1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/bn.h>
58 
59 #include <assert.h>
60 #include <ctype.h>
61 #include <limits.h>
62 #include <stdio.h>
63 #include <string.h>
64 
65 #include <openssl/bio.h>
66 #include <openssl/bytestring.h>
67 #include <openssl/err.h>
68 #include <openssl/mem.h>
69 
70 #include "internal.h"
71 
BN_bin2bn(const uint8_t * in,size_t len,BIGNUM * ret)72 BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
73   size_t num_words;
74   unsigned m;
75   BN_ULONG word = 0;
76   BIGNUM *bn = NULL;
77 
78   if (ret == NULL) {
79     ret = bn = BN_new();
80   }
81 
82   if (ret == NULL) {
83     return NULL;
84   }
85 
86   if (len == 0) {
87     ret->top = 0;
88     return ret;
89   }
90 
91   num_words = ((len - 1) / BN_BYTES) + 1;
92   m = (len - 1) % BN_BYTES;
93   if (bn_wexpand(ret, num_words) == NULL) {
94     if (bn) {
95       BN_free(bn);
96     }
97     return NULL;
98   }
99 
100   /* |bn_wexpand| must check bounds on |num_words| to write it into
101    * |ret->dmax|. */
102   assert(num_words <= INT_MAX);
103   ret->top = (int)num_words;
104   ret->neg = 0;
105 
106   while (len--) {
107     word = (word << 8) | *(in++);
108     if (m-- == 0) {
109       ret->d[--num_words] = word;
110       word = 0;
111       m = BN_BYTES - 1;
112     }
113   }
114 
115   /* need to call this due to clear byte at top if avoiding having the top bit
116    * set (-ve number) */
117   bn_correct_top(ret);
118   return ret;
119 }
120 
BN_le2bn(const uint8_t * in,size_t len,BIGNUM * ret)121 BIGNUM *BN_le2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
122   BIGNUM *bn = NULL;
123   if (ret == NULL) {
124     bn = BN_new();
125     ret = bn;
126   }
127 
128   if (ret == NULL) {
129     return NULL;
130   }
131 
132   if (len == 0) {
133     ret->top = 0;
134     ret->neg = 0;
135     return ret;
136   }
137 
138   /* Reserve enough space in |ret|. */
139   size_t num_words = ((len - 1) / BN_BYTES) + 1;
140   if (!bn_wexpand(ret, num_words)) {
141     BN_free(bn);
142     return NULL;
143   }
144   ret->top = num_words;
145 
146   /* Make sure the top bytes will be zeroed. */
147   ret->d[num_words - 1] = 0;
148 
149   /* We only support little-endian platforms, so we can simply memcpy the
150    * internal representation. */
151   OPENSSL_memcpy(ret->d, in, len);
152 
153   bn_correct_top(ret);
154   return ret;
155 }
156 
BN_bn2bin(const BIGNUM * in,uint8_t * out)157 size_t BN_bn2bin(const BIGNUM *in, uint8_t *out) {
158   size_t n, i;
159   BN_ULONG l;
160 
161   n = i = BN_num_bytes(in);
162   while (i--) {
163     l = in->d[i / BN_BYTES];
164     *(out++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
165   }
166   return n;
167 }
168 
BN_bn2le_padded(uint8_t * out,size_t len,const BIGNUM * in)169 int BN_bn2le_padded(uint8_t *out, size_t len, const BIGNUM *in) {
170   /* If we don't have enough space, fail out. */
171   size_t num_bytes = BN_num_bytes(in);
172   if (len < num_bytes) {
173     return 0;
174   }
175 
176   /* We only support little-endian platforms, so we can simply memcpy into the
177    * internal representation. */
178   OPENSSL_memcpy(out, in->d, num_bytes);
179 
180   /* Pad out the rest of the buffer with zeroes. */
181   OPENSSL_memset(out + num_bytes, 0, len - num_bytes);
182 
183   return 1;
184 }
185 
186 /* constant_time_select_ulong returns |x| if |v| is 1 and |y| if |v| is 0. Its
