1 /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
2 * ====================================================================
3 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55 /* ====================================================================
56 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57 *
58 * Portions of the attached software ("Contribution") are developed by
59 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60 *
61 * The Contribution is licensed pursuant to the OpenSSL open source
62 * license provided above.
63 *
64 * The elliptic curve binary polynomial software is originally written by
65 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66 * Laboratories. */
67
68 #include <openssl/ec.h>
69
70 #include <openssl/bn.h>
71 #include <openssl/err.h>
72 #include <openssl/mem.h>
73
74 #include "../bn/internal.h"
75 #include "internal.h"
76
77
ec_GFp_mont_group_init(EC_GROUP * group)78 int ec_GFp_mont_group_init(EC_GROUP *group) {
79 int ok;
80
81 ok = ec_GFp_simple_group_init(group);
82 group->mont = NULL;
83 return ok;
84 }
85
ec_GFp_mont_group_finish(EC_GROUP * group)86 void ec_GFp_mont_group_finish(EC_GROUP *group) {
87 BN_MONT_CTX_free(group->mont);
88 group->mont = NULL;
89 ec_GFp_simple_group_finish(group);
90 }
91
ec_GFp_mont_group_copy(EC_GROUP * dest,const EC_GROUP * src)92 int ec_GFp_mont_group_copy(EC_GROUP *dest, const EC_GROUP *src) {
93 BN_MONT_CTX_free(dest->mont);
94 dest->mont = NULL;
95
96 if (!ec_GFp_simple_group_copy(dest, src)) {
97 return 0;
98 }
99
100 if (src->mont != NULL) {
101 dest->mont = BN_MONT_CTX_new();
102 if (dest->mont == NULL) {
103 return 0;
104 }
105 if (!BN_MONT_CTX_copy(dest->mont, src->mont)) {
106 goto err;
107 }
108 }
109
110 return 1;
111
112 err:
113 BN_MONT_CTX_free(dest->mont);
114 dest->mont = NULL;
115 return 0;
116 }
117
ec_GFp_mont_group_set_curve(EC_GROUP * group,const BIGNUM * p,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)118 int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
119 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
120 BN_CTX *new_ctx = NULL;
121 BN_MONT_CTX *mont = NULL;
122 int ret = 0;
123
124 BN_MONT_CTX_free(group->mont);
125 group->mont = NULL;
126
127 if (ctx == NULL) {
128 ctx = new_ctx = BN_CTX_new();
129 if (ctx == NULL) {
130 return 0;
131 }
132 }
133
134 mont = BN_MONT_CTX_new();
135 if (mont == NULL) {
136 goto err;
137 }
138 if (!BN_MONT_CTX_set(mont, p, ctx)) {
139 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
140 goto err;
141 }
142
143 group->mont = mont;
144 mont = NULL;
145
146 ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
147
148 if (!ret) {
149 BN_MONT_CTX_free(group->mont);
150 group->mont = NULL;
151 }
152
153 err:
154 BN_CTX_free(new_ctx);
155 BN_MONT_CTX_free(mont);
156 return ret;
157 }
158
ec_GFp_mont_field_mul(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)159 int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
160 const BIGNUM *b, BN_CTX *ctx) {
161 if (group->mont == NULL) {
162 OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
163 return 0;
164 }
165
166 return BN_mod_mul_montgomery(r, a, b, group->mont, ctx);
167 }
168
ec_GFp_mont_field_sqr(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)169 int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
170 BN_CTX *ctx) {
171 if (group->mont == NULL) {
172 OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
173 return 0;
174 }
175
176 return BN_mod_mul_montgomery(r, a, a, group->mont, ctx);
177 }
178
ec_GFp_mont_field_encode(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)179 int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
180 BN_CTX *ctx) {
