1 /* Copyright (c) 2015, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 /* A 64-bit implementation of the NIST P-256 elliptic curve point
16 * multiplication
17 *
18 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
19 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
20 * work which got its smarts from Daniel J. Bernstein's work on the same. */
21
22 #include <openssl/base.h>
23
24 #if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS)
25
26 #include <openssl/bn.h>
27 #include <openssl/ec.h>
28 #include <openssl/err.h>
29 #include <openssl/mem.h>
30
31 #include <string.h>
32
33 #include "internal.h"
34 #include "../internal.h"
35
36
37 typedef uint8_t u8;
38 typedef uint64_t u64;
39 typedef int64_t s64;
40
41 /* The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
42 * can serialise an element of this field into 32 bytes. We call this an
43 * felem_bytearray. */
44 typedef u8 felem_bytearray[32];
45
46 /* The representation of field elements.
47 * ------------------------------------
48 *
49 * We represent field elements with either four 128-bit values, eight 128-bit
50 * values, or four 64-bit values. The field element represented is:
51 * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p)
52 * or:
53 * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p)
54 *
55 * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
56 * apart, but are 128-bits wide, the most significant bits of each limb overlap
57 * with the least significant bits of the next.
58 *
59 * A field element with four limbs is an 'felem'. One with eight limbs is a
60 * 'longfelem'
61 *
62 * A field element with four, 64-bit values is called a 'smallfelem'. Small
63 * values are used as intermediate values before multiplication. */
64
65 #define NLIMBS 4
66
67 typedef uint128_t limb;
68 typedef limb felem[NLIMBS];
69 typedef limb longfelem[NLIMBS * 2];
70 typedef u64 smallfelem[NLIMBS];
71
72 /* This is the value of the prime as four 64-bit words, little-endian. */
73 static const u64 kPrime[4] = {0xfffffffffffffffful, 0xffffffff, 0,
74 0xffffffff00000001ul};
75 static const u64 bottom63bits = 0x7ffffffffffffffful;
76
77 /* bin32_to_felem takes a little-endian byte array and converts it into felem
78 * form. This assumes that the CPU is little-endian. */
bin32_to_felem(felem out,const u8 in[32])79 static void bin32_to_felem(felem out, const u8 in[32]) {
80 out[0] = *((const u64 *)&in[0]);
81 out[1] = *((const u64 *)&in[8]);
82 out[2] = *((const u64 *)&in[16]);
83 out[3] = *((const u64 *)&in[24]);
84 }
85
86 /* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian,
87 * 32 byte array. This assumes that the CPU is little-endian. */
smallfelem_to_bin32(u8 out[32],const smallfelem in)88 static void smallfelem_to_bin32(u8 out[32], const smallfelem in) {
89 *((u64 *)&out[0]) = in[0];
90 *((u64 *)&out[8]) = in[1];
91 *((u64 *)&out[16]) = in[2];
92 *((u64 *)&out[24]) = in[3];
93 }
94
95 /* To preserve endianness when using BN_bn2bin and BN_bin2bn. */
flip_endian(u8 * out,const u8 * in,size_t len)96 static void flip_endian(u8 *out, const u8 *in, size_t len) {
97 for (size_t i = 0; i < len; ++i) {
98 out[i] = in[len - 1 - i];
99 }
100 }
101
102 /* BN_to_felem converts an OpenSSL BIGNUM into an felem. */
BN_to_felem(felem out,const BIGNUM * bn)103 static int BN_to_felem(felem out, const BIGNUM *bn) {
104 if (BN_is_negative(bn)) {
105 OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
106 return 0;
107 }
108
109 felem_bytearray b_out;
110 /* BN_bn2bin eats leading zeroes */
111 OPENSSL_memset(b_out, 0, sizeof(b_out));
112 size_t num_bytes = BN_num_bytes(bn);
113 if (num_bytes > sizeof(b_out)) {
114 OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
115 return 0;
116 }
117
118 felem_bytearray b_in;
119 num_bytes = BN_bn2bin(bn, b_in);
120 flip_endian(b_out, b_in, num_bytes);
121 bin32_to_felem(out, b_out);
122 return 1;
123 }
124
125 /* felem_to_BN converts an felem into an OpenSSL BIGNUM. */
smallfelem_to_BN(BIGNUM * out,const smallfelem in)126 static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in) {
127 felem_bytearray b_in, b_out;
128 smallfelem_to_bin32(b_in, in);
129 flip_endian(b_out, b_in, sizeof(b_out));
130 return BN_bin2bn(b_out, sizeof(b_out), out);
131 }
132
133 /* Field operations. */
134
felem_assign(felem out,const felem in)135 static void felem_assign(felem out, const felem in) {
136 out[0] = in[0];
137 out[1] = in[1];
138 out[2] = in[2];
139 out[3] = in[3];
140 }
141
142 /* felem_sum sets out = out + in. */
felem_sum(felem out,const felem in)143 static void felem_sum(felem out, const felem in) {
144 out[0] += in[0];
145 out[1] += in[1];
146 out[2] += in[2];
147 out[3] += in[3];
148 }
149
150 /* felem_small_sum sets out = out + in. */
felem_small_sum(felem out,const smallfelem in)151 static void felem_small_sum(felem out, const smallfelem in) {
152 out[0] += in[0];
153 out[1] += in[1];
154 out[2] += in[2];
155 out[3] += in[3];
156 }
157
158 /* felem_scalar sets out = out * scalar */
felem_scalar(felem out,const u64 scalar)159 static void felem_scalar(felem out, const u64 scalar) {
160 out[0] *= scalar;
161 out[1] *= scalar;
162 out[2] *= scalar;
163 out[3] *= scalar;
164 }
165
166 /* longfelem_scalar sets out = out * scalar */
longfelem_scalar(longfelem out,const u64 scalar)167 static void longfelem_scalar(longfelem out, const u64 scalar) {
168 out[0] *= scalar;
169 out[1] *= scalar;
170 out[2] *= scalar;
171 out[3] *= scalar;
172 out[4] *= scalar;
173 out[5] *= scalar;
174 out[6] *= scalar;
175 out[7] *= scalar;
176 }
177
178 #define two105m41m9 ((((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9))
179 #define two105 (((limb)1) << 105)
180 #define two105m41p9 ((((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9))
181
182 /* zero105 is 0 mod p */
183 static const felem zero105 = {two105m41m9, two105, two105m41p9, two105m41p9};
184
185 /* smallfelem_neg sets |out| to |-small|
186 * On exit:
187 * out[i] < out[i] + 2^105 */
smallfelem_neg(felem out,const smallfelem small)188 static void smallfelem_neg(felem out, const smallfelem small) {
189 /* In order to prevent underflow, we subtract from 0 mod p. */
190 out[0] = zero105[0] - small[0];
191 out[1] = zero105[1] - small[1];
192 out[2] = zero105[2] - small[2];
193 out[3] = zero105[3] - small[3];
194 }
195
196 /* felem_diff subtracts |in| from |out|
197 * On entry:
198 * in[i] < 2^104
199 * On exit:
200 * out[i] < out[i] + 2^105. */
felem_diff(felem out,const felem in)201 static void felem_diff(felem out, const felem in) {
202 /* In order to prevent underflow, we add 0 mod p before subtracting. */
203 out[0] += zero105[0];
204 out[1] += zero105[1];
205 out[2] += zero105[2];
206 out[3] += zero105[3];
207
208 out[0] -= in[0];
209 out[1] -= in[1];
210 out[2] -= in[2];
211 out[3] -= in[3];
212 }
213
214 #define two107m43m11 \
215 ((((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11))
216 #define two107 (((limb)1) << 107)
217 #define two107m43p11 \
218 ((((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11))
219
220 /* zero107 is 0 mod p */
221 static const felem zero107 = {two107m43m11, two107, two107m43p11, two107m43p11};
222
223 /* An alternative felem_diff for larger inputs |in|
224 * felem_diff_zero107 subtracts |in| from |out|
225 * On entry:
226 * in[i] < 2^106
227 * On exit:
228 * out[i] < out[i] + 2^107. */
felem_diff_zero107(felem out,const felem in)229 static void felem_diff_zero107(felem out, const felem in) {
230 /* In order to prevent underflow, we add 0 mod p before subtracting. */
231 out[0] += zero107[0];
232 out[1] += zero107[1];
233 out[2] += zero107[2];
234 out[3] += zero107[3];
235
236 out[0] -= in[0];
237 out[1] -= in[1];
238 out[2] -= in[2];
239 out[3] -= in[3];
240 }
241
242 /* longfelem_diff subtracts |in| from |out|
243 * On entry:
244 * in[i] < 7*2^67
245 * On exit:
246 * out[i] < out[i] + 2^70 + 2^40. */
longfelem_diff(longfelem out,const longfelem in)247 static void longfelem_diff(longfelem out, const longfelem in) {
248 static const limb two70m8p6 =
249 (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6);
250 static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40);
251 static const limb two70 = (((limb)1) << 70);
252 static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) -
253 (((limb)1) << 38) + (((limb)1) << 6);
254 static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6);
255
256 /* add 0 mod p to avoid underflow */
257 out[0] += two70m8p6;
258 out[1] += two70p40;
259 out[2] += two70;
260 out[3] += two70m40m38p6;
261 out[4] += two70m6;
262 out[5] += two70m6;
263 out[6] += two70m6;
264 out[7] += two70m6;
265
266 /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
267 out[0] -= in[0];
268 out[1] -= in[1];
269 out[2] -= in[2];
270 out[3] -= in[3];
271 out[4] -= in[4];
272 out[5] -= in[5];
273 out[6] -= in[6];
274 out[7] -= in[7];
275 }
276
277 #define two64m0 ((((limb)1) << 64) - 1)
278 #define two110p32m0 ((((limb)1) << 110) + (((limb)1) << 32) - 1)
279 #define two64m46 ((((limb)1) << 64) - (((limb)1) << 46))
280 #define two64m32 ((((limb)1) << 64) - (((limb)1) << 32))
281
282 /* zero110 is 0 mod p. */
283 static const felem zero110 = {two64m0, two110p32m0, two64m46, two64m32};
284
285 /* felem_shrink converts an felem into a smallfelem. The result isn't quite
286 * minimal as the value may be greater than p.
