1 /* Copyright 2016 Brian Smith.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <openssl/bn.h>
16 
17 #include <assert.h>
18 
19 #include "internal.h"
20 #include "../internal.h"
21 
22 
23 static uint64_t bn_neg_inv_mod_r_u64(uint64_t n);
24 
25 OPENSSL_COMPILE_ASSERT(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2,
26                        BN_MONT_CTX_N0_LIMBS_VALUE_INVALID);
27 OPENSSL_COMPILE_ASSERT(sizeof(uint64_t) ==
28                        BN_MONT_CTX_N0_LIMBS * sizeof(BN_ULONG),
29                        BN_MONT_CTX_N0_LIMBS_DOES_NOT_MATCH_UINT64_T);
30 
31 /* LG_LITTLE_R is log_2(r). */
32 #define LG_LITTLE_R (BN_MONT_CTX_N0_LIMBS * BN_BITS2)
33 
bn_mont_n0(const BIGNUM * n)34 uint64_t bn_mont_n0(const BIGNUM *n) {
35   /* These conditions are checked by the caller, |BN_MONT_CTX_set|. */
36   assert(!BN_is_zero(n));
37   assert(!BN_is_negative(n));
38   assert(BN_is_odd(n));
39 
40   /* r == 2**(BN_MONT_CTX_N0_LIMBS * BN_BITS2) and LG_LITTLE_R == lg(r). This
41    * ensures that we can do integer division by |r| by simply ignoring
42    * |BN_MONT_CTX_N0_LIMBS| limbs. Similarly, we can calculate values modulo
43    * |r| by just looking at the lowest |BN_MONT_CTX_N0_LIMBS| limbs. This is
44    * what makes Montgomery multiplication efficient.
45    *
46    * As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography
47    * with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a
48    * multi-limb Montgomery multiplication of |a * b (mod n)|, given the
49    * unreduced product |t == a * b|, we repeatedly calculate:
50    *
51    *    t1 := t % r         |t1| is |t|'s lowest limb (see previous paragraph).
52    *    t2 := t1*n0*n
53    *    t3 := t + t2
54    *    t := t3 / r         copy all limbs of |t3| except the lowest to |t|.
55    *
56    * In the last step, it would only make sense to ignore the lowest limb of
57    * |t3| if it were zero. The middle steps ensure that this is the case:
58    *
59    *                            t3 ==  0 (mod r)
60    *                        t + t2 ==  0 (mod r)
61    *                   t + t1*n0*n ==  0 (mod r)
62    *                       t1*n0*n == -t (mod r)
63    *                        t*n0*n == -t (mod r)
64    *                          n0*n == -1 (mod r)
65    *                            n0 == -1/n (mod r)
66    *
67    * Thus, in each iteration of the loop, we multiply by the constant factor
68    * |n0|, the negative inverse of n (mod r). */
69 
70   /* n_mod_r = n % r. As explained above, this is done by taking the lowest
71    * |BN_MONT_CTX_N0_LIMBS| limbs of |n|. */
72   uint64_t n_mod_r = n->d[0];
73 #if BN_MONT_CTX_N0_LIMBS == 2
74   if (n->top > 1) {
75     n_mod_r |= (uint64_t)n->d[1] << BN_BITS2;
76   }
77 #endif
78 
79   return bn_neg_inv_mod_r_u64(n_mod_r);
80 }
81 
82 /* bn_neg_inv_r_mod_n_u64 calculates the -1/n mod r; i.e. it calculates |v|
83  * such that u*r - v*n == 1. |r| is the constant defined in |bn_mont_n0|. |n|
84  * must be odd.
85  *
86  * This is derived from |xbinGCD| in Henry S. Warren, Jr.'s "Montgomery
87  * Multiplication" (http://www.hackersdelight.org/MontgomeryMultiplication.pdf).
88  * It is very similar to the MODULAR-INVERSE function in Stephen R. Dussé's and
89  * Burton S. Kaliski Jr.'s "A Cryptographic Library for the Motorola DSP56000"
90  * (http://link.springer.com/chapter/10.1007%2F3-540-46877-3_21).
91  *
92  * This is inspired by Joppe W. Bos's "Constant Time Modular Inversion"
93  * (http://www.joppebos.com/files/CTInversion.pdf) so that the inversion is
94  * constant-time with respect to |n|. We assume uint64_t additions,
95  * subtractions, shifts, and bitwise operations are all constant time, which
96  * may be a large leap of faith on 32-bit targets. We avoid division and
97  * multiplication, which tend to be the most problematic in terms of timing
98  * leaks.