181 if (group->mont == NULL) {
182 OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
183 return 0;
184 }
185
186 return BN_to_montgomery(r, a, group->mont, ctx);
187 }
188
ec_GFp_mont_field_decode(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)189 int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
190 BN_CTX *ctx) {
191 if (group->mont == NULL) {
192 OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
193 return 0;
194 }
195
196 return BN_from_montgomery(r, a, group->mont, ctx);
197 }
198
ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BN_CTX * ctx)199 static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
200 const EC_POINT *point,
201 BIGNUM *x, BIGNUM *y,
202 BN_CTX *ctx) {
203 if (EC_POINT_is_at_infinity(group, point)) {
204 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
205 return 0;
206 }
207
208 BN_CTX *new_ctx = NULL;
209 if (ctx == NULL) {
210 ctx = new_ctx = BN_CTX_new();
211 if (ctx == NULL) {
212 return 0;
213 }
214 }
215
216 int ret = 0;
217
218 BN_CTX_start(ctx);
219
220 if (BN_cmp(&point->Z, &group->one) == 0) {
221 /* |point| is already affine. */
222 if (x != NULL && !BN_from_montgomery(x, &point->X, group->mont, ctx)) {
223 goto err;
224 }
225 if (y != NULL && !BN_from_montgomery(y, &point->Y, group->mont, ctx)) {
226 goto err;
227 }
228 } else {
229 /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
230
231 BIGNUM *Z_1 = BN_CTX_get(ctx);
232 BIGNUM *Z_2 = BN_CTX_get(ctx);
233 BIGNUM *Z_3 = BN_CTX_get(ctx);
234 if (Z_1 == NULL ||
235 Z_2 == NULL ||
236 Z_3 == NULL) {
237 goto err;
238 }
239
240 /* The straightforward way to calculate the inverse of a Montgomery-encoded
241 * value where the result is Montgomery-encoded is:
242 *
243 * |BN_from_montgomery| + invert + |BN_to_montgomery|.
244 *
245 * This is equivalent, but more efficient, because |BN_from_montgomery|
246 * is more efficient (at least in theory) than |BN_to_montgomery|, since it
247 * doesn't have to do the multiplication before the reduction.
248 *
249 * Use Fermat's Little Theorem instead of |BN_mod_inverse_odd| since this
250 * inversion may be done as the final step of private key operations.
251 * Unfortunately, this is suboptimal for ECDSA verification. */
252 if (!BN_from_montgomery(Z_1, &point->Z, group->mont, ctx) ||
253 !BN_from_montgomery(Z_1, Z_1, group->mont, ctx) ||
254 !bn_mod_inverse_prime(Z_1, Z_1, &group->field, ctx, group->mont)) {
255 goto err;
256 }
257
258 if (!BN_mod_mul_montgomery(Z_2, Z_1, Z_1, group->mont, ctx)) {
259 goto err;
260 }
261
262 /* Instead of using |BN_from_montgomery| to convert the |x| coordinate
263 * and then calling |BN_from_montgomery| again to convert the |y|
264 * coordinate below, convert the common factor |Z_2| once now, saving one
265 * reduction. */
266 if (!BN_from_montgomery(Z_2, Z_2, group->mont, ctx)) {
267 goto err;
268 }
269
270 if (x != NULL) {
271 if (!BN_mod_mul_montgomery(x, &point->X, Z_2, group->mont, ctx)) {
272 goto err;
273 }
274 }
275
276 if (y != NULL) {
277 if (!BN_mod_mul_montgomery(Z_3, Z_2, Z_1, group->mont, ctx) ||
278 !BN_mod_mul_montgomery(y, &point->Y, Z_3, group->mont, ctx)) {
279 goto err;
280 }
281 }
282 }
283
284 ret = 1;
285
286 err:
287 BN_CTX_end(ctx);
288 BN_CTX_free(new_ctx);
289 return ret;
290 }
291
292 const EC_METHOD EC_GFp_mont_method = {
293 ec_GFp_mont_group_init,
294 ec_GFp_mont_group_finish,
295 ec_GFp_mont_group_copy,
296 ec_GFp_mont_group_set_curve,
297 ec_GFp_mont_point_get_affine_coordinates,
298 ec_wNAF_mul /* XXX: Not constant time. */,
299 ec_GFp_mont_field_mul,
300 ec_GFp_mont_field_sqr,
301 ec_GFp_mont_field_encode,
302 ec_GFp_mont_field_decode,
303 };
304