287 *
288 * On entry:
289 * in[i] < 2^109
290 * On exit:
291 * out[i] < 2^64. */
felem_shrink(smallfelem out,const felem in)292 static void felem_shrink(smallfelem out, const felem in) {
293 felem tmp;
294 u64 a, b, mask;
295 s64 high, low;
296 static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
297
298 /* Carry 2->3 */
299 tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
300 /* tmp[3] < 2^110 */
301
302 tmp[2] = zero110[2] + (u64)in[2];
303 tmp[0] = zero110[0] + in[0];
304 tmp[1] = zero110[1] + in[1];
305 /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
306
307 /* We perform two partial reductions where we eliminate the high-word of
308 * tmp[3]. We don't update the other words till the end. */
309 a = tmp[3] >> 64; /* a < 2^46 */
310 tmp[3] = (u64)tmp[3];
311 tmp[3] -= a;
312 tmp[3] += ((limb)a) << 32;
313 /* tmp[3] < 2^79 */
314
315 b = a;
316 a = tmp[3] >> 64; /* a < 2^15 */
317 b += a; /* b < 2^46 + 2^15 < 2^47 */
318 tmp[3] = (u64)tmp[3];
319 tmp[3] -= a;
320 tmp[3] += ((limb)a) << 32;
321 /* tmp[3] < 2^64 + 2^47 */
322
323 /* This adjusts the other two words to complete the two partial
324 * reductions. */
325 tmp[0] += b;
326 tmp[1] -= (((limb)b) << 32);
327
328 /* In order to make space in tmp[3] for the carry from 2 -> 3, we
329 * conditionally subtract kPrime if tmp[3] is large enough. */
330 high = tmp[3] >> 64;
331 /* As tmp[3] < 2^65, high is either 1 or 0 */
332 high = ~(high - 1);
333 /* high is:
334 * all ones if the high word of tmp[3] is 1
335 * all zeros if the high word of tmp[3] if 0 */
336 low = tmp[3];
337 mask = low >> 63;
338 /* mask is:
339 * all ones if the MSB of low is 1
340 * all zeros if the MSB of low if 0 */
341 low &= bottom63bits;
342 low -= kPrime3Test;
343 /* if low was greater than kPrime3Test then the MSB is zero */
344 low = ~low;
345 low >>= 63;
346 /* low is:
347 * all ones if low was > kPrime3Test
348 * all zeros if low was <= kPrime3Test */
349 mask = (mask & low) | high;
350 tmp[0] -= mask & kPrime[0];
351 tmp[1] -= mask & kPrime[1];
352 /* kPrime[2] is zero, so omitted */
353 tmp[3] -= mask & kPrime[3];
354 /* tmp[3] < 2**64 - 2**32 + 1 */
355
356 tmp[1] += ((u64)(tmp[0] >> 64));
357 tmp[0] = (u64)tmp[0];
358 tmp[2] += ((u64)(tmp[1] >> 64));
359 tmp[1] = (u64)tmp[1];
360 tmp[3] += ((u64)(tmp[2] >> 64));
361 tmp[2] = (u64)tmp[2];
362 /* tmp[i] < 2^64 */
363
364 out[0] = tmp[0];
365 out[1] = tmp[1];
366 out[2] = tmp[2];
367 out[3] = tmp[3];
368 }
369
370 /* smallfelem_expand converts a smallfelem to an felem */
smallfelem_expand(felem out,const smallfelem in)371 static void smallfelem_expand(felem out, const smallfelem in) {
372 out[0] = in[0];
373 out[1] = in[1];
374 out[2] = in[2];
375 out[3] = in[3];
376 }
377
378 /* smallfelem_square sets |out| = |small|^2
379 * On entry:
380 * small[i] < 2^64
381 * On exit:
382 * out[i] < 7 * 2^64 < 2^67 */
smallfelem_square(longfelem out,const smallfelem small)383 static void smallfelem_square(longfelem out, const smallfelem small) {
384 limb a;
385 u64 high, low;
386
387 a = ((uint128_t)small[0]) * small[0];
388 low = a;
389 high = a >> 64;
390 out[0] = low;
391 out[1] = high;
392
393 a = ((uint128_t)small[0]) * small[1];
394 low = a;
395 high = a >> 64;
396 out[1] += low;
397 out[1] += low;
398 out[2] = high;
399
400 a = ((uint128_t)small[0]) * small[2];
401 low = a;
402 high = a >> 64;
403 out[2] += low;
404 out[2] *= 2;
405 out[3] = high;
406
407 a = ((uint128_t)small[0]) * small[3];
408 low = a;
409 high = a >> 64;
410 out[3] += low;
411 out[4] = high;
412
413 a = ((uint128_t)small[1]) * small[2];
414 low = a;
415 high = a >> 64;
416 out[3] += low;
417 out[3] *= 2;
418 out[4] += high;
419
420 a = ((uint128_t)small[1]) * small[1];
421 low = a;
422 high = a >> 64;
423 out[2] += low;
424 out[3] += high;
425
426 a = ((uint128_t)small[1]) * small[3];
427 low = a;
428 high = a >> 64;
429 out[4] += low;
430 out[4] *= 2;
431 out[5] = high;
432
433 a = ((uint128_t)small[2]) * small[3];
434 low = a;
435 high = a >> 64;
436 out[5] += low;
437 out[5] *= 2;
438 out[6] = high;
439 out[6] += high;
440
441 a = ((uint128_t)small[2]) * small[2];
442 low = a;
443 high = a >> 64;
444 out[4] += low;
445 out[5] += high;
446
447 a = ((uint128_t)small[3]) * small[3];
448 low = a;
449 high = a >> 64;
450 out[6] += low;
451 out[7] = high;
452 }
453
454 /*felem_square sets |out| = |in|^2
455 * On entry:
456 * in[i] < 2^109
457 * On exit:
458 * out[i] < 7 * 2^64 < 2^67. */
felem_square(longfelem out,const felem in)459 static void felem_square(longfelem out, const felem in) {
460 u64 small[4];
461 felem_shrink(small, in);
462 smallfelem_square(out, small);
463 }
464
465 /* smallfelem_mul sets |out| = |small1| * |small2|
466 * On entry:
467 * small1[i] < 2^64
468 * small2[i] < 2^64
469 * On exit:
470 * out[i] < 7 * 2^64 < 2^67. */
smallfelem_mul(longfelem out,const smallfelem small1,const smallfelem small2)471 static void smallfelem_mul(longfelem out, const smallfelem small1,
472 const smallfelem small2) {
473 limb a;
474 u64 high, low;
475
476 a = ((uint128_t)small1[0]) * small2[0];
477 low = a;
478 high = a >> 64;
479 out[0] = low;
480 out[1] = high;
481
482 a = ((uint128_t)small1[0]) * small2[1];
483 low = a;
484 high = a >> 64;
485 out[1] += low;
486 out[2] = high;
487
488 a = ((uint128_t)small1[1]) * small2[0];
489 low = a;
490 high = a >> 64;
491 out[1] += low;
