 }
4961 DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch);
4962 }
4963
4964 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
4965 Register temp = ToRegister(instr->temp());
4966 {
4967 PushSafepointRegistersScope scope(this);
4968 __ push(object);
4969 __ LoadImmP(cp, Operand::Zero());
4970 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
4971 RecordSafepointWithRegisters(instr->pointer_map(), 1,
4972 Safepoint::kNoLazyDeopt);
4973 __ StoreToSafepointRegisterSlot(r2, temp);
4974 }
4975 __ TestIfSmi(temp);
4976 DeoptimizeIf(eq, instr, DeoptimizeReason::kInstanceMigrationFailed, cr0);
4977 }
4978
4979 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
4980 class DeferredCheckMaps final : public LDeferredCode {
4981 public:
4982 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
4983 : LDeferredCode(codegen), instr_(instr), object_(object) {
4984 SetExit(check_maps());
4985 }
4986 void Generate() override {
4987 codegen()->DoDeferredInstanceMigration(instr_, object_);
4988 }
4989 Label* check_maps() { return &check_maps_; }
4990 LInstruction* instr() override { return instr_; }
4991
4992 private:
4993 LCheckMaps* instr_;
4994 Label check_maps_;
4995 Register object_;
4996 };
4997
4998 if (instr->hydrogen()->IsStabilityCheck()) {
4999 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5000 for (int i = 0; i < maps->size(); ++i) {
5001 AddStabilityDependency(maps->at(i).handle());
5002 }
5003 return;
5004 }
5005
5006 LOperand* input = instr->value();
5007 DCHECK(input->IsRegister());
5008 Register reg = ToRegister(input);
5009
5010 DeferredCheckMaps* deferred = NULL;
5011 if (instr->hydrogen()->HasMigrationTarget()) {
5012 deferred = new (zone()) DeferredCheckMaps(this, instr, reg);
5013 __ bind(deferred->check_maps());
5014 }
5015
5016 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5017 Label success;
5018 for (int i = 0; i < maps->size() - 1; i++) {
5019 Handle<Map> map = maps->at(i).handle();
5020 __ CompareMap(reg, map, &success);
5021 __ beq(&success);
5022 }
5023
5024 Handle<Map> map = maps->at(maps->size() - 1).handle();
5025 __ CompareMap(reg, map, &success);
5026 if (instr->hydrogen()->HasMigrationTarget()) {
5027 __ bne(deferred->entry());
5028 } else {
5029 DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap);
5030 }
5031
5032 __ bind(&success);
5033 }
5034
5035 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
5036 DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
5037 Register result_reg = ToRegister(instr->result());
5038 __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0());
5039 }
5040
5041 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
5042 Register unclamped_reg = ToRegister(instr->unclamped());
5043 Register result_reg = ToRegister(instr->result());
5044 __ ClampUint8(result_reg, unclamped_reg);
5045 }
5046
5047 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
5048 Register scratch = scratch0();
5049 Register input_reg = ToRegister(instr->unclamped());
5050 Register result_reg = ToRegister(instr->result());
5051 DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
5052 Label is_smi, done, heap_number;
5053
5054 // Both smi and heap number cases are handled.
5055 __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);
5056
5057 // Check for heap number
5058 __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
5059 __ CmpP(scratch, Operand(factory()->heap_number_map()));
5060 __ beq(&heap_number, Label::kNear);
5061
5062 // Check for undefined. Undefined is converted to zero for clamping
5063 // conversions.
5064 __ CmpP(input_reg, Operand(factory()->undefined_value()));
5065 DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined);
5066 __ LoadImmP(result_reg, Operand::Zero());
5067 __ b(&done, Label::kNear);
5068
5069 // Heap number
5070 __ bind(&heap_number);
5071 __ LoadDouble(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
5072 __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0());
5073 __ b(&done, Label::kNear);
5074
5075 // smi
5076 __ bind(&is_smi);
5077 __ ClampUint8(result_reg, result_reg);
5078
5079 __ bind(&done);
5080 }
5081
5082 void LCodeGen::DoAllocate(LAllocate* instr) {
5083 class DeferredAllocate final : public LDeferredCode {
5084 public:
5085 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
5086 : LDeferredCode(codegen), instr_(instr) {}
5087 void Generate() override { codegen()->DoDeferredAllocate(instr_); }
5088 LInstruction* instr() override { return instr_; }
5089
5090 private:
5091 LAllocate* instr_;
5092 };
5093
5094 DeferredAllocate* deferred = new (zone()) DeferredAllocate(this, instr);
5095
5096 Register result = ToRegister(instr->result());
5097 Register scratch = ToRegister(instr->temp1());
5098 Register scratch2 = ToRegister(instr->temp2());
5099
5100 // Allocate memory for the object.
