1 /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
2 * and Bodo Moeller for the OpenSSL project. */
3 /* ====================================================================
4 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 *
18 * 3. All advertising materials mentioning features or use of this
19 * software must display the following acknowledgment:
20 * "This product includes software developed by the OpenSSL Project
21 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
22 *
23 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
24 * endorse or promote products derived from this software without
25 * prior written permission. For written permission, please contact
26 * openssl-core@openssl.org.
27 *
28 * 5. Products derived from this software may not be called "OpenSSL"
29 * nor may "OpenSSL" appear in their names without prior written
30 * permission of the OpenSSL Project.
31 *
32 * 6. Redistributions of any form whatsoever must retain the following
33 * acknowledgment:
34 * "This product includes software developed by the OpenSSL Project
35 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
38 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
40 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
41 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
43 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
44 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
45 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
46 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
48 * OF THE POSSIBILITY OF SUCH DAMAGE.
49 * ====================================================================
50 *
51 * This product includes cryptographic software written by Eric Young
52 * (eay@cryptsoft.com). This product includes software written by Tim
53 * Hudson (tjh@cryptsoft.com). */
54
55 #include <openssl/bn.h>
56
57 #include <openssl/err.h>
58
59
BN_mod_sqrt(BIGNUM * in,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)60 BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
61 /* Compute a square root of |a| mod |p| using the Tonelli/Shanks algorithm
62 * (cf. Henri Cohen, "A Course in Algebraic Computational Number Theory",
63 * algorithm 1.5.1). |p| is assumed to be a prime. */
64
65 BIGNUM *ret = in;
66 int err = 1;
67 int r;
68 BIGNUM *A, *b, *q, *t, *x, *y;
69 int e, i, j;
70
71 if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
72 if (BN_abs_is_word(p, 2)) {
73 if (ret == NULL) {
74 ret = BN_new();
75 }
76 if (ret == NULL) {
77 goto end;
78 }
79 if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
80 if (ret != in) {
81 BN_free(ret);
82 }
83 return NULL;
84 }
85 return ret;
86 }
87
88 OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
89 return (NULL);
90 }
91
92 if (BN_is_zero(a) || BN_is_one(a)) {
93 if (ret == NULL) {
94 ret = BN_new();
95 }
96 if (ret == NULL) {
97 goto end;
98 }
99 if (!BN_set_word(ret, BN_is_one(a))) {
100 if (ret != in) {
101 BN_free(ret);
102 }
103 return NULL;
104 }
105 return ret;
106 }
107
108 BN_CTX_start(ctx);
109 A = BN_CTX_get(ctx);
110 b = BN_CTX_get(ctx);
111 q = BN_CTX_get(ctx);
112 t = BN_CTX_get(ctx);
113 x = BN_CTX_get(ctx);
114 y = BN_CTX_get(ctx);
115 if (y == NULL) {
116 goto end;
117 }
118
119 if (ret == NULL) {
120 ret = BN_new();
121 }
122 if (ret == NULL) {
123 goto end;
124 }
125
126 /* A = a mod p */
127 if (!BN_nnmod(A, a, p, ctx)) {
128 goto end;
129 }
130
131 /* now write |p| - 1 as 2^e*q where q is odd */
132 e = 1;
133 while (!BN_is_bit_set(p, e)) {
134 e++;
135 }
136 /* we'll set q later (if needed) */
137
138 if (e == 1) {
139 /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
140 * modulo (|p|-1)/2, and square roots can be computed
141 * directly by modular exponentiation.
142 * We have
143 * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
144 * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
145 */
146 if (!BN_rshift(q, p, 2)) {
147 goto end;
148 }
149 q->neg = 0;
150 if (!BN_add_word(q, 1) ||
151 !BN_mod_exp_mont(ret, A, q, p, ctx, NULL)) {
152 goto end;
153 }
154 err = 0;
155 goto vrfy;
156 }
157
158 if (e == 2) {
159 /* |p| == 5 (mod 8)
160 *
161 * In this case 2 is always a non-square since
162 * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
163 * So if a really is a square, then 2*a is a non-square.
164 * Thus for
165 * b := (2*a)^((|p|-5)/8),
166 * i := (2*a)*b^2
167 * we have
168 * i^2 = (2*a)^((1 + (|p|-5)/4)*2)
169 * = (2*a)^((p-1)/2)
170 * = -1;
171 * so if we set
172 * x := a*b*(i-1),
173 * then
174 * x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
175 * = a^2 * b^2 * (-2*i)
176 * = a*(-i)*(2*a*b^2)
177 * = a*(-i)*i
178 * = a.
179 *
180 * (This is due to A.O.L. Atkin,
181 * <URL:
182 *http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
183 * November 1992.)
