1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/bn.h>
58
59 #include <assert.h>
60 #include <ctype.h>
61 #include <limits.h>
62 #include <stdio.h>
63 #include <string.h>
64
65 #include <openssl/bio.h>
66 #include <openssl/bytestring.h>
67 #include <openssl/err.h>
68 #include <openssl/mem.h>
69
70 #include "internal.h"
71
BN_bin2bn(const uint8_t * in,size_t len,BIGNUM * ret)72 BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
73 size_t num_words;
74 unsigned m;
75 BN_ULONG word = 0;
76 BIGNUM *bn = NULL;
77
78 if (ret == NULL) {
79 ret = bn = BN_new();
80 }
81
82 if (ret == NULL) {
83 return NULL;
84 }
85
86 if (len == 0) {
87 ret->top = 0;
88 return ret;
89 }
90
91 num_words = ((len - 1) / BN_BYTES) + 1;
92 m = (len - 1) % BN_BYTES;
93 if (bn_wexpand(ret, num_words) == NULL) {
94 if (bn) {
95 BN_free(bn);
96 }
97 return NULL;
98 }
99
100 /* |bn_wexpand| must check bounds on |num_words| to write it into
101 * |ret->dmax|. */
102 assert(num_words <= INT_MAX);
103 ret->top = (int)num_words;
104 ret->neg = 0;
105
106 while (len--) {
107 word = (word << 8) | *(in++);
108 if (m-- == 0) {
109 ret->d[--num_words] = word;
110 word = 0;
111 m = BN_BYTES - 1;
112 }
113 }
114
115 /* need to call this due to clear byte at top if avoiding having the top bit
116 * set (-ve number) */
117 bn_correct_top(ret);
118 return ret;
119 }
120
BN_le2bn(const uint8_t * in,size_t len,BIGNUM * ret)121 BIGNUM *BN_le2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
122 BIGNUM *bn = NULL;
123 if (ret == NULL) {
124 bn = BN_new();
125 ret = bn;
126 }
127
128 if (ret == NULL) {
129 return NULL;
130 }
131
132 if (len == 0) {
133 ret->top = 0;
134 ret->neg = 0;
135 return ret;
136 }
137
138 /* Reserve enough space in |ret|. */
139 size_t num_words = ((len - 1) / BN_BYTES) + 1;
140 if (!bn_wexpand(ret, num_words)) {
141 BN_free(bn);
142 return NULL;
143 }
144 ret->top = num_words;
145
146 /* Make sure the top bytes will be zeroed. */
147 ret->d[num_words - 1] = 0;
148
149 /* We only support little-endian platforms, so we can simply memcpy the
150 * internal representation. */
151 OPENSSL_memcpy(ret->d, in, len);
152
153 bn_correct_top(ret);
154 return ret;
155 }
156
BN_bn2bin(const BIGNUM * in,uint8_t * out)157 size_t BN_bn2bin(const BIGNUM *in, uint8_t *out) {
158 size_t n, i;
159 BN_ULONG l;
160
161 n = i = BN_num_bytes(in);
162 while (i--) {
163 l = in->d[i / BN_BYTES];
164 *(out++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
165 }
166 return n;
167 }
168
BN_bn2le_padded(uint8_t * out,size_t len,const BIGNUM * in)169 int BN_bn2le_padded(uint8_t *out, size_t len, const BIGNUM *in) {
170 /* If we don't have enough space, fail out. */
171 size_t num_bytes = BN_num_bytes(in);
172 if (len < num_bytes) {
173 return 0;
174 }
175
176 /* We only support little-endian platforms, so we can simply memcpy into the
177 * internal representation. */
178 OPENSSL_memcpy(out, in->d, num_bytes);
179
180 /* Pad out the rest of the buffer with zeroes. */
181 OPENSSL_memset(out + num_bytes, 0, len - num_bytes);
182
183 return 1;
184 }
185