187  * behavior is undefined if |v| takes any other value. */
constant_time_select_ulong(int v,BN_ULONG x,BN_ULONG y)188 static BN_ULONG constant_time_select_ulong(int v, BN_ULONG x, BN_ULONG y) {
189   BN_ULONG mask = v;
190   mask--;
191 
192   return (~mask & x) | (mask & y);
193 }
194 
195 /* constant_time_le_size_t returns 1 if |x| <= |y| and 0 otherwise. |x| and |y|
196  * must not have their MSBs set. */
constant_time_le_size_t(size_t x,size_t y)197 static int constant_time_le_size_t(size_t x, size_t y) {
198   return ((x - y - 1) >> (sizeof(size_t) * 8 - 1)) & 1;
199 }
200 
201 /* read_word_padded returns the |i|'th word of |in|, if it is not out of
202  * bounds. Otherwise, it returns 0. It does so without branches on the size of
203  * |in|, however it necessarily does not have the same memory access pattern. If
204  * the access would be out of bounds, it reads the last word of |in|. |in| must
205  * not be zero. */
read_word_padded(const BIGNUM * in,size_t i)206 static BN_ULONG read_word_padded(const BIGNUM *in, size_t i) {
207   /* Read |in->d[i]| if valid. Otherwise, read the last word. */
208   BN_ULONG l = in->d[constant_time_select_ulong(
209       constant_time_le_size_t(in->dmax, i), in->dmax - 1, i)];
210 
211   /* Clamp to zero if above |d->top|. */
212   return constant_time_select_ulong(constant_time_le_size_t(in->top, i), 0, l);
213 }
214 
BN_bn2bin_padded(uint8_t * out,size_t len,const BIGNUM * in)215 int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in) {
216   /* Special case for |in| = 0. Just branch as the probability is negligible. */
217   if (BN_is_zero(in)) {
218     OPENSSL_memset(out, 0, len);
219     return 1;
220   }
221 
222   /* Check if the integer is too big. This case can exit early in non-constant
223    * time. */
224   if ((size_t)in->top > (len + (BN_BYTES - 1)) / BN_BYTES) {
225     return 0;
226   }
227   if ((len % BN_BYTES) != 0) {
228     BN_ULONG l = read_word_padded(in, len / BN_BYTES);
229     if (l >> (8 * (len % BN_BYTES)) != 0) {
230       return 0;
231     }
232   }
233 
234   /* Write the bytes out one by one. Serialization is done without branching on
235    * the bits of |in| or on |in->top|, but if the routine would otherwise read
236    * out of bounds, the memory access pattern can't be fixed. However, for an
237    * RSA key of size a multiple of the word size, the probability of BN_BYTES
238    * leading zero octets is low.
239    *
240    * See Falko Stenzke, "Manger's Attack revisited", ICICS 2010. */
241   size_t i = len;
242   while (i--) {
243     BN_ULONG l = read_word_padded(in, i / BN_BYTES);
244     *(out++) = (uint8_t)(l >> (8 * (i % BN_BYTES))) & 0xff;
245   }
246   return 1;
247 }
248 
BN_bn2cbb_padded(CBB * out,size_t len,const BIGNUM * in)249 int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in) {
250   uint8_t *ptr;
251   return CBB_add_space(out, &ptr, len) && BN_bn2bin_padded(ptr, len, in);
252 }
253 
254 static const char hextable[] = "0123456789abcdef";
255 
BN_bn2hex(const BIGNUM * bn)256 char *BN_bn2hex(const BIGNUM *bn) {
257   char *buf = OPENSSL_malloc(1 /* leading '-' */ + 1 /* zero is non-empty */ +
258                              bn->top * BN_BYTES * 2 + 1 /* trailing NUL */);
259   if (buf == NULL) {
260     OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
261     return NULL;
262   }
263 
264   char *p = buf;
265   if (bn->neg) {
266     *(p++) = '-';
267   }
268 