99  *
100  * Most GCD implementations return values such that |u*r + v*n == 1|, so the
101  * caller would have to negate the resultant |v| for the purpose of Montgomery
102  * multiplication. This implementation does the negation implicitly by doing
103  * the computations as a difference instead of a sum. */
bn_neg_inv_mod_r_u64(uint64_t n)104 static uint64_t bn_neg_inv_mod_r_u64(uint64_t n) {
105   assert(n % 2 == 1);
106 
107   /* alpha == 2**(lg r - 1) == r / 2. */
108   static const uint64_t alpha = UINT64_C(1) << (LG_LITTLE_R - 1);
109 
110   const uint64_t beta = n;
111 
112   uint64_t u = 1;
113   uint64_t v = 0;
114 
115   /* The invariant maintained from here on is:
116    * 2**(lg r - i) == u*2*alpha - v*beta. */
117   for (size_t i = 0; i < LG_LITTLE_R; ++i) {
118 #if BN_BITS2 == 64 && defined(BN_ULLONG)
119     assert((BN_ULLONG)(1) << (LG_LITTLE_R - i) ==
120            ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
121 #endif
122 
123     /* Delete a common factor of 2 in u and v if |u| is even. Otherwise, set
124      * |u = (u + beta) / 2| and |v = (v / 2) + alpha|. */
125 
126     uint64_t u_is_odd = UINT64_C(0) - (u & 1); /* Either 0xff..ff or 0. */
127 
128     /* The addition can overflow, so use Dietz's method for it.
129      *
130      * Dietz calculates (x+y)/2 by (x⊕y)>>1 + x&y. This is valid for all
131      * (unsigned) x and y, even when x+y overflows. Evidence for 32-bit values
132      * (embedded in 64 bits to so that overflow can be ignored):
133      *
134      * (declare-fun x () (_ BitVec 64))
135      * (declare-fun y () (_ BitVec 64))
136      * (assert (let (
137      *    (one (_ bv1 64))
138      *    (thirtyTwo (_ bv32 64)))
139      *    (and
140      *      (bvult x (bvshl one thirtyTwo))
141      *      (bvult y (bvshl one thirtyTwo))
142      *      (not (=
143      *        (bvadd (bvlshr (bvxor x y) one) (bvand x y))
144      *        (bvlshr (bvadd x y) one)))
145      * )))
146      * (check-sat) */
147     uint64_t beta_if_u_is_odd = beta & u_is_odd; /* Either |beta| or 0. */
148     u = ((u ^ beta_if_u_is_odd) >> 1) + (u & beta_if_u_is_odd);
149 
150     uint64_t alpha_if_u_is_odd = alpha & u_is_odd; /* Either |alpha| or 0. */
151     v = (v >> 1) + alpha_if_u_is_odd;
152   }
153 
154   /* The invariant now shows that u*r - v*n == 1 since r == 2 * alpha. */
155 #if BN_BITS2 == 64 && defined(BN_ULLONG)
156   assert(1 == ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
157 #endif
158 
159   return v;
160 }
161 
162 /* bn_mod_exp_base_2_vartime calculates r = 2**p (mod n). |p| must be larger
163  * than log_2(n); i.e. 2**p must be larger than |n|. |n| must be positive and
164  * odd. */
bn_mod_exp_base_2_vartime(BIGNUM * r,unsigned p,const BIGNUM * n)165 int bn_mod_exp_base_2_vartime(BIGNUM *r, unsigned p, const BIGNUM *n) {
166   assert(!BN_is_zero(n));
167   assert(!BN_is_negative(n));
168   assert(BN_is_odd(n));
169 
170   BN_zero(r);
171 
172   unsigned n_bits = BN_num_bits(n);
173   assert(n_bits != 0);
174   if (n_bits == 1) {
175     return 1;
176   }
177 
178   /* Set |r| to the smallest power of two larger than |n|. */
179   assert(p > n_bits);
180   if (!BN_set_bit(r, n_bits)) {
181     return 0;
182   }
183 
184   /* Unconditionally reduce |r|. */
185   assert(BN_cmp(r, n) > 0);
186   if (!BN_usub(r, r, n)) {
187     return 0;
188   }
189   assert(BN_cmp(r, n) < 0);
190 
191   for (unsigned i = n_bits; i < p; ++i) {
192     /* This is like |BN_mod_lshift1_quick| except using |BN_usub|.
193      *
194      * TODO: Replace this with the use of a constant-time variant of
195      * |BN_mod_lshift1_quick|. */
196     if (!BN_lshift1(r, r)) {
197       return 0;
198     }
199     if (BN_cmp(r, n) >= 0) {
200       if (!BN_usub(r, r, n)) {
201         return 0;
202       }
203     }
204   }
205 
206   return 1;
207 }
208