186 /* constant_time_select_ulong returns |x| if |v| is 1 and |y| if |v| is 0. Its
187 * behavior is undefined if |v| takes any other value. */
constant_time_select_ulong(int v,BN_ULONG x,BN_ULONG y)188 static BN_ULONG constant_time_select_ulong(int v, BN_ULONG x, BN_ULONG y) {
189 BN_ULONG mask = v;
190 mask--;
191
192 return (~mask & x) | (mask & y);
193 }
194
195 /* constant_time_le_size_t returns 1 if |x| <= |y| and 0 otherwise. |x| and |y|
196 * must not have their MSBs set. */
constant_time_le_size_t(size_t x,size_t y)197 static int constant_time_le_size_t(size_t x, size_t y) {
198 return ((x - y - 1) >> (sizeof(size_t) * 8 - 1)) & 1;
199 }
200
201 /* read_word_padded returns the |i|'th word of |in|, if it is not out of
202 * bounds. Otherwise, it returns 0. It does so without branches on the size of
203 * |in|, however it necessarily does not have the same memory access pattern. If
204 * the access would be out of bounds, it reads the last word of |in|. |in| must
205 * not be zero. */
read_word_padded(const BIGNUM * in,size_t i)206 static BN_ULONG read_word_padded(const BIGNUM *in, size_t i) {
207 /* Read |in->d[i]| if valid. Otherwise, read the last word. */
208 BN_ULONG l = in->d[constant_time_select_ulong(
209 constant_time_le_size_t(in->dmax, i), in->dmax - 1, i)];
210
211 /* Clamp to zero if above |d->top|. */
212 return constant_time_select_ulong(constant_time_le_size_t(in->top, i), 0, l);
213 }
214
BN_bn2bin_padded(uint8_t * out,size_t len,const BIGNUM * in)215 int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in) {
216 /* Special case for |in| = 0. Just branch as the probability is negligible. */
217 if (BN_is_zero(in)) {
218 OPENSSL_memset(out, 0, len);
219 return 1;
220 }
221
222 /* Check if the integer is too big. This case can exit early in non-constant
223 * time. */
224 if ((size_t)in->top > (len + (BN_BYTES - 1)) / BN_BYTES) {
225 return 0;
226 }
227 if ((len % BN_BYTES) != 0) {
228 BN_ULONG l = read_word_padded(in, len / BN_BYTES);
229 if (l >> (8 * (len % BN_BYTES)) != 0) {
230 return 0;
231 }
232 }
233
234 /* Write the bytes out one by one. Serialization is done without branching on
235 * the bits of |in| or on |in->top|, but if the routine would otherwise read
236 * out of bounds, the memory access pattern can't be fixed. However, for an
237 * RSA key of size a multiple of the word size, the probability of BN_BYTES
238 * leading zero octets is low.
239 *
240 * See Falko Stenzke, "Manger's Attack revisited", ICICS 2010. */
241 size_t i = len;
242 while (i--) {
243 BN_ULONG l = read_word_padded(in, i / BN_BYTES);
244 *(out++) = (uint8_t)(l >> (8 * (i % BN_BYTES))) & 0xff;
245 }
246 return 1;
247 }
248
BN_bn2cbb_padded(CBB * out,size_t len,const BIGNUM * in)249 int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in) {
250 uint8_t *ptr;
251 return CBB_add_space(out, &ptr, len) && BN_bn2bin_padded(ptr, len, in);
252 }
253
254 static const char hextable[] = "0123456789abcdef";
255
BN_bn2hex(const BIGNUM * bn)256 char *BN_bn2hex(const BIGNUM *bn) {
257 char *buf = OPENSSL_malloc(1 /* leading '-' */ + 1 /* zero is non-empty */ +