5101 AllocationFlags flags = NO_ALLOCATION_FLAGS;
5102 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5103 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5104 }
5105 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5106 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5107 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5108 }
5109
5110 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
5111 flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
5112 }
5113
5114 DCHECK(!instr->hydrogen()->IsAllocationFolded());
5115
5116 if (instr->size()->IsConstantOperand()) {
5117 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5118 CHECK(size <= kMaxRegularHeapObjectSize);
5119 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5120 } else {
5121 Register size = ToRegister(instr->size());
5122 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5123 }
5124
5125 __ bind(deferred->exit());
5126
5127 if (instr->hydrogen()->MustPrefillWithFiller()) {
5128 if (instr->size()->IsConstantOperand()) {
5129 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5130 __ LoadIntLiteral(scratch, size);
5131 } else {
5132 scratch = ToRegister(instr->size());
5133 }
5134 __ lay(scratch, MemOperand(scratch, -kPointerSize));
5135 Label loop;
5136 __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
5137 __ bind(&loop);
5138 __ StoreP(scratch2, MemOperand(scratch, result, -kHeapObjectTag));
5139 #if V8_TARGET_ARCH_S390X
5140 __ lay(scratch, MemOperand(scratch, -kPointerSize));
5141 #else
5142 // TODO(joransiu): Improve the following sequence.
5143 // Need to use AHI instead of LAY as top nibble is not set with LAY, causing
5144 // incorrect result with the signed compare
5145 __ AddP(scratch, Operand(-kPointerSize));
5146 #endif
5147 __ CmpP(scratch, Operand::Zero());
5148 __ bge(&loop);
5149 }
5150 }
5151
5152 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5153 Register result = ToRegister(instr->result());
5154
5155 // TODO(3095996): Get rid of this. For now, we need to make the
5156 // result register contain a valid pointer because it is already
5157 // contained in the register pointer map.
5158 __ LoadSmiLiteral(result, Smi::kZero);
5159
5160 PushSafepointRegistersScope scope(this);
5161 if (instr->size()->IsRegister()) {
5162 Register size = ToRegister(instr->size());
5163 DCHECK(!size.is(result));
5164 __ SmiTag(size);
5165 __ push(size);
5166 } else {
5167 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5168 #if !V8_TARGET_ARCH_S390X
5169 if (size >= 0 && size <= Smi::kMaxValue) {
5170 #endif
5171 __ Push(Smi::FromInt(size));
5172 #if !V8_TARGET_ARCH_S390X
5173 } else {
5174 // We should never get here at runtime => abort
5175 __ stop("invalid allocation size");
5176 return;
5177 }
5178 #endif
5179 }
5180
5181 int flags = AllocateDoubleAlignFlag::encode(
5182 instr->hydrogen()->MustAllocateDoubleAligned());
5183 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5184 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5185 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
5186 } else {
5187 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5188 }
5189 __ Push(Smi::FromInt(flags));
5190
5191 CallRuntimeFromDeferred(Runtime::kAllocateInTargetSpace, 2, instr,
5192 instr->context());
5193 __ StoreToSafepointRegisterSlot(r2, result);
5194
5195 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
5196 AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
5197 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5198 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5199 allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
5200 }
5201 // If the allocation folding dominator allocate triggered a GC, allocation
5202 // happend in the runtime. We have to reset the top pointer to virtually
5203 // undo the allocation.