269   if (BN_is_zero(bn)) {
270     *(p++) = '0';
271   }
272 
273   int z = 0;
274   for (int i = bn->top - 1; i >= 0; i--) {
275     for (int j = BN_BITS2 - 8; j >= 0; j -= 8) {
276       /* strip leading zeros */
277       int v = ((int)(bn->d[i] >> (long)j)) & 0xff;
278       if (z || v != 0) {
279         *(p++) = hextable[v >> 4];
280         *(p++) = hextable[v & 0x0f];
281         z = 1;
282       }
283     }
284   }
285   *p = '\0';
286 
287   return buf;
288 }
289 
290 /* decode_hex decodes |in_len| bytes of hex data from |in| and updates |bn|. */
decode_hex(BIGNUM * bn,const char * in,int in_len)291 static int decode_hex(BIGNUM *bn, const char *in, int in_len) {
292   if (in_len > INT_MAX/4) {
293     OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
294     return 0;
295   }
296   /* |in_len| is the number of hex digits. */
297   if (bn_expand(bn, in_len * 4) == NULL) {
298     return 0;
299   }
300 
301   int i = 0;
302   while (in_len > 0) {
303     /* Decode one |BN_ULONG| at a time. */
304     int todo = BN_BYTES * 2;
305     if (todo > in_len) {
306       todo = in_len;
307     }
308 
309     BN_ULONG word = 0;
310     int j;
311     for (j = todo; j > 0; j--) {
312       char c = in[in_len - j];
313 
314       BN_ULONG hex;
315       if (c >= '0' && c <= '9') {
316         hex = c - '0';
317       } else if (c >= 'a' && c <= 'f') {
318         hex = c - 'a' + 10;
319       } else if (c >= 'A' && c <= 'F') {
320         hex = c - 'A' + 10;
321       } else {
322         hex = 0;
323         /* This shouldn't happen. The caller checks |isxdigit|. */
324         assert(0);
325       }
326       word = (word << 4) | hex;
327     }
328 
329     bn->d[i++] = word;
330     in_len -= todo;
331   }
332   assert(i <= bn->dmax);
333   bn->top = i;
334   return 1;
335 }
336 
337 /* decode_dec decodes |in_len| bytes of decimal data from |in| and updates |bn|. */
decode_dec(BIGNUM * bn,const char * in,int in_len)338 static int decode_dec(BIGNUM *bn, const char *in, int in_len) {
339   int i, j;
340   BN_ULONG l = 0;
341 
342   /* Decode |BN_DEC_NUM| digits at a time. */
343   j = BN_DEC_NUM - (in_len % BN_DEC_NUM);
344   if (j == BN_DEC_NUM) {
345     j = 0;
346   }
347   l = 0;
348   for (i = 0; i < in_len; i++) {
349     l *= 10;
350     l += in[i] - '0';
351     if (++j == BN_DEC_NUM) {
352       if (!BN_mul_word(bn, BN_DEC_CONV) ||
353           !BN_add_word(bn, l)) {
354         return 0;
355       }
356       l = 0;
357       j = 0;
358     }
359   }
360   return 1;
361 }
362 
363 typedef int (*decode_func) (BIGNUM *bn, const char *in, int in_len);
364 typedef int (*char_test_func) (int c);
365 
bn_x2bn(BIGNUM ** outp,const char * in,decode_func decode,char_test_func want_char)366 static int bn_x2bn(BIGNUM **outp, const char *in, decode_func decode, char_test_func want_char) {
367   BIGNUM *ret = NULL;
368   int neg = 0, i;
369   int num;
370 
371   if (in == NULL || *in == 0) {
372     return 0;
373   }
374 
375   if (*in == '-') {
376     neg = 1;
377     in++;
378   }
379 
380   for (i = 0; want_char((unsigned char)in[i]) && i + neg < INT_MAX; i++) {}
381 
382   num = i + neg;
383   if (outp == NULL) {
384     return num;
385   }
386 
387   /* in is the start of the hex digits, and it is 'i' long */
388   if (*outp == NULL) {
389     ret = BN_new();
390     if (ret == NULL) {
391       return 0;
392     }
393   } else {
394     ret = *outp;