258 bn->top * BN_BYTES * 2 + 1 /* trailing NUL */);
259 if (buf == NULL) {
260 OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
261 return NULL;
262 }
263
264 char *p = buf;
265 if (bn->neg) {
266 *(p++) = '-';
267 }
268
269 if (BN_is_zero(bn)) {
270 *(p++) = '0';
271 }
272
273 int z = 0;
274 for (int i = bn->top - 1; i >= 0; i--) {
275 for (int j = BN_BITS2 - 8; j >= 0; j -= 8) {
276 /* strip leading zeros */
277 int v = ((int)(bn->d[i] >> (long)j)) & 0xff;
278 if (z || v != 0) {
279 *(p++) = hextable[v >> 4];
280 *(p++) = hextable[v & 0x0f];
281 z = 1;
282 }
283 }
284 }
285 *p = '\0';
286
287 return buf;
288 }
289
290 /* decode_hex decodes |in_len| bytes of hex data from |in| and updates |bn|. */
decode_hex(BIGNUM * bn,const char * in,int in_len)291 static int decode_hex(BIGNUM *bn, const char *in, int in_len) {
292 if (in_len > INT_MAX/4) {
293 OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
294 return 0;
295 }
296 /* |in_len| is the number of hex digits. */
297 if (bn_expand(bn, in_len * 4) == NULL) {
298 return 0;
299 }
300
301 int i = 0;
302 while (in_len > 0) {
303 /* Decode one |BN_ULONG| at a time. */
304 int todo = BN_BYTES * 2;
305 if (todo > in_len) {
306 todo = in_len;
307 }
308
309 BN_ULONG word = 0;
310 int j;
311 for (j = todo; j > 0; j--) {
312 char c = in[in_len - j];
313
314 BN_ULONG hex;
315 if (c >= '0' && c <= '9') {
316 hex = c - '0';
317 } else if (c >= 'a' && c <= 'f') {
318 hex = c - 'a' + 10;
319 } else if (c >= 'A' && c <= 'F') {
320 hex = c - 'A' + 10;
321 } else {
322 hex = 0;
323 /* This shouldn't happen. The caller checks |isxdigit|. */
324 assert(0);
325 }
326 word = (word << 4) | hex;
327 }
328
329 bn->d[i++] = word;
330 in_len -= todo;
331 }
332 assert(i <= bn->dmax);
333 bn->top = i;
334 return 1;
335 }
336
337 /* decode_dec decodes |in_len| bytes of decimal data from |in| and updates |bn|. */
decode_dec(BIGNUM * bn,const char * in,int in_len)338 static int decode_dec(BIGNUM *bn, const char *in, int in_len) {
339 int i, j;
340 BN_ULONG l = 0;
341
342 /* Decode |BN_DEC_NUM| digits at a time. */
343 j = BN_DEC_NUM - (in_len % BN_DEC_NUM);
344 if (j == BN_DEC_NUM) {
345 j = 0;
346 }
347 l = 0;
348 for (i = 0; i < in_len; i++) {
349 l *= 10;
350 l += in[i] - '0';
351 if (++j == BN_DEC_NUM) {
352 if (!BN_mul_word(bn, BN_DEC_CONV) ||
353 !BN_add_word(bn, l)) {
354 return 0;
355 }
356 l = 0;
357 j = 0;
358 }
359 }
360 return 1;
361 }
362
363 typedef int (*decode_func) (BIGNUM *bn, const char *in, int in_len);
364 typedef int (*char_test_func) (int c);
365
bn_x2bn(BIGNUM ** outp,const char * in,decode_func decode,char_test_func want_char)366 static int bn_x2bn(BIGNUM **outp, const char *in, decode_func decode, char_test_func want_char) {
367 BIGNUM *ret = NULL;
368 int neg = 0, i;
369 int num;
370
371 if (in == NULL || *in == 0) {
372 return 0;
373 }
374
375 if (*in == '-') {
376 neg = 1;
377 in++;
378 }
379
380 for (i = 0; want_char((unsigned char)in[i]) && i + neg < INT_MAX; i++) {}
381
382 num = i + neg;
383 if (outp == NULL) {
384 return num;
385 }
386