492 out[2] += high;
493
494 a = ((uint128_t)small1[0]) * small2[2];
495 low = a;
496 high = a >> 64;
497 out[2] += low;
498 out[3] = high;
499
500 a = ((uint128_t)small1[1]) * small2[1];
501 low = a;
502 high = a >> 64;
503 out[2] += low;
504 out[3] += high;
505
506 a = ((uint128_t)small1[2]) * small2[0];
507 low = a;
508 high = a >> 64;
509 out[2] += low;
510 out[3] += high;
511
512 a = ((uint128_t)small1[0]) * small2[3];
513 low = a;
514 high = a >> 64;
515 out[3] += low;
516 out[4] = high;
517
518 a = ((uint128_t)small1[1]) * small2[2];
519 low = a;
520 high = a >> 64;
521 out[3] += low;
522 out[4] += high;
523
524 a = ((uint128_t)small1[2]) * small2[1];
525 low = a;
526 high = a >> 64;
527 out[3] += low;
528 out[4] += high;
529
530 a = ((uint128_t)small1[3]) * small2[0];
531 low = a;
532 high = a >> 64;
533 out[3] += low;
534 out[4] += high;
535
536 a = ((uint128_t)small1[1]) * small2[3];
537 low = a;
538 high = a >> 64;
539 out[4] += low;
540 out[5] = high;
541
542 a = ((uint128_t)small1[2]) * small2[2];
543 low = a;
544 high = a >> 64;
545 out[4] += low;
546 out[5] += high;
547
548 a = ((uint128_t)small1[3]) * small2[1];
549 low = a;
550 high = a >> 64;
551 out[4] += low;
552 out[5] += high;
553
554 a = ((uint128_t)small1[2]) * small2[3];
555 low = a;
556 high = a >> 64;
557 out[5] += low;
558 out[6] = high;
559
560 a = ((uint128_t)small1[3]) * small2[2];
561 low = a;
562 high = a >> 64;
563 out[5] += low;
564 out[6] += high;
565
566 a = ((uint128_t)small1[3]) * small2[3];
567 low = a;
568 high = a >> 64;
569 out[6] += low;
570 out[7] = high;
571 }
572
573 /* felem_mul sets |out| = |in1| * |in2|
574 * On entry:
575 * in1[i] < 2^109
576 * in2[i] < 2^109
577 * On exit:
578 * out[i] < 7 * 2^64 < 2^67 */
felem_mul(longfelem out,const felem in1,const felem in2)579 static void felem_mul(longfelem out, const felem in1, const felem in2) {
580 smallfelem small1, small2;
581 felem_shrink(small1, in1);
582 felem_shrink(small2, in2);
583 smallfelem_mul(out, small1, small2);
584 }
585
586 /* felem_small_mul sets |out| = |small1| * |in2|
587 * On entry:
588 * small1[i] < 2^64
589 * in2[i] < 2^109
590 * On exit:
591 * out[i] < 7 * 2^64 < 2^67 */
felem_small_mul(longfelem out,const smallfelem small1,const felem in2)592 static void felem_small_mul(longfelem out, const smallfelem small1,
593 const felem in2) {
594 smallfelem small2;
595 felem_shrink(small2, in2);
596 smallfelem_mul(out, small1, small2);
597 }
598
599 #define two100m36m4 ((((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4))
600 #define two100 (((limb)1) << 100)
601 #define two100m36p4 ((((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4))
602
603 /* zero100 is 0 mod p */
604 static const felem zero100 = {two100m36m4, two100, two100m36p4, two100m36p4};
605
606 /* Internal function for the different flavours of felem_reduce.
607 * felem_reduce_ reduces the higher coefficients in[4]-in[7].
608 * On entry:
609 * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
610 * out[1] >= in[7] + 2^32*in[4]
611 * out[2] >= in[5] + 2^32*in[5]
612 * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
613 * On exit:
614 * out[0] <= out[0] + in[4] + 2^32*in[5]
615 * out[1] <= out[1] + in[5] + 2^33*in[6]
616 * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
617 * out[3] <= out[3] + 2^32*in[4] + 3*in[7] */
felem_reduce_(felem out,const longfelem in)618 static void felem_reduce_(felem out, const longfelem in) {
619 int128_t c;
620 /* combine common terms from below */
621 c = in[4] + (in[5] << 32);
622 out[0] += c;
623 out[3] -= c;
624
625 c = in[5] - in[7];
626 out[1] += c;
627 out[2] -= c;
628
629 /* the remaining terms */
630 /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
631 out[1] -= (in[4] << 32);
632 out[3] += (in[4] << 32);
633
634 /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
635 out[2] -= (in[5] << 32);
636
637 /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
638 out[0] -= in[6];
639 out[0] -= (in[6] << 32);
640 out[1] += (in[6] << 33);
641 out[2] += (in[6] * 2);
642 out[3] -= (in[6] << 32);
643
644 /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
645 out[0] -= in[7];
646 out[0] -= (in[7] << 32);
647 out[2] += (in[7] << 33);
648 out[3] += (in[7] * 3);
649 }
650
651 /* felem_reduce converts a longfelem into an felem.
652 * To be called directly after felem_square or felem_mul.
653 * On entry:
654 * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
655 * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
656 * On exit:
657 * out[i] < 2^101 */
felem_reduce(felem out,const longfelem in)658 static void felem_reduce(felem out, const longfelem in) {
659 out[0] = zero100[0] + in[0];
660 out[1] = zero100[1] + in[1];
661 out[2] = zero100[2] + in[2];
662 out[3] = zero100[3] + in[3];
663
664 felem_reduce_(out, in);
665
666 /* out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
667 * out[1] > 2^100 - 2^64 - 7*2^96 > 0
668 * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
669 * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
670 *
671 * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
672 * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
673 * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
674 * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101 */
675 }
676
677 /* felem_reduce_zero105 converts a larger longfelem into an felem.