184 */
185
186 /* t := 2*a */
187 if (!BN_mod_lshift1_quick(t, A, p)) {
188 goto end;
189 }
190
191 /* b := (2*a)^((|p|-5)/8) */
192 if (!BN_rshift(q, p, 3)) {
193 goto end;
194 }
195 q->neg = 0;
196 if (!BN_mod_exp_mont(b, t, q, p, ctx, NULL)) {
197 goto end;
198 }
199
200 /* y := b^2 */
201 if (!BN_mod_sqr(y, b, p, ctx)) {
202 goto end;
203 }
204
205 /* t := (2*a)*b^2 - 1*/
206 if (!BN_mod_mul(t, t, y, p, ctx) ||
207 !BN_sub_word(t, 1)) {
208 goto end;
209 }
210
211 /* x = a*b*t */
212 if (!BN_mod_mul(x, A, b, p, ctx) ||
213 !BN_mod_mul(x, x, t, p, ctx)) {
214 goto end;
215 }
216
217 if (!BN_copy(ret, x)) {
218 goto end;
219 }
220 err = 0;
221 goto vrfy;
222 }
223
224 /* e > 2, so we really have to use the Tonelli/Shanks algorithm.
225 * First, find some y that is not a square. */
226 if (!BN_copy(q, p)) {
227 goto end; /* use 'q' as temp */
228 }
229 q->neg = 0;
230 i = 2;
231 do {
232 /* For efficiency, try small numbers first;
233 * if this fails, try random numbers.
234 */
235 if (i < 22) {
236 if (!BN_set_word(y, i)) {
237 goto end;
238 }
239 } else {
240 if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) {
241 goto end;
242 }
243 if (BN_ucmp(y, p) >= 0) {
244 if (!(p->neg ? BN_add : BN_sub)(y, y, p)) {
245 goto end;
246 }
247 }
248 /* now 0 <= y < |p| */
249 if (BN_is_zero(y)) {
250 if (!BN_set_word(y, i)) {
251 goto end;
252 }
253 }
254 }
255
256 r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
257 if (r < -1) {
258 goto end;
259 }
260 if (r == 0) {
261 /* m divides p */
262 OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
263 goto end;
264 }
265 } while (r == 1 && ++i < 82);
266
267 if (r != -1) {
268 /* Many rounds and still no non-square -- this is more likely
269 * a bug than just bad luck.
270 * Even if p is not prime, we should have found some y
271 * such that r == -1.
272 */
273 OPENSSL_PUT_ERROR(BN, BN_R_TOO_MANY_ITERATIONS);
274 goto end;
275 }
276
277 /* Here's our actual 'q': */
278 if (!BN_rshift(q, q, e)) {
279 goto end;
280 }
281
282 /* Now that we have some non-square, we can find an element
283 * of order 2^e by computing its q'th power. */
284 if (!BN_mod_exp_mont(y, y, q, p, ctx, NULL)) {
285 goto end;
286 }
287 if (BN_is_one(y)) {
288 OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
289 goto end;
290 }
291
292 /* Now we know that (if p is indeed prime) there is an integer
293 * k, 0 <= k < 2^e, such that
294 *
295 * a^q * y^k == 1 (mod p).
296 *
297 * As a^q is a square and y is not, k must be even.
298 * q+1 is even, too, so there is an element
299 *
300 * X := a^((q+1)/2) * y^(k/2),
301 *
302 * and it satisfies
303 *
304 * X^2 = a^q * a * y^k
305 * = a,
306 *
307 * so it is the square root that we are looking for.
308 */
309
310 /* t := (q-1)/2 (note that q is odd) */
311 if (!BN_rshift1(t, q)) {
312 goto end;
313 }
314
315 /* x := a^((q-1)/2) */
316 if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
317 {
318 if (!BN_nnmod(t, A, p, ctx)) {
319 goto end;
320 }
321 if (BN_is_zero(t)) {
322 /* special case: a == 0 (mod p) */
323 BN_zero(ret);
324 err = 0;
325 goto end;
326 } else if (!BN_one(x)) {
327 goto end;
328 }
329 } else {
330 if (!BN_mod_exp_mont(x, A, t, p, ctx, NULL)) {
331 goto end;
332 }
333 if (BN_is_zero(x)) {
334 /* special case: a == 0 (mod p) */
335 BN_zero(ret);
336 err = 0;
337 goto end;
338 }
339 }
340
341 /* b := a*x^2 (= a^q) */
342 if (!BN_mod_sqr(b, x, p, ctx) ||
343 !BN_mod_mul(b, b, A, p, ctx)) {
344 goto end;
345 }
346
347 /* x := a*x (= a^((q+1)/2)) */
348 if (!BN_mod_mul(x, x, A, p, ctx)) {
349 goto end;
350 }
351
352 while (1) {
353 /* Now b is a^q * y^k for some even k (0 <= k < 2^E
354 * where E refers to the original value of e, which we
355 * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
356 *
357 * We have a*b = x^2,
358 * y^2^(e-1) = -1,
359 * b^2^(e-1) = 1.