387 /* in is the start of the hex digits, and it is 'i' long */
388 if (*outp == NULL) {
389 ret = BN_new();
390 if (ret == NULL) {
391 return 0;
392 }
393 } else {
394 ret = *outp;
395 BN_zero(ret);
396 }
397
398 if (!decode(ret, in, i)) {
399 goto err;
400 }
401
402 bn_correct_top(ret);
403 if (!BN_is_zero(ret)) {
404 ret->neg = neg;
405 }
406
407 *outp = ret;
408 return num;
409
410 err:
411 if (*outp == NULL) {
412 BN_free(ret);
413 }
414
415 return 0;
416 }
417
BN_hex2bn(BIGNUM ** outp,const char * in)418 int BN_hex2bn(BIGNUM **outp, const char *in) {
419 return bn_x2bn(outp, in, decode_hex, isxdigit);
420 }
421
BN_bn2dec(const BIGNUM * a)422 char *BN_bn2dec(const BIGNUM *a) {
423 /* It is easier to print strings little-endian, so we assemble it in reverse
424 * and fix at the end. */
425 BIGNUM *copy = NULL;
426 CBB cbb;
427 if (!CBB_init(&cbb, 16) ||
428 !CBB_add_u8(&cbb, 0 /* trailing NUL */)) {
429 goto cbb_err;
430 }
431
432 if (BN_is_zero(a)) {
433 if (!CBB_add_u8(&cbb, '0')) {
434 goto cbb_err;
435 }
436 } else {
437 copy = BN_dup(a);
438 if (copy == NULL) {
439 goto err;
440 }
441
442 while (!BN_is_zero(copy)) {
443 BN_ULONG word = BN_div_word(copy, BN_DEC_CONV);
444 if (word == (BN_ULONG)-1) {
445 goto err;
446 }
447
448 const int add_leading_zeros = !BN_is_zero(copy);
449 for (int i = 0; i < BN_DEC_NUM && (add_leading_zeros || word != 0); i++) {
450 if (!CBB_add_u8(&cbb, '0' + word % 10)) {
451 goto cbb_err;
452 }
453 word /= 10;
454 }
455 assert(word == 0);
456 }
457 }
458
459 if (BN_is_negative(a) &&
460 !CBB_add_u8(&cbb, '-')) {
461 goto cbb_err;
462 }
463
464 uint8_t *data;
465 size_t len;
466 if (!CBB_finish(&cbb, &data, &len)) {
467 goto cbb_err;
468 }
469
470 /* Reverse the buffer. */
471 for (size_t i = 0; i < len/2; i++) {
472 uint8_t tmp = data[i];
473 data[i] = data[len - 1 - i];
474 data[len - 1 - i] = tmp;
475 }
476
477 BN_free(copy);
478 return (char *)data;
479
480 cbb_err:
481 OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
482 err:
483 BN_free(copy);
484 CBB_cleanup(&cbb);
485 return NULL;
486 }
487
BN_dec2bn(BIGNUM ** outp,const char * in)488 int BN_dec2bn(BIGNUM **outp, const char *in) {
489 return bn_x2bn(outp, in, decode_dec, isdigit);
490 }
491
BN_asc2bn(BIGNUM ** outp,const char * in)492 int BN_asc2bn(BIGNUM **outp, const char *in) {
493 const char *const orig_in = in;
494 if (*in == '-') {
495 in++;
496 }
497
498 if (in[0] == '0' && (in[1] == 'X' || in[1] == 'x')) {
499 if (!BN_hex2bn(outp, in+2)) {
500 return 0;
501 }
502 } else {
503 if (!BN_dec2bn(outp, in)) {
504 return 0;
505 }
506 }
507
508 if (*orig_in == '-' && !BN_is_zero(*outp)) {
509 (*outp)->neg = 1;
510 }
511
512 return 1;
513 }
514
BN_print(BIO * bp,const BIGNUM * a)515 int BN_print(BIO *bp, const BIGNUM *a) {
516 int i, j, v, z = 0;
517 int ret = 0;
518
519 if (a->neg && BIO_write(bp, "-", 1) != 1) {
520 goto end;
521 }
522
523 if (BN_is_zero(a) && BIO_write(bp, "0", 1) != 1) {
524 goto end;
525 }
526
527 for (i = a->top - 1; i >= 0; i--) {
528 for (j = BN_BITS2 - 4; j >= 0; j -= 4) {
529 /* strip leading zeros */
530 v = ((int)(a->d[i] >> (long)j)) & 0x0f;