678 * On entry:
679 * in[0] < 2^71
680 * On exit:
681 * out[i] < 2^106 */
felem_reduce_zero105(felem out,const longfelem in)682 static void felem_reduce_zero105(felem out, const longfelem in) {
683 out[0] = zero105[0] + in[0];
684 out[1] = zero105[1] + in[1];
685 out[2] = zero105[2] + in[2];
686 out[3] = zero105[3] + in[3];
687
688 felem_reduce_(out, in);
689
690 /* out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
691 * out[1] > 2^105 - 2^71 - 2^103 > 0
692 * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
693 * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
694 *
695 * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
696 * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
697 * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
698 * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 */
699 }
700
701 /* subtract_u64 sets *result = *result - v and *carry to one if the
702 * subtraction underflowed. */
subtract_u64(u64 * result,u64 * carry,u64 v)703 static void subtract_u64(u64 *result, u64 *carry, u64 v) {
704 uint128_t r = *result;
705 r -= v;
706 *carry = (r >> 64) & 1;
707 *result = (u64)r;
708 }
709
710 /* felem_contract converts |in| to its unique, minimal representation. On
711 * entry: in[i] < 2^109. */
felem_contract(smallfelem out,const felem in)712 static void felem_contract(smallfelem out, const felem in) {
713 u64 all_equal_so_far = 0, result = 0;
714
715 felem_shrink(out, in);
716 /* small is minimal except that the value might be > p */
717
718 all_equal_so_far--;
719 /* We are doing a constant time test if out >= kPrime. We need to compare
720 * each u64, from most-significant to least significant. For each one, if
721 * all words so far have been equal (m is all ones) then a non-equal
722 * result is the answer. Otherwise we continue. */
723 for (size_t i = 3; i < 4; i--) {
724 u64 equal;
725 uint128_t a = ((uint128_t)kPrime[i]) - out[i];
726 /* if out[i] > kPrime[i] then a will underflow and the high 64-bits
727 * will all be set. */
728 result |= all_equal_so_far & ((u64)(a >> 64));
729
730 /* if kPrime[i] == out[i] then |equal| will be all zeros and the
731 * decrement will make it all ones. */
732 equal = kPrime[i] ^ out[i];
733 equal--;
734 equal &= equal << 32;
735 equal &= equal << 16;
736 equal &= equal << 8;
737 equal &= equal << 4;
738 equal &= equal << 2;
739 equal &= equal << 1;
740 equal = ((s64)equal) >> 63;
741
742 all_equal_so_far &= equal;
743 }
744
745 /* if all_equal_so_far is still all ones then the two values are equal
746 * and so out >= kPrime is true. */
747 result |= all_equal_so_far;
748
749 /* if out >= kPrime then we subtract kPrime. */
750 u64 carry;
751 subtract_u64(&out[0], &carry, result & kPrime[0]);
752 subtract_u64(&out[1], &carry, carry);
753 subtract_u64(&out[2], &carry, carry);
754 subtract_u64(&out[3], &carry, carry);
755
756 subtract_u64(&out[1], &carry, result & kPrime[1]);
757 subtract_u64(&out[2], &carry, carry);
758 subtract_u64(&out[3], &carry, carry);
759
760 subtract_u64(&out[2], &carry, result & kPrime[2]);
761 subtract_u64(&out[3], &carry, carry);
762
763 subtract_u64(&out[3], &carry, result & kPrime[3]);
764 }
765
766 /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
767 * otherwise.
768 * On entry:
769 * small[i] < 2^64 */
smallfelem_is_zero(const smallfelem small)770 static limb smallfelem_is_zero(const smallfelem small) {
771 limb result;
772 u64 is_p;
773
774 u64 is_zero = small[0] | small[1] | small[2] | small[3];
775 is_zero--;
776 is_zero &= is_zero << 32;
777 is_zero &= is_zero << 16;
778 is_zero &= is_zero << 8;
779 is_zero &= is_zero << 4;
780 is_zero &= is_zero << 2;
781 is_zero &= is_zero << 1;
782 is_zero = ((s64)is_zero) >> 63;
783
784 is_p = (small[0] ^ kPrime[0]) | (small[1] ^ kPrime[1]) |
785 (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
786 is_p--;
787 is_p &= is_p << 32;
788 is_p &= is_p << 16;
789 is_p &= is_p << 8;
790 is_p &= is_p << 4;
791 is_p &= is_p << 2;
792 is_p &= is_p << 1;
793 is_p = ((s64)is_p) >> 63;
794
795 is_zero |= is_p;
796
797 result = is_zero;
798 result |= ((limb)is_zero) << 64;
799 return result;
800 }
801
802 /* felem_inv calculates |out| = |in|^{-1}
803 *
804 * Based on Fermat's Little Theorem:
805 * a^p = a (mod p)
806 * a^{p-1} = 1 (mod p)
807 * a^{p-2} = a^{-1} (mod p) */
felem_inv(felem out,const felem in)808 static void felem_inv(felem out, const felem in) {
809 felem ftmp, ftmp2;
810 /* each e_I will hold |in|^{2^I - 1} */
811 felem e2, e4, e8, e16, e32, e64;
812 longfelem tmp;
813
814 felem_square(tmp, in);
815 felem_reduce(ftmp, tmp); /* 2^1 */
816 felem_mul(tmp, in, ftmp);
817 felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
818 felem_assign(e2, ftmp);
819 felem_square(tmp, ftmp);
820 felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
821 felem_square(tmp, ftmp);
822 felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */
823 felem_mul(tmp, ftmp, e2);
824 felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */
825 felem_assign(e4, ftmp);
826 felem_square(tmp, ftmp);
827 felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */
828 felem_square(tmp, ftmp);
829 felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */
830 felem_square(tmp, ftmp);
831 felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */
832 felem_square(tmp, ftmp);
833 felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */
834 felem_mul(tmp, ftmp, e4);
835 felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */
836 felem_assign(e8, ftmp);
837 for (size_t i = 0; i < 8; i++) {
838 felem_square(tmp, ftmp);
839 felem_reduce(ftmp, tmp);
840 } /* 2^16 - 2^8 */
841 felem_mul(tmp, ftmp, e8);
842 felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */
843 felem_assign(e16, ftmp);
844 for (size_t i = 0; i < 16; i++) {
845 felem_square(tmp, ftmp);
846 felem_reduce(ftmp, tmp);
847 } /* 2^32 - 2^16 */
848 felem_mul(tmp, ftmp, e16);
849 felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */
850 felem_assign(e32, ftmp);
851 for (size_t i = 0; i < 32; i++) {
852 felem_square(tmp, ftmp);
853 felem_reduce(ftmp, tmp);
854 } /* 2^64 - 2^32 */
855 felem_assign(e64, ftmp);
856 felem_mul(tmp, ftmp, in);
857 felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */
858 for (size_t i = 0; i < 192; i++) {
859 felem_square(tmp, ftmp);
860 felem_reduce(ftmp, tmp);
861 } /* 2^256 - 2^224 + 2^192 */
862
863 felem_mul(tmp, e64, e32);
864 felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */
865 for (size_t i = 0; i < 16; i++) {
866 felem_square(tmp, ftmp2);
867 felem_reduce(ftmp2, tmp);
868 } /* 2^80 - 2^16 */
869 felem_mul(tmp, ftmp2, e16);
870 felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */
871 for (size_t i = 0; i < 8; i++) {
872 felem_square(tmp, ftmp2);
873 felem_reduce(ftmp2, tmp);
874 } /* 2^88 - 2^8 */
875 felem_mul(tmp, ftmp2, e8);
876 felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */
877 for (size_t i = 0; i < 4; i++) {
878 felem_square(tmp, ftmp2);
879 felem_reduce(ftmp2, tmp);
880 } /* 2^92 - 2^4 */
881 felem_mul(tmp, ftmp2, e4);
882 felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */
883 felem_square(tmp, ftmp2);
884 felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */
885 felem_square(tmp, ftmp2);
886 felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */
887 felem_mul(tmp, ftmp2, e2);
888 felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */
889 felem_square(tmp, ftmp2);
890 felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */
891 felem_square(tmp, ftmp2);
892 felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */
893 felem_mul(tmp, ftmp2, in);
894 felem_reduce(ftmp2, tmp); /* 2^96 - 3 */
895
896 felem_mul(tmp, ftmp2, ftmp);
897 felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
898 }
899
900 /* Group operations
901 * ----------------
902 *
903 * Building on top of the field operations we have the operations on the
904 * elliptic curve group itself. Points on the curve are represented in Jacobian
905 * coordinates. */
906
907 /* point_double calculates 2*(x_in, y_in, z_in)
908 *
909 * The method is taken from:
910 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
911 *
912 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
913 * while x_out == y_in is not (maybe this works, but it's not tested). */
point_double(felem x_out,felem y_out,felem z_out,const felem x_in,const felem y_in,const felem z_in)914 static void point_double(felem x_out, felem y_out, felem z_out,
915 const felem x_in, const felem y_in, const felem z_in) {
916 longfelem tmp, tmp2;
917 felem delta, gamma, beta, alpha, ftmp, ftmp2;
918 smallfelem small1, small2;
919
920 felem_assign(ftmp, x_in);
921 /* ftmp[i] < 2^106 */
922 felem_assign(ftmp2, x_in);
923 /* ftmp2[i] < 2^106 */
924
925 /* delta = z^2 */
926 felem_square(tmp, z_in);
927 felem_reduce(delta, tmp);
928 /* delta[i] < 2^101 */
929
930 /* gamma = y^2 */
931 felem_square(tmp, y_in);
932 felem_reduce(gamma, tmp);
933 /* gamma[i] < 2^101 */
934 felem_shrink(small1, gamma);
935
936 /* beta = x*gamma */
937 felem_small_mul(tmp, small1, x_in);
938 felem_reduce(beta, tmp);
939 /* beta[i] < 2^101 */
940
941 /* alpha = 3*(x-delta)*(x+delta) */
942 felem_diff(ftmp, delta);
943 /* ftmp[i] < 2^105 + 2^106 < 2^107 */
944 felem_sum(ftmp2, delta);
945 /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
946 felem_scalar(ftmp2, 3);
947 /* ftmp2[i] < 3 * 2^107 < 2^109 */
948 felem_mul(tmp, ftmp, ftmp2);
949 felem_reduce(alpha, tmp);
950 /* alpha[i] < 2^101 */
951 felem_shrink(small2, alpha);
952
953 /* x' = alpha^2 - 8*beta */
954 smallfelem_square(tmp, small2);
955 felem_reduce(x_out, tmp);
956 felem_assign(ftmp, beta);
957 felem_scalar(ftmp, 8);
958 /* ftmp[i] < 8 * 2^101 = 2^104 */
959 felem_diff(x_out, ftmp);
960 /* x_out[i] < 2^105 + 2^101 < 2^106 */
961
962 /* z' = (y + z)^2 - gamma - delta */
963 felem_sum(delta, gamma);
964 /* delta[i] < 2^101 + 2^101 = 2^102 */
965 felem_assign(ftmp, y_in);
966 felem_sum(ftmp, z_in);
967 /* ftmp[i] < 2^106 + 2^106 = 2^107 */
968 felem_square(tmp, ftmp);
969 felem_reduce(z_out, tmp);
970 felem_diff(z_out, delta);
971 /* z_out[i] < 2^105 + 2^101 < 2^106 */
972
973 /* y' = alpha*(4*beta - x') - 8*gamma^2 */
974 felem_scalar(beta, 4);
975 /* beta[i] < 4 * 2^101 = 2^103 */
976 felem_diff_zero107(beta, x_out);
977 /* beta[i] < 2^107 + 2^103 < 2^108 */
978 felem_small_mul(tmp, small2, beta);
979 /* tmp[i] < 7 * 2^64 < 2^67 */
980 smallfelem_square(tmp2, small1);
981 /* tmp2[i] < 7 * 2^64 */
982 longfelem_scalar(tmp2, 8);
983 /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
984 longfelem_diff(tmp, tmp2);
985 /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
986 felem_reduce_zero105(y_out, tmp);
987 /* y_out[i] < 2^106 */
988 }
989
990 /* point_double_small is the same as point_double, except that it operates on
991 * smallfelems. */
point_double_small(smallfelem x_out,smallfelem y_out,smallfelem z_out,const smallfelem x_in,const smallfelem y_in,const smallfelem z_in)992 static void point_double_small(smallfelem x_out, smallfelem y_out,
993 smallfelem z_out, const smallfelem x_in,
994 const smallfelem y_in, const smallfelem z_in) {
995 felem felem_x_out, felem_y_out, felem_z_out;
996 felem felem_x_in, felem_y_in, felem_z_in;
997
998 smallfelem_expand(felem_x_in, x_in);
999 smallfelem_expand(felem_y_in, y_in);
1000 smallfelem_expand(felem_z_in, z_in);
1001 point_double(felem_x_out, felem_y_out, felem_z_out, felem_x_in, felem_y_in,
1002 felem_z_in);
1003 felem_shrink(x_out, felem_x_out);
1004 felem_shrink(y_out, felem_y_out);
1005 felem_shrink(z_out, felem_z_out);
1006 }
1007
1008 /* copy_conditional copies in to out iff mask is all ones. */
copy_conditional(felem out,const felem in,limb mask)1009 static void copy_conditional(felem out, const felem in, limb mask) {
1010 for (size_t i = 0; i < NLIMBS; ++i) {
1011 const limb tmp = mask & (in[i] ^ out[i]);
1012 out[i] ^= tmp;
1013 }
1014 }
1015
1016 /* copy_small_conditional copies in to out iff mask is all ones. */
copy_small_conditional(felem out,const smallfelem in,limb mask)1017 static void copy_small_conditional(felem out, const smallfelem in, limb mask) {
1018 const u64 mask64 = mask;
1019 for (size_t i = 0; i < NLIMBS; ++i) {
1020 out[i] = ((limb)(in[i] & mask64)) | (out[i] & ~mask);
1021 }
1022 }
1023
1024 /* point_add calcuates (x1, y1, z1) + (x2, y2, z2)
1025 *
1026 * The method is taken from:
1027 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1028 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1029 *
1030 * This function includes a branch for checking whether the two input points
1031 * are equal, (while not equal to the point at infinity). This case never
1032 * happens during single point multiplication, so there is no timing leak for
1033 * ECDH or ECDSA signing. */
point_add(felem x3,felem y3,felem z3,const felem x1,const felem y1,const felem z1,const int mixed,const smallfelem x2,const smallfelem y2,const smallfelem z2)1034 static void point_add(felem x3, felem y3, felem z3, const felem x1,
1035 const felem y1, const felem z1, const int mixed,
1036 const smallfelem x2, const smallfelem y2,
1037 const smallfelem z2) {
1038 felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1039 longfelem tmp, tmp2;
1040 smallfelem small1, small2, small3, small4, small5;
1041 limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1042