360 */
361
362 if (BN_is_one(b)) {
363 if (!BN_copy(ret, x)) {
364 goto end;
365 }
366 err = 0;
367 goto vrfy;
368 }
369
370
371 /* find smallest i such that b^(2^i) = 1 */
372 i = 1;
373 if (!BN_mod_sqr(t, b, p, ctx)) {
374 goto end;
375 }
376 while (!BN_is_one(t)) {
377 i++;
378 if (i == e) {
379 OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
380 goto end;
381 }
382 if (!BN_mod_mul(t, t, t, p, ctx)) {
383 goto end;
384 }
385 }
386
387
388 /* t := y^2^(e - i - 1) */
389 if (!BN_copy(t, y)) {
390 goto end;
391 }
392 for (j = e - i - 1; j > 0; j--) {
393 if (!BN_mod_sqr(t, t, p, ctx)) {
394 goto end;
395 }
396 }
397 if (!BN_mod_mul(y, t, t, p, ctx) ||
398 !BN_mod_mul(x, x, t, p, ctx) ||
399 !BN_mod_mul(b, b, y, p, ctx)) {
400 goto end;
401 }
402 e = i;
403 }
404
405 vrfy:
406 if (!err) {
407 /* verify the result -- the input might have been not a square
408 * (test added in 0.9.8) */
409
410 if (!BN_mod_sqr(x, ret, p, ctx)) {
411 err = 1;
412 }
413
414 if (!err && 0 != BN_cmp(x, A)) {
415 OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
416 err = 1;
417 }
418 }
419
420 end:
421 if (err) {
422 if (ret != in) {
423 BN_clear_free(ret);
424 }
425 ret = NULL;
426 }
427 BN_CTX_end(ctx);
428 return ret;
429 }
430
BN_sqrt(BIGNUM * out_sqrt,const BIGNUM * in,BN_CTX * ctx)431 int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx) {
432 BIGNUM *estimate, *tmp, *delta, *last_delta, *tmp2;
433 int ok = 0, last_delta_valid = 0;
434
435 if (in->neg) {
436 OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
437 return 0;
438 }
439 if (BN_is_zero(in)) {
440 BN_zero(out_sqrt);
441 return 1;
442 }
443
444 BN_CTX_start(ctx);
445 if (out_sqrt == in) {
446 estimate = BN_CTX_get(ctx);
447 } else {
448 estimate = out_sqrt;
449 }
450 tmp = BN_CTX_get(ctx);
451 last_delta = BN_CTX_get(ctx);
452 delta = BN_CTX_get(ctx);
453 if (estimate == NULL || tmp == NULL || last_delta == NULL || delta == NULL) {
454 OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
455 goto err;
456 }
457
458 /* We estimate that the square root of an n-bit number is 2^{n/2}. */
459 if (!BN_lshift(estimate, BN_value_one(), BN_num_bits(in)/2)) {
460 goto err;
461 }
462
463 /* This is Newton's method for finding a root of the equation |estimate|^2 -
464 * |in| = 0. */
465 for (;;) {
466 /* |estimate| = 1/2 * (|estimate| + |in|/|estimate|) */
467 if (!BN_div(tmp, NULL, in, estimate, ctx) ||
468 !BN_add(tmp, tmp, estimate) ||
469 !BN_rshift1(estimate, tmp) ||
470 /* |tmp| = |estimate|^2 */
471 !BN_sqr(tmp, estimate, ctx) ||
472 /* |delta| = |in| - |tmp| */
473 !BN_sub(delta, in, tmp)) {
474 OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB);
475 goto err;
476 }
477
478 delta->neg = 0;
479 /* The difference between |in| and |estimate| squared is required to always
480 * decrease. This ensures that the loop always terminates, but I don't have
481 * a proof that it always finds the square root for a given square. */
482 if (last_delta_valid && BN_cmp(delta, last_delta) >= 0) {
483 break;
484 }
485
486 last_delta_valid = 1;
487
488 tmp2 = last_delta;
489 last_delta = delta;
490 delta = tmp2;
491 }
492
493 if (BN_cmp(tmp, in) != 0) {
494 OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
495 goto err;
496 }
497
498 ok = 1;
499
500 err:
501 if (ok && out_sqrt == in && !BN_copy(out_sqrt, estimate)) {
502 ok = 0;
503 }
504 BN_CTX_end(ctx);
505 return ok;
506 }
507