5204 ExternalReference allocation_top =
5205 AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
5206 Register top_address = scratch0();
5207 __ SubP(r2, r2, Operand(kHeapObjectTag));
5208 __ mov(top_address, Operand(allocation_top));
5209 __ StoreP(r2, MemOperand(top_address));
5210 __ AddP(r2, r2, Operand(kHeapObjectTag));
5211 }
5212 }
5213
5214 void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
5215 DCHECK(instr->hydrogen()->IsAllocationFolded());
5216 DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
5217 Register result = ToRegister(instr->result());
5218 Register scratch1 = ToRegister(instr->temp1());
5219 Register scratch2 = ToRegister(instr->temp2());
5220
5221 AllocationFlags flags = ALLOCATION_FOLDED;
5222 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5223 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5224 }
5225 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5226 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5227 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5228 }
5229 if (instr->size()->IsConstantOperand()) {
5230 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5231 CHECK(size <= kMaxRegularHeapObjectSize);
5232 __ FastAllocate(size, result, scratch1, scratch2, flags);
5233 } else {
5234 Register size = ToRegister(instr->size());
5235 __ FastAllocate(size, result, scratch1, scratch2, flags);
5236 }
5237 }
5238
5239 void LCodeGen::DoTypeof(LTypeof* instr) {
5240 DCHECK(ToRegister(instr->value()).is(r5));
5241 DCHECK(ToRegister(instr->result()).is(r2));
5242 Label end, do_call;
5243 Register value_register = ToRegister(instr->value());
5244 __ JumpIfNotSmi(value_register, &do_call);
5245 __ mov(r2, Operand(isolate()->factory()->number_string()));
5246 __ b(&end);
5247 __ bind(&do_call);
5248 Callable callable = CodeFactory::Typeof(isolate());
5249 CallCode(callable.code(), RelocInfo::CODE_TARGET, instr);
5250 __ bind(&end);
5251 }
5252
5253 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5254 Register input = ToRegister(instr->value());
5255
5256 Condition final_branch_condition =
5257 EmitTypeofIs(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), input,
5258 instr->type_literal());
5259 if (final_branch_condition != kNoCondition) {
5260 EmitBranch(instr, final_branch_condition);
5261 }
5262 }
5263
5264 Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label,
5265 Register input, Handle<String> type_name) {
5266 Condition final_branch_condition = kNoCondition;
5267 Register scratch = scratch0();
5268 Factory* factory = isolate()->factory();
5269 if (String::Equals(type_name, factory->number_string())) {
5270 __ JumpIfSmi(input, true_label);
5271 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5272 __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
5273 final_branch_condition = eq;
5274
5275 } else if (String::Equals(type_name, factory->string_string())) {
5276 __ JumpIfSmi(input, false_label);
5277 __ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE);
5278 final_branch_condition = lt;
5279
5280 } else if (String::Equals(type_name, factory->symbol_string())) {
5281 __ JumpIfSmi(input, false_label);
5282 __ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE);
5283 final_branch_condition = eq;
5284
5285 } else if (String::Equals(type_name, factory->boolean_string())) {
5286 __ CompareRoot(input, Heap::kTrueValueRootIndex);
5287 __ beq(true_label);
5288 __ CompareRoot(input, Heap::kFalseValueRootIndex);
5289 final_branch_condition = eq;
5290
5291 } else if (String::Equals(type_name, factory->undefined_string())) {
5292 __ CompareRoot(input, Heap::kNullValueRootIndex);
5293 __ beq(false_label);
5294 __ JumpIfSmi(input, false_label);
5295 // Check for undetectable objects => true.
5296 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5297 __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5298 __ ExtractBit(r0, scratch, Map::kIsUndetectable);
5299 __ CmpP(r0, Operand::Zero());
5300 final_branch_condition = ne;
5301
5302 } else if (String::Equals(type_name, factory->function_string())) {
5303 __ JumpIfSmi(input, false_label);
5304 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5305 __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5306 __ AndP(scratch, scratch,
5307 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5308 __ CmpP(scratch, Operand(1 << Map::kIsCallable));
5309 final_branch_condition = eq;
5310
5311 } else if (String::Equals(type_name, factory->object_string())) {
5312 __ JumpIfSmi(input, false_label);
5313 __ CompareRoot(input, Heap::kNullValueRootIndex);
5314 __ beq(true_label);
5315 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5316 __ CompareObjectType(input, scratch, ip, FIRST_JS_RECEIVER_TYPE);
5317 __ blt(false_label);
5318 // Check for callable or undetectable objects => false.