1043 felem_shrink(small3, z1);
1044
1045 z1_is_zero = smallfelem_is_zero(small3);
1046 z2_is_zero = smallfelem_is_zero(z2);
1047
1048 /* ftmp = z1z1 = z1**2 */
1049 smallfelem_square(tmp, small3);
1050 felem_reduce(ftmp, tmp);
1051 /* ftmp[i] < 2^101 */
1052 felem_shrink(small1, ftmp);
1053
1054 if (!mixed) {
1055 /* ftmp2 = z2z2 = z2**2 */
1056 smallfelem_square(tmp, z2);
1057 felem_reduce(ftmp2, tmp);
1058 /* ftmp2[i] < 2^101 */
1059 felem_shrink(small2, ftmp2);
1060
1061 felem_shrink(small5, x1);
1062
1063 /* u1 = ftmp3 = x1*z2z2 */
1064 smallfelem_mul(tmp, small5, small2);
1065 felem_reduce(ftmp3, tmp);
1066 /* ftmp3[i] < 2^101 */
1067
1068 /* ftmp5 = z1 + z2 */
1069 felem_assign(ftmp5, z1);
1070 felem_small_sum(ftmp5, z2);
1071 /* ftmp5[i] < 2^107 */
1072
1073 /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1074 felem_square(tmp, ftmp5);
1075 felem_reduce(ftmp5, tmp);
1076 /* ftmp2 = z2z2 + z1z1 */
1077 felem_sum(ftmp2, ftmp);
1078 /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1079 felem_diff(ftmp5, ftmp2);
1080 /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1081
1082 /* ftmp2 = z2 * z2z2 */
1083 smallfelem_mul(tmp, small2, z2);
1084 felem_reduce(ftmp2, tmp);
1085
1086 /* s1 = ftmp2 = y1 * z2**3 */
1087 felem_mul(tmp, y1, ftmp2);
1088 felem_reduce(ftmp6, tmp);
1089 /* ftmp6[i] < 2^101 */
1090 } else {
1091 /* We'll assume z2 = 1 (special case z2 = 0 is handled later). */
1092
1093 /* u1 = ftmp3 = x1*z2z2 */
1094 felem_assign(ftmp3, x1);
1095 /* ftmp3[i] < 2^106 */
1096
1097 /* ftmp5 = 2z1z2 */
1098 felem_assign(ftmp5, z1);
1099 felem_scalar(ftmp5, 2);
1100 /* ftmp5[i] < 2*2^106 = 2^107 */
1101
1102 /* s1 = ftmp2 = y1 * z2**3 */
1103 felem_assign(ftmp6, y1);
1104 /* ftmp6[i] < 2^106 */
1105 }
1106
1107 /* u2 = x2*z1z1 */
1108 smallfelem_mul(tmp, x2, small1);
1109 felem_reduce(ftmp4, tmp);
1110
1111 /* h = ftmp4 = u2 - u1 */
1112 felem_diff_zero107(ftmp4, ftmp3);
1113 /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1114 felem_shrink(small4, ftmp4);
1115
1116 x_equal = smallfelem_is_zero(small4);
1117
1118 /* z_out = ftmp5 * h */
1119 felem_small_mul(tmp, small4, ftmp5);
1120 felem_reduce(z_out, tmp);
1121 /* z_out[i] < 2^101 */
1122
1123 /* ftmp = z1 * z1z1 */
1124 smallfelem_mul(tmp, small1, small3);
1125 felem_reduce(ftmp, tmp);
1126
1127 /* s2 = tmp = y2 * z1**3 */
1128 felem_small_mul(tmp, y2, ftmp);
1129 felem_reduce(ftmp5, tmp);
1130
1131 /* r = ftmp5 = (s2 - s1)*2 */
1132 felem_diff_zero107(ftmp5, ftmp6);
1133 /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
1134 felem_scalar(ftmp5, 2);
1135 /* ftmp5[i] < 2^109 */
1136 felem_shrink(small1, ftmp5);
1137 y_equal = smallfelem_is_zero(small1);
1138
1139 if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
1140 point_double(x3, y3, z3, x1, y1, z1);
1141 return;
1142 }
1143
1144 /* I = ftmp = (2h)**2 */
1145 felem_assign(ftmp, ftmp4);
1146 felem_scalar(ftmp, 2);
1147 /* ftmp[i] < 2*2^108 = 2^109 */
1148 felem_square(tmp, ftmp);
1149 felem_reduce(ftmp, tmp);
1150
1151 /* J = ftmp2 = h * I */
1152 felem_mul(tmp, ftmp4, ftmp);
1153 felem_reduce(ftmp2, tmp);
1154
1155 /* V = ftmp4 = U1 * I */
1156 felem_mul(tmp, ftmp3, ftmp);
1157 felem_reduce(ftmp4, tmp);
1158
1159 /* x_out = r**2 - J - 2V */
1160 smallfelem_square(tmp, small1);
1161 felem_reduce(x_out, tmp);
1162 felem_assign(ftmp3, ftmp4);
1163 felem_scalar(ftmp4, 2);
1164 felem_sum(ftmp4, ftmp2);
1165 /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1166 felem_diff(x_out, ftmp4);
1167 /* x_out[i] < 2^105 + 2^101 */
1168
1169 /* y_out = r(V-x_out) - 2 * s1 * J */
1170 felem_diff_zero107(ftmp3, x_out);
1171 /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1172 felem_small_mul(tmp, small1, ftmp3);
1173 felem_mul(tmp2, ftmp6, ftmp2);
1174 longfelem_scalar(tmp2, 2);
1175 /* tmp2[i] < 2*2^67 = 2^68 */
1176 longfelem_diff(tmp, tmp2);
1177 /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1178 felem_reduce_zero105(y_out, tmp);
1179 /* y_out[i] < 2^106 */
1180
1181 copy_small_conditional(x_out, x2, z1_is_zero);
1182 copy_conditional(x_out, x1, z2_is_zero);
1183 copy_small_conditional(y_out, y2, z1_is_zero);
1184 copy_conditional(y_out, y1, z2_is_zero);
1185 copy_small_conditional(z_out, z2, z1_is_zero);
1186 copy_conditional(z_out, z1, z2_is_zero);
1187 felem_assign(x3, x_out);
1188 felem_assign(y3, y_out);
1189 felem_assign(z3, z_out);
1190 }
1191
1192 /* point_add_small is the same as point_add, except that it operates on
1193 * smallfelems. */
point_add_small(smallfelem x3,smallfelem y3,smallfelem z3,smallfelem x1,smallfelem y1,smallfelem z1,smallfelem x2,smallfelem y2,smallfelem z2)1194 static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
1195 smallfelem x1, smallfelem y1, smallfelem z1,
1196 smallfelem x2, smallfelem y2, smallfelem z2) {
1197 felem felem_x3, felem_y3, felem_z3;
1198 felem felem_x1, felem_y1, felem_z1;
1199 smallfelem_expand(felem_x1, x1);
1200 smallfelem_expand(felem_y1, y1);
1201 smallfelem_expand(felem_z1, z1);
1202 point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2,
1203 y2, z2);
1204 felem_shrink(x3, felem_x3);
1205 felem_shrink(y3, felem_y3);
1206 felem_shrink(z3, felem_z3);
1207 }
1208
1209 /* Base point pre computation
1210 * --------------------------
1211 *
1212 * Two different sorts of precomputed tables are used in the following code.
1213 * Each contain various points on the curve, where each point is three field
1214 * elements (x, y, z).
1215 *
1216 * For the base point table, z is usually 1 (0 for the point at infinity).
1217 * This table has 2 * 16 elements, starting with the following:
1218 * index | bits | point
1219 * ------+---------+------------------------------
1220 * 0 | 0 0 0 0 | 0G
1221 * 1 | 0 0 0 1 | 1G
1222 * 2 | 0 0 1 0 | 2^64G
1223 * 3 | 0 0 1 1 | (2^64 + 1)G
1224 * 4 | 0 1 0 0 | 2^128G
1225 * 5 | 0 1 0 1 | (2^128 + 1)G
1226 * 6 | 0 1 1 0 | (2^128 + 2^64)G
1227 * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1228 * 8 | 1 0 0 0 | 2^192G
1229 * 9 | 1 0 0 1 | (2^192 + 1)G
1230 * 10 | 1 0 1 0 | (2^192 + 2^64)G
1231 * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1232 * 12 | 1 1 0 0 | (2^192 + 2^128)G
1233 * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1234 * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1235 * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1236 * followed by a copy of this with each element multiplied by 2^32.
1237 *
1238 * The reason for this is so that we can clock bits into four different
1239 * locations when doing simple scalar multiplies against the base point,
1240 * and then another four locations using the second 16 elements.