395     BN_zero(ret);
396   }
397 
398   if (!decode(ret, in, i)) {
399     goto err;
400   }
401 
402   bn_correct_top(ret);
403   if (!BN_is_zero(ret)) {
404     ret->neg = neg;
405   }
406 
407   *outp = ret;
408   return num;
409 
410 err:
411   if (*outp == NULL) {
412     BN_free(ret);
413   }
414 
415   return 0;
416 }
417 
BN_hex2bn(BIGNUM ** outp,const char * in)418 int BN_hex2bn(BIGNUM **outp, const char *in) {
419   return bn_x2bn(outp, in, decode_hex, isxdigit);
420 }
421 
BN_bn2dec(const BIGNUM * a)422 char *BN_bn2dec(const BIGNUM *a) {
423   /* It is easier to print strings little-endian, so we assemble it in reverse
424    * and fix at the end. */
425   BIGNUM *copy = NULL;
426   CBB cbb;
427   if (!CBB_init(&cbb, 16) ||
428       !CBB_add_u8(&cbb, 0 /* trailing NUL */)) {
429     goto cbb_err;
430   }
431 
432   if (BN_is_zero(a)) {
433     if (!CBB_add_u8(&cbb, '0')) {
434       goto cbb_err;
435     }
436   } else {
437     copy = BN_dup(a);
438     if (copy == NULL) {
439       goto err;
440     }
441 
442     while (!BN_is_zero(copy)) {
443       BN_ULONG word = BN_div_word(copy, BN_DEC_CONV);
444       if (word == (BN_ULONG)-1) {
445         goto err;
446       }
447 
448       const int add_leading_zeros = !BN_is_zero(copy);
449       for (int i = 0; i < BN_DEC_NUM && (add_leading_zeros || word != 0); i++) {
450         if (!CBB_add_u8(&cbb, '0' + word % 10)) {
451           goto cbb_err;
452         }
453         word /= 10;
454       }
455       assert(word == 0);
456     }
457   }
458 
459   if (BN_is_negative(a) &&
460       !CBB_add_u8(&cbb, '-')) {
461     goto cbb_err;
462   }
463 
464   uint8_t *data;
465   size_t len;
466   if (!CBB_finish(&cbb, &data, &len)) {
467     goto cbb_err;
468   }
469 
470   /* Reverse the buffer. */
471   for (size_t i = 0; i < len/2; i++) {
472     uint8_t tmp = data[i];
473     data[i] = data[len - 1 - i];
474     data[len - 1 - i] = tmp;
475   }
476 
477   BN_free(copy);
478   return (char *)data;
479 
480 cbb_err:
481   OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
482 err:
483   BN_free(copy);
484   CBB_cleanup(&cbb);
485   return NULL;
486 }
487 
BN_dec2bn(BIGNUM ** outp,const char * in)488 int BN_dec2bn(BIGNUM **outp, const char *in) {
489   return bn_x2bn(outp, in, decode_dec, isdigit);
490 }
491 
BN_asc2bn(BIGNUM ** outp,const char * in)492 int BN_asc2bn(BIGNUM **outp, const char *in) {
493   const char *const orig_in = in;
494   if (*in == '-') {
495     in++;
496   }
497 
498   if (in[0] == '0' && (in[1] == 'X' || in[1] == 'x')) {
499     if (!BN_hex2bn(outp, in+2)) {
500       return 0;
501     }
502   } else {
503     if (!BN_dec2bn(outp, in)) {
504       return 0;
505     }
506   }
507 
508   if (*orig_in == '-' && !BN_is_zero(*outp)) {
509     (*outp)->neg = 1;
510   }
511 
512   return 1;
513 }
514 
BN_print(BIO * bp,const BIGNUM * a)515 int BN_print(BIO *bp, const BIGNUM *a) {
516   int i, j, v, z = 0;
517   int ret = 0;
518 
519   if (a->neg && BIO_write(bp, "-", 1) != 1) {
520     goto end;
521   }
522 
523   if (BN_is_zero(a) && BIO_write(bp, "0", 1) != 1) {
524     goto end;
525   }
526 
527   for (i = a->top - 1; i >= 0; i--) {
528     for (j = BN_BITS2 - 4; j >= 0; j -= 4) {
529       /* strip leading zeros */
530       v = ((int)(a->d[i] >> (long)j)) & 0x0f;
531       if (z || v != 0) {
532         if (BIO_write(bp, &hextable[v], 1) != 1) {
533           goto end;
534         }