5319 __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5320 __ AndP(r0, scratch,
5321 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5322 __ CmpP(r0, Operand::Zero());
5323 final_branch_condition = eq;
5324
5325 // clang-format off
5326 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5327 } else if (String::Equals(type_name, factory->type##_string())) { \
5328 __ JumpIfSmi(input, false_label); \
5329 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); \
5330 __ CompareRoot(scratch, Heap::k##Type##MapRootIndex); \
5331 final_branch_condition = eq;
5332 SIMD128_TYPES(SIMD128_TYPE)
5333 #undef SIMD128_TYPE
5334 // clang-format on
5335
5336 } else {
5337 __ b(false_label);
5338 }
5339
5340 return final_branch_condition;
5341 }
5342
5343 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5344 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5345 // Ensure that we have enough space after the previous lazy-bailout
5346 // instruction for patching the code here.
5347 int current_pc = masm()->pc_offset();
5348 if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5349 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5350 DCHECK_EQ(0, padding_size % 2);
5351 while (padding_size > 0) {
5352 __ nop();
5353 padding_size -= 2;
5354 }
5355 }
5356 }
5357 last_lazy_deopt_pc_ = masm()->pc_offset();
5358 }
5359
5360 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5361 last_lazy_deopt_pc_ = masm()->pc_offset();
5362 DCHECK(instr->HasEnvironment());
5363 LEnvironment* env = instr->environment();
5364 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5365 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5366 }
5367
5368 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5369 Deoptimizer::BailoutType type = instr->hydrogen()->type();
5370 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5371 // needed return address), even though the implementation of LAZY and EAGER is
5372 // now identical. When LAZY is eventually completely folded into EAGER, remove
5373 // the special case below.
5374 if (info()->IsStub() && type == Deoptimizer::EAGER) {
5375 type = Deoptimizer::LAZY;
5376 }
5377
5378 DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type);
5379 }
5380
5381 void LCodeGen::DoDummy(LDummy* instr) {
5382 // Nothing to see here, move on!
5383 }
5384
5385 void LCodeGen::DoDummyUse(LDummyUse* instr) {
5386 // Nothing to see here, move on!
5387 }
5388
5389 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5390 PushSafepointRegistersScope scope(this);
5391 LoadContextFromDeferred(instr->context());
5392 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5393 RecordSafepointWithLazyDeopt(
5394 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5395 DCHECK(instr->HasEnvironment());
5396 LEnvironment* env = instr->environment();
5397 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5398 }
5399
5400 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5401 class DeferredStackCheck final : public LDeferredCode {
5402 public:
5403 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5404 : LDeferredCode(codegen), instr_(instr) {}
5405 void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5406 LInstruction* instr() override { return instr_; }
5407
5408 private:
5409 LStackCheck* instr_;
5410 };
5411
5412 DCHECK(instr->HasEnvironment());
5413 LEnvironment* env = instr->environment();
5414 // There is no LLazyBailout instruction for stack-checks. We have to
5415 // prepare for lazy deoptimization explicitly here.
5416 if (instr->hydrogen()->is_function_entry()) {
5417 // Perform stack overflow check.
5418 Label done;
5419 __ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex));
5420 __ bge(&done, Label::kNear);
5421 DCHECK(instr->context()->IsRegister());
5422 DCHECK(ToRegister(instr->context()).is(cp));
5423 CallCode(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET,
5424 instr);
5425 __ bind(&done);
5426 } else {
5427 DCHECK(instr->hydrogen()->is_backwards_branch());
5428 // Perform stack overflow check if this goto needs it before jumping.
5429 DeferredStackCheck* deferred_stack_check =
5430 new (zone()) DeferredStackCheck(this, instr);
5431 __ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex));
5432 __ blt(deferred_stack_check->entry());
5433 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5434 __ bind(instr->done_label());
5435 deferred_stack_check->SetExit(instr->done_label());
5436 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5437 // Don't record a deoptimization index for the safepoint here.
5438 // This will be done explicitly when emitting call and the safepoint in
5439 // the deferred code.
5440 }
5441 }
5442
5443 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5444 // This is a pseudo-instruction that ensures that the environment here is
5445 // properly registered for deoptimization and records the assembler's PC
5446 // offset.