1241 *
1242 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1243
1244 /* g_pre_comp is the table of precomputed base points */
1245 static const smallfelem g_pre_comp[2][16][3] = {
1246 {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
1247 {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
1248 0x6b17d1f2e12c4247},
1249 {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
1250 0x4fe342e2fe1a7f9b},
1251 {1, 0, 0, 0}},
1252 {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
1253 0x0fa822bc2811aaa5},
1254 {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
1255 0xbff44ae8f5dba80d},
1256 {1, 0, 0, 0}},
1257 {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
1258 0x300a4bbc89d6726f},
1259 {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
1260 0x72aac7e0d09b4644},
1261 {1, 0, 0, 0}},
1262 {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
1263 0x447d739beedb5e67},
1264 {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
1265 0x2d4825ab834131ee},
1266 {1, 0, 0, 0}},
1267 {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
1268 0xef9519328a9c72ff},
1269 {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
1270 0x611e9fc37dbb2c9b},
1271 {1, 0, 0, 0}},
1272 {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
1273 0x550663797b51f5d8},
1274 {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
1275 0x157164848aecb851},
1276 {1, 0, 0, 0}},
1277 {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
1278 0xeb5d7745b21141ea},
1279 {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
1280 0xeafd72ebdbecc17b},
1281 {1, 0, 0, 0}},
1282 {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
1283 0xa6d39677a7849276},
1284 {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
1285 0x674f84749b0b8816},
1286 {1, 0, 0, 0}},
1287 {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
1288 0x4e769e7672c9ddad},
1289 {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
1290 0x42b99082de830663},
1291 {1, 0, 0, 0}},
1292 {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
1293 0x78878ef61c6ce04d},
1294 {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
1295 0xb6cb3f5d7b72c321},
1296 {1, 0, 0, 0}},
1297 {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
1298 0x0c88bc4d716b1287},
1299 {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
1300 0xdd5ddea3f3901dc6},
1301 {1, 0, 0, 0}},
1302 {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
1303 0x68f344af6b317466},
1304 {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
1305 0x31b9c405f8540a20},
1306 {1, 0, 0, 0}},
1307 {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
1308 0x4052bf4b6f461db9},
1309 {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
1310 0xfecf4d5190b0fc61},
1311 {1, 0, 0, 0}},
1312 {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
1313 0x1eddbae2c802e41a},
1314 {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
1315 0x43104d86560ebcfc},
1316 {1, 0, 0, 0}},
1317 {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
1318 0xb48e26b484f7a21c},
1319 {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
1320 0xfac015404d4d3dab},
1321 {1, 0, 0, 0}}},
1322 {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
1323 {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
1324 0x7fe36b40af22af89},
1325 {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
1326 0xe697d45825b63624},
1327 {1, 0, 0, 0}},
1328 {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
1329 0x4a5b506612a677a6},
1330 {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
1331 0xeb13461ceac089f1},
1332 {1, 0, 0, 0}},
1333 {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
1334 0x0781b8291c6a220a},
1335 {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
1336 0x690cde8df0151593},
1337 {1, 0, 0, 0}},
1338 {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
1339 0x8a535f566ec73617},
1340 {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
1341 0x0455c08468b08bd7},
1342 {1, 0, 0, 0}},
1343 {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
1344 0x06bada7ab77f8276},
1345 {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
1346 0x5b476dfd0e6cb18a},
1347 {1, 0, 0, 0}},
1348 {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
1349 0x3e29864e8a2ec908},
1350 {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
1351 0x239b90ea3dc31e7e},
1352 {1, 0, 0, 0}},
1353 {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
1354 0x820f4dd949f72ff7},
1355 {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
1356 0x140406ec783a05ec},
1357 {1, 0, 0, 0}},
1358 {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
1359 0x68f6b8542783dfee},
1360 {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
1361 0xcbe1feba92e40ce6},
1362 {1, 0, 0, 0}},
1363 {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
1364 0xd0b2f94d2f420109},
1365 {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
1366 0x971459828b0719e5},
1367 {1, 0, 0, 0}},
1368 {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
1369 0x961610004a866aba},
1370 {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
1371 0x7acb9fadcee75e44},
1372 {1, 0, 0, 0}},
1373 {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
1374 0x24eb9acca333bf5b},
1375 {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
1376 0x69f891c5acd079cc},
1377 {1, 0, 0, 0}},
1378 {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
1379 0xe51f547c5972a107},
1380 {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
1381 0x1c309a2b25bb1387},
1382 {1, 0, 0, 0}},
1383 {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
1384 0x20b87b8aa2c4e503},
1385 {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
1386 0xf5c6fa49919776be},
1387 {1, 0, 0, 0}},
1388 {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
1389 0x1ed7d1b9332010b9},
1390 {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
1391 0x3a2b03f03217257a},
1392 {1, 0, 0, 0}},
1393 {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
1394 0x15fee545c78dd9f6},
1395 {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
1396 0x4ab5b6b2b8753f81},
1397 {1, 0, 0, 0}}}};
1398
1399 /* select_point selects the |idx|th point from a precomputation table and
1400 * copies it to out. */
select_point(const u64 idx,size_t size,const smallfelem pre_comp[][3],smallfelem out[3])1401 static void select_point(const u64 idx, size_t size,
1402 const smallfelem pre_comp[/*size*/][3],
1403 smallfelem out[3]) {
1404 u64 *outlimbs = &out[0][0];
1405 OPENSSL_memset(outlimbs, 0, 3 * sizeof(smallfelem));
1406
1407 for (size_t i = 0; i < size; i++) {
1408 const u64 *inlimbs = (const u64 *)&pre_comp[i][0][0];
1409 u64 mask = i ^ idx;
1410 mask |= mask >> 4;
1411 mask |= mask >> 2;
1412 mask |= mask >> 1;
1413 mask &= 1;
1414 mask--;
1415 for (size_t j = 0; j < NLIMBS * 3; j++) {
1416 outlimbs[j] |= inlimbs[j] & mask;
1417 }
1418 }
1419 }
1420
1421 /* get_bit returns the |i|th bit in |in| */
get_bit(const felem_bytearray in,int i)1422 static char get_bit(const felem_bytearray in, int i) {
1423 if (i < 0 || i >= 256) {
1424 return 0;
1425 }
1426 return (in[i >> 3] >> (i & 7)) & 1;
1427 }
1428
1429 /* Interleaved point multiplication using precomputed point multiples: The
1430 * small point multiples 0*P, 1*P, ..., 17*P are in p_pre_comp, the scalar
1431 * in p_scalar, if non-NULL. If g_scalar is non-NULL, we also add this multiple
1432 * of the generator, using certain (large) precomputed multiples in g_pre_comp.
1433 * Output point (X, Y, Z) is stored in x_out, y_out, z_out. */
batch_mul(felem x_out,felem y_out,felem z_out,const u8 * p_scalar,const u8 * g_scalar,const smallfelem p_pre_comp[17][3])1434 static void batch_mul(felem x_out, felem y_out, felem z_out, const u8 *p_scalar,
1435 const u8 *g_scalar, const smallfelem p_pre_comp[17][3]) {
1436 felem nq[3], ftmp;
1437 smallfelem tmp[3];
1438 u64 bits;
1439 u8 sign, digit;
1440
1441 /* set nq to the point at infinity */
1442 OPENSSL_memset(nq, 0, 3 * sizeof(felem));
1443
1444 /* Loop over both scalars msb-to-lsb, interleaving additions of multiples
1445 * of the generator (two in each of the last 32 rounds) and additions of p
1446 * (every 5th round). */
1447
1448 int skip = 1; /* save two point operations in the first round */