535         z = 1;
536       }
537     }
538   }
539   ret = 1;
540 
541 end:
542   return ret;
543 }
544 
BN_print_fp(FILE * fp,const BIGNUM * a)545 int BN_print_fp(FILE *fp, const BIGNUM *a) {
546   BIO *b;
547   int ret;
548 
549   b = BIO_new(BIO_s_file());
550   if (b == NULL) {
551     return 0;
552   }
553   BIO_set_fp(b, fp, BIO_NOCLOSE);
554   ret = BN_print(b, a);
555   BIO_free(b);
556 
557   return ret;
558 }
559 
BN_get_word(const BIGNUM * bn)560 BN_ULONG BN_get_word(const BIGNUM *bn) {
561   switch (bn->top) {
562     case 0:
563       return 0;
564     case 1:
565       return bn->d[0];
566     default:
567       return BN_MASK2;
568   }
569 }
570 
BN_get_u64(const BIGNUM * bn,uint64_t * out)571 int BN_get_u64(const BIGNUM *bn, uint64_t *out) {
572   switch (bn->top) {
573     case 0:
574       *out = 0;
575       return 1;
576     case 1:
577       *out = bn->d[0];
578       return 1;
579 #if defined(OPENSSL_32_BIT)
580     case 2:
581       *out = (uint64_t) bn->d[0] | (((uint64_t) bn->d[1]) << 32);
582       return 1;
583 #endif
584     default:
585       return 0;
586   }
587 }
588 
BN_bn2mpi(const BIGNUM * in,uint8_t * out)589 size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out) {
590   const size_t bits = BN_num_bits(in);
591   const size_t bytes = (bits + 7) / 8;
592   /* If the number of bits is a multiple of 8, i.e. if the MSB is set,
593    * prefix with a zero byte. */
594   int extend = 0;
595   if (bytes != 0 && (bits & 0x07) == 0) {
596     extend = 1;
597   }
598 
599   const size_t len = bytes + extend;
600   if (len < bytes ||
601       4 + len < len ||
602       (len & 0xffffffff) != len) {
603     /* If we cannot represent the number then we emit zero as the interface
604      * doesn't allow an error to be signalled. */
605     if (out) {
606       OPENSSL_memset(out, 0, 4);
607     }
608     return 4;
609   }
610 
611   if (out == NULL) {
612     return 4 + len;
613   }
614 
615   out[0] = len >> 24;
616   out[1] = len >> 16;
617   out[2] = len >> 8;
618   out[3] = len;
619   if (extend) {
620     out[4] = 0;
621   }
622   BN_bn2bin(in, out + 4 + extend);
623   if (in->neg && len > 0) {
624     out[4] |= 0x80;
625   }
626   return len + 4;
627 }
628 
BN_mpi2bn(const uint8_t * in,size_t len,BIGNUM * out)629 BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out) {
630   if (len < 4) {
631     OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
632     return NULL;
633   }
634   const size_t in_len = ((size_t)in[0] << 24) |
635                         ((size_t)in[1] << 16) |
636                         ((size_t)in[2] << 8) |
637                         ((size_t)in[3]);
638   if (in_len != len - 4) {
639     OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
640     return NULL;
641   }
642 
643   int out_is_alloced = 0;
644   if (out == NULL) {
645     out = BN_new();
646     if (out == NULL) {
647       OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
648       return NULL;
649     }
650     out_is_alloced = 1;
651   }
652 
653   if (in_len == 0) {
654     BN_zero(out);
655     return out;
656   }
657 
658   in += 4;
659   if (BN_bin2bn(in, in_len, out) == NULL) {
660     if (out_is_alloced) {
661       BN_free(out);
662     }
663     return NULL;
664   }
665   out->neg = ((*in) & 0x80) != 0;
666   if (out->neg) {
667     BN_clear_bit(out, BN_num_bits(out) - 1);
668   }
669   return out;
670 }
671