5447 LEnvironment* environment = instr->environment();
5448
5449 // If the environment were already registered, we would have no way of
5450 // backpatching it with the spill slot operands.
5451 DCHECK(!environment->HasBeenRegistered());
5452 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5453
5454 GenerateOsrPrologue();
5455 }
5456
5457 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5458 Label use_cache, call_runtime;
5459 __ CheckEnumCache(&call_runtime);
5460
5461 __ LoadP(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
5462 __ b(&use_cache);
5463
5464 // Get the set of properties to enumerate.
5465 __ bind(&call_runtime);
5466 __ push(r2);
5467 CallRuntime(Runtime::kForInEnumerate, instr);
5468 __ bind(&use_cache);
5469 }
5470
5471 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5472 Register map = ToRegister(instr->map());
5473 Register result = ToRegister(instr->result());
5474 Label load_cache, done;
5475 __ EnumLength(result, map);
5476 __ CmpSmiLiteral(result, Smi::kZero, r0);
5477 __ bne(&load_cache, Label::kNear);
5478 __ mov(result, Operand(isolate()->factory()->empty_fixed_array()));
5479 __ b(&done, Label::kNear);
5480
5481 __ bind(&load_cache);
5482 __ LoadInstanceDescriptors(map, result);
5483 __ LoadP(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
5484 __ LoadP(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5485 __ CmpP(result, Operand::Zero());
5486 DeoptimizeIf(eq, instr, DeoptimizeReason::kNoCache);
5487
5488 __ bind(&done);
5489 }
5490
5491 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5492 Register object = ToRegister(instr->value());
5493 Register map = ToRegister(instr->map());
5494 __ LoadP(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5495 __ CmpP(map, scratch0());
5496 DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap);
5497 }
5498
5499 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5500 Register result, Register object,
5501 Register index) {
5502 PushSafepointRegistersScope scope(this);
5503 __ Push(object, index);
5504 __ LoadImmP(cp, Operand::Zero());
5505 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5506 RecordSafepointWithRegisters(instr->pointer_map(), 2,
5507 Safepoint::kNoLazyDeopt);
5508 __ StoreToSafepointRegisterSlot(r2, result);
5509 }
5510
5511 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5512 class DeferredLoadMutableDouble final : public LDeferredCode {
5513 public:
5514 DeferredLoadMutableDouble(LCodeGen* codegen, LLoadFieldByIndex* instr,
5515 Register result, Register object, Register index)
5516 : LDeferredCode(codegen),
5517 instr_(instr),
5518 result_(result),
5519 object_(object),
5520 index_(index) {}
5521 void Generate() override {
5522 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5523 }
5524 LInstruction* instr() override { return instr_; }
5525
5526 private:
5527 LLoadFieldByIndex* instr_;
5528 Register result_;
5529 Register object_;
5530 Register index_;
5531 };
5532
5533 Register object = ToRegister(instr->object());
5534 Register index = ToRegister(instr->index());
5535 Register result = ToRegister(instr->result());
5536 Register scratch = scratch0();
5537
5538 DeferredLoadMutableDouble* deferred;
5539 deferred = new (zone())
5540 DeferredLoadMutableDouble(this, instr, result, object, index);
5541
5542 Label out_of_object, done;
5543
5544 __ TestBitMask(index, reinterpret_cast<uintptr_t>(Smi::FromInt(1)), r0);
5545 __ bne(deferred->entry());
5546 __ ShiftRightArithP(index, index, Operand(1));
5547
5548 __ CmpP(index, Operand::Zero());
5549 __ blt(&out_of_object, Label::kNear);
5550
5551 __ SmiToPtrArrayOffset(r0, index);
5552 __ AddP(scratch, object, r0);
5553 __ LoadP(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5554
5555 __ b(&done, Label::kNear);
5556
5557 __ bind(&out_of_object);
5558 __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5559 // Index is equal to negated out of object property index plus 1.
5560 __ SmiToPtrArrayOffset(r0, index);
5561 __ SubP(scratch, result, r0);
5562 __ LoadP(result,
5563 FieldMemOperand(scratch, FixedArray::kHeaderSize - kPointerSize));
5564 __ bind(deferred->exit());
5565 __ bind(&done);
5566 }
5567
5568 #undef __
5569
5570 } // namespace internal
5571 } // namespace v8
5572