1449 size_t i = p_scalar != NULL ? 255 : 31;
1450 for (;;) {
1451 /* double */
1452 if (!skip) {
1453 point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1454 }
1455
1456 /* add multiples of the generator */
1457 if (g_scalar != NULL && i <= 31) {
1458 /* first, look 32 bits upwards */
1459 bits = get_bit(g_scalar, i + 224) << 3;
1460 bits |= get_bit(g_scalar, i + 160) << 2;
1461 bits |= get_bit(g_scalar, i + 96) << 1;
1462 bits |= get_bit(g_scalar, i + 32);
1463 /* select the point to add, in constant time */
1464 select_point(bits, 16, g_pre_comp[1], tmp);
1465
1466 if (!skip) {
1467 point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1468 tmp[0], tmp[1], tmp[2]);
1469 } else {
1470 smallfelem_expand(nq[0], tmp[0]);
1471 smallfelem_expand(nq[1], tmp[1]);
1472 smallfelem_expand(nq[2], tmp[2]);
1473 skip = 0;
1474 }
1475
1476 /* second, look at the current position */
1477 bits = get_bit(g_scalar, i + 192) << 3;
1478 bits |= get_bit(g_scalar, i + 128) << 2;
1479 bits |= get_bit(g_scalar, i + 64) << 1;
1480 bits |= get_bit(g_scalar, i);
1481 /* select the point to add, in constant time */
1482 select_point(bits, 16, g_pre_comp[0], tmp);
1483 point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, tmp[0],
1484 tmp[1], tmp[2]);
1485 }
1486
1487 /* do other additions every 5 doublings */
1488 if (p_scalar != NULL && i % 5 == 0) {
1489 bits = get_bit(p_scalar, i + 4) << 5;
1490 bits |= get_bit(p_scalar, i + 3) << 4;
1491 bits |= get_bit(p_scalar, i + 2) << 3;
1492 bits |= get_bit(p_scalar, i + 1) << 2;
1493 bits |= get_bit(p_scalar, i) << 1;
1494 bits |= get_bit(p_scalar, i - 1);
1495 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1496
1497 /* select the point to add or subtract, in constant time. */
1498 select_point(digit, 17, p_pre_comp, tmp);
1499 smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
1500 * point */
1501 copy_small_conditional(ftmp, tmp[1], (((limb)sign) - 1));
1502 felem_contract(tmp[1], ftmp);
1503
1504 if (!skip) {
1505 point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
1506 tmp[0], tmp[1], tmp[2]);
1507 } else {
1508 smallfelem_expand(nq[0], tmp[0]);
1509 smallfelem_expand(nq[1], tmp[1]);
1510 smallfelem_expand(nq[2], tmp[2]);
1511 skip = 0;
1512 }
1513 }
1514
1515 if (i == 0) {
1516 break;
1517 }
1518 --i;
1519 }
1520 felem_assign(x_out, nq[0]);
1521 felem_assign(y_out, nq[1]);
1522 felem_assign(z_out, nq[2]);
1523 }
1524
1525 /******************************************************************************/
1526 /*
1527 * OPENSSL EC_METHOD FUNCTIONS
1528 */
1529
1530 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1531 * (X/Z^2, Y/Z^3). */
ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BN_CTX * ctx)1532 static int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
1533 const EC_POINT *point,
1534 BIGNUM *x, BIGNUM *y,
1535 BN_CTX *ctx) {
1536 felem z1, z2, x_in, y_in;
1537 smallfelem x_out, y_out;
1538 longfelem tmp;
1539
1540 if (EC_POINT_is_at_infinity(group, point)) {
1541 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
1542 return 0;
1543 }
1544 if (!BN_to_felem(x_in, &point->X) ||
1545 !BN_to_felem(y_in, &point->Y) ||
1546 !BN_to_felem(z1, &point->Z)) {
1547 return 0;
1548 }
1549 felem_inv(z2, z1);
1550 felem_square(tmp, z2);
1551 felem_reduce(z1, tmp);
1552
1553 if (x != NULL) {
1554 felem_mul(tmp, x_in, z1);
1555 felem_reduce(x_in, tmp);
1556 felem_contract(x_out, x_in);
1557 if (!smallfelem_to_BN(x, x_out)) {
1558 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1559 return 0;
1560 }
1561 }
1562
1563 if (y != NULL) {
1564 felem_mul(tmp, z1, z2);
1565 felem_reduce(z1, tmp);
1566 felem_mul(tmp, y_in, z1);
1567 felem_reduce(y_in, tmp);
1568 felem_contract(y_out, y_in);
1569 if (!smallfelem_to_BN(y, y_out)) {
1570 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1571 return 0;
1572 }
1573 }
1574
1575 return 1;
1576 }
1577
ec_GFp_nistp256_points_mul(const EC_GROUP * group,EC_POINT * r,const BIGNUM * g_scalar,const EC_POINT * p,const BIGNUM * p_scalar,BN_CTX * ctx)1578 static int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
1579 const BIGNUM *g_scalar, const EC_POINT *p,
1580 const BIGNUM *p_scalar, BN_CTX *ctx) {
1581 int ret = 0;
1582 BN_CTX *new_ctx = NULL;
1583 BIGNUM *x, *y, *z, *tmp_scalar;
1584 felem_bytearray g_secret, p_secret;
1585 smallfelem p_pre_comp[17][3];
1586 felem_bytearray tmp;
1587 smallfelem x_in, y_in, z_in;
1588 felem x_out, y_out, z_out;
1589
1590 if (ctx == NULL) {
1591 ctx = new_ctx = BN_CTX_new();
1592 if (ctx == NULL) {
1593 return 0;
1594 }
1595 }
1596
1597 BN_CTX_start(ctx);
1598 if ((x = BN_CTX_get(ctx)) == NULL ||
1599 (y = BN_CTX_get(ctx)) == NULL ||
1600 (z = BN_CTX_get(ctx)) == NULL ||
1601 (tmp_scalar = BN_CTX_get(ctx)) == NULL) {
1602 goto err;
1603 }
1604
1605 if (p != NULL && p_scalar != NULL) {
1606 /* We treat NULL scalars as 0, and NULL points as points at infinity, i.e.,
1607 * they contribute nothing to the linear combination. */
1608 OPENSSL_memset(&p_secret, 0, sizeof(p_secret));
1609 OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
1610 size_t num_bytes;
1611 /* Reduce g_scalar to 0 <= g_scalar < 2^256. */
1612 if (BN_num_bits(p_scalar) > 256 || BN_is_negative(p_scalar)) {
1613 /* This is an unusual input, and we don't guarantee constant-timeness. */
1614 if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) {
1615 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1616 goto err;
1617 }
1618 num_bytes = BN_bn2bin(tmp_scalar, tmp);
1619 } else {
1620 num_bytes = BN_bn2bin(p_scalar, tmp);
1621 }
1622 flip_endian(p_secret, tmp, num_bytes);
1623 /* Precompute multiples. */
1624 if (!BN_to_felem(x_out, &p->X) ||
1625 !BN_to_felem(y_out, &p->Y) ||
1626 !BN_to_felem(z_out, &p->Z)) {
1627 goto err;
1628 }
1629 felem_shrink(p_pre_comp[1][0], x_out);
1630 felem_shrink(p_pre_comp[1][1], y_out);
1631 felem_shrink(p_pre_comp[1][2], z_out);
1632 for (size_t j = 2; j <= 16; ++j) {
1633 if (j & 1) {
1634 point_add_small(p_pre_comp[j][0], p_pre_comp[j][1],
1635 p_pre_comp[j][2], p_pre_comp[1][0],
1636 p_pre_comp[1][1], p_pre_comp[1][2],
1637 p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
1638 p_pre_comp[j - 1][2]);
1639 } else {
1640 point_double_small(p_pre_comp[j][0], p_pre_comp[j][1],
1641 p_pre_comp[j][2], p_pre_comp[j / 2][0],
1642 p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
1643 }
1644 }
1645 }
1646
1647 if (g_scalar != NULL) {
1648 size_t num_bytes;
1649
1650 OPENSSL_memset(g_secret, 0, sizeof(g_secret));
1651 /* reduce g_scalar to 0 <= g_scalar < 2^256 */
1652 if (BN_num_bits(g_scalar) > 256 || BN_is_negative(g_scalar)) {
1653 /* this is an unusual input, and we don't guarantee
1654 * constant-timeness. */
1655 if (!BN_nnmod(tmp_scalar, g_scalar, &group->order, ctx)) {
1656 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1657 goto err;
1658 }
1659 num_bytes = BN_bn2bin(tmp_scalar, tmp);
1660 } else {
1661 num_bytes = BN_bn2bin(g_scalar, tmp);
1662 }
1663 flip_endian(g_secret, tmp, num_bytes);
1664 }
1665 batch_mul(x_out, y_out, z_out,
1666 (p != NULL && p_scalar != NULL) ? p_secret : NULL,
1667 g_scalar != NULL ? g_secret : NULL,
1668 (const smallfelem(*)[3]) &p_pre_comp);
1669
1670 /* reduce the output to its unique minimal representation */
1671 felem_contract(x_in, x_out);
1672 felem_contract(y_in, y_out);
1673 felem_contract(z_in, z_out);
1674 if (!smallfelem_to_BN(x, x_in) ||
1675 !smallfelem_to_BN(y, y_in) ||
1676 !smallfelem_to_BN(z, z_in)) {
1677 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1678 goto err;
1679 }
1680 ret = ec_point_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1681
1682 err:
1683 BN_CTX_end(ctx);
1684 BN_CTX_free(new_ctx);
1685 return ret;
1686 }
1687
1688 const EC_METHOD EC_GFp_nistp256_method = {
1689 ec_GFp_simple_group_init,
1690 ec_GFp_simple_group_finish,
1691 ec_GFp_simple_group_copy,
1692 ec_GFp_simple_group_set_curve,
1693 ec_GFp_nistp256_point_get_affine_coordinates,
1694 ec_GFp_nistp256_points_mul,
1695 ec_GFp_simple_field_mul,
1696 ec_GFp_simple_field_sqr,
1697 NULL /* field_encode */,
1698 NULL /* field_decode */,
1699 };
1700
1701 #endif /* 64_BIT && !WINDOWS */
1702