531 if (z || v != 0) {
532 if (BIO_write(bp, &hextable[v], 1) != 1) {
533 goto end;
534 }
535 z = 1;
536 }
537 }
538 }
539 ret = 1;
540
541 end:
542 return ret;
543 }
544
BN_print_fp(FILE * fp,const BIGNUM * a)545 int BN_print_fp(FILE *fp, const BIGNUM *a) {
546 BIO *b;
547 int ret;
548
549 b = BIO_new(BIO_s_file());
550 if (b == NULL) {
551 return 0;
552 }
553 BIO_set_fp(b, fp, BIO_NOCLOSE);
554 ret = BN_print(b, a);
555 BIO_free(b);
556
557 return ret;
558 }
559
BN_get_word(const BIGNUM * bn)560 BN_ULONG BN_get_word(const BIGNUM *bn) {
561 switch (bn->top) {
562 case 0:
563 return 0;
564 case 1:
565 return bn->d[0];
566 default:
567 return BN_MASK2;
568 }
569 }
570
BN_get_u64(const BIGNUM * bn,uint64_t * out)571 int BN_get_u64(const BIGNUM *bn, uint64_t *out) {
572 switch (bn->top) {
573 case 0:
574 *out = 0;
575 return 1;
576 case 1:
577 *out = bn->d[0];
578 return 1;
579 #if defined(OPENSSL_32_BIT)
580 case 2:
581 *out = (uint64_t) bn->d[0] | (((uint64_t) bn->d[1]) << 32);
582 return 1;
583 #endif
584 default:
585 return 0;
586 }
587 }
588
BN_bn2mpi(const BIGNUM * in,uint8_t * out)589 size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out) {
590 const size_t bits = BN_num_bits(in);
591 const size_t bytes = (bits + 7) / 8;
592 /* If the number of bits is a multiple of 8, i.e. if the MSB is set,
593 * prefix with a zero byte. */
594 int extend = 0;
595 if (bytes != 0 && (bits & 0x07) == 0) {
596 extend = 1;
597 }
598
599 const size_t len = bytes + extend;
600 if (len < bytes ||
601 4 + len < len ||
602 (len & 0xffffffff) != len) {
603 /* If we cannot represent the number then we emit zero as the interface
604 * doesn't allow an error to be signalled. */
605 if (out) {
606 OPENSSL_memset(out, 0, 4);
607 }
608 return 4;
609 }
610
611 if (out == NULL) {
612 return 4 + len;
613 }
614
615 out[0] = len >> 24;
616 out[1] = len >> 16;
617 out[2] = len >> 8;
618 out[3] = len;
619 if (extend) {
620 out[4] = 0;
621 }
622 BN_bn2bin(in, out + 4 + extend);
623 if (in->neg && len > 0) {
624 out[4] |= 0x80;
625 }
626 return len + 4;
627 }
628
BN_mpi2bn(const uint8_t * in,size_t len,BIGNUM * out)629 BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out) {
630 if (len < 4) {
631 OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
632 return NULL;
633 }
634 const size_t in_len = ((size_t)in[0] << 24) |
635 ((size_t)in[1] << 16) |
636 ((size_t)in[2] << 8) |
637 ((size_t)in[3]);
638 if (in_len != len - 4) {
639 OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
640 return NULL;
641 }
642
643 int out_is_alloced = 0;
644 if (out == NULL) {
645 out = BN_new();
646 if (out == NULL) {
647 OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
648 return NULL;
649 }
650 out_is_alloced = 1;
651 }
652
653 if (in_len == 0) {
654 BN_zero(out);
655 return out;
656 }
657
658 in += 4;
659 if (BN_bin2bn(in, in_len, out) == NULL) {
660 if (out_is_alloced) {
661 BN_free(out);
662 }
663 return NULL;
664 }
665 out->neg = ((*in) & 0x80) != 0;
666 if (out->neg) {
667 BN_clear_bit(out, BN_num_bits(out) - 1);
668 }
669 return out;
670 }
671